Cu-Catalyzed Asymmetric Conjugate Additions of Dialkyl- and Diarylzinc Reagents to Acyclic β-Silyl- α, β-Unsaturated Ketones. Synthesis of Allylsilanes in High Diastereo- and Enantiomeric Purity

Monica A. Kacprzynski, Stephanie A. Kazane, Tricia L. May and Amir H. Hoveyda*
Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467

SUPPORTING INFORMATION

GENERAL. Infrared (IR) spectra were recorded on a Nicolet 210 spectrophotometer, $\nu_{\text {max }}$ in cm^{-1}. Bands are characterized as broad (br), strong (s), medium (m), or weak (w). ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Varian Unity INOVA $400(400 \mathrm{MHz})$ spectrometer. Chemical shifts are reported in ppm from tetramethylsilane with the solvent resonance as the internal standard ($\mathrm{CDCl}_{3}: \delta 7.26 \mathrm{ppm}$). Data are reported as follows: chemical shift, integration, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{br}=$ broad and $\mathrm{m}=$ multiplet), coupling constants (Hz), and assignment. ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Varian Unity INOVA 400 (100 MHz) spectrometer with complete proton decoupling. Chemical shifts are reported in ppm from tetramethylsilane with the solvent resonance as the internal standard $\left(\mathrm{CDCl}_{3}: \delta 77.16\right)$. Enantiomer ratios are determined by chiral GLC analysis (Supleco Betadex 120 column (30 m x 0.25 mm) or Alltech Associated Chiraldex GTA column (30 mx 0.25 mm)) or by chiral HPLC analysis (Chiral Technologies Chiralpak AS ($4.6 \times 250 \mathrm{~mm}$), Chiral Technologies Chiralcel OD ($4.6 \times 250 \mathrm{~mm}$) or Chiral Technologies Chiralpak AD ($4.6 \times 250 \mathrm{~mm}$)) in comparison with authentic racemic materials. Elemental analysis was performed by Robertson Microlit Laboratories (Madison, New Jersey). High resolution mass spectrometry was performed by the University of Illinois Mass Spectrometry Laboratories (Urbana, Illinois) or by the Boston College Mass Spectrometry Laboratories. Optical rotation values were recorded on a Rudolph Research Analytical Autopol IV Polarimeter.

MATERIALS. Unless otherwise stated, all reactions were conducted in oven ($135{ }^{\circ} \mathrm{C}$) and flame-dried glassware under an inert atmosphere of nitrogen. All work-up and purification procedures were carried out with reagent solvents in air. All reagent solvents were purchased from Doe and Ingalls.
Benzene: Purified by being passed through Cu and alumina columns under a positive pressure of dry argon by a modified Advanced ChemTech purification system.

Chloroform: Purchased from Aldrich and used as received.
Dichloromethane: Purified through two alumina columns under a positive pressure of dry argon by a modified Advanced ChemTech purification system.
Diethyl ether: Purified through two alumina columns under a positive pressure of dry argon by a modified Advanced ChemTech purification system.
Dimethoxyethane: Purified by distillation from sodium benzophenone ketal immediately prior to use.
Benzaldehyde: Purchased from Aldrich and distilled over CaCl_{2} prior to use.
n-Butyl lithium (1.6 M solution in hexane): Purchased from Strem and used without further purification.
Chlorodimethylphenylsilane: Purchased from Aldrich and used as received.
Chlorotrimethylsilane: Purchased from Aldrich and used as received.
3-Chloroperbenzoic acid: Purchased from Aldrich and washed with phosphate buffer (pH 7.5), extracted with benzene, dried over MgSO_{4}, and concentrated prior to use.
Chlorosulfonyl isocyanate (CSI): Purchased from Aldrich and distilled over $\mathrm{K}_{2} \mathrm{CO}_{3}$ prior to use.
Copper (I) iodide: Purchased from Strem and used without further purification.
Copper (I) triflate (benzene complex, 2:1): Prepared according to known methods. ${ }^{1}$
Copper (I) triflate (toluene complex, 2:1): Purchased from Aldrich and used without further purification.
Dess-Martin Periodinane: Purchased from Atlantic Scientific Company and used as received.
Dibutylzinc (1 M solution in heptane): Purchased from Fluka and used as received.
Diethylzinc: Purchased from Aldrich and used as received.
Di-4-acetoxybutylzinc: Prepared according to known literature procedure. ${ }^{2}$
Di-4-methoxyphenylzinc: Prepared from commercially available starting materials by a known literature procedure. ${ }^{3}$
Dimethylzinc: Purchased from Strem and used as received.
Diphenylzinc: Purchased from Strem and used as received. ${ }^{4}$
Di-4-trifluoromethylphenylzinc: Prepared from commercially available starting materials by a known literature procedure. ${ }^{5}$
Palladium (II) acetate: Purchased from Aldrich and used without further purification.
Phenylboronic acid: Purchased from Aldrich and recrystallized from hot $\mathrm{H}_{2} \mathrm{O}$ prior to use.
Sodium bis(2-methoxyethoxy) aluminum hydride (Red-Al, 3.33 M solution in toluene): Purchased from Aldrich and used without further purification.

[^0]Tetrabutyl ammonium fluoride ($\mathbf{1} \mathbf{M}$ solution in THF): Purchased from Acros and used as received.
Tetrahydrofuran: Purified by distillation from sodium benzophenone ketal immediately prior to use.
Titanium (IV) chloride: Purchased from Aldrich and used without further purification.
Toluene: Purified by being passed through Cu and alumina columns under a positive pressure of dry argon by a modified Advanced ChemTech purification system.
Trifluoroacetic anhydride: Purchased from Aldrich and distilled over $\mathrm{P}_{2} \mathrm{O}_{5}$ prior to use.
Triphenylphosphine: Purchased from Aldrich and recrystallized from hot hexanes prior to use. Zinc (II) chloride, ultra dry: Purchased from Strem and used without further purification.

Representative experimental procedures for synthesis of α, β-unsaturated ketones:

4-(Trimethylsilyl)-but-3-yn-2-ol (B). ${ }^{6}$ To a solution of propargyl alcohol A (1.50 mL , 19.1 mmol) in THF (95.5 mL) was added $n-\mathrm{BuLi}(26.4 \mathrm{~mL}$ of a 1.52 M solution in hexanes, 40.1 mmol) through a syringe at $-78{ }^{\circ} \mathrm{C}$ (dry ice/actone bath). After addition was complete, the solution was allowed to warm to $22^{\circ} \mathrm{C}$. After 1.5 h at $22^{\circ} \mathrm{C}$, the mixture was allowed to cool to $-78{ }^{\circ} \mathrm{C}$ (dry ice/acetone bath) and chlorotrimethylsilane ($4.82 \mathrm{~mL}, 38.2 \mathrm{mmol}$) was added dropwise through a syringe. The solution was allowed to slowly warm to $22^{\circ} \mathrm{C}$ over 12 h , and the reaction was quenched by the addition of an aqueous solution of $\mathrm{HCl}(200 \mathrm{~mL}, 1.00 \mathrm{M})$ and diluted with $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$. The layers were separated and the aqueous layer was washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$. The combined organic layers were washed with a saturated solution of NaCl (100 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The yellow oil was purified by silica gel chromatography (6:1 hexanes:EtOAc, $R_{f}=0.5$) to afford the desired product \mathbf{B} as a pale yellow oil ($1.87 \mathrm{~g}, 13.1 \mathrm{mmol}, 69 \%$). This spectral data is in accordance with the reported literature data.
(E)-4-(Trimethylsilyl)-3-buten-2-ol (C). ${ }^{7}$ To a solution of $\mathbf{B}\left(1.87 \mathrm{~g}, 13.1 \mathrm{mmol}^{\mathbf{~}}\right.$) in $\mathrm{Et}_{2} \mathrm{O}$ $(29.1 \mathrm{~mL})$ was slowly added Red-Al (7.88 mL of a 3.33 M solution in toluene, 26.2 mmol) as a solution in $\mathrm{Et}_{2} \mathrm{O}(6.99 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ (ice bath). The mixture was allowed to warm to $22{ }^{\circ} \mathrm{C}$ over 2 h and then quenched by the addition of $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{SO}_{4}(2.0 \mathrm{~mL}, 3.6 \mathrm{M})$ at $0{ }^{\circ} \mathrm{C}$. The resulting solution was diluted with $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$. The layers were separated and the aqueous layer was washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$. The combined organic

