New P,N-Ferrocenyl Ligands for the Asymmetric Ir-Catalyzed Hydrogenation of Imines**

Murthy N. Cheemala and Paul Knochel*

Department Chemie, Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, 81377, München (Germany).

Paul.Knochel@cup.uni-muenchen.de

Supporting Information :

INDEX

General Information : $\quad \mathrm{S} 2$
Synthesis of Ferrocenyl P,N-Ligands 6a-b and 7a-b S2-S8
Synthesis of Iridium complexes 8a-b and 9a-b S8-S11
Synthesis of Imines S11-S19
Asymmetric Hydrogenation of Imines S20-S29
Synthesis of chiral primary amines and lactams S29-S31

1. General

All reactions were carried out under nitrogen using standard Schlenk techniques. Melting points are uncorrected. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker AMX 300 or AMX 600 or Varian VXR 400 S instrument. Chemical shifts are given as ppm relative to the residual solvent peak (chloroform- $d 1: 7.24 \mathrm{ppm} / 77.0 \mathrm{ppm}$; benzene- $d 67.16 \mathrm{ppm} / 128.0 \mathrm{ppm}$). IR spectra were recorded on a Perkin Elmer 1420 Infrared Spectrometer. Mass spectra were recorded on a Finnigan Mat 95 Q spectrometer. Column chromatography purification was performed on Merck silica gel 60 (230-400 mesh ASTM). THF and toluene were dried with sodium/benzophenone and distilled. MeOH was treated with magnesium turnings ($20 \mathrm{~g} / \mathrm{L}$), refluxed for 6 h and distilled off. Yields refer to isolated yields of compounds estimated to be $>95 \%$ pure as determined by ${ }^{1} \mathrm{H}$ NMR. Elemental analysis was performed on an Elementar vario EL and with a Metrohm Titroprocessor 686. Yields referred to isolated yields of compounds estimated to be $>95 \%$ pure as determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$, capillary GC and combustion analysis (new compounds).

Sulfoxide (1) was prepared according to the literature procedure. ${ }^{1}$ 3,5-Dimethyl-4-nitro anisole (91% yield) was prepared by slightly modified procedure ${ }^{2}$ by using 2,6Dimethylanisole instead of using 2,6-dimethyl-4-bromo anisole. $[\mathrm{Ir}(\mathrm{COD}) \mathrm{Cl}]_{2}$ was purchased from STREM, NaBARF was prepared according to the literature procedure. ${ }^{3}$
$\left(S_{\mathrm{Fc}}\right)$-1-((S)-p-Tolylsulfinyl)-2-(diphenylphosphinothioyl) ferrocene (2):

Preparation of LDA (Lithium Diisopropylamine): A 100 mL Schlenkflask was filled with diisopropyl amine ($3.6 \mathrm{~mL}, 26.0 \mathrm{mmol}, 1.30$ equiv.) in THF (15 mL) under argon and cooled to $-78{ }^{\circ} \mathrm{C}$. Then slowly added $n \mathrm{BuLi}(1.51 \mathrm{M}$ solution in n-pentane; $14.6 \mathrm{~mL}, 22.0 \mathrm{mmol}$, 1.10 equiv.) to the above solution at $-78^{\circ} \mathrm{C}$. After addition was completed the solution was warmed to room temperature, stirred for 30 min and used as it is, in the below procedure.

A 500 mL Schlenkflask under an argon atmosphere was charged with sulfoxide $\mathbf{1}^{[1]}(6.48 \mathrm{~g}$, $20.0 \mathrm{mmol})$ in THF (200 mL) and cooled to $-78^{\circ} \mathrm{C}$. Freshly prepared LDA (22.0 mmol) was added and the reaction mixture was stirred for 30 min at $-78{ }^{\circ} \mathrm{C}$. Chloro diphenylphosphine $\left(5.30 \mathrm{~g}, 24.0 \mathrm{mmol}, 1.20\right.$ equiv.) was added slowly at $-78{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1.5 h then warmed to room temperature and stirred for 1.5 h . A solution
of sulphur ($1.92 \mathrm{~g}, 60.0 \mathrm{mmol}, 3.0$ equiv.) in butylamine (3 mL) was added to the reaction mixture at room temperature and stirred for 2-4 h (protection was monitored by ${ }^{31} \mathrm{P}-\mathrm{NMR}$). After quenching the reaction mixture with a saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution, aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 100 \mathrm{~mL})$. The combined organic layers were washed with 2 N HCl , water, brine, dried over MgSO_{4} and evaporated under reduced pressure. Purification by flash chromatography (silica gel, n-pentane: $\mathrm{Et}_{2} \mathrm{O} 1: 1$) of the residue provided the desired compound ($9.50 \mathrm{~g}, 17.60 \mathrm{mmol}, 88 \%$) as a pale brown solid.

MP: 120.3-121.3 ${ }^{\circ} \mathrm{C}$
$[\alpha]_{\mathrm{D}}{ }^{20}=-306$ ($\mathrm{c}=0.08$, acetone).
${ }^{1} \mathbf{H}-$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C}_{6} \mathbf{D}_{\mathbf{6}}$): $\boldsymbol{\delta}=2.09(\mathrm{~s}, 3 \mathrm{H}), 4.00-4.24(\mathrm{~m}, 1 \mathrm{H}), 4.20(\mathrm{~s}, 5 \mathrm{H}), 4.20-4.24(\mathrm{~m}$, $1 \mathrm{H}), 4.51-4.56(\mathrm{~m}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.15-7.24(\mathrm{~m}, 6 \mathrm{H}), 7.94(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, 8.23-8.35 (m, 4H) ppm.
${ }^{13} \mathbf{C}-$ NMR ($75 \mathbf{~ M H z}, \mathbf{C}_{6} \mathbf{D}_{\mathbf{6}}$): $\boldsymbol{\delta}=21.5,71.9(\mathrm{~d}, J=10.0 \mathrm{~Hz}), 72.0(\mathrm{~d}, J=7.6 \mathrm{~Hz}), 72.5,77.4$ $(\mathrm{d}, J=12.9 \mathrm{~Hz}), 80.0,81.3,126.5,128.6(\mathrm{~d}, J=7.6 \mathrm{~Hz}), 128.8(\mathrm{~d}, J=1.8 \mathrm{~Hz}), 129.7,131.8$ $(\mathrm{d}, J=2.9 \mathrm{~Hz}), 132.1(\mathrm{~d}, J=3.5 \mathrm{~Hz}), 133.51(\mathrm{~d}, J=1.8 \mathrm{~Hz}), 133.52(\mathrm{~d}, J=24.1 \mathrm{~Hz}), 134.2$ (d, $J=28.2$), 135.4 (d, $J=28.8 \mathrm{~Hz}$), 141.6, 143.0 ppm .
${ }^{31}$ P-NMR ($\mathbf{8 1} \mathbf{~ M H z}, \mathbf{C}_{\mathbf{6}} \mathbf{D}_{\mathbf{6}}$): $\boldsymbol{\delta}=+42.45 \mathrm{ppm}$.
IR(KBr): $\boldsymbol{v}_{\text {max }}\left(\mathbf{c m}^{-1}\right)=3436(\mathrm{br}, \mathrm{s}), 1630(\mathrm{br}, \mathrm{w}), 1436(\mathrm{w}), 1041(\mathrm{~m}), 717(\mathrm{~m})$.
MS (70 eV, EI): $\boldsymbol{m} / \boldsymbol{z}(\%)=540\left(\mathrm{M}^{+}, 26\right), 524$ (22), 401 (100).
HRMS (EI): $\boldsymbol{m} / \boldsymbol{z}$ calcd. for: $\left[\mathbf{C}_{\mathbf{2}} \mathbf{H}_{\mathbf{2 5}} \mathbf{P}^{\mathbf{5 6}} \mathbf{F e O}^{\mathbf{3 2}} \mathbf{S}_{\mathbf{2}}\right]$ 540.0434, found: 540.0417

Preparation of ferrocenyl alcohol (3):

Preparation of PhLi: A 250 mL Schlenkflask was filled with iodobenzene ($20.0 \mathrm{mmol}, 1.36$ $\mathrm{ml}, 2.0$ equiv) in diethyl ether (100 mL) and cooled to $0^{\circ} \mathrm{C}$. Then $\mathrm{tBuLi}(1.5 \mathrm{M}$ solution in pentane; $40.0 \mathrm{mmol}, 26.70 \mathrm{~mL}$) was added slowly dropwise at $0{ }^{\circ} \mathrm{C}$. After addition was completed the reaction mixture was warmed to room temperature, stirred for 30 min and used as it is, in the below procedure.

A 500 mL Schlenkflask under an argon atmosphere was charged with ferrocenyl sulfoxide 2 $(10.0 \mathrm{mmol}, 5.40 \mathrm{~g})$ in THF (10 mL) and cooled to $-78^{\circ} \mathrm{C}$. A solution of freshly prepared PhLi in ether $(0.20 \mathrm{M}, 20.0 \mathrm{mmol}, 100 \mathrm{~mL})$ was slowly added and the reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 10 min . 2-Pyridinecarboxaldehyde ($2.30 \mathrm{~mL}, 24.0 \mathrm{mmol}, 1.20$ equiv) was added dropwise at $-78{ }^{\circ} \mathrm{C}$ and reaction mixture was stirred for 1.5 h then at room temperature for 1.5 h . After quenching the reaction mixture with a saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution, aqueous layer was extracted with diethyl ether ($4 \times 60 \mathrm{~mL}$). The combined organic layers were washed with water, brine, dried over MgSO_{4} and evaporated under reduced pressure. Purification of the residue by flash chromatography (silica gel, n-pentane: $\mathrm{Et}_{2} \mathrm{O}$ 1:1) afforded the two diastereomeric alcohols 3a and $\mathbf{3 b}$ ($3.69 \mathrm{~g}, 7.20 \mathrm{mmol}, 72 \%$) as an unseparable mixture $\mathbf{3}$ in 6:4 ratio (by ${ }^{31} \mathrm{P}-\mathrm{NMR}$).
${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(\mathbf{2 0 0} \mathbf{~ M H z}, \mathbf{C}_{6} \mathbf{D}_{\mathbf{6}}\right): \boldsymbol{\delta}=3.61-3.64(\mathrm{~m}, 2 \mathrm{H}), 3.91-3.93(\mathrm{~m}, 2 \mathrm{H}), 4.32(\mathrm{~s}, 6 \mathrm{H}), 4.48(\mathrm{~s}$, $5 \mathrm{H}), 4.65(\mathrm{~s}, 1 \mathrm{H}), 4.96(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.36-6.44(\mathrm{~m}, 3 \mathrm{H}), 6.80-$ $7.01(\mathrm{~m}, 16 \mathrm{H}), 7.35-7.39(\mathrm{~m}, 1 \mathrm{H}), 7.54-7.65(\mathrm{~m}, 4 \mathrm{H}), 7.72-7.76(\mathrm{~m}, 1 \mathrm{H}), 7.86-7.93(\mathrm{~m}, 4 \mathrm{H})$, 8.19-8.29 (m, 1H) ppm.
${ }^{31}$ P-NMR ($\mathbf{8 1} \mathbf{~ M H z}, \mathbf{C}_{6} \mathbf{D}_{6}$): +42.6 (minor, 40%), +43.5 (major, 60%) ppm.
Preparation of ferrocenyl ethers $\mathbf{4 a}$ and 4b: A 50 mL Schlenkflask under an argon atmosphere, was charged with KH ($104 \mathrm{mg}, 2.60 \mathrm{mmol}, 1.30$ equiv.) in THF (4 mL) and cooled to $0^{\circ} \mathrm{C}$. A solution of alcohol $\mathbf{3}(\mathrm{dr} 6: 4,1.01 \mathrm{~g}, 2.0 \mathrm{mmol})$ in THF (20 mL) was slowly added and the mixture was stirred at room temperature for 1 h . MeI ($341 \mathrm{mg}, 2.40 \mathrm{mmol}, 1.20$ equiv.) was then added dropwise at $0{ }^{\circ} \mathrm{C}$ and the reaction mixture was stirred at this temperature for 10 min then at room temperature for 30 min . After quenching the reaction mixture with a saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution, aqueous layer was extracted with diethyl ether ($4 \times$ 20 mL). The combined organic layers were washed with water, brine, dried over MgSO_{4} and evaporated under reduced pressure. Crude product was purified by flash chromatography (silica gel, n-pentane: $\mathrm{Et}_{2} \mathrm{O}$ 1:1) to furnish the two methyl ethers $4 \mathbf{4}(566 \mathrm{mg}, 1.07 \mathrm{mmol}, 54$ $\%$) and $\mathbf{4 b}$ ($367 \mathrm{mg}, 0.70 \mathrm{mmol}, 35 \%$) yellow solids.
(R_{Fc})-1-(Diphenylphosphinothioyl)-2-((S)- α-methoxypyridyl)methylferrocene (4a):

