Supporting Material

Application of the Excited State meta-Effect in Photolabile Protecting Group Design

Pengfei Wang*, Huayou Hu and Yun Wang
Department of Chemistry, University of Alabama at Birmingham, birmingham, Alabama 35294

Experimental Procedures

General Procedures. All organic solutions were concentrated by rotary evaporation under reduced pressure. Flash column chromatography was performed employing 230400 mesh silica gel. Thin-layer chromatography was performed using plates pre-coated to a depth of 0.25 mm with $230-400$ mesh silica gel impregnated with a fluorescent indicator. All chemicals and solvents were obtained from commercial vendors and used without further purification. Infrared spectra were obtained using a Bruker Vector 22. Data were presented as frequency of absorption $\left(\mathrm{cm}^{-1}\right)$. UV-visible spectra were obtained using a Varian Cary 100 Bio UV-visible spectrophotometer, with the sample concentration of $2.0 \times 10^{-5} \mathrm{M}$ and light path length of $1 \mathrm{~cm} .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker 300 and Bruker 400 NMR spectrometer, chemical shifts are expressed in parts per million (δ scale) downfield from tetramethylsilane and are referenced to residual protium in the NMR solvent $\left(\mathrm{CHCl}_{3}: \delta 7.26\right)$. Data were presented as follows: chemical shift, multiplicity $(\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet and /or multiple resonances), coupling constant in Hertz (Hz), integration. Photolysis was with 450 W medium pressure mercury lamp without exclusion of air.

Preparation of 3,5-dimethoxysalicylic alcohol (2). 3,5-dimethoxybenzoic acid ($3.643 \mathrm{~g}, 20 \mathrm{mmol}$) with 0.1 ml of concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ in 60 ml of MeOH was refluxed for 24 h . The solution was concentrated and neutralized with NaHCO_{3} (aq.). The aqueous layer was extracted with Ethyl acetate (50 ml x 2) and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to afford methyl 3,5-dimethoxybenzoate $(3.761 \mathrm{~g}, 92 \%)$ which was used directly for the next step without further purification.

Methyl 3,5-dimethoxybenzoate ($3.924 \mathrm{~g}, 20 \mathrm{mmol}$) in 200 ml of MeCN was treated with $\operatorname{NBS}(3.916 \mathrm{~g}, 22 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$, and then stirred at R.T. for 3 h . The reaction was quenched with $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ (aq.) and concentrated to remove MeCN . The residue was extracted with Ethyl acetate (50 mlx 2) and the organic layers were combined and washed by saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified with flash chromatography (petroleum ether/Ethyl acetate $=7 / 1, \mathrm{Rf}=0.3$) to provid methyl 2-bromo-3,5-dimethoxybenzoate (11) (4.402g, 80\%).
$11(4.13 \mathrm{~g}, 15 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(10.37 \mathrm{~g}, 75 \mathrm{mmol})$ and $\mathrm{Bu} \mathrm{H}_{4} \mathrm{NBr}(97 \mathrm{mg}, 0.3 \mathrm{mmol})$ in 20 ml of water were refluxed for 9 h . Pyridine ($2.43 \mathrm{ml}, 30 \mathrm{mmol}$) and Cu powder (190 $\mathrm{mg}, 3 \mathrm{mmol}$) were added and the reflux continued for 13 h . The reaction mixture was cooled down, poured into ice-cooled water and acidified with HCl to $\mathrm{pH}=1 \sim 2$. The aqueous was extracted with Ethyl acetate (50x3), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The crude 3,5-dimethoxysalicylic acid was dissolved in 30 ml of THF and treated with $\mathrm{LiAlH}_{4}(1.14 \mathrm{~g}, 30 \mathrm{mmol})$ in 20 ml of THF under N_{2}. The reaction mixture was stirred at R.T. for 2 h and then poured into ice-water and acidified with HCl to $\mathrm{pH}=$ 3~4. The mixture was extracted with Ethyl acetate (30 mlx 2), washed with saturated NaHCO_{3} aq. and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was
purified with flash chromatography (petroleum ether/Ethyl acetate $=3 / 2, \mathrm{Rf}=0.26$) to provide 1.36 g of pure $2(49 \%)$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 6.39(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.36(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{~s}, 1 \mathrm{H}), 4.67(\mathrm{~s}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.37(\mathrm{~s}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 153.3,147.7,138.1,126.8,104.1,99.2,62.0,56.4$, 56.1; IR(neat) 3476, 3253, 3004, 2959, 2840, 1615, 1500, 1465, 1433, 1368, 1286, 1244; HRMS(FT-ICR) m / e calcd. for $\left(\mathrm{M}+\mathrm{H}^{+}\right) 185.0814$, found 185.0812. UV of 2 (in general, the sample concentration is $2.0 \times 10^{-5} \mathrm{M}$ and light path length is 1 cm):