[^1](7) Hwu, J. R.; Furth, P. S. J. Am. Chem. Soc. 1989, 111, 8834-8841.
layers were washed with a saturated solution of $\mathrm{NaCl}(100 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo to afford desired product \mathbf{C} without purification as a pale yellow oil (1.84 $\mathrm{g}, 12.8 \mathrm{mmol}, 13: 1 \mathrm{E}: Z, 97 \%)$. This spectral data is in accordance with reported literature data. ${ }^{7}$
(E)-4-(Trimethylsilyl)-3-buten-2-one (1). ${ }^{8}$ To a solution of $\mathbf{C}(1.84 \mathrm{~g}, 12.8 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(128 \mathrm{~mL})$ was added Dess-Martin periodinate (DMP) in three equal portions (8.10 g , 19.1 mmol) at 30 minute intervals at $22^{\circ} \mathrm{C}$. The mixture was allowed to stir for 30 min after the final addition of DMP. The mixture was diluted with 15% aqueous solution of NaOH (50 mL) and $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$ and allowed to stir for 10 min . At this time, the layers were separated and the aqueous layer was washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$. The combined organic layers were washed with a saturated solution of $\mathrm{NaCl}(100 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The remaining yellow oil was purified by silica gel chromatography ($25: 1$ hexanes: $\mathrm{Et}_{2} \mathrm{O}$, $R_{f}=0.3$) to afford the desired product 1 as a pale yellow oil ($1.06 \mathrm{~g}, 7.44 \mathrm{mmol}, 59 \%$).IR (neat): 3005 (w), 2968 (m), 2899 (w), 1678 (s), 1363 (m), 1256 (s), 1218 (m), 1193 (m), 992 (m), 866 (s), $856(\mathrm{~s}) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.01(1 \mathrm{H}, \mathrm{d}, J=19.6 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}), 6.43(1 \mathrm{H}$, d, $J=19.6 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}), 2.26\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 0.13\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right) .{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 198.8,147.8,143.2,26.4,-1.7$. Anal Calcd. for $\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{OSi}: \mathrm{C}, 59.09 ; \mathrm{H}, 9.92$. Found: C, 59.34; H, 10.14.
(E)-4-(Dimethylphenylsilyl)-3-buten-2-one (15). IR (neat): 3068 (s), 3050 (s), 3006 (m), 2955 (m), 2904 (s), 1684 (s), 1590 (s), 1432 (m), 1363 (m), 1250 (s), 1225 (m), 1193 (m), 1117 (m), 998 (s), 834 (s), 734 (m), 702 (m) cm ${ }^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.51-7.36$ ($5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), $7.11(1 \mathrm{H}, \mathrm{d}, J=19.2 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}), 6.48(1 \mathrm{H}, \mathrm{d}, J=19.2 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}), 2.27(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{CH}_{3}\right), 0.42\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 198.7, 145.7, 144.3, 136.5, 134.0, 129.7, 128.2, 26.5, -3.1. HRMS Calcd. for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{OSi}\left(\mathrm{M}-\mathrm{H}^{+}\right)$: 203.0892. Found: 203.0895.
(E)-2-Methyl-5-(trimethylsilyl)-4-penten-3-one (D). IR (neat): 2968 (s), 2905 (w), 1715 (s), 1671 (s), 1470 (m), 1250 (s), 1212 (m), 1061 (m), 1011 (m), 878 (s), 865 (s), 759 (w) $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.11(1 \mathrm{H}, \mathrm{d}, J=19.2 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}), 6.55(1 \mathrm{H}, \mathrm{d}, J=19.2$ $\mathrm{Hz}, \mathrm{CH}=\mathrm{CH}), 2.95\left(1 \mathrm{H}, \mathrm{dq}, J=6.8,6.8 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.12\left(6 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, \mathrm{CH}(\mathrm{CH})_{2}\right)$, $0.15\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 201.2,146.7,140.7,37.9,18.6,-1.6$. HRMS Calcd. for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{OSi}$: 170.1127. Found: 170.1124.
(E)-1-Phenyl-3-(trimethylsilyl)-prop-2-enone (E). IR (neat): 3062 (w), 3031 (w), 2955 (m), 2892 (w), 1665 (s), 1608 (m), 1576 (m), 1451 (m), 1243 (s), 1180 (m), 1010 (m), 872 (s), 853 (s), $749(\mathrm{~m}), 690(\mathrm{~m}) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.93-7.91(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.57-$ $7.44(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.32-7.21(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}$ and $\mathrm{CH}=\mathrm{CH}), 0.18\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right) .{ }^{13} \mathrm{C}$ NMR
(8) Dess, D. B.; Martin, J. C. J. Org. Chem. 1983, 48, 4155-4156.
(100 MHz, CDCl_{3}): δ 201.1, 149.9, 138.2, 137.7, 132.9, 129.0, 128.7, -1.6. Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{OSi}: \mathrm{C}, 70.53$; H, 7.89. Found: C, 70.49; H, 7.65.

Representative procedure for Cu -catalyzed enantioselective conjugate addition of dialkylzinc reagents to (E)-4-(dimethylphenylsilyl)-3-buten-2-one (15):

(S)-(+)-4-(Dimethylphenylsilyl)-2-pentanone (7). In a N_{2} filled glove box, a $13 \times 100 \mathrm{~mm}$ test tube was charged with $(\mathrm{CuOTf})_{2} \cdot \mathrm{C}_{6} \mathrm{H}_{6}\left(2.41 \mathrm{mg}, 4.80 \times 10^{-3} \mathrm{mmol}\right)$ and Schiff base $4(5.33 \mathrm{mg}$, $1.20 \times 10^{-2} \mathrm{mmol}$), sealed with a septum, wrapped with parafilm and Telfon tape and removed from the glovebox. A solution of enone $15(98.1 \mathrm{mg}, 0.480 \mathrm{mmol})$ in toluene (4.80 mL) was added through a syringe at $22{ }^{\circ} \mathrm{C}$, followed by the addition of $\mathrm{Me}_{2} \mathrm{Zn}(99.0 \mu \mathrm{~L}, 1.44 \mathrm{mmol})$ (CAUTION: $\mathrm{Me}_{2} \mathrm{Zn}$ is pyrophoric! Use extreme caution). The mixture was allowed to stir for 3 h at $22{ }^{\circ} \mathrm{C}$, at which time the reaction was quenched with the addition of a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}(2.0 \mathrm{~mL})$ and diluted with $\mathrm{Et}_{2} \mathrm{O}(1.0 \mathrm{~mL})$. The layers were separated and the aqueous layer was washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 2.0 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4}, filtered and concentrated in vacuo. The resulting residue was purified by silica gel chromatography ($25: 1$ petroleum ether: EtOAc, $R_{f}=0.5$) to afford the desired product 7 (98.0 $\mathrm{mg}, 0.421 \mathrm{mmol}, 93 \%$) as a colorless oil. IR (neat): 3075 (m), 3018 (w), 2968 (s), 2905 (m), 2867 (m), 1722 (s), 1445 (s), 1357 (s), 1250 (s), 1202 (m), 1124 (s), 815 (s), 771 (s), 734 (s), 696 (s) $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.51-7.35(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 2.42(1 \mathrm{H}, \mathrm{dd}, J=16.0,3.6 \mathrm{~Hz}$, $\mathrm{C}(\mathrm{O}) \mathrm{CHH}), 2.18(1 \mathrm{H}, \mathrm{dd}, J=16.0,11.2 \mathrm{~Hz}, \mathrm{COCHH}), 2.07\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right), 1.49(1 \mathrm{H}, \mathrm{dq}, J=$ $\left.11.2,3.6 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}\right), 0.93\left(3 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 0.28\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.28(3 \mathrm{H}, \mathrm{s}$, SiCH_{3}). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 209.4,137.6,134.0,129.2,127.9,46.0,30.0,15.3$, 14.6, -4.7, -5.2. Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{OSi}$: C, 70.85 ; H, 9.15. Found: C, 70.97; H, 8.86. $[\alpha]_{\mathrm{D}}{ }^{20}$ +22.5 ($c=1.84, \mathrm{CHCl}_{3}$).