MP: 217.9-218.4 ${ }^{\circ} \mathrm{C}$
$\left[\alpha_{D}{ }^{20}=-25.8\right.$ (c = 0.22, acetone).
${ }^{1} \mathbf{H}-$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C}_{6} \mathbf{D}_{6}$): $\boldsymbol{\delta}=2.92(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{dd}, J=2.2 \mathrm{~Hz}, 4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{dd}, J=$ $2.2 \mathrm{~Hz}, 4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.08-4.10(\mathrm{~m}, 1 \mathrm{H}), 4.35(\mathrm{~s}, 5 \mathrm{H}), 6.64(\mathrm{~s}, 1 \mathrm{H}), 6.67-6.71(\mathrm{~m}, 1 \mathrm{H}), 7.03-$ $7.13(\mathrm{~m}, 7 \mathrm{H}), 7.46(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.95-8.08(\mathrm{~m}, 4 \mathrm{H}), 8.50-8.42(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{7 5 ~ M H z}, \mathbf{C}_{6} \mathbf{D}_{6}\right): \boldsymbol{\delta}=56.7,69.1(\mathrm{~d}, J=10.5 \mathrm{~Hz}), 71.7,72.9(\mathrm{~d}, J=8.8 \mathrm{~Hz}), 75.5$ $(\mathrm{d}, J=12.9 \mathrm{~Hz}), 75.8(\mathrm{~d}, J=94.5 \mathrm{~Hz}), 80.8,92.6(\mathrm{~d}, J=11.8 \mathrm{~Hz}), 122.2,122.3,127.9,128.2$, $130.7(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 130.93(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 132.7(\mathrm{~d}, J=4.7 \mathrm{~Hz}), 132.8(\mathrm{~d}, J=4.7 \mathrm{~Hz})$, $134.8(\mathrm{~d}, J=87.0 \mathrm{~Hz}), 135.7,136.4(\mathrm{~d}, J=88.0 \mathrm{~Hz}), 149.1,161.4 \mathrm{ppm}$.
${ }^{31} \mathbf{P}$-NMR ($\mathbf{8 1} \mathbf{~ M H z}, \mathbf{C}_{6} \mathbf{D}_{\mathbf{6}}$): $\boldsymbol{\delta}=+42.74 \mathrm{ppm}$.
IR(KBr): $\boldsymbol{v}_{\text {max }}\left(\mathbf{c m}^{-1}\right)=3436$ (br, s), 1630 (br, w), 1589 (s), 1436 (br, s), 3436 (m), 1099 (s), 819 (w), 715 (s), 502 (s).
MS (70 eV, EI): $\boldsymbol{m} / \boldsymbol{z}(\%)=523\left(\mathrm{M}^{+}, 28\right), 458$ (68), 428 (100), 288 (14).
HRMS (EI): $\boldsymbol{m} / \boldsymbol{z}$ calcd. for: $\left[\mathbf{C}_{\mathbf{2 9}} \mathbf{H}_{\mathbf{2 6}} \mathbf{P}^{\mathbf{5 6}} \mathbf{F e N O}^{\mathbf{3 2}} \mathbf{S}\right]$ 523.0822, found: 523.0837

$\left(R_{\mathrm{Fc}}\right)$-1-(Diphenylphosphinothioyl)-2-((R)- α-methoxypyridyl)methylferrocene (4b):

MP: 199.3-200. $8^{\circ} \mathrm{C}$
$[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{\mathbf{2 0}}=-21.7$ (c = 0.18, acetone).
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C}_{6} \mathbf{D}_{\mathbf{6}}\right): \boldsymbol{\delta}=3.30(\mathrm{~s}, 3 \mathrm{H}), 3.57(\mathrm{dd}, J=2.3 \mathrm{~Hz}, 4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{dd}, J=$ $2.3 \mathrm{~Hz}, 4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~s}, 5 \mathrm{H}), 5.30(\mathrm{dd}, J=1.8 \mathrm{~Hz}, 4.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.33-6.38(\mathrm{~m}, 1 \mathrm{H}), 6.60$ $(\mathrm{s}, 1 \mathrm{H}), 6.63-6.73(\mathrm{~m}, 3 \mathrm{H}), 6.79-6.84(\mathrm{~m}, 1 \mathrm{H}), 6.95-7.04(\mathrm{~m}, 3 \mathrm{H}), 7.17-7.2(\mathrm{~m}, 1 \mathrm{H}), 7.33-$ $7.40(\mathrm{~m}, 2 \mathrm{H}), 7.84-7.92(\mathrm{~m}, 2 \mathrm{H}), 8.23-8.25(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}-N M R\left(75 \mathrm{MHz}, \mathbf{C}_{6} \mathbf{D}_{6}\right): \boldsymbol{\delta}=56.6,69.5(\mathrm{~d}, J=10.2 \mathrm{~Hz}), 71.4,72.4(\mathrm{~d}, J=9.5 \mathrm{~Hz}), 73.3$ (d, $J=94.5 \mathrm{~Hz}), 74.4(\mathrm{~d}, J=12.3 \mathrm{~Hz}), 79.5,95.5(\mathrm{~d}, J=11.8 \mathrm{~Hz}), 121.9,124.1,127.6,127.8$, $130.2(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 131.0(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 132.1(\mathrm{~d}, J=10.6 \mathrm{~Hz}), 132.6(\mathrm{~d}, J=10.6 \mathrm{~Hz})$, $134.5(\mathrm{~d}, J=60.0 \mathrm{~Hz}$), 134.8, 135.6 (d, $J=60.0 \mathrm{~Hz}$), $149.6,160.0 \mathrm{ppm}$.

${ }^{31}$ P-NMR ($\mathbf{8 1} \mathbf{~ M H z}, \mathbf{C}_{6} \mathbf{D}_{6}$): $\boldsymbol{\delta}=+42.59 \mathrm{ppm}$.

IR(KBr): $\boldsymbol{v}_{\text {max }}\left(\mathbf{c m}^{-1}\right)=3436(\mathrm{br}, \mathrm{m}), 1588(\mathrm{w}), 1436(\mathrm{~s}), 1158$ (s$), 1099(\mathrm{~s}), 819(\mathrm{~m}), 615(\mathrm{~s})$. MS (70 eV, EI): $\boldsymbol{m} / \boldsymbol{z}(\%)=523\left(\mathrm{M}^{+}, 25\right), 458(60), 428$ (100), 426(32).
HRMS (EI): $\boldsymbol{m} / \boldsymbol{z}$ calcd. for: $\left[\mathbf{C}_{\mathbf{2 9}} \mathbf{H}_{\mathbf{2 6}} \mathbf{P}^{\mathbf{5 6}} \mathbf{F e N O}{ }^{\mathbf{3 2}} \mathbf{S}\right]$ 523.0822, found: 523.0845
Preparation of ferrocenyl ethers 5a and 5b: A 50 mL Schlenktube under an argon atmosphere, was charged with $\mathrm{KH}(104 \mathrm{mg}, 2.60 \mathrm{mmol}, 1.30$ equiv.) in THF (4 mL) and cooled to $0^{\circ} \mathrm{C}$. A solution of alcohol $\mathbf{3}(\mathrm{dr} 6: 4,1.01 \mathrm{~g}, 2.0 \mathrm{mmol})$ in THF (20 mL) was slowly added and the reaction mixture was stirred at room temperature for 1 h . Benzyl bromide (411 $\mathrm{mg}, 2.40 \mathrm{mmol}, 1.20$ equiv) was then added dropwise at $0{ }^{\circ} \mathrm{C}$ and the reaction mixture was stirred at this temperature for 10 min and then at room temperature for 30 min . After quenching the reaction mixture with a saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution, aqueous layer was extracted with diethyl ether $(4 \times 20 \mathrm{~mL})$. The combined organic layers were washed with water, brine, dried over MgSO_{4} and solvents were evaporated under reduced pressure. Purification of the residue by flash chromatography (silica gel, n-pentane: $\mathrm{Et}_{2} \mathrm{O} \quad 1: 1$) provided the two benzyl ethers $\mathbf{5 a}(649 \mathrm{mg}, 1.08 \mathrm{mmol}, 54 \%)$ and $\mathbf{5 b}(433 \mathrm{mg}, 0.72 \mathrm{mmol}, 36 \%)$ as yellow solids.

(R_{Fc})-1-(Diphenylphosphinothioyl)-2-(((S)- α-benzyloxy)pyridyl))methylferrocene (5a):

MP: 173.1-175.0 ${ }^{\circ} \mathrm{C}$
$[\alpha]_{\mathbf{D}}{ }^{20}=-62.6\left(\mathrm{c}=0.3, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathbf{C D C l}_{3}\right): \boldsymbol{\delta}=3.60(\mathrm{~s}, 1 \mathrm{H}), 4.33(\mathrm{~s}, 5 \mathrm{H}), 4.34(\mathrm{~s}, 1 \mathrm{H}), 4.50(\mathrm{dd}, J=11.6$ $\mathrm{Hz}, 22.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.20(\mathrm{~s}, 1 \mathrm{H}), 6.50(\mathrm{~s}, 1 \mathrm{H}), 6.74-6.82(\mathrm{~m}, 1 \mathrm{H}), 6.96-7.06(\mathrm{~m}, 3 \mathrm{H}), 7.12-7.20$ $(\mathrm{m}, 4 \mathrm{H}), 7.26-7.47(\mathrm{~m}, 8 \mathrm{H}), 7.67-7.74(\mathrm{~m}, 2 \mathrm{H}), 8.27-8.36(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}-N M R\left(75 \mathrm{MHz}, \mathbf{C D C l}_{3}\right): \boldsymbol{\delta}=69.4(\mathrm{~d}, J=10.6 \mathrm{~Hz}), 70.9,71.0,71.4(\mathrm{~d}, J=9.4 \mathrm{~Hz}), 72.6$ $(\mathrm{d}, J=94.6 \mathrm{~Hz}), 74.4(\mathrm{~d}, J=12.8 \mathrm{~Hz}), 76.8,94.2(\mathrm{~d}, J=11.9 \mathrm{~Hz}), 122.3,124.1,127.5,127.6$, $127.8,127.9,128.0,128.2,130.4(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 131.1(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 131.6(\mathrm{~d}, J=11.0 \mathrm{~Hz})$, $132.0(\mathrm{~d}, J=11.0 \mathrm{~Hz}), 133.1(\mathrm{~d}, J=49.2 \mathrm{~Hz}), 134.3(\mathrm{~d}, J=49.6 \mathrm{~Hz}), 135.7,138.4,158.9$ ppm.
${ }^{\mathbf{3 1}} \mathbf{P}$-NMR ($\mathbf{8 1} \mathbf{~ M H z}, \mathbf{C}_{\mathbf{6}} \mathbf{D}_{\mathbf{6}}$): $\boldsymbol{\delta}=+42.98 \mathrm{ppm}$.
$\mathbf{I R}(\mathbf{K B r}): \boldsymbol{v}_{\max }\left(\mathbf{c m}^{\mathbf{- 1}}\right)=3436$ (br, s), 3056 (br, w), 1589 (m), 1436 (s), 1102 (s$), 1052$ (s), 819 (w), 750 (m), 715 (s$), 695$ (s)..

MS (70 eV, EI): $\boldsymbol{m} / \boldsymbol{z}(\%)=599\left(\mathrm{M}^{+}, 36\right), 534$ (38), 429 (100), 288 (41), 154 (40).