Preparation of 8. A solution of $\mathrm{Et}_{2} \mathrm{O} \cdot \mathrm{BF}_{3}(2.86 \mathrm{ml}, 22.6 \mathrm{mmol})$ in 10 ml of THF was added drop wise to a solution of 2-hydroxy-5-methoxybenzoic acid ($2.536 \mathrm{~g}, 15.1$ $\mathrm{mmol})$ and $\mathrm{NaBH}_{4}(1.155 \mathrm{~g}, 30.5 \mathrm{mmol})$ in 40 ml of THF and refluxed for 11 h . The reaction mixture was cooled, poured into 80 ml of water and extracted with Ethyl acetate (70 mlx 2), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified with flash chromatography (Hexanes/Ethyl acetate $=2 / 1$, Rf 0.2) to provide 5methoxysalicylic alcohol ($1.573 \mathrm{~g}, 68 \%$).

5-methoxysalicylic alcohol ($0.462 \mathrm{~g}, 3 \mathrm{mmol}$), 3-Phenylpropionaldehyde (1a) (0.278 $\mathrm{ml}, 2 \mathrm{mmol}$) and $\mathrm{p}-\mathrm{TsOH}(38 \mathrm{mg}, 0.2 \mathrm{mmol})$ in 8 ml of DCM was stirred at R.T. for 24 h . The reaction mixture was concentrated and directly purified with flash chromatography (petroleum ether/Ethyl acetate $=7 / 1, \mathrm{Rf}=0.45$) to afford $8(0.475 \mathrm{~g}, 88 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.34-7.21(\mathrm{~m}, 5 \mathrm{H}), 6.83(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{dd}, J=9.0,3.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.51(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.00-4.94(\mathrm{~m}, 2 \mathrm{H}), 4.84(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}$, $3 \mathrm{H}), 2.88(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.20-2.14(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 154.3$, $147.4,141.8,129.0,128.9,126.4,121.9,117.9,114.4,109.9,99.4,66.9,56.1,36.3,30.3$; IR(neat) 3031, 2953, 2929, 2863, 1600, 1497, 1454, 1372, 1323, 1259, 1223; HRMS(FTICR) m / e calcd. for $\left(\mathrm{M}+\mathrm{H}^{+}\right)$271.1334, found 271.1330.