Enantiomeric purity was determined by chiral GLC analysis (Chiraldex-GTA, $100{ }^{\circ} \mathrm{C}, 15$ psi) of the derived alcohol, obtained by protodesilylation and oxidation under the reaction conditions reported by Fleming. ${ }^{9}$
(S)-(+)-4-Hydroxy-2-pentanone (F). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 4.24-4.20(1 \mathrm{H}, \mathrm{m}$, $\mathrm{CHOH}), 3.02(1 \mathrm{H}, \mathrm{br}$ s, OH$), 2.63\left(1 \mathrm{H}, \mathrm{dd}, J=14.4,2.4 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{C}(\mathrm{O}) \mathrm{CHH}\right), 2.54(1 \mathrm{H}, \mathrm{dd}, J=$ $\left.14.4,6.8 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{C}(\mathrm{O}) \mathrm{CHH}\right), 2.17\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{C}(\mathrm{O})\right), 1.19\left(3 \mathrm{H}, \mathrm{d}, J=4.8 \mathrm{~Hz}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}\right)$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 210.0,63.9,51.5,30.8,22.4$. Spectral data is in accordance with literature data. ${ }^{10}[\alpha]_{\mathrm{D}}{ }^{20}+63.4\left(c=0.347, \mathrm{CHCl}_{3}\right)$ for a 96% ee sample, indicating the S-isomer. ${ }^{11}$ The corresponding chromatograms are illustrated below:

[^2]Authentic racemic

peak \#	time	area	height	width	area \%
1	5.447	24541.0	4011.35	0.1020	49.55739
2	6.558	24979.4	2961.14	0.1406	50.44261

From catalytic reaction

peak \#	time	area	height	width	area \%
1	5.163	73404.6	2511.61	0.0890	98.0288
2	6.816	269.554	6.97854	0.0725	1.97127

(S)-(+)-4-(Trimethylsilyl)-2-hexanone (2). IR (neat): 2967 (s), 2905 (m), 2880 (w), 1728 (s), 1363 (m), 1256 (s), 1193 (m), 847 (s), 759 (w), 702 (w) cm ${ }^{-1} .{ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta 2.40-2.33\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}(\mathrm{O}) \mathrm{CH}_{2}\right), 2.15\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{C}(\mathrm{O})\right.$), 1.55-1.13 (3H, m, aliphatic $\mathrm{CH}), 0.88\left(3 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right),-0.02\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 209.8, 44.2, 30.0, 23.3, 22.8, 13.8, -2.3. HRMS Calcd. for $\mathrm{C}_{9} \mathrm{H}_{19} \mathrm{OSi}\left(\mathrm{M}-\mathrm{H}^{+}\right): 171.1205$. Found: 171.1207. $[\alpha]_{\mathrm{D}}{ }^{20}+27.6\left(c=1.17, \mathrm{CHCl}_{3}\right)$ for a 96% ee sample.

Enantiomeric purity was determined by chiral GLC analysis (Chiraldex-GTA, $50^{\circ} \mathrm{C}, 15$ psi); chromatograms are illustrated below:

Authentic racemic

peak \#	time	area	height	width	area \%
1	64.839	141343	1015.04	2.3175	50.32219
2	72.130	139336	851.323	2.7278	49.67781

From catalytic reaction

(S)-(+)-4-(Dimethylphenylsilyl)-2-hexanone (5). IR (neat): 3075 (m), 2955 (s), 2911 (m), 2873 (m), 1715 (s), 1439 (s), 1369 (s), 1256 (s), 1187 (m), 1124 (s), 834 (s), 809 (s), 790 (s), 740 (s), 715 (s) $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.51-7.33(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 2.44-2.30$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}(\mathrm{O}) \mathrm{CH}_{2}\right), 2.04\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right), 1.58-1.23(3 \mathrm{H}, \mathrm{m}$, aliphatic CH$), 0.84(3 \mathrm{H}, \mathrm{t}, J=7.2$ $\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}$), $0.29\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.28\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 209.3$, 138.3, 134.0, 129.1, 127.9, 44.2, 30.0, 23.4, 22.3, 13.9, -3.7, -4.2. HRMS Calcd. for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{OSi}$: 234.1440. Found: 234.1436. $[\alpha]_{D}{ }^{20}+24.3\left(c=2.13, \mathrm{CHCl}_{3}\right)$ for a 96% ee sample.

Enantiomeric purity was determined by chiral HPLC analysis (Chiral Technologies

Chiralpak AS, $220 \mathrm{~nm}, 99.5 \%$ hexanes:0.5\% i-PrOH, $1.0 \mathrm{~mL} / \mathrm{min}$); chromatograms are illustrated below:

peak $\#$	time	area	height	width	area \%
1	13.355	1874723.0	100156.50	0.312	59.829
2	15.039	1907473.0	67248.15	0.473	40.171

From catalytic reaction

peak \#	time	area	height	width	area $\%$
1	13.284	429832.53	25832.53	0.277	3.525
2	14.536	23247950.0	706929.80	0.548	96.475

(S)-(+)-4-(Trimethylsilyl)-2-pentanone (6). IR (neat): 2967 (s), 2911 (m), 2867 (m), 1728 (s), 1369 (m), 1262 (s), 1193 (m), 853 (s), 752 (m), 690 (m) cm ${ }^{-1} .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 2.44(1 \mathrm{H}, \mathrm{dd}, J=16.0,3.6 \mathrm{~Hz}, \mathrm{C}(\mathrm{O}) \mathrm{CHH}), 2.21-2.13(4 \mathrm{H}, \mathrm{m}, \mathrm{COCHH}$ and $\left.\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right), 1.21(1 \mathrm{H}, \mathrm{dq}, J=11.2,3.6 \mathrm{~Hz}), 0.90\left(3 \mathrm{H}, \mathrm{d}, J=3.6 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right),-0.03(9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 209.8,46.1,30.0,15.8,14.5,-3.39$. HRMS Calcd. for $\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{OSi}\left(\mathrm{M}-\mathrm{H}^{+}\right)$: 157.1055. Found: 157.1049. $[\alpha]_{\mathrm{D}}{ }^{20}+24.9\left(c=0.667, \mathrm{CHCl}_{3}\right)$ for a 95\% ee sample.

Enantiomeric purity was determined by chiral GLC analysis (β-dex, $60{ }^{\circ} \mathrm{C}, 15 \mathrm{psi}$); chromatograms are illustrated below:

Authentic racemic

peak $\#$	time	area	height	width	area $\%$
1	42.676	68596.3	2459.54	0.4648	49.90869
2	43.808	68847.3	2161.86	0.5308	50.09131

From catalytic reaction

(S)-(+)-2-Methyl-5-(trimethylsilyl)-3-heptanone (8). IR (neat): 2968 (s), 2899 (m), 2873 (w), 1715 (s), 1470 (m), 1382 (w), 1250 (s), 1048 (m), 834 (s), 752 (m), 683 (w) cm ${ }^{-1} .{ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 2.62\left(1 \mathrm{H}, \mathrm{dq}, J=7.0,7.0 \mathrm{~Hz}, \mathrm{C}(\mathrm{O}) \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.42-2.40(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{C}(\mathrm{O}) \mathrm{CH}_{2}\right), 1.52-1.16(3 \mathrm{H}, \mathrm{m}$, aliphatic CH$), 1.09\left(6 \mathrm{H}, \mathrm{dd}, J=7.0,1.6 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.87(3 \mathrm{H}$, $\left.\mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right),-0.02\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 215.2,40.9$,
40.8, 23.5, 22.3, 18.7, 18.5, 13.8, -2.2. Anal. Calcd. for $\mathrm{C}_{11} \mathrm{H}_{24} \mathrm{OSi}: \mathrm{C}, 65.93 ; \mathrm{H}, 12.07$. Found: C, 65.95; H, 12.29. $[\alpha]_{\mathrm{D}}{ }^{20}+9.23\left(c=0.953, \mathrm{CHCl}_{3}\right)$ for a 95% ee sample.