HRMS (EI): $\boldsymbol{m} / \boldsymbol{z}$ calcd. for: $\left[\mathbf{C}_{35} \mathbf{H}_{\mathbf{3 0}} \mathbf{P}^{\mathbf{5 6}} \mathbf{F e N O}^{\mathbf{3 2}} \mathbf{S}\right]$ 599.1135, found: 599.1120
($R_{\text {Fc }}$)-1-(Diphenylphosphinothioyl)-2-(((R)- α-benzyloxy)pyridyl))methylferrocene (5b):

MP: $129.7-130.8^{\circ} \mathrm{C}$
$[\alpha]_{\mathrm{D}}{ }^{20}=-48.0\left(\mathrm{c}=0.3, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
${ }^{1} \mathbf{H}-$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\boldsymbol{\delta}=3.63(\mathrm{~s}, 1 \mathrm{H}), 4.36(\mathrm{~s}, 5 \mathrm{H}), 4.37-4.40(\mathrm{~m}, 1 \mathrm{H}), 4.53(\mathrm{q}, J=$ $11.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.23(\mathrm{~s}, 1 \mathrm{H}), 6.53(\mathrm{~s}, 1 \mathrm{H}), 6.82(\mathrm{~s}, 1 \mathrm{H}), 7.04-7.10(\mathrm{~m}, 3 \mathrm{H}), 7.13-7.21(\mathrm{~m}, 4 \mathrm{H})$, 7.29-7.53 (m, 8H), 7.68-7.79 (m, 2H), 8.34 (s, 1H) ppm.
${ }^{13}$ C-NMR ($75 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\boldsymbol{\delta}=69.7(\mathrm{~d}, J=10.5 \mathrm{~Hz}), 71.3,71.6(\mathrm{~d}, J=9.4 \mathrm{~Hz}), 72.9(\mathrm{~d}, J$ $=94.5 \mathrm{~Hz}), 74.7(\mathrm{~d}, J=12.2 \mathrm{~Hz}), 77.1,94.5(\mathrm{~d}, J=11.7 \mathrm{~Hz}), 122.5,124.4,127.8,127.9$, $128.1,128.3,128.5,130.7(\mathrm{~d}, J=3.3 \mathrm{~Hz}), 131.4(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 131.9(\mathrm{~d}, J=10.5 \mathrm{~Hz}), 132.3$ $(\mathrm{d}, J=10.5 \mathrm{~Hz}), 133.4(\mathrm{~d}, J=49.8 \mathrm{~Hz}), 134.5(\mathrm{~d}, J=49.8 \mathrm{~Hz}), 136.0,138.7,149.1,159.2$ ppm.
${ }^{31}$ P-NMR ($\mathbf{8 1} \mathbf{~ M H z}, \mathbf{C}_{6} \mathbf{D}_{6}$): $\boldsymbol{\delta}=+42.96 \mathrm{ppm}$.
IR(KBr): $\boldsymbol{v}_{\text {max }}\left(\mathbf{c m}^{-1}\right)=3435(\mathrm{~b}, \mathrm{~s}), 1629(\mathrm{~b}, \mathrm{w}), 1436(\mathrm{~s}), 1101(\mathrm{~s}), 821(\mathrm{~m}), 714(\mathrm{~s}), 694(\mathrm{~s})$.
MS (70 eV, EI): $\boldsymbol{m} / \boldsymbol{z}(\%)=599\left(\mathrm{M}^{+}, 10\right), 534$ (8), 429 (27), 428 (100), 427 (25)
HRMS (EI): $\boldsymbol{m} / \boldsymbol{z}$ calcd. for: $\left[\mathbf{C}_{\mathbf{3} 5} \mathbf{H}_{\mathbf{3 0}} \mathbf{P}^{\mathbf{5 6}} \mathbf{F e N O}{ }^{\mathbf{3 2}} \mathbf{S}\right.$] 599.1122, found: 599.1148
Typical procedure 1 for the desulfurization of the compounds $\mathbf{4 a - 5 b}$. An argon flushed 50 mL Schlenkflask was loaded about 1.5 g of Raney Ni slurry (Raney Ni in water). Raney Ni was washed with $\mathrm{MeOH}(4 \times 15 \mathrm{~mL})$. To this flask was then transferred a solution of the protected ligand (4a-5b) $(0.80 \mathrm{mmol})$ in THF (3 mL), then added 20 mL MeOH and stirred at room temperature under argon atmosphere for 12 h . The reaction mixture was filtered under argon. The Raney Ni residue was washed with THF $(4 \times 10 \mathrm{~mL})$. The combined filtrate was concentrated under reduced pressure to afford the pure product as a yellow solid and stored under argon.

($R_{\text {Fc }}$)-1-(Diphenylphosphino)-2-(((S)- α-methoxy)pyridyl))methylferrocene (6a):

Prepared according to TP1 from $\mathbf{4 a}(420 \mathrm{mg}, 0.80 \mathrm{mmol})$ and obtained as a yellow solid (331 $\mathrm{mg}, 0.67 \mathrm{mmol}, 84 \%)$.

MP: 120.3-122.4 ${ }^{\circ} \mathrm{C}$
$[\alpha]_{\mathrm{D}}{ }^{20}=+234\left(\mathrm{c}=0.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathbf{C D C l}_{\mathbf{3}}\right): \boldsymbol{\delta}=2.93(\mathrm{~s}, 3 \mathrm{H}), 3.36(\mathrm{~s}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 5 \mathrm{H}), 4.03(\mathrm{~s}, 1 \mathrm{H}), 4.20-$ $4.23(\mathrm{~m}, 1 \mathrm{H}), 5.49(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.30(\mathrm{~m}, 5 \mathrm{H}), 7.38-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.63(\mathrm{~m}$, $4 \mathrm{H})$, 7.69.7.75 (m, 2H), 8.68-8.69 (m, 1H) ppm.
${ }^{13}$ C-NMR (100 MHz, CDCl 3): $\boldsymbol{\delta}=68.7,69.71,69.74,70.0(\mathrm{~d}, J=3.9 \mathrm{~Hz}), 71.7(\mathrm{~d}, J=4.5$ $\mathrm{Hz}), 76.0(\mathrm{~d}, J=9.2 \mathrm{~Hz}), 82.2(\mathrm{~d}, J=10.9 \mathrm{~Hz}), 92.8(\mathrm{~d}, J=24.9 \mathrm{~Hz}), 121.8$, 122.6, 127.4, $127.63(\mathrm{~d}, J=6.5 \mathrm{~Hz}), 128.0(\mathrm{~d}, J=8.0 \mathrm{~Hz}), 128.7,129.0,130.8,132.3,132.4(\mathrm{~d}, J=18.3$ $\mathrm{Hz}), 135.2(\mathrm{~d}, J=21.5 \mathrm{~Hz}), 148.7,160.6 \mathrm{ppm}$.
${ }^{31}$ P-NMR ($81 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\boldsymbol{\delta}=-21.17 \mathrm{ppm}$.
IR(neat): $\boldsymbol{v}_{\text {max }}\left(\mathrm{cm}^{-1}\right)=2920(\mathrm{w}), 1728(\mathrm{w}), 1586(\mathrm{~m}), 1428(\mathrm{~m}), 1126(\mathrm{~m}), 1080(\mathrm{~s}), 1105$ (s), 810 (s), 748 (s), 698 (s).

MS (70 eV, EI): $\boldsymbol{m} / \boldsymbol{z}(\%)=491\left(\mathrm{M}^{+}, 39\right), 427$ (28), 426 (100), 396 (32), 262 (30), 154 (37).
HRMS (EI): $\boldsymbol{m} / \boldsymbol{z}$ calcd. for: $\left[\mathbf{C}_{\mathbf{2 9}} \mathbf{H}_{\mathbf{2 6}} \mathbf{} \mathbf{P}^{\mathbf{5 6}} \mathbf{F e N O}\right.$] 491.1101, found: 491.1108
($R_{\text {Fc }}$)-1-(Diphenylphosphino)-2-(((R)- α-methoxy)pyridyl))methylferrocene ($\mathbf{6 b}$):

Prepared according to TP1 from 4b ($420 \mathrm{mg}, 0.80 \mathrm{mmol}$) and obtained as a yellow solid (325 $\mathrm{mg}, 0.66 \mathrm{mmol}, 82 \%)$.

MP: $140.2-144.0^{\circ} \mathrm{C}$
$[\alpha]_{\mathrm{D}}{ }^{20}=+214\left(\mathrm{c}=0.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
${ }^{1} \mathbf{H}-$ NMR ($\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) : $\boldsymbol{\delta}=3.34(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{~s}, 1 \mathrm{H}), 4.10(\mathrm{~s}, 5 \mathrm{H}), 4.26-4.31(\mathrm{~m}, 1 \mathrm{H})$, $4.66(\mathrm{~s}, 1 \mathrm{H}), 5.39(\mathrm{~s}, 1 \mathrm{H}), 6.76-6.79(\mathrm{~m}, 3 \mathrm{H}), 6.94-7.12(\mathrm{~m}, 4 \mathrm{H}), 7.28-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.49(\mathrm{br}$ $\mathrm{s}, 2 \mathrm{H}), 7.70-7.71(\mathrm{~m}, 1 \mathrm{H}), 8.07(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13}$ C-NMR ($\mathbf{1 5 0} \mathbf{~ M H z , ~ C D C l} 3$): $\boldsymbol{\delta}=68.1,68.7,69.7,70.0(\mathrm{~d}, J=3.4 \mathrm{~Hz}$), $71.7(\mathrm{~d}, J=4.2 \mathrm{~Hz}$), $76.5(\mathrm{~d}, J=9.6 \mathrm{~Hz}), 82.8(\mathrm{~d}, J=9.8 \mathrm{~Hz}), 92.9(\mathrm{~d}, J=24.7 \mathrm{~Hz}), 121.7,122.0,127.0,127.5(\mathrm{~d}$, $J=6.4 \mathrm{~Hz}), 127.9(\mathrm{~d}, J=8.0 \mathrm{~Hz}), 128.9,131.9(\mathrm{~d}, J=18.5 \mathrm{~Hz}), 135.0(\mathrm{~d}, J=21.3 \mathrm{~Hz}), 135.8$, 137.5 (d, $J=9.2 \mathrm{~Hz}$), 139.1 (d, $J=9.2 \mathrm{~Hz}$), 148.5, 160.3 ppm .
${ }^{\mathbf{3 1}} \mathbf{P}$-NMR ($\mathbf{8 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\boldsymbol{\delta}=-21.25 \mathrm{ppm}$.
IR(neat): $\boldsymbol{v}_{\text {max }}\left(\mathbf{c m}^{-1}\right)=2928(\mathrm{w}), 1725(\mathrm{w}), 1586(\mathrm{~m}), 1430(\mathrm{~m}), 1162(\mathrm{~m}), 1087(\mathrm{~s}), 1104$ (s), 816 (s), 744 (s), 698 (s).

MS (70 eV, EI): $\boldsymbol{m} / \boldsymbol{z}(\%)=491\left(\mathrm{M}^{+}, 47\right), 427$ (28), 426 (100), 396 (37), 262 (38), 154 (50).
HRMS (EI): $\boldsymbol{m} / \boldsymbol{z}$ calcd. for: $\left[\mathbf{C}_{\mathbf{2 9}} \mathbf{H}_{\mathbf{2 6}} \mathbf{P}^{\mathbf{5 6}} \mathbf{F e N O}\right.$ 491.1101, found: 491.1110.
($R_{\text {Fc }}$)-1-(Diphenylphosphino)-2-(((S)- α-benzyloxy)pyridyl))methylferrocene (7a):

Prepared according to TP1 from 5a ($480 \mathrm{mg}, 0.80 \mathrm{mmol}$) and obtained as a yellow solid (402 $\mathrm{mg}, 0.71 \mathrm{mmol}, 88 \%)$.

MP: $49.8-53.5^{\circ} \mathrm{C}$
$[\alpha]_{\mathrm{D}}{ }^{20}=+230\left(\mathrm{c}=0.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \boldsymbol{\delta}=3.83(\mathrm{~s}, 5 \mathrm{H}), 3.90(\mathrm{~s}, 1 \mathrm{H}), 4.13(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.22$ ($\mathrm{s}, 1 \mathrm{H}$), $4.26(\mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{~s}, 1 \mathrm{H}), 6.73-6.74(\mathrm{~m}, 2 \mathrm{H})$, $7.02(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-7.24(\mathrm{~m}, 5 \mathrm{H}), 7.28-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.38-$ $7.39(\mathrm{~m}, 3 \mathrm{H}), 7.61-7.65(\mathrm{~m}, 3 \mathrm{H}), 7.74-7.77(\mathrm{~m}, 1 \mathrm{H}), 8.70-8.71(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C-NMR ($\mathbf{1 5 0 ~ M H z}$, CDCl $_{3}$): $\boldsymbol{\delta}=69.8,70.0,70.49(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 70.5,71.7,71.9(\mathrm{~d}, J=$ $4.5 \mathrm{~Hz}), 76.5(\mathrm{~d}, J=10.6 \mathrm{~Hz}), 95.1(\mathrm{~d}, J=26 \mathrm{~Hz}), 122.3,122.8$, 127.4, 127.4, 127.8 (d, $J=$ $1.7 \mathrm{~Hz}), 127.9,128.0,128.1(\mathrm{~d}, J=1.7 \mathrm{~Hz}), 128.4,129.1,132.4(\mathrm{~d}, J=18.0 \mathrm{~Hz}), 135.4(\mathrm{~d}, J=$ $22.0 \mathrm{~Hz}), 137.6,137.9(\mathrm{~d}, J=10.2 \mathrm{~Hz}), 140.5(\mathrm{~d}, J=10.0 \mathrm{~Hz}), 160.7 \mathrm{ppm}$.
${ }^{31} \mathbf{P}$-NMR ($\mathbf{8 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\boldsymbol{\delta}=-21.58 \mathrm{ppm}$.
IR(KBr): $\boldsymbol{v}_{\text {max }}\left(\mathbf{c m}^{-1}\right)=3054$ (br, w), $2858(\mathrm{br}, \mathrm{w}), 1587(\mathrm{~m}), 1432(\mathrm{~m}), 1047(\mathrm{~s}), 817(\mathrm{~m})$, 739 (s), 690 (s).
MS (70 eV, EI): $\boldsymbol{m} / \boldsymbol{z}(\%)=567\left(\mathrm{M}^{+}, 38\right), 502$ (87), 461 (57), 396 (100), 276 (33), 154 (34).
HRMS (EI): $\boldsymbol{m} / \boldsymbol{z}$ calcd. for: $\left[\mathbf{C}_{\mathbf{3} 5} \mathbf{H}_{\mathbf{3 0}} \mathbf{P}^{\mathbf{5 6}} \mathbf{F e N O}\right.$] 567.1414, found: 567.1389
(R_{Fc})-1-(Diphenylphosphino)-2-(((R)- α-benzyloxy)pyridyl))methylferrocene (7b):

Prepared according to TP1 from 5b ($482 \mathrm{mg}, 0.80 \mathrm{mmol}$) and obtained as a yellow solid (390 $\mathrm{mg}, 0.69 \mathrm{mmol}, 86 \%)$.