Preparation of 9. Salicylic alcohol ($77 \mathrm{mg}, 0.60 \mathrm{mmol}$), 1a ($0.0278 \mathrm{ml}, 0.20 \mathrm{mmol}$) and $\mathrm{ZnCl}_{2}(85 \mathrm{mg}, 0.60 \mathrm{mmol})$ in 1 ml of benzene was stirred at $23^{\circ} \mathrm{C}$ for 18 h . The reaction mixture was concentrated and purified with flash chromatography (petroleum ether/Ethyl acetate $=20 / 1, \operatorname{Rf} 0.39)$ to provide $9(22 \mathrm{mg}, 46 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz}) \delta 7.35-7.16(\mathrm{~m}, 6 \mathrm{H}), 7.00-6.88(\mathrm{~m}, 3 \mathrm{H}), 5.05-4.98(\mathrm{~m}, 2 \mathrm{H}), 4.88(\mathrm{dd}, J=14.4$,
$3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2 . .90(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.25-2.16(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta$ 153.0, 141.3, 128.51, 128.48, 128.0, 126.0, 124.9, 121.03, 120.97, 116.7, 99.0, 66.5, 35.9, 29.8; IR(neat) 3027, 2931, 2857, 1615, 1588, 1490, 1462, 1406, 1272, 1240; HRMS(FTICR) m / e calcd. for $\left(\mathrm{M}+\mathrm{H}^{+}\right)$241.1229, found 241.1228.

Preparation of 12. 3,5-dimethoxysalicylic acid was reflux for 24 h in MeOH in the presence of $\mathrm{H}_{2} \mathrm{SO}_{4}$ (conc.). The reaction mixture was cooled and concentrated. Flash chromatography (petroleum ether/ethyl acetate $=7: 1$, Rf 0.37) afforded the methyl ester. The ester ($213 \mathrm{mg}, 1 \mathrm{mmol}$) in 3 ml of THF was treated with LiMe ($3.6 \mathrm{ml}, 1.4 \mathrm{M}$ in $\mathrm{Et}_{2} \mathrm{O}$) and stirred at $-78^{\circ} \mathrm{C}$ for 1.5 h . The reaction mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ (aq.), extracted with ethyl acetate ($15 \mathrm{ml} \times 2$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified with flash chromatography (petroleum ether/ethyl acetate $=2: 1$, Rf 0.3) to provide the 3,5-dimethoxy- α, α-dimethylsalicylic alcohol (200 mg , $94 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 6.89(\mathrm{~s}, 1 \mathrm{H}), 6.44(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.39(\mathrm{~d}, J=$ $2.8 \mathrm{~Hz}, 1 \mathrm{H}$), $3.87(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.49(\mathrm{~s}, 1 \mathrm{H}), 1.63(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (CDCl_{3}, $100 \mathrm{MHz}) \delta 153.1,148.2,138.0,133.3,102.3,98.4,74.4,56.5,56.2,30.0$; IR (neat): 3421, 2975, 2838, 1602, 1491, 1460, 1430, 1375, 1324, 1204; HRMS(FT-ICR) m/e calcd. for $\left(\mathrm{M}+\mathrm{H}^{+}\right)$213.1127, found 213.1128.

3,5-dimethoxy- α, α-dimethylsalicylic alcohol ($33 \mathrm{mg}, 0.15 \mathrm{mmol}$), 1a (0.014 ml 0.10 $\mathrm{mmol}), \mathrm{ZnCl}_{2}(28 \mathrm{mg})$ in 0.8 ml of MeCN were stirred at $23^{\circ} \mathrm{C}$ for 24 h . Flash chromatography (Hexanes/ benzene $=2 / 3$, Rf 0.17) afforded 12 ($15 \mathrm{mg}, 46 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.27-7.18(\mathrm{~m}, 5 \mathrm{H}), 6.37(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1$ $\mathrm{H}), 5.01(\mathrm{dd}, J=6.3,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.92-2.83(\mathrm{~m}, 2 \mathrm{H}), 2.30-$ $2.20(\mathrm{~m}, 2 \mathrm{H}), 1.55(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 154.1,149.1,141.7$, 136.5, $131.2,129.0,128.7,126.3,100.9,98.5,94.6,75.5,56.4,56.1,36.0,31.1,30.4,29.3$; IR(neat): 2974, 2933, 1603, 1493, 1456, 1401, 1358, 1284, 1257, 1202; HRMS(FT-ICR) m / e calcd. for $\left(\mathrm{M}+\mathrm{H}^{+}\right) 329.1753$, found 329.1751.