Enantiomeric purity was determined by chiral GLC analysis (β-dex, $50{ }^{\circ} \mathrm{C}, 15 \mathrm{psi}$); chromatograms are illustrated below:

peak \#	time	area	height	width	area \%
1	340.940	45971.6	270.53	2.8323	50.28343
2	347.846	4.5453 .6	237.39	3.1912	49.71657

From catalytic reaction

peak \#	time	area	height	width	area \%
1	17.352	344.366	155149	3.4036	97.8230
2	28.331	353.867	3452.84	2.4382	2.17704

(S)-(+)-1-Phenyl-3-(trimethylsilyl)-1-pentanone (9). IR (neat): 3056 (w), 2955 (m), 2899 (m), 2892 (m), 1696 (s), 1602 (m), 1451 (m), 1250 (s), 1231 (m), 1017 (w), 954 (m), 853 (s), 759 (s), $696(\mathrm{~s}) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.97-7.44(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 3.00-2.87$ $\left(2 \mathrm{H}, \mathrm{m} \mathrm{C}(\mathrm{O}) \mathrm{CH}_{2}\right), 1.50-1.30(3 \mathrm{H}, \mathrm{m}$, aliphatic CH$) 0.91\left(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 0.03(9 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right)$: $\delta 201.2,137.5,132.9,128.7,128.2,38.9,23.4,23.2$, 13.9, -2.17. HRMS Calcd. for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{OSi}\left(\mathrm{M}-\mathrm{H}^{+}\right)$: 233.1368. Found: 233.1361. $[\alpha]_{\mathrm{D}}{ }^{20}+7.72$ ($c=0.933, \mathrm{CHCl}_{3}$) for a 89% ee sample.

Enantiomeric purity was determined by chiral GLC analysis (β-dex, $85^{\circ} \mathrm{C}, 15 \mathrm{psi}$); chromatograms are illustrated below:

Authentic racemic

From catalytic reaction

peak \#	time	area	height	width	area \%
1	784.811	541.55	1.72547	5.2310	50.32932
2	795.323	534.46	1.48650	5.9844	49.67068

peak \#	time	area	height	width	area \%
1	780.654	2209.59	5.98165	6.1566	94.2106
2	796.753	135.783	0.395120	5.7275	5.78943

(S)-(+)-1-Phenyl-3-(trimethylsilyl)-butan-1-one (10). IR (neat): 3100 (w), 3075 (m), 3037 (w), 2961 (s), 2905 (m), 2873 (m), 1703 (s), 1596 (m), 1577 (m), 1451 (s), 1350 (m), 1256 (s), 1231 (s), 985 (m), 841 (s), 746 (s), 683 (s) cm ${ }^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.94(2 \mathrm{H}$,
d, $J=7.2 \mathrm{~Hz}, \mathrm{ArH}$), 7.52 (1H, d, $J=7.2 \mathrm{~Hz}, \mathrm{ArH}), 7.46$ ($2 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{ArH}$), 3.03 (1H, dd, J $=16.0,3.6 \mathrm{~Hz}$, COCHH), 2.69 ($1 \mathrm{H}, \mathrm{dd}, J=16.0,10.8 \mathrm{~Hz}, \mathrm{COCHH}$), $1.41-1-32(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CHCH}_{3}\right), 0.95\left(3 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 0.03\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 201.0,137.5,132.9,128.7,128.2,40.9,16.3,14.6,-3.2$. HRMS Calcd. for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{OSi}$ $\left(\mathrm{M}-\mathrm{H}^{+}\right)$: 219.1198. Found: 219.1192. $[\alpha]_{\mathrm{D}}{ }^{20}-4.28\left(c=1.73, \mathrm{CHCl}_{3}\right)$ for a 93% ee sample.

Enantiomeric purity was determined by chiral HPLC analysis (Chiral Technologies Chiralpak OD, $220 \mathrm{~nm}, 100 \%$ hexanes, $1.0 \mathrm{~mL} / \mathrm{min}$); chromatograms are illustrated below:

Authentic racemic

peak \#	time	area	height	width	area \%
1	32.109	3517018.0	50155.23	1.109	50.78806
2	34.350	3407873.0	45041.67	1.283	49.21194

From catalytic reaction

Representative procedure for Cu-catalyzed enantioselective conjugate addition of diarylzinc reagents to (E)-4-(dimethylphenylsilyl)-3-buten-2-one (15):
(R)-(+)-4-(Dimethylphenylsilyl)-4-phenyl-2-butanone (12). In a N_{2}-filled glove box, a 13 x 100 mm test tube was charged with $(\mathrm{CuOTf})_{2} \cdot \mathrm{C}_{6} \mathrm{H}_{6}\left(0.800 \mathrm{mg}, 1.60 \times 10^{-3} \mathrm{mmol}\right)$, Schiff-based ligand $4\left(1.8 \mathrm{mg}, 4.0 \times 10^{-4} \mathrm{mmol}\right)$, and $\mathrm{Ph}_{2} \mathrm{Zn}\left(52.3 \mathrm{mg}, 2.40 \times 10^{-4} \mathrm{mmol}\right)$, sealed with a septum, and removed from the glovebox. The mixture was allowed to cool to $0{ }^{\circ} \mathrm{C}$ in a ice bath before a solution of 15 ($33.6 \mathrm{mg}, 1.60 \times 10^{-1} \mathrm{mmol}$) in DME (0.800 mL) was added. The resulting solution was allowed to stir for 8 h at $0^{\circ} \mathrm{C}$ (ice bath), at which time the reaction was quenched with the addition of a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}(2.0 \mathrm{~mL})$ and the mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$. The layers were separated and the aqueous layer was washed with $\mathrm{Et}_{2} \mathrm{O}$ (3 x 2.0 mL). The combined organic layers were dried over MgSO_{4}, filtered and concentrated in vacuo. The pale yellow oil was purified by silica gel chromatography ($20: 1$ petroleum ether: ethyl acetate, $R_{f}=0.4$) to afford the desired product 12 ($35.9 \mathrm{mg}, 1.27 \times 10^{-1} \mathrm{mmol}, 79.0 \%$) as a colorless oil. IR (neat): 3075 (m), 3024 (m), 2962 (m), 2892 (m), 1722 (s), 1621 (m), 1489 (m), 1438 (s), 1357 (s), 1243 (s), 1111 (s), 841 (s), 809 (s), 740 (s), 721 (s) cm ${ }^{-1} .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.42-6.94(10 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 2.96-2.86(2 \mathrm{H}, \mathrm{m}$, aliphatic CH$), 2.65(1 \mathrm{H}, \mathrm{dd}, J=22.8$, $\left.10.8 \mathrm{~Hz}, \mathrm{C}(\mathrm{O}) \mathrm{CH}_{2}\right), 1.95\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{C}(\mathrm{O})\right), 0.25\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.22\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 208.3,142.1,136.7,134.3,129.4,128.3,127.9,127.7,125.9,44.1,31.5$,
30.2, -3.9, -5.3. Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{OSi}$: C, 76.56; H, 7.85. Found: C, 76.32; H, 7.55. $[\alpha]_{D}{ }^{20}$ $+14.0\left(c=1.97, \mathrm{CHCl}_{3}\right)$ for a 94% ee sample, indicating the prevalence of the R isomer. ${ }^{12}$