MP: $58.0-60.2{ }^{\circ} \mathrm{C}$
$[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{\mathbf{2 0}}=+134\left(\mathrm{c}=0.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right): \boldsymbol{\delta}=3.69-3.70(\mathrm{~m}, 1 \mathrm{H}), 4.05(\mathrm{~s}, 5 \mathrm{H}), 4.28(\mathrm{t}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H})$, $4.45(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.79-4.80(\mathrm{~m}, 1 \mathrm{H}), 5.71(\mathrm{~d}, J=2.1 \mathrm{~Hz}$, $1 \mathrm{H})$, , 6.71-6.79 (m, 3H), 6.91-6.95 (m, 2H), 7.01-7.04 (m, 1H), 7.18-7.20 (m, 1H) 7.27-7.39 $(\mathrm{m}, 7 \mathrm{H}), 7.42-7.51(\mathrm{~m}, 4 \mathrm{H}), 8.03-8.05(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C-NMR (100 MHz, CDCl ${ }_{3}$): $\boldsymbol{\delta}=69.0(\mathrm{~d}, J=4.5 \mathrm{~Hz}), 69.1,69.9,70.8,71.3(\mathrm{~d}, J=4.8 \mathrm{~Hz})$, $73.8(\mathrm{~d}, J=10.5 \mathrm{~Hz}), 80.7(\mathrm{~d}, J=7.3 \mathrm{~Hz}), 95.9(\mathrm{~d}, J=24.3 \mathrm{~Hz}), 121.8(\mathrm{~d}, J=1.5 \mathrm{~Hz}), 122.1$, $127.0,127.4(\mathrm{~d}, J=2.2 \mathrm{~Hz}), 127.5,127.6,127.9(\mathrm{~d}, J=7.8 \mathrm{~Hz}), 128.3,128.9(\mathrm{~d}, J=0.8 \mathrm{~Hz})$, 131.9 (d, $J=18.2 \mathrm{~Hz}$), $135.2(\mathrm{~d}, J=21.3 \mathrm{~Hz}), 135.9,137.6(\mathrm{~d}, J=9.6 \mathrm{~Hz}), 138.6,139.3$ (d, J $=9.2 \mathrm{~Hz}), 148.4,160.7 \mathrm{ppm}$.
${ }^{31} \mathbf{P}$-NMR ($\mathbf{8 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\boldsymbol{\delta}=-22.49 \mathrm{ppm}$.
IR(KBr): $\boldsymbol{v}_{\text {max }}\left(\mathbf{c m}^{-1}\right)=3050(\mathrm{w}), 2860(\mathrm{w}), 1586(\mathrm{~m}), 1432(\mathrm{~m}), 1066(\mathrm{~m}), 1026(\mathrm{~m}), 815$ (m), 740 (s), 692 (s$), 614$ (m).

MS (70 eV, EI): $\boldsymbol{m} / \boldsymbol{z}(\%)=568\left([\mathrm{M}+\mathrm{H}]^{+}, 38\right), 567\left(\mathrm{M}^{+}, 100\right), 502(58), 461$ (47), 385 (83), 276 (41), 212 (72).
HRMS (EI): $\boldsymbol{m} / \boldsymbol{z}$ calcd. for: $\left[\mathbf{C}_{35} \mathbf{H}_{\mathbf{3 0}} \mathbf{P}^{\mathbf{5 6}} \mathbf{F e N O}\right]$ 567.1414, found: 567.1436

Typical procedure $\mathbf{2}$ for the preparation of iridium complexes $\mathbf{8 a}-\mathbf{9 b}$. A 25 mL Schlenkflask under an argon atmosphere, was charged with P,N-ligand ($\mathbf{6 a - 7 b}$) (0.50 mmol), $[\mathrm{Ir}(\mathrm{COD}) \mathrm{Cl}]_{2}(0.25 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and stirred at room temperature for 1 h . NaBARF ($0.75 \mathrm{mmol}, 1.50$ equiv.) was added followed by water (5 mL) and the resulting
two-phase reaction mixture was stirred vigorously for 30 min . The separated aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 15 \mathrm{~mL})$. The combined organic extracts were washed with brine and dried over MgSO_{4}. The residue was purified by column chromatography yielding the Ir-complex as a bright orange solid.

Iridium complex (8a):

Prepared according to TP2 from P,N-ligand 6a ($246 \mathrm{mg}, 0.50 \mathrm{mmol}$), $[\operatorname{Ir}(\mathrm{COD}) \mathrm{Cl}]_{2}(168 \mathrm{mg}$, 0.25 mmol) and NaBARF ($665 \mathrm{mg}, 0.75 \mathrm{mmol}$). Purification by flash chromatography (silica gel, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) afforded the iridium complex $\mathbf{8 a}(746 \mathrm{mg}, 90 \%)$ as a bright orange solid.

MP: $184.3-185.4^{\circ} \mathrm{C}$
$[\alpha]_{\mathrm{D}}{ }^{20}=+69\left(\mathrm{c}=0.2, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
${ }^{1} \mathbf{H}-$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\boldsymbol{\delta}=1.27-1.68(\mathrm{~m}, 4 \mathrm{H}), 1.80-2.16(\mathrm{~m}, 3 \mathrm{H}), 2.29-2.66(\mathrm{~m}, 5 \mathrm{H})$, $3.13(\mathrm{~s} .4 \mathrm{H}), 3.70(\mathrm{~s}, 2 \mathrm{H}), 3.68-3.79(\mathrm{~m}, 1 \mathrm{H}), 4.08-4.15(\mathrm{~m}, 3 \mathrm{H}), 4.48(\mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H})$, 4.91-4.96 (m, 1H), 6.82-6.95 (m, 3H), 7.30-7.33 (m, 3H), 7.45-7.64 (m, 7H), 7.69-7.74 (m, $7 \mathrm{H})$, 7.84-7.94 (m, 3H), 8.06-8.17 (m, 2H), 8.77-8.78 (m, 1H) ppm.
${ }^{13}$ C-NMR (100 MHz, $\mathbf{C D C l}_{3}$): $\boldsymbol{\delta}=26.6(\mathrm{~d}, J=2.2 \mathrm{~Hz}), 28.5(\mathrm{~d}, J=1.8 \mathrm{~Hz}), 32.9(\mathrm{~d}, J=1.9$ $\mathrm{Hz}), 36.2(\mathrm{~d}, J=4.1 \mathrm{~Hz}), 58.4,65.1,67.4,69.9(\mathrm{~d}, J=8.5 \mathrm{~Hz}), 70.1(\mathrm{~d}, J=6.3 \mathrm{~Hz}), 70.4,71.5$ (d, $J=55.4 \mathrm{~Hz}$), $73.3(\mathrm{~d}, J=2.3 \mathrm{~Hz}), 81.9(\mathrm{~d}, J=1.9 \mathrm{~Hz}), 93.6-94.0(\mathrm{~m}), 117.5(\mathrm{q}, J=4.0$ $\mathrm{Hz}), 120.5,123.2,123.6,125.9,126.2,128.4(\mathrm{q}, J=2.7 \mathrm{~Hz}), 128.6,128.7(\mathrm{q}, J=2.9 \mathrm{~Hz})$, $129.1(\mathrm{q}, J=2.7 \mathrm{~Hz}), 129.2(\mathrm{~d}, J=11.2 \mathrm{~Hz}), 129.9(\mathrm{~d}, J=58.8 \mathrm{~Hz}), 130.8(\mathrm{~d}, J=2.8 \mathrm{~Hz})$, $132.7(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 134.8,135.6(\mathrm{~d}, J=14.4 \mathrm{~Hz}), 137.1(\mathrm{q}, J=291.2 \mathrm{~Hz}), 149.8,161.7(\mathrm{q}$, $J=53.7 \mathrm{~Hz}$), 164.9 ppm .
${ }^{31}$ P-NMR ($\left.\mathbf{8 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \boldsymbol{\delta}=+9.7 \mathrm{ppm}$.
IR (neat): $\boldsymbol{v}_{\text {max }}\left(\mathbf{c m}^{-1}\right)=2930(\mathrm{w}), 1272(\mathrm{w}), 1354(\mathrm{~s}), 1273(\mathrm{~s}), 1111(\mathrm{~s}), 1096(\mathrm{~s}), 887(\mathrm{~m})$, 716 (m), 668 (s).
MS (FAB): 793 ([M+H] ${ }^{+}$, 41), $792\left(\mathrm{M}^{+}, 100\right), 791$ (63), 650 (21).
HRMS (EI): $\boldsymbol{m} / \boldsymbol{z}$ calcd. for: $\left[\mathbf{C}_{37} \mathbf{H}_{\mathbf{3 8}} \mathbf{P N O}{ }^{\mathbf{1 9 3}} \mathbf{I r}^{56} \mathbf{F e}\right]: 792.1660$, found 792.1658
Iridium complex (8b):

Prepared according to TP2 from P,N-ligand $\mathbf{6 b}(246 \mathrm{mg}, 0.50 \mathrm{mmol}),[\operatorname{Ir}(\mathrm{COD}) \mathrm{Cl}]_{2}(168 \mathrm{mg}$, 0.25 mmol) and NaBARF ($665 \mathrm{mg}, 0.75 \mathrm{mmol}$). Purification by flash chromatography (silica gel, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) afforded the iridium complex $\mathbf{8 b}(736 \mathrm{mg}, 89 \%)$ as a bright orange solid.

MP: 189.3-190. $9^{\circ} \mathrm{C}$
$[\alpha]_{\mathrm{D}}{ }^{20}=+50\left(\mathrm{c}=0.2, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
${ }^{1} \mathbf{H}-$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \boldsymbol{\delta}=1.26(\mathrm{~s}, 1 \mathrm{H}), 1.55(\mathrm{~s}, 1 \mathrm{H}), 1.74-1.84(\mathrm{~m}, 2 \mathrm{H}), 2.13-2.18$ $(\mathrm{m}, 1 \mathrm{H}), 2.40-2.62(\mathrm{~m}, 5 \mathrm{H}), 3.56(\mathrm{~s}, 3 \mathrm{H}), 3.66-3.67(\mathrm{~m}, 1 \mathrm{H}), 4.14-4.24(\mathrm{~m}, 2 \mathrm{H}), 4.38(\mathrm{~s}, 4 \mathrm{H})$, 4.47-4.56 (m, 2H), 4.63-4.66 (m, 1H), 5.03-5.04 (m, 1H), 6.61-6.64 (m, 1H), 6.73-6.77 (m, $2 \mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H}), 7.07-7.12(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.56(\mathrm{~m}, 12 \mathrm{H}), 7.70-7.71(\mathrm{~m}$, 7H) ppm.
${ }^{13} \mathbf{C}-$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\boldsymbol{\delta}=27.4(\mathrm{~d}, J=1.9 \mathrm{~Hz}), 31.0(\mathrm{~d}, J=2.3 \mathrm{~Hz}), 32.3(\mathrm{~d}, J=2.2$ $\mathrm{Hz}), 35.1(\mathrm{~d}, J=4.0 \mathrm{~Hz}), 58.0,60.6,66.9,67.4,69.4(\mathrm{~d}, J=6.7 \mathrm{~Hz}), 71.2,71.8(\mathrm{~d}, J=6.1$ $\mathrm{Hz}), 73.2(\mathrm{~d}, J=1.9 \mathrm{~Hz}), 85.5(\mathrm{~d}, J=1.7 \mathrm{~Hz}), 88.6(\mathrm{~d}, J=11.6 \mathrm{~Hz}), 91.7(\mathrm{~d}, J=16.2 \mathrm{~Hz})$, $92.8(\mathrm{~d}, J=13.3 \mathrm{~Hz}), 117.4,120.5,121.8,123.2,124.5,125.0,125.7(\mathrm{~d}, J=32.0 \mathrm{~Hz}), 128.6$, $128.7-128.0(\mathrm{~m}), 128.8(\mathrm{~d}, J=6.5 \mathrm{~Hz}), 129.0(\mathrm{q}, J=2.9 \mathrm{~Hz}), 129.4(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 130.7(\mathrm{~d}$, $J=2.4 \mathrm{~Hz}), 130.9,131.3(\mathrm{~d}, J=11.3 \mathrm{~Hz}), 131.4,131.9(\mathrm{~d}, J=2.6 \mathrm{~Hz}), 132.8(\mathrm{~d}, J=10.0 \mathrm{~Hz})$, $134.5,138.8,149.2,161.7$ ($\mathrm{q}, J=50.1 \mathrm{~Hz}$), 161.8 ppm .
${ }^{31} \mathbf{P}-$ NMR ($\mathbf{8 1} \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\boldsymbol{\delta}=+9.6 \mathrm{ppm}$
IR (neat): $\boldsymbol{v}_{\text {max }}\left(\mathbf{c m}^{-1}\right)=2925(\mathrm{w}), 1609(\mathrm{w}), 1353(\mathrm{~m}), 1273(\mathrm{~s}), 1156(\mathrm{~s}), 1122(\mathrm{~s}), 1095(\mathrm{~s})$, 887 (m), 838 (m), 715 (m), 668 (m).
MS (ESI): 793 ([M+H] ${ }^{+}, 41$), $792\left(\mathrm{M}^{+}, 100\right), 790(65), 452$ (11).
HRMS (ESI): $\boldsymbol{m} / \boldsymbol{z}$ calcd. for: $\left[\mathbf{C}_{37} \mathbf{H}_{\mathbf{3 8}} \mathbf{P}^{56} \mathbf{F e N O}{ }^{193} \mathbf{I r}\right] 792.1670$, found: 792.1639