General Procedure of Preparation of 3a, 3b, 3c, 3d, 3e, and 3f. 2 ($28 \mathrm{mg}, 0.15$ mmol) was added to a flame dry flask under Ar, followed by 1.0 ml of freshly distilled toluene and cooled to $0^{\circ} \mathrm{C}$. The carbonyl compound (0.10 mmol), p-TsOH ($0.4 \mathrm{mg}, 0.002$ $\mathrm{mmol})$ and $\mathrm{P}_{2} \mathrm{O}_{5}(30 \mathrm{mg})$ was added and stirred at $0^{\circ} \mathrm{C}$. When the carbonyl compound was consumed, the reaction was poured into saturated NaHCO_{3} (aq.) and extracted with Ethyl acetate (15 mlx 2), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified with flash chromatography.

3a, 92%, Rf 0.27 (petroleum ether/ethyl acetate $=7 / 1$); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ $\delta 7.30-7.19(\mathrm{~m}, 5 \mathrm{H}), 6.38(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.97-4.95(\mathrm{~m}, 2$ H), 4.82 (d, $J=14.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.85 (s, 3 H), 3.74 (s, 3 H), 2.91-2.84 (m, 2 H), 2.24-2.20 (m, 2 H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 154.0,148.8,141.2,136.8,128.5,128.4,125.9$, 121.6, 99.2, 99.1, 98.8, 66.4, 56.0, 55.6, 35.6, 29.9; IR (neat): 3059, 3026, 3002, 2933, 2841, 1606, 1499, 1455, 1404, 1369, 1282, 1225; HRMS(FT-ICR) m/e calcd. for ($\mathrm{M}+$ H^{+}) 301.1440, found 301.1438. UV of 3a:

$\mathbf{3 b}, 99 \%$, Rf 0.5 (petroleum ether/ethyl acetate $=5 / 1$); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta$ $7.58(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.05-7.00(\mathrm{~m}$, $4 \mathrm{H}), 6.41(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.12(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.93(\mathrm{~s}, 1 \mathrm{H}), 5.16(\mathrm{~d}, J=14.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.94(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75\right.$ $\mathrm{MHz}) \delta 158.6,157.4,154.7,149.5,137.3,132.4,130.2,128.8,123.9,121.9,119.5,119.1$, 99.5, 99.4, 99.3, 67.1, 56.4, 56.1; IR (neat): 2997, 2958, 2840, 1610, 1592, 1494, 1457, 1387, 1367, 1336, 1283, 1241; HRMS(FT-ICR) m/e calcd. for $\left(\mathrm{M}+\mathrm{H}^{+}\right) 365.1389$, found 365.1383. UV of 3b:

3c, 93%, Rf 0.43 (petroleum ether/ethyl acetate $=5 / 1$); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ $\delta 7.04(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.74(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.32(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.01(\mathrm{~d}, J$ $=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.71$ $(\mathrm{s}, 3 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 2.68(\mathrm{t}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.14-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 156.7,152.4,148.3,133.7,132.8,128.2,119.0,112.7,99.6$, 98.0, 97.9, 59.8, 55.0, 54.6, 54.2, 38.6, 27.7, 21.3; IR (neat): 2939, 2837, 2730, 1700,

1609, 1584, 1495, 1453, 1372, 1245, 1201; HRMS(FT-ICR) m/e calcd. for $\left(\mathrm{M}+\mathrm{H}^{+}\right)$ 345.1702, found 345.1700. UV of 3c:

3d, 91%, Rf 0.27 (petroleum ether/ethyl acetate $=20 / 1$); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ $\delta 6.39(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{~d}, J$ $=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 1.93-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}), 1.52-1.40$ $(\mathrm{m}, 2 \mathrm{H}), 1.31-1.20(\mathrm{~m}, 28 \mathrm{H}), 0.88(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta$ 153.2, 149.2, 134.7, 120.0, 101.2, 98.74, 98.69, 60.7, 55.9, 55.6, 37.7, 31.9, 29.8, 29.71, 29.67, 29.6, 29.5, 29.4, 23.4, 22.7, 22.1, 14.2; IR (neat): 2916, 2848, 1603, 1496, 1462, 1363, 1280, 1245; HRMS(FT-ICR) m/e calcd. for ($\mathrm{M}+\mathrm{H}^{+}$) 449.3631, found 449.3642. UV of 3d:

3e, 96%, Rf 0.4 (petroleum ether/ethyl acetate $=7 / 1$); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta$ $6.38(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{~s}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 3$ H), $2.20(\mathrm{~s}, 2 \mathrm{H}), 2.12(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.02(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.89-1.85(\mathrm{~m}, 2$
H), 1.71-1.63 (m, 6 H$) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 152.4,148.6,133.5,120.1,100.7$, 98.0, 97.9, 58.8, 55.1, 54.6, 36.2, 32.8, 32.54, 32.46, 26.05, 26.03; IR (neat): 2910, 2854, $1610,1498,1452,1363,1283,1239$; HRMS(FT-ICR) $m / e ~ c a l c d$. for $\left(M+\mathrm{H}^{+}\right) 317.1753$, found 317.1749. UV of 3e:

3f (isomer $\mathrm{a}+\mathrm{b}=93 \%$), isomer a (28%), Rf 0.16 (petroleum ether/ ethyl acetate $=$ $20 / 1)$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 6.39(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.06(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H})$, $4.82(\mathrm{~s}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 2.02-0.74(\mathrm{~m}, 43 \mathrm{H}), 0.65(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ $\operatorname{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 153.3,149.5,134.5,120.7,99.8,98.9,98.7,60.6,56.4,56.2$, $56.1,55.6,53.7,42.5,41.7,39.9,39.5,36.6,36.1,35.8,35.7,35.4,34.7,31.7,28.7,28.3$, 28.2, 28.0, 24.2, 23.8, 22.9, 22.6, 21.2, 18.6, 12.1, 11.5; IR (neat): 2931, 2864, 1603, 1496, 1451, 1364, 1277, 1230; HRMS(FT-ICR) m/e calcd. for $\left(\mathrm{M}+\mathrm{H}^{+}\right) 553.4257$, found 553.4270 .

Isomer b (65\%), Rf 0.11 (petroleum ether/ ethyl acetate $=20 / 1) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right.$, $300 \mathrm{MHz}) \delta 6.38(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{~s}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3$ H), $3.74(\mathrm{~s}, 3 \mathrm{H}), 2.06-0.68(\mathrm{~m}, 43 \mathrm{H}), 0.64(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 153.2$, $149.1,134.8,120.1,100.5,98.7,98.6,60.2,56.4,56.2,55.9,55.6,53.9,42.5,42.2,39.9$, $39.5,36.1,35.82,35.78,35.4,34.7,31.9,29.7,29.2,28.3,28.0,24.2,23.8,22.8,22.6$, 21.2, 18.6, 12.0, 11.8; IR (neat): 2933, 2867, 1610, 1498, 1465, 1373, 1228; HRMS(FTICR) m / e calcd. for $\left(\mathrm{M}+\mathrm{H}^{+}\right) 553.4257$, found 553.4262. UV of $\mathbf{3 f}$:

Preparation of 3c from dimethyl ketal. $2(170 \mathrm{mg}, 0.88 \mathrm{mmol})$, dimethyl ketal 15 $(173 \mathrm{mg}, 0.72 \mathrm{mmol})$ and $\mathrm{B}_{10} \mathrm{H}_{14}(3.6 \mathrm{mg})$ in 1.5 ml of freshly distilled MeCN was stirred at R. T. under Ar for 3.5 h . The reaction mixture was poured into saturated NaHCO_{3} (aq.) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{ml} * 2)$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified with flash chromatography (petroleum ether/ethyl acetate $=5 / 1, \mathrm{Rf}$ 0.43) to afford 3c ($248 \mathrm{mg}, 99 \%$).