Enantiomeric purity was determined by chiral HPLC analysis (Chiral Technologies Chiralpak AS, $220 \mathrm{~nm}, 99.5 \%$ hexanes: 0.5% i- $\mathrm{PrOH}, 0.6 \mathrm{~mL} / \mathrm{min}$); chromatograms are illustrated below:

Authentic racemic

From catalytic reaction

(R)-(-)-4-(Trimethylsilyl)-4-phenyl-2-butanone (11). IR (neat): 3068 (m), 3018 (m), 2955 (s), 2899 (m), 1741 (s), 1596 (m), 1495 (m), 1463 (m), 1438 (m), 1237 (s), 1174 (s), 853 (s), $721(\mathrm{~s}) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.24-7.05(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 2.97(1 \mathrm{H}, \mathrm{ddd}, J=$ $16.0,10.4,0.4 \mathrm{~Hz}$, aliphatic CH), 2.73-2.63 (2 H , m, aliphatic CH), $2.03\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{C}(\mathrm{O})\right.$), -0.05 (9H, s, $\left.\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 208.6,142.8,128.4,127.5,124.9,44.2,31.9$, 30.1, -2.9. HRMS Calcd. for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{OSi}$: 220.1291. Found: 220.1283. $[\alpha]_{\mathrm{D}}{ }^{20}-1.5$ (c=1.2, CHCl_{3}) for a 92% ee sample.

Enantiomeric purity was determined by chiral HPLC analysis (Chiral Technologies Chiralpak OD, $220 \mathrm{~nm}, 99.0 \%$ hexanes:1.0\% i-PrOH, $1.0 \mathrm{~mL} / \mathrm{min}$); chromatograms are illustrated below:

Authentic racemic

peak \#	time	area	height	width	area \%
1	6.630	742939.9	58252.31	0.213	49.4262
2	7.574	760190.9	46067.04	0.275	50.5738

(12) Matsumoto, Y.; Hayashi, T.; Ito, Y. Tetrahedron 1994, 50, 335-346; Reported: $[\alpha]_{\mathrm{D}}{ }^{20}+9.2\left(c=1.1, \mathrm{CHCl}_{3}\right)$ for (R)-(+)-4-(dimethylphenylsilyl)-4-phenyl-2-butanone.
(R)-(+)-4-(Dimethylphenylsilyl)-4-(4-methoxyphenyl)-2-butanone (13). IR (neat): 3068 (m), 3012 (m), 2973 (m), 2842 (m), 1721 (s), 1614 (m), 1507 (s), 1432 (m), 1350 (m), 1255 (s), 1111 (s), 1048 (m), 827(m), 770 (m), 739 (m) cm ${ }^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.41-$ 7.32 ($5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), $6.85(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{ArH}), 6.75(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{ArH}), 3.76$ (3H, s, OCH_{3}), 2.89-2.77 ($2 \mathrm{H}, \mathrm{m}$, aliphatic $\mathbf{C H}$), 2.65-2.55 ($1 \mathrm{H}, \mathrm{m}$, aliphatic CH), $1.94(3 \mathrm{H}, \mathrm{s}$, $\mathrm{CH}_{3} \mathrm{C}(\mathrm{O})$), $0.23\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.21\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 208.6$, 157.2, 136.9, 134.3, 133.9, 129.4, 128.6, 127.9, 113.8, 55.3, 44.3, 30.5, 30.1, -3.9, -5.2. HRMS Calc for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{Si}$: 312.1554. Found: 312.1546. $[\alpha]_{\mathrm{D}}{ }^{20}+0.635\left(c=1.26, \mathrm{CHCl}_{3}\right)$ for a 87% ee sample.

Enantiomeric purity was determined by chiral HPLC analysis (Chiral Technologies Chiralpak AS, $220 \mathrm{~nm}, 99.0 \%$ hexanes:1.0\% i-PrOH, $1.0 \mathrm{~mL} / \mathrm{min}$); chromatograms are illustrated below:

From catalytic reaction

(R)-(+)-4-(Dimethylphenylsilyl)-4-(4-trifluoromethylphenyl)-2-butanone (14). IR (neat): 3075 (m), 3050 (m), 3020 (w), 2962 (m), 2912 (m), 1734 (s), 1621 (s), 1432 (m), 1325 (s), 1250 (m), 1174 (s), 1124 (s), 1079 (s), 1017 (m), 853 (m), 834 (m), 809 (m), 746 (m), 702 (m) $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.43$ (2H, d, J = $8.0 \mathrm{~Hz}, \mathrm{ArH}$), 7.41-7.32 (5H, m, $\mathrm{ArH}), 7.1(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{ArH})$, 3.01-2.89 (2H, m, aliphatic CH$), 2.68(1 \mathrm{H}, \mathrm{dd}, J=15.6,2.4$ Hz , aliphatic CH), 1.97 (3H, s, $\mathrm{CH}_{3} \mathrm{C}(\mathrm{O})$), $0.24\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.23\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 207.4,146.9,135.9,134.2,129.7,128.3,127.7,127.3(\mathrm{q}, J=32.1 \mathrm{~Hz}$), 125.2 (q, $J=3.8 \mathrm{~Hz}$), 124.1 (q, $J=270.2 \mathrm{~Hz}$), 43.8, 31.7, 30.1, -4.1, -5.2. HRMS Calcd. for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{OSi}$: 350.1314. Found: 350.1307. $[\alpha]_{\mathrm{D}}{ }^{20}+7.58\left(c=1.24, \mathrm{CHCl}_{3}\right)$ for a 85% ee sample.

Enantiomeric purity was determined by chiral GLC analysis (Chiraldex-GTA, $110{ }^{\circ} \mathrm{C}, 25$ psi); chromatograms are illustrated below:

Authentic racemic

From catalytic reaction

peak \#	time	area	height	width	area $\%$
1	484.860	235597	517.1139	7.5933	50.02719
2	503.012	235341	519.1823	7.5549	49.97281

peak \#	time	area	height	width	area \%
1	500.230	1138030	1735.61	10.928	92.5385
2	512.847	91761.4	247.3768	6.1923	7.46151