Iridium complex (9a):

Prepared according to TP2 from P,N-ligand 7a ($284 \mathrm{mg}, 0.50 \mathrm{mmol}$), $[\operatorname{Ir}(\mathrm{COD}) \mathrm{Cl}]_{2}(168 \mathrm{mg}$, 0.25 mmol) and NaBARF ($665 \mathrm{mg}, 0.75 \mathrm{mmol}$). Purification by flash chromatography (silica gel, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) provided the iridium complex $9 \mathrm{a}(780 \mathrm{mg}, 90 \%)$ as a bright orange solid.

MP: $178.1-180.7^{\circ} \mathrm{C}$
$[\alpha]_{\mathrm{D}}{ }^{20}=+54\left(\mathrm{c}=0.2, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
${ }^{1} \mathbf{H}-N M R(400 ~ M H z, ~ C D C l ~ 3): ~ \boldsymbol{\delta}=1.23(\mathrm{~m}, 2 \mathrm{H}), 1.52-1.57(\mathrm{~m}, 3 \mathrm{H}), 1.75-1.79(\mathrm{~m}, 1 \mathrm{H}), 2.00-$ $2.09(\mathrm{~m}, 2 \mathrm{H}), 2.29-2.35(\mathrm{~m}, 1 \mathrm{H}), 2.48-2.52(\mathrm{~m}, 2 \mathrm{H}), 3.13(\mathrm{~s}, 4 \mathrm{H}), 3.64-3.65(\mathrm{~m}, 1 \mathrm{H}), 3.97-$ $3.98(\mathrm{~m}, 1 \mathrm{H}), 4.07(\mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.19-4.22(\mathrm{~m}, 1 \mathrm{H}), 4.51(\mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.86-4.87$ $(\mathrm{m}, 2 \mathrm{H}), 5.04-5.05(\mathrm{~m}, 1 \mathrm{H}), 6.87-6.95(\mathrm{~m}, 3 \mathrm{H}), 7.34-7.41(\mathrm{~m}, 8 \mathrm{H}), 7.44-7.48(\mathrm{~m}, 1 \mathrm{H}), 7.52$ (br, s, 3H), 7.60-7.61 (m, 3H), 7.72-7.78 (m, 8H), 7.92-7.96 (m, 1H), 8.02-8.03 (m, 1H), 8.098.13 (m, 2H), 8.75-8.77 (m, 1H). ppm.
${ }^{13} \mathbf{C}$-NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\boldsymbol{\delta}=26.9(\mathrm{~d}, J=2.3 \mathrm{~Hz}), 28.7(\mathrm{~d}, J=2.1 \mathrm{~Hz}), 32.2(\mathrm{~d}, J=1.9$ $\mathrm{Hz}), 35.7(\mathrm{~d}, J=4.5 \mathrm{~Hz}), 65.5,67.0,70.2(\mathrm{q}, J=8.2 \mathrm{~Hz}), 70.4,71.7(\mathrm{~d}, J=55.0 \mathrm{~Hz}), 72.3$, $73.3(\mathrm{~d}, J=2.2 \mathrm{~Hz}), 78.6(\mathrm{~d}, J=1.8 \mathrm{~Hz}), 93.9,94.0(\mathrm{~d}, J=6.8 \mathrm{~Hz}), 94.6(\mathrm{~d}, J=14.2 \mathrm{~Hz})$, 117.4-117.5 (m), 120.5, 123.2, 123.8, 125.9, 126.1, 127.2, 128.6, 128.7 (q, $J=2.8 \mathrm{~Hz}), 128.9$,
$129.1(\mathrm{q}, J=2.9 \mathrm{~Hz}), 129.2(\mathrm{~d}, J=11.0 \mathrm{~Hz}), 130.0(\mathrm{~d}, J=58.7 \mathrm{~Hz}), 130.8(\mathrm{~d}, J=2.6 \mathrm{~Hz})$, 132.7 (d, $J=2.2 \mathrm{~Hz}$), $133.4(\mathrm{q}, J=360.1 \mathrm{~Hz}), 134.7-134.8(\mathrm{~m}), 135.5(\mathrm{~d}, J=14.0 \mathrm{~Hz}), 136.4$, 149.7, 161.7 ($\mathrm{q}, J=50.1 \mathrm{~Hz}$), 165.1 ppm .
${ }^{31}$ P-NMR ($\mathbf{8 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\boldsymbol{\delta}=+9.6 \mathrm{ppm}$
IR (neat): $\boldsymbol{v}_{\text {max }}\left(\mathrm{cm}^{-1}\right)=2927(\mathrm{w}), 1608(\mathrm{w}), 1353(\mathrm{~m}), 1272(\mathrm{~s}), 1117(\mathrm{~s}), 1000(\mathrm{w}), 886(\mathrm{~m})$, $838(\mathrm{~m}), 712(\mathrm{~m}), 668(\mathrm{~m}), 681(\mathrm{~m})$.
MS (ESI): $869\left([\mathrm{M}+\mathrm{H}]^{+}, 44\right), 868\left(\mathrm{M}^{+}, 100\right), 866(49), 584$ (10), 391 (5).
HRMS (ESI): $\boldsymbol{m} / \boldsymbol{z}$ calcd. for: $\left[\mathbf{C}_{\mathbf{4 3}} \mathbf{H}_{\mathbf{4 2}} \mathbf{P}^{56} \mathbf{F e N O}{ }^{\mathbf{1 9 3}} \mathbf{I r}\right]$ 868.1938, found: 868.1964

Iridium complex (9b):

Prepared according to TP2 from P,N-ligand 7b ($284 \mathrm{mg}, 0.5 \mathrm{mmol}$), $[\mathrm{Ir}(\mathrm{COD}) \mathrm{Cl}]_{2}$ (168 mg , 0.25 mmol) and NaBARF ($665 \mathrm{mg}, 0.75 \mathrm{mmol}$) Flash chromatographical purification (silica gel, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) provided the iridium complex $\mathbf{9 b}(763 \mathrm{mg}, 88 \%)$ as a bright orange solid.

MP: 71.5-75.7 ${ }^{\circ} \mathrm{C}$
$[\alpha]_{\mathrm{D}}{ }^{20}=+27\left(\mathrm{c}=0.2, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
${ }^{1} \mathbf{H}-$ NMR $\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \boldsymbol{\delta}=1.77-1.92(\mathrm{~m}, 3 \mathrm{H}), 2.13-2.54(\mathrm{~m}, 7 \mathrm{H}), 3.69-3.71(\mathrm{~m}, 1 \mathrm{H})$, 4.15-4.20 (m, 1H), 4.23-4.29 (m, 1H), 4.34 ($\mathrm{s}, 4 \mathrm{H}), ~ 4.48-4.53(\mathrm{~m}, 1 \mathrm{H}), ~ 4.57-4.66(\mathrm{~m}, 3 \mathrm{H})$, 4.77-4.80 (m, 1H), 5.17-5.18 (m, 1H), 6.60-6.64 (m, 1H), 6.73-6.78 (m, 2H), $6.96(\mathrm{~s}, 1 \mathrm{H})$, 7.08-7.12 (m, 2H), 7.20-7.24 (m, 1H), 7.40-7.57 (m, 16H), 7.71-7.72 (m, 8H) ppm.
${ }^{13}$ C-NMR (100 MHz, CDCl $\mathbf{C l}_{3}$): $\boldsymbol{\delta}=27.9(\mathrm{~d}, J=2.2 \mathrm{~Hz}), 31.6(\mathrm{~d}, J=2.3 \mathrm{~Hz}), 31.7(\mathrm{~d}, J=2.3$ $\mathrm{Hz}), 34.5(\mathrm{~d}, J=3.5 \mathrm{~Hz}), 61.2,66.7(\mathrm{~d}, J=57.0 \mathrm{~Hz}), 67.3,69.8(\mathrm{~d}, J=7.2 \mathrm{~Hz}), 71.2,71.7(\mathrm{~d}$, $J=6.3 \mathrm{~Hz}), 72.3,73.2(\mathrm{~d}, J=1.4 \mathrm{~Hz}), 82.9,88.7(\mathrm{~d}, J=12.1 \mathrm{~Hz}), 91.9(\mathrm{~d}, J=15.7 \mathrm{~Hz}), 93.4$ $(\mathrm{d}, J=13.0 \mathrm{~Hz}), 117.4-117.5(\mathrm{~m}), 122.2,123.2,125.6,125.9,126.8(\mathrm{q}, J=365.0 \mathrm{~Hz}), 127.5$, 128.4-128.5 (m), 128.7-128.9 (m), 129.0, $129.1(\mathrm{t}, J=3.0 \mathrm{~Hz}), 129.3-129.4(\mathrm{~m}), 130.8(\mathrm{~d}, J=$ $2.5 \mathrm{~Hz}), 131.26(\mathrm{~d}, J=54.0 \mathrm{~Hz}), 131.27(\mathrm{~d}, J=11.3 \mathrm{~Hz}), 131.9(\mathrm{~d}, J=2.5 \mathrm{~Hz}), 132.8(\mathrm{~d}, J=$ $9.8 \mathrm{~Hz}), 134.8$ (br, s), 136.4, 138.9, 149.3, 161.7 (q, $J=50.0 \mathrm{~Hz}$), 161.8 ppm.
${ }^{31}$ P-NMR ($\mathbf{8 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\boldsymbol{\delta}=+5.71 \mathrm{ppm}$.
IR (neat): $\boldsymbol{v}_{\text {max }}\left(\mathbf{c m}^{-1}\right)=2928(\mathrm{w}), 1609(\mathrm{~m}), 1353(\mathrm{~m}), 1273(\mathrm{~s}), 1117(\mathrm{~s}), 1001(\mathrm{~m}), 839$ (m), $669(\mathrm{~m}), 682(\mathrm{~m})$.

MS (ESI): 869 ([M+H] ${ }^{+}$, 44), $868\left(\mathrm{M}^{+}, 100\right), 866$ (46), 584 (18).
HRMS (ESI): $\boldsymbol{m} / \boldsymbol{z}$ calcd. for: $\left[\mathbf{C}_{\mathbf{4 3}} \mathbf{H}_{\mathbf{4} 2} \mathbf{P}^{56} \mathbf{F e N O}{ }^{193} \mathbf{I r}\right]$ 868.1938, found: 868.1948
Preparation of 2,6-Dimethyl-4-amino anisole ${ }^{2}$. A 1.0 L flask was charged with 2,6-dimethyl-4-nitro anisole ($180 \mathrm{mmol}, 32.6 \mathrm{~g}$), active charcoal ($20 \%, 36.0 \mathrm{mmol}, 434 \mathrm{mg}$), $\mathrm{FeCl}_{3} .6 \mathrm{H}_{2} \mathrm{O}(10 \%, 18.0 \mathrm{mmol}, 4.90 \mathrm{~g}), \mathrm{MeOH}(500 \mathrm{~mL})$ and refluxed. While the reaction mixture was refluxing, $\mathrm{NH}_{2} \mathrm{NH}_{2} \cdot \mathrm{H}_{2} \mathrm{O}(1.8 \mathrm{~mol}, 57.5 \mathrm{~g}, 55.8 \mathrm{~mL})$ was added slowly and continued stirring for overnight. Reaction mixture was cooled to room temperature, filtered and washed with $\mathrm{MeOH}(3 \times 100 \mathrm{~mL})$. Evaporated the filtrate under reduced pressure, filtered the residue through a short pad of silica gel and washed with ether to afford the amine in 96% yield as a pale yellow crystalline solid.