General procedures of photolysis. Ketal/acetal (0.20 mmol) in 200 ml of acetonitrile and 50 ml of water was irradiated a 450 W medium pressure mercury lamp equipped with a Pyrex filter sleeve, without exclusion of air (for 1d and 1f, 240 ml of acetonitrile and 10 ml of water were used because of the solubility). The reaction mixture was then concentrated and the residue was purified with flash column chromatography. Carbonyl compounds 1a and 1c were further derivatized. The reaction solution was transferred to a 500 ml round bottom flask containing $\mathrm{HONH}_{3} \mathrm{Cl}(1.112 \mathrm{~g}, 16.0 \mathrm{mmol})$ and $\mathrm{NaOAc}(1.690 \mathrm{~g}, 19.2 \mathrm{mmol})$ and stirred at room temperature for 24 h . The reaction mixture was concentrated and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{mlx} 2)$. The organic layers were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified with flash chromatography to provide the corresponding oximes. The yields of the obtained $\mathbf{1 b}$ and $\mathbf{1 e}$ were calculated the same way as in other cases and without any adjustment for their conversions.

Stability of 3a under various conditions

entry	reagent ${ }^{\text {a }}$	solvent	conditions	3a (\%) ${ }^{\text {d }}$
-	PhLi ${ }^{\text {b }}$	THF	$-78^{\circ} \mathrm{C}, 2 \mathrm{~h}$	100
2	$\mathrm{LiAlH}_{4}{ }^{\text {c }}$	THF	$23^{\circ} \mathrm{C}, 24 \mathrm{~h}$	100
3	$\mathrm{NaBH}_{4}{ }^{\text {c }}$	THF	$23^{\circ} \mathrm{C}, 24 \mathrm{~h}$	100
4	t-BuOK	MeCN	$23^{\circ} \mathrm{C}, 24 \mathrm{~h}$	100
		MeCN	Reflux, 2h	100
5	DDQ	MeCN	$23^{\circ} \mathrm{C}, 24 \mathrm{~h}$	25
		MeCN	Reflux, 2h	0
6	TFA	MeCN	$23^{\circ} \mathrm{C}, 24 \mathrm{~h}$	25
		MeCN	Reflux, 2h	0
7	p-TsOH $\mathrm{H}_{2} \mathrm{O}$	MeCN	$23^{\circ} \mathrm{C}, 24 \mathrm{~h}$	0
		MeCN	Reflux, 2h	0
8	HCl (37\%)	MeCN	$23^{\circ} \mathrm{C}, 24 \mathrm{~h}$	50
		MeCN	Reflux, 2h	0
9	CAN	MeCN	$23^{\circ} \mathrm{C}, 24 \mathrm{~h}$	0
		MeCN	Reflux, 2h	0
10	AcOH	MeCN	$23^{\circ} \mathrm{C}, 24 \mathrm{~h}$	100
		MeCN	Reflux, 2h	100

${ }^{\mathbf{a}} \mathbf{3 a}(2 \mathrm{mg})$ in 1.0 ml MeCN treated with reagent ($\left.>20 \mathrm{eq}.\right){ }^{\mathrm{b}}{ }^{\mathbf{3}} \mathbf{3 a}(0.05 \mathrm{mmol})$ in 1.0 ml dry THF treated with 0.4 ml of $\mathrm{PhLi}\left(2.0 \mathrm{M} \mathrm{Bu} \mathrm{O}^{2}\right.$ solution) under Ar . ${ }^{\mathrm{c}} 3 \mathbf{3}(5 \mathrm{mg})$ in 1 ml THF as treated with reagent ($>20 \mathrm{eq}$.). ${ }^{\mathrm{d}}$ Yields determined by ${ }^{1} \mathrm{H}$ NMR of the crude reaction mixture.

言

镸

Isomer a

合

Isomer b

200