(S)-4-(Dimethylphenylsilyl)-2-(trifluoromethylsulfonyloxy)-2-hexene (16). In a N_{2} filled glove box, a flame-dried $10-\mathrm{mL}$ flask was charged with $(\mathrm{CuOTf})_{2} \cdot \mathrm{C}_{6} \mathrm{H}_{6}(7.04 \mathrm{mg}, 1.40 \mathrm{x}$ $10^{-2} \mathrm{mmol}$) and Schiff base $4\left(16.2 \mathrm{mg}, 3.60 \times 10^{-2} \mathrm{mmol}\right)$, sealed with a septum, wrapped with parafilm and Telfon tape and removed from the glovebox. A solution of enone 15 ($294 \mathrm{mg}, 1.44$ mmol) in toluene (14.4 mL) was added through a syringe at $22{ }^{\circ} \mathrm{C}$, followed by the addition of $\mathrm{Et}_{2} \mathrm{Zn}(450 \mu \mathrm{~L}, 4.32 \mathrm{mmol})$ (CAUTION: $\mathrm{Et}_{2} \mathrm{Zn}$ is pyrophoric! Use extreme caution). The mixture was allowed to stir for 1 h at $22^{\circ} \mathrm{C}$, at which time it was cooled to $0^{\circ} \mathrm{C}$ with an ice bath. Triflic anhydride ($1.12 \mathrm{mg}, 6.62 \mathrm{mmol}$) was added dropwise to the mixture, which was allowed to warm to $22{ }^{\circ} \mathrm{C}$ and stir for 12 h at $22{ }^{\circ} \mathrm{C}$. At this time, the solution was cooled to $0{ }^{\circ} \mathrm{C}$ and the reaction was quenched through the addition of a saturated solution of $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$ and the resulting mixture was diluted with EtOAc (15 mL). The resulting layers were separated and the aqueous layer was washed with EtOAc ($3 \times 15 \mathrm{~mL}$). The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo to furnish a yellow oil. The residue was purified by silica gel chromatography ($100: 1$ hexanes: $\mathrm{Et}_{2} \mathrm{O}, R_{f}=0.5$) to afford the desired product 16 ($491 \mathrm{mg}, 1.34 \mathrm{mmol}$, 6.6:1 E:Z ratio, 93\%) as a colorless oil. IR (neat): 3068 (w), 3050 (w), 2962 (m), 2930 (m), 2873 (m), 1413 (s), 1250 (m), 1212 (s), 1143 (s), 1086 (m), 972 (s), 887 (s), 885 (s), 834 (s), 778 (m) cm ${ }^{-1} .{ }^{1} \mathrm{H}$ NMR only E-isomer reported ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.50-7.35(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 5.29(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz}, \mathrm{C}=\mathrm{CH}), 1.83\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.67-1.20(3 \mathrm{H}$, m, aliphatic CH), $0.86\left(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.34\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.32\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right)$. ${ }^{13} \mathrm{C}$ NMR both E - and Z-olefin isomers reported ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 144.6,144.3,136.6$, 134.1, 129.5, 129.4, 128.0, 127.9, 124.5, 123.8, 120.3, 117.1, 30.8, 29.6, 22.9, 22.9, 19.7, 16.3, 14.6, -4.1, -4.6, -5.1, -5.1. Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{O}_{3} \mathrm{SSi}$ C, 49.16; H, 5.78. Found: C, 49.44; H, 5.57.
(S)-4-(Dimethylphenylsilyl)-2-phenyl-2-hexene (17). ${ }^{13}$ In a N_{2} filled glove box, a flame-dried $25-\mathrm{mL}$ flask was charged with $\mathrm{Pd}(\mathrm{OAc})_{2}$ ($22.4 \mathrm{mg}, 0.100 \mathrm{mmol}$), PPh_{3} (57.6 mg , $0.220 \mathrm{mmol})$, and $\mathrm{PhB}(\mathrm{OH})_{2}(153 \mathrm{mg}, 1.25 \mathrm{mmol})$, wrapped with parafilm and Telfon tape and removed from the glovebox. A solution of $\mathbf{1 6}(366 \mathrm{mg}, 1.00 \mathrm{mmol})$ in THF (2.0 mL) was added at $22{ }^{\circ} \mathrm{C}$ to the flask. After 10 min , an aqueous solution of $\mathrm{KOH}(0.50 \mathrm{M}, 2.0 \mathrm{~mL})$ was added to the mixture. After allowing the solution to stir for 45 min , distilled $\mathrm{H}_{2} \mathrm{O}(2.0 \mathrm{~mL})$ was added and the mixture was washed with EtOAc ($3 \times 15 \mathrm{~mL}$). The combined organic layers were dried over anhydrous MgSO_{4} and the volatiles were concentrated in vacuo to furnish a yellow oil, which was purified by silica gel chromatography ($150: 1$ petroleum ether: $\mathrm{Et}_{2} \mathrm{O}$) to afford $\mathbf{1 7}$ as a colorless oil ($198 \mathrm{mg}, 0.672 \mathrm{mmol}, 67 \%, 81 \%$ based on conversion of E-olefin isomer). IR (neat): 3069 (m), 3018 (m), 2962 (s), 2917 (m), 2870 (m), 1640 (w), 1596 (m), 1495 (s), 1432 (s), 1381 (m), 1250 (s), 1111 (s), 1079 (m), 1030 (m), 834 (s), 759 (s), 696 (s) cm ${ }^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.55-7.20(10 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 5.57(1 \mathrm{H}, \mathrm{dd}, J=11.2,1.2 \mathrm{~Hz}, \mathrm{C}=\mathrm{CH}), 2.03$ ($1 \mathrm{H}, \mathrm{dt}, J=11.2,3.2 \mathrm{~Hz}$, aliphatic CH), $1.86\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.70-1.34(2 \mathrm{H}, \mathrm{m}$, aliphatic CH), 0.89 $\left(3 H, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.35\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.32\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 144.6,138.2,134.2,133.3,130.8,129.1,128.2,127.8,126.2,125.6,32.6,23.5,16.4$, 14.9, -4.1, -4.8. Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{O}_{3}$ SSi: C, 49.16; H, 5.78. Found: C, 49.44; H, 5.57.
($2 S, 3 R, 4 S$)-4-(Dimethylphenylsilyl)-2,3-oxiranyl-2-phenyl-hexane (G). ${ }^{14}$ To a solution of $17\left(20.0 \mathrm{mg}, 6.80 \times 10^{-2} \mathrm{mmol}\right)$ and $\mathrm{NaHCO}_{3}\left(6.80 \mathrm{mg}, 8.10 \times 10^{-2} \mathrm{mmol}\right)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(230 \mu \mathrm{~L})$ at $-78{ }^{\circ} \mathrm{C}$ (dry ice/acetone bath) was added a solution of m-CPBA ($15.2 \mathrm{mg}, 8.80 \times 10^{-2} \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(440 \mu \mathrm{~L})$ through cannula. The resulting solution was allowed to warm to $0{ }^{\circ} \mathrm{C}$ and allowed to stir for 2 h , at which time the reaction was quenched by the addition of $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{~mL})$ and a saturated aqueous NaHCO_{3} solution (2 mL). The layers were separated and the aqueous layer was washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 2 \mathrm{~mL})$. The combined organic layers were washed with a saturated aqueous NaCl solution (2 mL), dried over anhydrous MgSO_{4}, and the volatiles were concentrated in vacuo to furnish a colorless oil, which was purified by silica gel chromatography ($50: 1$ petroleum ether: $\mathrm{Et}_{2} \mathrm{O}$) to afford \mathbf{G} as a colorless oil ($21.0 \mathrm{mg}, 6.80 \times 10^{-2} \mathrm{mmol}, 24: 1 \mathrm{dr}$, >98\%). IR (neat): 3069 (m), 2968 (s), 2924 (m), 2873 (m), 1608 (w), 1500 (s), 1451 (s), 1432 (s), 1382 (s), 1250 (s), 1111 (s), 1067 (s), 841 (s), 702 (s) $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 7.45 ($2 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, \mathrm{ArH}$), $7.36-7.26(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.15(2 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 2.78(1 \mathrm{H}, \mathrm{d}, J$ $=11.2 \mathrm{~Hz}, \mathrm{OCH}), 1.77-1.61(2 \mathrm{H}, \mathrm{m}$, aliphatic CH$), 1.34\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CCH}_{3}\right), 1.09(3 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.00(1 \mathrm{H}$, ddd, $J=10.8,8.0,5.2 \mathrm{~Hz}$, aliphatic $\mathbf{C H}), 0.36\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.34(3 \mathrm{H}, \mathrm{s}$, SiCH_{3}). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 143.5,137.7,134.1,129.4,128.3,128.0,127.1,125.1$, 70.4, 60.4, 29.3, 23.0, 18.6, 15.1, -3.7, -3.9. HRMS Calcd. for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{OSi}$: 310.1753. Found: 310.1751 .