MP: $62-64{ }^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{M H z}, \mathbf{C D C l}_{3}\right): \boldsymbol{\delta}=2.21-2.25(\mathrm{~m}, 6 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 4.02(\mathrm{br}, 2 \mathrm{H}, \mathrm{NH}), 6.42-$ 6.45 (m, 2H) ppm.
${ }^{13} \mathbf{C}-$ NMR ($75 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}=16.3,60.2,116.1,131.8,140.9,150.5 \mathrm{ppm}$.
IR (neat): $v_{\text {max }}\left(\mathbf{c m}^{-1}\right)=3400(\mathrm{~s}), 2955(\mathrm{~m}), 1623(\mathrm{w}), 1472(\mathrm{~m}), 1212(\mathrm{~m}), 1013(\mathrm{~s}), 796$ (m).

MS (70 eV, EI): $\boldsymbol{m} / \boldsymbol{z}(\%)=151\left(\mathrm{M}^{+}, 88\right), 137$ (26), 136 (100), 108 (47), 93 (28).
HRMS (EI): $\boldsymbol{m} / \boldsymbol{z}$ calcd. for: [$\left.\mathbf{C}_{\mathbf{9}} \mathbf{H}_{\mathbf{1 3}} \mathbf{N O}\right]$ 151.0997, found 151.0999.
Typical procedure $\mathbf{3}$ for the preparation of imines. A 250 mL round-bottomed flask was filled with a ketone (10.0 mmol), an amine (12.0 mmol) and molecular sieves ($4 \AA, 8 \mathrm{~g}$) in toluene (60 mL). The reaction mixture was refluxed until full conversion was reached (conversion was monitored by GC). The reaction mixture was filtered through celite, solvent was evaporated and the crude product was further purified as specified for each substrate.

Racemic amines were prepared by reduction of the imines with sodium borohydride in ethanol or Methanol.
N-phenyl-1-phenylethylideneamine (10a) ${ }^{[4]}$: Prepared according to TP3 from acetophenone ($10.0 \mathrm{mmol}, 1.20 \mathrm{~g}, 1.16 \mathrm{~mL}$) and aniline ($12.0 \mathrm{mmol}, 1.12 \mathrm{~g}, 1.1 \mathrm{~mL}, 1.20$ equiv.). Recrystallisation from n-pentane, afforded the desired imine ($1.42 \mathrm{~g}, 7.30 \mathrm{mmol}, 73 \%$) as a yellow crystalline solid.

MP: $38-39^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H}-$ NMR $\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \boldsymbol{\delta}=2.18(\mathrm{~s}, 3 \mathrm{H}), 6.79(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.33(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.40-7.44(\mathrm{~m}, 3 \mathrm{H}), 7.98(\mathrm{dd}, J=7.5 \mathrm{~Hz}, 2.1 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm}$.
N-(4-methoxy)phenyl-1-phenylethylideneamine (10b) ${ }^{[5]}$: Prepared according to TP3 from acetophenone ($10.0 \mathrm{mmol}, 1.20 \mathrm{~g}, 1.16 \mathrm{~mL}$) and 4-methoxy aniline ($12.0 \mathrm{mmol}, 1.48 \mathrm{~g}, 1.20$ equiv.). Recrystallisation from n-pentane:EtOAc, afforded the desired imine ($1.42 \mathrm{~g}, 6.29$ $\mathrm{mmol} 63 \%$) as a yellow crystalline solid.

MP: 87.3-87.9 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right): \boldsymbol{\delta}=2.30(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 6.76(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.91$ (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.43-7.45(\mathrm{~m}, 3 \mathrm{H}), 7.95-7.98(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm}$.
\boldsymbol{N}-(3,5-Dimethyl)phenyl-1-phenylethylideneamine (10c): Prepared according to TP3 from acetophenone ($10.0 \mathrm{mmol}, 1.20 \mathrm{~g}, 1.16 \mathrm{~mL}$) and 3,5.dimethyl aniline ($12.0 \mathrm{mmol}, 1.45 \mathrm{~g}, 1.49$ $\mathrm{mL}, 1.20$ equiv.). Purification by vacuum distillation $\left(120^{\circ} \mathrm{C}, 0.1 \mathrm{mbar}\right)$ afforded the desired imine ($1.72 \mathrm{~g}, 7.79 \mathrm{mmol}, 78 \%$) as a yellow oil.

${ }^{1} \mathbf{H}-\mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \boldsymbol{\delta}=2.24(\mathrm{~s}, 3 \mathrm{H}), 2.32(\mathrm{~s}, 6 \mathrm{H}), 6.43(\mathrm{~s}, 2 \mathrm{H}), 6.73(\mathrm{~s}, 1 \mathrm{H}), 7.43-$ 7.49 (m, 3H), 7.95-7.98 (m, 2H) ppm.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \boldsymbol{\delta}=17.4,21.3,117.0,124.9,127.1,128.3,130.3,133.1,138.5$, $151.5,165.2 \mathrm{ppm}$.
IR (neat): $\boldsymbol{v}_{\text {max }}\left(\mathbf{c m}^{\mathbf{- 1}}\right)=2915(\mathrm{w}), 1682(\mathrm{w}), 1633(\mathrm{~s}), 1589(\mathrm{~s}), 1450(\mathrm{~m}), 1367(\mathrm{~m}), 1274$ (s), 1150 (m), 1029 (m), 845 (s$), 763$ (s$), 672$ (s$)$.

MS (70 eV, EI): $\boldsymbol{m} / \boldsymbol{z}(\%)=223\left(\mathrm{M}^{+}, 84\right), 208(100), 105(15), 103$ (6), 77 (11).
HRMS (EI): $\boldsymbol{m} / \boldsymbol{z}$ calcd. for: $\left[\mathbf{C}_{\mathbf{1 6}} \mathbf{H}_{\mathbf{1 7}} \mathbf{N}\right]$ 223.1361, found: 223.1364.
\boldsymbol{N}-(3,5-Dimethyl-4-methoxy)phenyl-1-phenylethylideneamine (12a): Prepared according to TP3 from acetophenone ($10.0 \mathrm{mmol}, 1.20 \mathrm{~g}, 1.16 \mathrm{~mL}$) and 3,5-dimethyl-4-methoxy aniline ($12.0 \mathrm{mmol}, 1.81 \mathrm{~g}, 1.20$ equiv.). Purification by vacuum distillation ($140{ }^{\circ} \mathrm{C}, 0.1 \mathrm{mbar}$) afforded the desired imine ($1.90 \mathrm{~g}, 7.50 \mathrm{mmol}, 75 \%$) as a yellow solid.

MP: $65.5-66.7^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{M H z}, \mathbf{C D C l}_{3}\right): \boldsymbol{\delta}=2.27(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~s}, 6 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 6.48(\mathrm{~s}, 2 \mathrm{H}), 7.43-$ $7.46(\mathrm{~m}, 3 \mathrm{H}), 7.95-7.98(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}-$ NMR ($75 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\boldsymbol{\delta}=16.2,17.5,59.9,119.8,127.3,128.4,128.5,130.6,133.1$, 140.4, 150.2, 164.6 ppm.

IR (neat): $\boldsymbol{v}_{\text {max }}\left(\mathbf{c m}^{-1}\right)=2945(\mathrm{~m}), 2822(\mathrm{w}), 1686(\mathrm{w}), 1629(\mathrm{~s}), 1471(\mathrm{~m}), 1448(\mathrm{~s}), 1278$ (s), 1213 (s), 1007 (s), 874 (m), 766 (s), 692 (s).

MS (70 eV, EI): $\boldsymbol{m} / \boldsymbol{z}(\%)=253\left(\mathrm{M}^{+}, 32\right), 238$ (100), 223 (2), 194 (2), 91 (10).
HRMS (EI): $\boldsymbol{m} / \boldsymbol{z}$ calcd. for: [$\mathbf{C}_{\mathbf{1 7}} \mathbf{H}_{\mathbf{1 9}} \mathbf{N O}$ 253.1467, found: 253.1462.
N-(3,5-Dimethyl-4-methoxy)phenyl-1-(3-methyl)phenylethylideneamine (12b): Prepared according to TP3 from 3-methyl acetophenone ($10.0 \mathrm{mmol}, 1.34 \mathrm{~g}, 1.33 \mathrm{~mL}$) and 3,5-dimethyl-4-methoxy aniline ($12.0 \mathrm{mmol}, 1.81 \mathrm{~g}, 1.20$ equiv.). Purification by flash
chromatography (silica gel; n-pentane:diethyl ether $40: 1\left(2 \% \mathrm{Et}_{3} \mathrm{~N}\right)$) afforded the desired imine ($1.95 \mathrm{~g}, 7.29 \mathrm{mmol}, 73 \%$) as a yellow oil.

${ }^{1} \mathbf{H}-\mathrm{NMR}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C}_{6} \mathbf{D}_{\mathbf{6}}\right): \boldsymbol{\delta}=1.97(\mathrm{~s}, 3 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{~s}, 6 \mathrm{H}), 3.43(\mathrm{~s}, 3 \mathrm{H}), 6.52(\mathrm{~s}$, $2 \mathrm{H}), 7.04-7.07(\mathrm{~m}, 1 \mathrm{H}), 7.16-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.81-7.84(\mathrm{~m}, 1 \mathrm{H}), 7.99(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C-NMR (75 MHz, $\mathbf{C}_{6} \mathbf{D}_{6}$): $\boldsymbol{\delta}=16.3,16.9,21.4,59.4,119.9,124.9,128.2,128.3,131.2$, 131.3, 137.8, 140.2, 148.3, 153.5, 164.3 ppm .

IR (neat): $\boldsymbol{v}_{\text {max }}\left(\mathbf{c m}^{-1}\right)=2922(\mathrm{w}), 1631(\mathrm{~m}), 1477(\mathrm{~m}), 1282(\mathrm{~m}), 1217(\mathrm{~s}), 1010(\mathrm{~m}), 875$ (m), 694 (s).

MS (70 eV, EI): $\boldsymbol{m} / \boldsymbol{z}(\%)=267\left(\mathrm{M}^{+}, 42\right), 252(100), 133$ (2), 118 (4).
HRMS (EI): $\boldsymbol{m} / \boldsymbol{z}$ calcd. for: [$\mathbf{C}_{\mathbf{1 8}} \mathbf{H}_{\mathbf{2 1}} \mathbf{N O}$ 267.1623, found: 267.1628.
\boldsymbol{N}-(3,5-Dimethyl-4-methoxy)phenyl-1-(4-phenyl)phenylethylideneamine (12c): Prepared according to TP3 from 4-phenyl acetophenone ($10.0 \mathrm{mmol}, 1.96 \mathrm{~g}$) and 3,5-dimethyl-4methoxy aniline ($12.0 \mathrm{mmol}, 1.81 \mathrm{~g}, 1.20$ equiv.). Recrystallisation from n-pentane, afforded the desired imine ($2.47 \mathrm{~g}, 7.50 \mathrm{mmol}, 75 \%$) as a yellow solid.

MP: 96.3-97.3 ${ }^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathbf{C}_{\mathbf{6}} \mathbf{D}_{\mathbf{6}}\right): \boldsymbol{\delta}=2.00(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{~s}, 6 \mathrm{H}), 3.45(\mathrm{~s}, 3 \mathrm{H}), 6.55(\mathrm{~s}, 2 \mathrm{H}), 7.18-$ $7.25(\mathrm{~m}, 3 \mathrm{H}), 7.48-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.53-7.55(\mathrm{~m}, 2 \mathrm{H}), 8.09-8.12(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}-$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C}_{6} \mathbf{D}_{6}$): $\boldsymbol{\delta}=16.4,16.8,59.4,120.0,127.2,127.5,127.8,128.1,129.1$, 131.4, 139.0, 140.9, 143.3, 148.2, 153.6, 163.9 ppm.

