Supporting Information for

Ligand-field Dependence of the Excited State Dynamics of Hangman Bisporphyrin Dyad Complexes

Justin M. Hodgkiss, Alexander Krivokapić and Daniel G. Nocera*

Department of Chemistry, 6-335, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307

Index	Page
Förster energy transfer calculation	S2-S3
Absorption spectra of (HPX)Fe ^{III} -OH and (HPX)Fe ^{III} -OH(1-MeIm) and	S4
emission spectra of (E-P) Zn^{II} and (E-P) Zn^{II} (1-MeIm)	

Förster Energy Transfer Calculation

Förster EET requires resonant coupling between the emitting dipole of the donor and the absorption dipole of the acceptor, therefore the spectral overlap integral $(J(\lambda))$ is the most important rate-determining parameter. Equation 1 was used to estimate the rate of Förster EET.

$$k_{EET} = C \left(\frac{\Phi_D \kappa^2}{\tau_D r^6 \eta^4 N} \right) J(\lambda), \qquad (1)$$

where
$$J(\lambda) = \int_{0}^{\infty} F_{D}(\lambda) \varepsilon_{A}(\lambda) \lambda^{4} d\lambda$$
, (2)

and
$$C = \frac{9000 \ln(10)}{128\pi^5}$$
 (3)

In Equation 1, Φ_D and τ_D are the emissive quantum yield and lifetime, respectively, of the donor, r is the D–A distance, κ^2 is a factor that accounts for the relative orientation of D and A transition dipole moments ($0 < \kappa^2 < 4$), η is the medium refractive index, and N is Avogadro's number. Equation 2 defines the spectral overlap integral, $J(\lambda)$, where $F_D(\lambda)$ is the normalized emission spectrum of the donor and $\varepsilon_A(\lambda)$ is the absorption spectrum of the acceptor (with intensities plotted as molar extinction coefficients), both as a function of wavelength (λ).

The absorption spectrum of (HPX)Fe^{III}–OH, and the normalized emission spectrum of (E-P)Zn^{II} (Figure S1) are used to calculate the spectral overlap integral ($J(\lambda) = 3.59 \times 10^{14} \text{ M}^{-1} \text{ cm}^{-1} \text{ nm}^4$). Taking an emission quantum yield of $\Phi_D = 0.045$ for (E-P)Zn^{II} and an unquenched lifetime of $\tau_D = 1.8$ ns (vide supra), a D–A center-to-center distance of r = 17 Å, an angular factor of $\kappa^2 = 2/3$ (assuming that the absorption/emission dipoles in both porphyrins have planar symmetry, and the two porphyrins are freely rotating relative to each other), and using a solvent refractive index of n = 1.5 (toluene), a resonant EET rate of $k_{\text{EET}} = 4.3 \times 10^9 \text{ s}^{-1}$ results for **1**. On the basis of this k_{EET} , the observed lifetime of S₁ may be calculated from,

$$\tau = 1 / (k_0 + k_{\text{EET}}) \tag{4}$$

and is it predicted to be $\tau \sim 200$ ps, based on a natural lifetime of $\tau_0 = 1.8$ ns (where $\tau_0 = 1 / k_0$), as determined from the fluorescence lifetime of the (E-P)Zn^{II} monomer.

The Förster calculation was repeated for dyad **1** with 1-MeIm bound, since ligation of 1-MeIm was found to perturb the electronic spectra of both components of the dyad (Figure S1). A pronounced red-shift in the emission spectrum of (E-P)Zn^{II}(1-MeIm) ($\lambda_{em,max} = 584$ and 639 nm) combined with an attenuated fluorescence quantum yield ($\Phi_D = 0.03$; estimated based on

quantitative comparison with unbound (E-P)Zn^{II}, and consistent with that observed for pyridine binding to (OEP)Zn^{II})), and shorter unquenched lifetime ($\tau_D = 1.6$ ns) translates to a slower calculated rate of EET and longer S₁ lifetime ($k_{EET} = 3.5 \times 10^9 \text{ s}^{-1}$, $\tau \sim 250 \text{ ps}$). The Förster calculation for dyad **2** uses the same input quantities as for dyad **1** but with the D–A distance reduced to r = 13 Å. The shorter distance corresponds to a faster rate constant of EET of ($k_{EET} = 2.2 \times 10^{10} \text{ s}^{-1}$, and a shorter S₁ lifetime of $\tau \sim 45 \text{ ps}$.

Figure S1. Spectral overlap between the emission of $(E-P)Zn^{II}$ (blue dashed) and the electronic absorption of $(HPX)Fe^{III}$ –OH (blue solid) compared with the emission of $(E-P)Zn^{II}(1-MeIm)$ (red dashed) and the absorption of $(HPX)Fe^{III}$ –OH(1-MeIm) (red solid).