[^3](S)-(+)-2-Phenyl-3-hexen-2-ol (18). To a solution of $\mathbf{G}\left(10 \mathrm{mg}, 3.2 \times 10^{-2} \mathrm{mmol}\right)$ in THF $(65 \mu \mathrm{~L})$ at $23{ }^{\circ} \mathrm{C}$ was added TBAF $(65 \mu \mathrm{~L}, 1.0 \mathrm{M})$. The mixture was allowed to stir for 0.5 h at which time it was filtered through a pad of silica gel with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The silica gel pad was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 5 \mathrm{~mL}$) and the volatiles were concentrated in vacuo to furnish a colorless oil, which was purified by silica gel chromatography (25:1 petroleum ether:EtOAc) to afford 18 as a colorless oil ($5.3 \mathrm{mg}, 3.0 \times 10^{-2} \mathrm{mmol}, 94 \%$). IR (neat): 3456 (br), 3031 (w), 2961 (m), 2924 (m), 2867 (m), 1464 (s), 1376 (m), 1029 (m), 979 (m), 708 (s) $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}^{\mathrm{N}} \mathrm{NMR}(400$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.48-7.24(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 5.80-5.72(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}$ and $\mathrm{CH}=\mathrm{CH}), 2.08(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.83(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 1.64\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.01\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 147.4,136.0,130.8,128.3,126.9,125.3,74.5,30.1,25.4,13.7$. HRMS Calc for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}$: 176.1201. Found: 176.1204. $[\alpha]_{\mathrm{D}}{ }^{20}+4.53\left(c=0.352, \mathrm{CHCl}_{3}\right)$ for a 96% ee sample.

Enantiomeric purity was determined by chiral GLC analysis (β-dex, $85{ }^{\circ} \mathrm{C}, 15 \mathrm{psi}$); chromatograms are illustrated below:

Authentic racemic

peak \#	time	area	height	width	area \%
1	21.061	458127	46794.8	0.1632	49.79672
2	21.428	461867	41107.3	0.1873	50.20328

From catalytic reaction

(S)-3-(Dimethylphenylsilyl)-5-methyl-4-nonene (19). ${ }^{15}$ In a N_{2} filled glove box, a flame-dried $25-\mathrm{mL}$ flask was charged with $\mathrm{CuI}(477 \mathrm{mg}, 2.50 \mathrm{mmol})$, wrapped with parafilm and Telfon tape and removed from the glovebox. Tetrahydrofuran (5 mL) was added to the flask, and the mixture was allowed to cool to $-15{ }^{\circ} \mathrm{C}$ with a dry ice/acetone bath. To the cooled solution was added n - $\mathrm{BuLi}(2.3 \mathrm{~mL}, 3.6 \mathrm{mmol}$) in a dropwise fashion, followed by the addition of $\mathbf{1 6}$ ($270 \mathrm{mg}, 0.74 \mathrm{mmol}$) in a solution of THF (1.7 mL). After allowing to stir for 16 h , the mixture was diluted with petroleum ether (20 mL) and filtered through a pad of celite, which was then washed with petroleum ether ($3 \times 20 \mathrm{~mL}$). The volatiles were concentrated in vacuo to furnish a colorless oil. The oil was purified by silica gel chromatography (100% petroleum ether) to afford 19 as a colorless oil (169 mg, $0.616 \mathrm{mmol}, 83 \%$). IR (neat): 3081 (w), 2975 (s), 2930 (s), 2886 (m), 1464 (m), 1432 (m), 1256 (s), 1117 (s), 834 (s), 809 (m), 740 (m), 702 (s) cm ${ }^{-1} .{ }^{1} \mathrm{H}$
(15) McMurry, J. E.; Scott, W. J. Tetrahedron Lett. 1980, 21, 4313-4316.

NMR (400 MHz, CDCl_{3}): $\delta 7.51-7.33(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 5.57(1 \mathrm{H}, \mathrm{dd}, J=11.2,1.2 \mathrm{~Hz}, \mathrm{C}=\mathrm{CH})$, 2.01-1.98 ($2 \mathrm{H}, \mathrm{m}$, aliphatic CH), $1.77(1 \mathrm{H}, \mathrm{dt}, J=11.2,3.2 \mathrm{~Hz}$, aliphatic CH$), 1.58-1.47(1 \mathrm{H}, \mathrm{m}$, aliphatic $\mathbf{C H}$), $1.45\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.41-1.13(5 \mathrm{H}, \mathrm{m}$, aliphatic CH$), 0.90(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.81\left(3 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) 0.26\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.24\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 138.6,134.0,133.9,128.7,127.5,125.6,40.0,30.8,30.7,23.5,22.6,16.6$, 14.7, 14.3, -3.9, -4.8. Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{Si}$: C, 78.75; H, 11.02. Found: C, 78.73; H, 10.90. HRMS Calc for $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{Si}: 274.2117$. Found: 274.2110.
(3R,4S,5R)-3-Butyl-1-chlorosulfonyl-4-(dimethylphenylsilyl)-5-ethyl-3-
methylpyrrolidin-2-one (H). ${ }^{16}$ A solution of $19\left(10 \mathrm{mg}, 3.6 \times 10^{-2} \mathrm{mmol}\right)$ in toluene ($360 \mu \mathrm{~L}$) was allowed to cool to $0{ }^{\circ} \mathrm{C}$ with an ice bath. To this mixture was added CSI $(15.5 \mu \mathrm{~L}, 18.0 \mathrm{x}$ $10^{-2} \mathrm{mmol}$) and the reaction was allowed to warm to $22^{\circ} \mathrm{C}$. After 3 h , the reaction was quenched by the addition of a saturated aqueous NaHCO_{3} solution (2 mL) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$. The layers were separated and the aqueous layer was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 2 \mathrm{~mL})$. The organic layers were combined, dried over anhydrous MgSO_{4}, and the volatiles were concentrated in vacuo to furnish a colorless oil. The oil was purified by silica gel chromatography (25:1 petroleum ether: $\mathrm{Et}_{2} \mathrm{O}$) to afford 20 as a colorless oil ($11.6 \mathrm{mg}, 2.89 \times 10^{-2} \mathrm{mmol}, 97: 3 \mathrm{dr}, 80 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.52-7.39(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 4.28(1 \mathrm{H}, \mathrm{ddd}, J=9.2,6.0,2.0, \mathrm{NCH}), 2.17(1 \mathrm{H}$, dddd, $J=14.8,13.2,7.2,7.2 \mathrm{~Hz}$, aliphatic CH), $1.84(1 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}$, aliphatic CH), 1.72-1.07 ($8 \mathrm{H}, \mathrm{m}$, aliphatic CH), $1.20\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 0.90\left(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.71(3 \mathrm{H}, \mathrm{t}, J=7.2$ $\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}$), $0.49\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.48\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 178.0$, 136.9, 133.6, 129.9, 128.3, 62.6, 48.8, 37.3, 29.3, 27.2, 25.2, 23.1, 23.1, 14.2, 7.1, -1.5, -2.0. Anal Calcd. for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{ClNO}_{3} \mathrm{SSi}$: C, 54.85; H, 7.27. Found: C, 54.55; H, 7.27.