IR (neat): $\boldsymbol{v}_{\text {max }}\left(\mathbf{c m}^{\mathbf{- 1}}\right)=2929(\mathrm{w}), 1623(\mathrm{~m}), 1595(\mathrm{~m}), 1214(\mathrm{~s}), 1066(\mathrm{~s}), 870(\mathrm{~s}), 765(\mathrm{~s})$, 693 (s).
MS (70 eV, EI): $\boldsymbol{m} / \boldsymbol{z}(\%)=329\left(\mathbf{M}^{+}, 52\right), 314$ (100), 207 (6), 157 (5).
HRMS (EI): $\boldsymbol{m} / \boldsymbol{z}$ calcd. for: [$\mathbf{C}_{\mathbf{2 3}} \mathbf{H}_{\mathbf{2}} \mathbf{N O}$] 329.1780, found: 329.1765 .
N-(3,5-Dimethyl-4-methoxy)phenyl-1-(4-trifluoromethyl)phenylethylideneamine (12d): Prepared according to TP3 from 4-trifluoromethyl acetophenone ($10.0 \mathrm{mmol}, 1.88 \mathrm{~g}$) and 3,5-dimethyl-4-methoxy aniline ($12.0 \mathrm{mmol}, 1.81 \mathrm{~g}, 1.20$ equiv.). Purification by vacuum distillation ($160{ }^{\circ} \mathrm{C}, 0.1 \mathrm{mbar}$) afforded the desired imine ($2.70 \mathrm{~g}, 8.40 \mathrm{mmol}, 84 \%$) as a yellow oil.

${ }^{1} \mathbf{H}-\mathrm{NMR}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right): \boldsymbol{\delta}=2.27(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~s}, 6 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 6.48(\mathrm{~s}, 2 \mathrm{H}), 7.43-$ 7.46 (m, 2H), 7.95-7.98 (m, 2H) ppm.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \boldsymbol{\delta}=16.2,17.4,59.9,119.3,125.2(\mathrm{q}, J=3.6 \mathrm{~Hz}), 127.4,127.5$ (q, $J=283.3 \mathrm{~Hz}), 128.6,131.3,132.0(\mathrm{q}, J=16.8 \mathrm{~Hz}), 146.7,152.3,164.0 \mathrm{ppm}$.
IR (neat): $v_{\text {max }}\left(\mathbf{c m}^{-1}\right)=2935(\mathrm{br}, \mathrm{w}), 1633.2(\mathrm{~m}), 1478(\mathrm{~m}), 1326(\mathrm{~s}), 1220(\mathrm{~s}), 1124(\mathrm{~s})$, 1111 (s), 1011 (s), 843 (s), 605 (m).
MS (70 eV, EI): $\boldsymbol{m} / \boldsymbol{z}(\%)=321\left(\mathrm{M}^{+}, 48\right), 306$ (100), 302 (2), 171 (2), 91 (5).
HRMS (EI): $\boldsymbol{m} / \boldsymbol{z}$ calcd. for: $\left[\mathbf{C}_{\mathbf{1 8}} \mathbf{H}_{\mathbf{1 8}} \mathbf{N F}_{\mathbf{3}} \mathbf{O}\right]$ 321.1340, found: 321.1329.
N-(3,5-Dimethyl-4-methoxy)phenyl-1-(4-chloro)phenylethylideneamine (12e): Prepared according to TP3 from 4-chloro acetophenone ($10.0 \mathrm{mmol}, 1.54 \mathrm{~g}, 1.29 \mathrm{~mL}$) and 3,5-dimethyl-4-methoxy aniline ($12.0 \mathrm{mmol}, 1.81 \mathrm{~g}, 1.20$ equiv.). Purification by flash chromatography (silica gel; n-pentane:diethyl ether $40: 1\left(2 \% \mathrm{Et}_{3} \mathrm{~N}\right)$) afforded the desired imine ($2.16 \mathrm{~g}, 7.51 \mathrm{mmol}, 75 \%$) as a yellow oil.

${ }^{1} \mathbf{H}-\mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \boldsymbol{\delta}=2.20(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{~s}, 6 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 6.40(\mathrm{~s}, 2 \mathrm{H}), 7.37-$ 7.44 (m, 2H), 7.87-7.90 (m, 2H) ppm.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \boldsymbol{\delta}=16.1,17.2,59.8,119.4,128.4,131.2,136.4,138.0,146.9$, 153.1, 164.0 ppm .

IR (neat): $\boldsymbol{v}_{\text {max }}\left(\mathbf{c m}^{-1}\right)=2936(\mathrm{br}, \mathrm{w}), 1631(\mathrm{~m}), 1589(\mathrm{~m}), 1477(\mathrm{~m}), 1398(\mathrm{w}), 1272(\mathrm{w})$, 1219 (s), 1091 (s), 1011 (s), 830 (s), 756 (m).
MS ($\mathbf{7 0} \mathbf{e V}, \mathbf{E I}$): $\boldsymbol{m} / \boldsymbol{z}(\%)=287\left(\mathrm{M}^{+}, 38\right), 274(30), 272(100), 91$ (5).
HRMS (EI): $\boldsymbol{m} / \boldsymbol{z}$ calcd. for: $\left[\mathbf{C}_{\mathbf{1 7}} \mathbf{H}_{\mathbf{1 8}} \mathbf{N}^{35} \mathbf{C l O}\right.$] 287.1077, found: 287.1078.
N-(3,5-Dimethyl-4-methoxy)phenyl-1-(4-carbomethoxy)phenylethylideneamine (12f): Prepared according to TP3 from methyl 4-acetyl-benzoate ($10.0 \mathrm{mmol}, 1.78 \mathrm{~g}$) and 3,5-dimethyl-4-methoxy aniline ($12.0 \mathrm{mmol}, 1.81 \mathrm{~g}, 1.20$ equiv.). Purification by flash chromatography (silica gel; n-pentane:diethyl ether $40: 1\left(2 \% \mathrm{Et}_{3} \mathrm{~N}\right)$) provided the desired imine ($2.33 \mathrm{~g}, 7.50 \mathrm{mmol}, 75 \%$) as a bright yellow solid.

MP: $90.0-92.4^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}-$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C}_{6} \mathbf{D}_{6}$): $\boldsymbol{\delta}=1.84(\mathrm{~s}, 3 \mathrm{H}), 2.20(\mathrm{~s}, 6 \mathrm{H}), 3.43(\mathrm{~s}, 3 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H}), 6.46(\mathrm{~s}$, $2 \mathrm{H})$, 7.95-7.97 (m, 2H), 8.19-8.21 (m, 2H) ppm.
${ }^{13} \mathbf{C}-$ NMR ($75 \mathrm{MHz}, \mathbf{C}_{6} \mathbf{D}_{\mathbf{6}}$): $\boldsymbol{\delta}=16.3,16.8,51.7,59.4,119.8,127.5,129.8,131.4,132.1$, 143.8, 147.7, 153.8, 163.6, 166.4 ppm.

IR (neat): $\boldsymbol{v}_{\text {max }}\left(\mathbf{c m}^{-1}\right)=2955(\mathrm{w}), 1718(\mathrm{~s}), 1627(\mathrm{~m}), 1437(\mathrm{~m}), 1272(\mathrm{~s}), 1112(\mathrm{~s}), 1007(\mathrm{~s})$, 768 (s), 696 (s) ppm.
MS (70 eV, EI): $\boldsymbol{m} / \boldsymbol{z}(\%)=311\left(\mathrm{M}^{+}, 56\right), 296(100), 132(11)$.
HRMS (EI): $\boldsymbol{m} / \boldsymbol{z}$ calcd. for: $\left[\mathbf{C}_{\mathbf{1 9}} \mathbf{H}_{\mathbf{2 1}} \mathbf{N O}_{\mathbf{3}}\right]$ 311.1521, found: 311.1515.
N-(3,5-Dimethyl-4-methoxy)phenyl-1-phenyl propylidene amine (12g): Prepared according to TP3 from 3-fluoro acetophenone ($10.0 \mathrm{mmol}, 1.38 \mathrm{~g}, 1.23 \mathrm{~mL}$) and 3,5-dimethyl-4-methoxy aniline ($12.0 \mathrm{mmol}, 1.81 \mathrm{~g}, 1.20$ equiv.). Purification by flash chromatography (silica gel; n-pentane:diethyl ether $40: 1\left(2 \% \mathrm{Et}_{3} \mathrm{~N}\right)$) provided the desired imine ($2.06 \mathrm{~g}, 7.59 \mathrm{mmol}, 76 \%$) as a yellow oil.

${ }^{1} \mathbf{H}-\mathrm{NMR}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C}_{\mathbf{6}} \mathbf{D}_{\mathbf{6}}\right): \boldsymbol{\delta}=1.81(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{~s}, 6 \mathrm{H}), 3.43(\mathrm{~s}, 3 \mathrm{H}), 6.44(\mathrm{~s}, 2 \mathrm{H}), 6.84-$ $7.00(\mathrm{~m}, 2 \mathrm{H}), 7.62-7.65(\mathrm{~m}, 1 \mathrm{H}), 7.79-7.84(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}-$ NMR ($\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C}_{6} \mathbf{D}_{\mathbf{6}}$): $\boldsymbol{\delta}=16.3,16.7,59.4,114.4(\mathrm{~d}, J=23.0 \mathrm{~Hz}), 117.1(\mathrm{~d}, J=22.0$ $\mathrm{Hz}), 119.8,123.1(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 129.9(\mathrm{~d}, J=7.7 \mathrm{~Hz}), 131.4,142.5(\mathrm{~d}, J=7.5 \mathrm{~Hz}), 147.6$, $153.7,163.0(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 163.4(\mathrm{~d}, J=245.0 \mathrm{~Hz}) \mathrm{ppm}$.
IR (neat): $v_{\text {max }}\left(\mathbf{c m}^{-1}\right)=2937(\mathrm{br}, \mathrm{w}), 1691(\mathrm{w}), 1633(\mathrm{~m}), 1585(\mathrm{~m}), 1481(\mathrm{~m}), 1440(\mathrm{~s})$, 1266 (s), 1217 (s), 1010 (m), 867 (s), 784 (s), 686 (s).
MS (70 eV, EI): $\boldsymbol{m} / \boldsymbol{z}(\%)=271\left(\mathrm{M}^{+}, 44\right), 256(100), 120(5)$.
HRMS (EI): $\boldsymbol{m} / \boldsymbol{z}$ calcd. for: [$\mathbf{C}_{\mathbf{1 7}} \mathbf{H}_{\mathbf{1 8}} \mathbf{N F O}$ 271.1372, found:271.1363.

N-(3,5-Dimethyl-4-methoxy)phenyl-1-(2-methylphenyl) ethylidene amine (12h):

Prepared according to TP3 from 2-methyl acetophenone ($10.0 \mathrm{mmol}, 1.34 \mathrm{~g}, 1.30 \mathrm{~mL}$) and 3,5-dimethyl-4-methoxy aniline ($12.0 \mathrm{mmol}, 1.81 \mathrm{~g}, 1.20$ equiv.). Purification by flash chromatography (silica gel; n-pentane:diethyl ether $40: 1\left(2 \% \mathrm{Et}_{3} \mathrm{~N}\right)$) afforded the desired imine ($1.98 \mathrm{~g}, 7.40 \mathrm{mmol}, 74 \%$) as a yellow oil.

${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \boldsymbol{\delta}=1.92(\mathrm{~s}, 3 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{~s}, 6 \mathrm{H}), 3.44(\mathrm{~s}, 3 \mathrm{H}), 6.55$ $(\mathrm{s}, 2 \mathrm{H}), 6.86-6.87(\mathrm{~m}, 1 \mathrm{H}), 7.10-7.12(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.33(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}-$ NMR ($75 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\boldsymbol{\delta}=16.3,20.5,29.2,59.4,119.5,125.8,127.8,128.6,129.6$, $131.5,135.9,140.1,148.0,153.7,168.1 \mathrm{ppm}$.
IR (neat): $\boldsymbol{v}_{\text {max }}\left(\mathrm{cm}^{-1}\right)=2925(\mathrm{w}), 1641(\mathrm{~m}), 1479(\mathrm{~s}), 1217(\mathrm{~s}), 1009(\mathrm{~s}), 871(\mathrm{~m}), 744(\mathrm{~s})$.
MS (70 eV, EI): $\boldsymbol{m} / \boldsymbol{z}(\boldsymbol{\%})=268\left([\mathrm{M}+\mathrm{H}]^{+}, 12\right), 267\left(\mathrm{M}^{+}, 88\right), 252(100), 135(15), 130(31)$, 91 (56).
HRMS (EI): $\boldsymbol{m} / \boldsymbol{z}$ calcd. for: $\left[\mathbf{C}_{\mathbf{1 8}} \mathbf{H}_{\mathbf{2 1}} \mathbf{N O}\right]$ 267.1623, found: 267.1614.
N-(3,5-Dimethyl-4-methoxy)phenyl-1-(2-naphthyl) ethylidene amine (12i): Prepared according to TP3 from 2-acetyl naphthalene ($10.0 \mathrm{mmol}, 1.70 \mathrm{~g}$) and 3,5-dimethyl-4-methoxy aniline ($12.0 \mathrm{mmol}, 1.81 \mathrm{~g}, 1.20$ equiv.). Purification by flash chromatography (silica gel; n pentane:diethyl ether 80:1 ($2 \% \mathrm{Et}_{3} \mathrm{~N}$)) afforded the desired imine ($1.94 \mathrm{~g}, 6.39 \mathrm{mmol}, 64 \%$) as a yellow oil.