(3R,4S,5R)-(+)-3-Butyl-4-(dimethylphenylsilyl)-5-ethyl-3-methyl-pyrrolidin-2-one

(20). To a solution of $\mathbf{H}\left(10.0 \mathrm{mg}, 2.50 \times 10^{-2} \mathrm{mmol}\right)$ in THF $(250 \mu \mathrm{~L})$ was added a saturated aqueous NaHCO_{3} solution $(100 \mu \mathrm{~L})$ and a saturated aqueous $\mathrm{Na}_{2} \mathrm{SO}_{3}$ solution $(100 \mu \mathrm{~L})$. The mixture was allowed to heat to $50^{\circ} \mathrm{C}$ for 0.5 h at which time the solution was allowed to cool to $22{ }^{\circ} \mathrm{C}$ and EtOAc (2 mL) was added and the layers were separated. The aqueous layer was washed with EtOAc ($3 \times 2 \mathrm{~mL}$) and the organic layers were combined, dried over anhydrous MgSO_{4}, and the volatiles removed in vacuo to furnish a colorless oil. The oil was purified by silica gel chromatography ($1: 1$ petroleum ether: $\mathrm{Et}_{2} \mathrm{O}$) to afford 20 as a colorless oil (6.60 mg , $2.20 \times 10^{-2} \mathrm{mmol}, 87 \%$). IR (neat): 3194 (s), 3081 (s), 2961 (s), 2936 (s), 2880 (m), 1697 (s), 1470 (s), 1426 (m), 1388 (m), 1331 (m), 1262 (s), 1111 (s), 840 (s), 822 (s), 746 (w), 702 (m) $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.52-7.36(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 5.78(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 3.51(1 \mathrm{H}, \mathrm{dt}$, $J=9.2,2.4 \mathrm{~Hz}, \mathrm{NCH}), 1.61-1.10(9 \mathrm{H}, \mathrm{m}$, aliphatic CH$), 1.13\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 0.88(3 \mathrm{H}, \mathrm{t}, J=7.2$ $\left.\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.81\left(3 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.43\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)\right), 0.42\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)\right)$.
(16) For a recent example of [3+2] cycloaddition of an allylsilane and CSI, see: Woerpel, K. A.; Romero, A. Org. Lett. 2006, 8, 2127-2130 and references therein.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 182.2,138.3,133.7,129.3,127.9,54.6,48.2,37.4,35.4,29.2$, 27.5, 23.8, 23.4, 14.3, 10.4, -1.5, -1.7. HRMS Calc for $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{NOSi}\left(\mathrm{M}+\mathrm{H}^{+}\right)$: 318.2253. Found: 318.2259. $[\mathrm{a}]_{\mathrm{D}}{ }^{20}+31.8\left(c=0.440, \mathrm{CHCl}_{3}\right)$ for a 94% ee sample.

Enantiomeric purity was determined by chiral HPLC analysis (Chiral Technologies $\mathrm{OD}(\mathrm{B}), 220 \mathrm{~nm}, 95.0 \%$ hexanes:5.0\% i-PrOH, $1.0 \mathrm{~mL} / \mathrm{min}$) of product 20; chromatograms are illustrated below:

Authentic racemic

From catalytic reaction

(1S,2S)-(+)-2-Butyl-2-methyl-1-phenyl-3E-hexen-1-ol (21). To a solution of 19 (15.0 $\left.\mathrm{mg}, 5.50 \times 10^{-2} \mathrm{mmol}\right)$ and benzaldehyde $\left(8.60 \mu \mathrm{~L}, 8.30 \times 10^{-2} \mathrm{mmol}\right)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(270 \mu \mathrm{~L})$ at -50 ${ }^{\circ} \mathrm{C}$ was added a solution of $\mathrm{TiCl}_{4}\left(9.00 \mu \mathrm{~L}, 8.30 \times 10^{-2} \mathrm{mmol}\right)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(270 \mu \mathrm{~L})$. The mixture was allowed to stir for 5 h at $-50{ }^{\circ} \mathrm{C}$ (dry ice/acetone bath), after which the reaction was quenched by the addition of a saturated aqueous NaHCO_{3} solution (2 mL) and allowed to warm to $22^{\circ} \mathrm{C}$. The layers were separated and the aqueous layer was washed with EtOAc (3 x 2 mL). The combined organic layers were dried over anhydrous MgSO_{4} and volatiles were concentrated in vacuo to furnish a colorless oil. The resulting oil was purified by silica gel chromatography (20:1 petroleum ether:EtOAc) to afford 21 as a colorless oil ($10.2 \mathrm{mg}, 4.1 \times 10^{-2} \mathrm{mmol}, 87: 13 \mathrm{dr}$, 76\%). IR (neat): 3465 (br), 3031 (w), 2962 (s), 2923 (s), 2867 (m), 1464 (s), 1376 (m), 1029 (s), $979(\mathrm{~m}), 708(\mathrm{~s}) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR of the major diastereomer ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.31-7.22(5 \mathrm{H}$, $\mathrm{m}, \mathrm{ArH}), 5.41(1 \mathrm{H}, \mathrm{dt}, J=16.0,6.0 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}), 5.31(1 \mathrm{H}, \mathrm{dt}, J=16.0,1.2 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}), 4.40$ $(1 \mathrm{H}, \mathrm{d}, J=4.4 \mathrm{~Hz}, \mathrm{CHOH}), 2.09-2.03(2 \mathrm{H}, \mathrm{m}$, aliphatic CH$), 1.31-1.11(6 \mathrm{H}, \mathrm{m}$, aliphatic CH$)$, $1.03\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 0.98\left(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.85\left(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR of both diastereomers ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 141.7,140.8,134.7,133.7,133.4,132.9$, 128.3, 128.0, 127.5, 127.5, 127.4, 127.4, 81.1, 80.4, 45.1, 44.4, 38.0, 36.8, 26.5, 26.5, 26.2, 26.1, 23.7, 23.6, 20.0, 17.2, 14.3, 14.3, 14.2. HRMS Calc for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{O}\left(\mathrm{M}^{+} \mathrm{H}^{+}\right)$: 247.2063. Found: 247.2058. $[\alpha]_{\mathrm{D}}{ }^{20}+18.9\left(c=0.666, \mathrm{CHCl}_{3}\right)$ for 95% ee (major) and 50% ee (minor) samples.

Enantiomeric purity was determined by chiral GLC analysis (β-dex, $140{ }^{\circ} \mathrm{C}, 15 \mathrm{psi}$); chromatograms are illustrated below:

Authentic racemic

peak \#	time	area	height	width	area \%
1	139.917	64469.6	1013.39	1.060	41.9709
2	141.837	12937.7	207.923	1.037	8.42272
3	146.064	12113.5	188.714	1.070	7.88612
4	151.352	6.4084 .5	922.580	0.8144	41.7202

From catalytic reaction

peak \#	time	area	height	width	area \%
1	138.514	3537.28	69.0850	0.8534	2.06623
2	150.397	14427.2	233.619	1.029	8.42735
3	144.506	4744.46	83.1967	0.9504	2.77136
4	149.576	148486	2063.48	1.199	86.7350

${ }^{1} \mathrm{H}$ NMR SPECTRA

E

Kaprzyni, Kazane, May \& Hoveyda, Page S26

9

11^{Me}
\qquad

$3 \stackrel{9}{9}$

MK-v-162
Pulse Sequence: s2pu

[^0]: (1) (a) Salomon, R. G.; Kochi. J. K. J. Am. Chem. Soc. 1973, 95, 1889-1897. (b) Salomon, R. G.; Kochi. J. K. J. Am. Chem. Soc. 1973, 95, 3300-3310.
 (2) Knochel, P.; Singer, R. Chem. Rev. 1993, 93, 2177-2188 and references cited therein.
 (3) Lee, K-s; Brown, M.K.; Hird, A. W.; Hoveyda, A. H. J. Am. Chem. Soc. 2006, 128, 7182-7184.
 (4) It is critical that fresh and high quality $\mathrm{Ph}_{2} \mathrm{Zn}$ is used.
 (5) Chisholm, M. H.; Galluci, J. C.; Yin, H.; Zhen, H. Inorg. Chem. 2005, 44, 4777-4785.

[^1]: (6) Jung, M. E.; Piizzi, G. J. Org. Chem. 2002, 67, 3911-3914.

[^2]: (13) Fleming, I.; Henning, R.; Parker, D. C.; Plaut, H. E.; Sanderson, P. E. J. J. Chem. Soc. Perkin Trans. 1 1995, 317-337.
 (14) Fauve, A.; Veschambre, H. J. Org. Chem. 1988, 53, 5213-5219.
 (15) Bolte, J.; Gourcy, J-G.; Veschambre, H. Tetrahedron Lett. 1986, 27, 565-568. Reported values: $[\alpha]_{D}{ }^{25}+55(c=$ 0.050, CHCl_{3}) for (S)-4-hydroxy-2-pentanone.

[^3]: (13) Willis, M. C.; Claverie, C. K. Tetrahedron Lett. 2001, 42, 5105-5107.
 (14) For a review on substrate directed reactions, see: Hoveyda, A. H.; Evans, D. A.; Fu, G. C. Chem. Rev. 1993, 93, 1307-1370.