${ }^{1} \mathbf{H}-\mathrm{NMR}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \boldsymbol{\delta}=2.05(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{~s}, 6 \mathrm{H}), 3.45(\mathrm{~s}, 3 \mathrm{H}), 6.56(\mathrm{~s}, 2 \mathrm{H}), 7.27-$ $7.30(\mathrm{~m}, 2 \mathrm{H}), 7.62-7.74(\mathrm{~m}, 3 \mathrm{H}), 8.22-8.23(\mathrm{~m}, 1 \mathrm{H}), 8.56(\mathrm{dd}, J=1.8 \mathrm{~Hz}, 8.8 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}-$ NMR ($\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\boldsymbol{\delta}=16.4,16.7,59.4,119.9,124.9,126.4,127.2,128.0,128.1$, $128.2,129.1,131.4,133.5,134.9,137.6,148.3,153.6,164.1 \mathrm{ppm}$.
IR (neat): $\boldsymbol{v}_{\text {max }}\left(\mathbf{c m}^{-1}\right)=2912(\mathrm{w}), 1641(\mathrm{~m}), 1489(\mathrm{~s}), 1207(\mathrm{~s}), 1109(\mathrm{~s}), 789(\mathrm{~m}), 690(\mathrm{~s})$.
MS (70 eV, EI): $\boldsymbol{m} / \boldsymbol{z}(\%)=304\left([\mathrm{M}+\mathrm{H}]^{+}, 11\right), 303\left(\mathrm{M}^{+}, 48\right), 288(100), 151$ (6).
HRMS (EI): $\boldsymbol{m} / \boldsymbol{z}$ calcd. for: [$\mathbf{C}_{\mathbf{2 1}} \mathbf{H}_{\mathbf{2 1}} \mathbf{N O}$] 303.1623, found: 303.1622.
N-(3,5-Dimethyl-4-methoxy)phenyl-1-phenyl propylidene amine (12j): Prepared according to TP3 from propiophenone ($10.0 \mathrm{mmol}, 1.34 \mathrm{~g}, 1.34 \mathrm{~mL}$) and 3,5-dimethyl-4methoxy aniline ($12.0 \mathrm{mmol}, 1.81 \mathrm{~g}, 1.20$ equiv.). Purification by flash chromatography (silica gel; n-pentane:diethyl ether $80: 1\left(2 \% \mathrm{Et}_{3} \mathrm{~N}\right)$) afforded the desired imine in (2.09 g , $7.81 \mathrm{mmol}, 78 \%$) as a yellow oil.

${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathbf{C}_{\mathbf{6}} \mathbf{D}_{\mathbf{6}}\right): \boldsymbol{\delta}=0.89(\mathrm{t}, J=7.7 \mathrm{~Hz}, 3 \mathrm{H})$), $2.23(\mathrm{~s}, 6 \mathrm{H}), 2.52(\mathrm{q}, J=7.7 \mathrm{~Hz}$, $2 \mathrm{H}), 3.43(\mathrm{~s}, 3 \mathrm{H}), 6.53(\mathrm{~s}, 2 \mathrm{H}), 7.19-7.24(\mathrm{~m}, 3 \mathrm{H}), 8.00-8.02(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C-NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C}_{6} \mathbf{D}_{6}$): $\boldsymbol{\delta}=13.1,16.4,23.0,59.4,119.4,128.0,128.6,130.2,131.4$, 138.6, 148.2, 153.4, 169.4 ppm .

IR (neat): $\boldsymbol{v}_{\text {max }}\left(\mathbf{c m}^{-1}\right)=2980(\mathrm{w}), 1705(\mathrm{~m}), 1600(\mathrm{~s}), 1220(\mathrm{~m}), 1110(\mathrm{~m}), 795(\mathrm{~m}), 699(\mathrm{~m})$. MS (70 eV, EI): $\boldsymbol{m} / \boldsymbol{z}(\%)=267\left(\mathrm{M}^{+}, 75\right), 252$ (100), 238 (99), 111 (20), 91 (29).
HRMS (EI): $\boldsymbol{m} / \boldsymbol{z}$ calcd. for: [$\mathbf{C}_{\mathbf{1 8}} \mathbf{H}_{\mathbf{2}} \mathbf{N O}$] 267.1623, found: 267.1629.
\boldsymbol{N}-(3,5-Dimethyl-4-methoxy)phenyl-1-phenyl hexylidene amine (12k): Prepared according to TP3 from n-hexanophenone ($10.0 \mathrm{mmol}, 1.76 \mathrm{~g}$) and 3,5-dimethyl-4-methoxy aniline (12.0 $\mathrm{mmol}, 1.81 \mathrm{~g}, 1.20$ equiv.). Purification by flash chromatography (silica gel; n-pentane:diethyl ether $100: 1\left(2 \% \mathrm{Et}_{3} \mathrm{~N}\right)$), afforded the desired imine ($2.23 \mathrm{~g}, 7.21 \mathrm{mmol}, 72 \%$) as a yellow oil.

${ }^{1} \mathbf{H}-$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C}_{\mathbf{6}} \mathbf{D}_{\mathbf{6}}$) $\boldsymbol{\delta}=0.85(\mathrm{t}, J=7.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.17-1.20(\mathrm{~m}, 4 \mathrm{H}), 1.57-1.59(\mathrm{~m}$, $2 \mathrm{H}), 2.17(\mathrm{~s}, 6 \mathrm{H}), 2.38-2.42(\mathrm{~m}, 2 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 6.66(\mathrm{~s}, 2 \mathrm{H}), 7.03-7.07(\mathrm{~m}, 1 \mathrm{H}), 7.15-7.19$ (m, 2H), 7.25-7.27 (m, 2H) ppm.
${ }^{13} \mathbf{C}-$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C}_{6} \mathbf{D}_{\mathbf{6}}$): $\boldsymbol{\delta}=15.3,16.7,22.9,28.6,32.1,39.3,59.5,116.2,126.7,127.2$, $128.7,131.1,144.0,149.5,153.6,169.5 \mathrm{ppm}$.
IR (neat): $v_{\text {max }}\left(\mathbf{c m}^{-1}\right)=2990(\mathrm{w}), 1745(\mathrm{~m}), 1600(\mathrm{~s}), 1225(\mathrm{~m}), 1010(\mathrm{~m}), 699(\mathrm{~m})$.
MS (70 eV, EI): $\boldsymbol{m} / \boldsymbol{z}(\%)=309\left(\mathrm{M}^{+}, 40\right), 294$ (18), 253 (99), 238 (100), 151 (30).
HRMS (EI): $\boldsymbol{m} / \boldsymbol{z}$ calcd. for: [$\mathbf{C}_{\mathbf{2}} \mathbf{H}_{\mathbf{2}} \mathbf{N O}$] 309.2093, found: 309.2094.
5-[(N-(3,5-Dimethyl-4-methoxy)phenyl)imino]-1,5-diphenylpentan-1-one (121): Prepared according to TP3 from 1,5-diphenyl-1,5-pentanedione ($10.0 \mathrm{mmol}, 2.52 \mathrm{~g}$) and 3,5-dimethyl-4-methoxy aniline ($12.0 \mathrm{mmol}, 1.81 \mathrm{~g}, 1.20$ equiv.). Purification by flash chromatography (silica gel; n-pentane:diethyl ether $4: 1\left(2 \% \mathrm{Et}_{3} \mathrm{~N}\right)$), provided the desired imine ($2.70 \mathrm{~g}, 7.0$ $\mathrm{mmol}, 70 \%$) as a dark brown oil.

${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathbf{C}_{6} \mathbf{D}_{\mathbf{6}}\right): \boldsymbol{\delta}=1.53-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.82(\mathrm{~m}, 2 \mathrm{H}), 2.11(\mathrm{~s}, 6 \mathrm{H}), 3.04-$ 3.09 (m, 2H), $3.32(\mathrm{~s}, 3 \mathrm{H}), 6.82(\mathrm{~s}, 2 \mathrm{H}), 6.99-7.22(\mathrm{~m}, 8 \mathrm{H}), 7.74-7.76$ (m, 2H) ppm.
${ }^{13} \mathbf{C}-$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C}_{6} \mathbf{D}_{\mathbf{6}}$): $\boldsymbol{\delta}=16.5,23.8,34.6,38.6,59.5,114.0,127.0,128.2,128.8$, 130.7, 131.1, 132.7, 134.4, 137.5, 144.0, 149.5, 153.8, 161.7, 198.7 ppm .

IR (neat): $\boldsymbol{v}_{\text {max }}\left(\mathbf{c m}^{-1}\right)=3360(\mathrm{~m}), 2949(\mathrm{w}), 1700(\mathrm{~s}), 1680(\mathrm{~s}), 1635(\mathrm{~m}), 1189(\mathrm{~s}), 1100(\mathrm{~s})$, 760 (s), 685 (s).

MS (70 eV, EI): $\boldsymbol{m} / \boldsymbol{z}(\%)=385\left(\mathrm{M}^{+}, 42\right), 280(45), 266$ (80), 253 (88), 238 (100).
HRMS (EI): $\boldsymbol{m} / \boldsymbol{z}$ calcd. for: $\left[\mathbf{C}_{\mathbf{2 6}} \mathbf{H}_{\mathbf{2 7}} \mathbf{N} \mathbf{O}_{\mathbf{2}}\right]$ 385.2042, found: 385.2038.
Methyl 4-[(N-(3,5-dimethyl-4-methoxyphenyl))imino]-4-phenylbutanoate (12m): Prepared according to TP3 from methyl 3-benzoylpropionate ($10.0 \mathrm{mmol}, 1.92 \mathrm{~g}$) and 3,5-dimethyl-4-methoxy aniline ($12.0 \mathrm{mmol}, 1.81 \mathrm{~g}, 1.20$ equiv.). Purification by flash chromatography (silica gel; n-pentane:diethyl ether $5: 1\left(2 \% \mathrm{Et}_{3} \mathrm{~N}\right)$), provided the desired imine ($2.24 \mathrm{~g}, 6.89 \mathrm{mmol}, 69 \%$) as a dark brown oil.

${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathbf{C}_{\mathbf{6}} \mathbf{D}_{\mathbf{6}}\right): \boldsymbol{\delta}=2.20(\mathrm{~s}, 6 \mathrm{H}), 2.29-2.31(\mathrm{~m}, 2 \mathrm{H}), 2.52(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H})$, $3.34(\mathrm{~s}, 3 \mathrm{H}), 3.39(\mathrm{~s}, 3 \mathrm{H}), 6.50(\mathrm{~s}, 2 \mathrm{H}), 7.00-7.10(\mathrm{~m}, 3 \mathrm{H}), 7.17-7.19$ (m, 2H) ppm.
${ }^{13} \mathbf{C}-$ NMR $\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C}_{6} \mathbf{D}_{\mathbf{6}}\right): \boldsymbol{\delta}=16.3,32.3,33.4,51.2,59.4,119.3,127.9,128.2,128.7$, $130.4,138.3,147.7,153.6,166.8,172.8 \mathrm{ppm}$.
IR (neat): $\boldsymbol{v}_{\text {max }}\left(\mathbf{c m}^{-1}\right)=2950(\mathrm{w}), 1735(\mathrm{~s}), 1686(\mathrm{~s}), 1219(\mathrm{~s}), 1165(\mathrm{~s}), 1009(\mathrm{~m}), 758(\mathrm{~s})$, 690 (s).
MS (70 eV, EI): $\boldsymbol{m} / \boldsymbol{z}(\%)=325\left(\mathrm{M}^{+}, 99\right), 310(43), 266(28), 250(45), 238$ (100).
HRMS (EI): $\boldsymbol{m} / \boldsymbol{z}$ calcd. for: [$\mathbf{C}_{\mathbf{2 0}} \mathbf{H}_{\mathbf{2 3}} \mathbf{N O}$] 325.1678, found: 325.1662.
Methyl 5-[(N-(3,5-dimethyl-4-methoxyphenyl))imino]-5-phenylpentanoate (12n): Prepared according to TP3 from methyl 4-benzoylbutanoate ${ }^{[6]}(10.0 \mathrm{mmol}, 2.06 \mathrm{~g})$ and 3,5-dimethyl-4-methoxy aniline ($12.0 \mathrm{mmol}, 1.81 \mathrm{~g}, 1.20$ equiv.). Purification by flash chromatography (silica gel; n-pentane:diethyl ether 5:1 ($2 \% \mathrm{Et}_{3} \mathrm{~N}$)), provided the desired imine ($2.37 \mathrm{~g}, 6.99 \mathrm{mmol}, 70 \%$) as a dark brown oil.

${ }^{1} \mathbf{H}-$ NMR $\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C}_{\mathbf{6}} \mathbf{D}_{\mathbf{6}}\right): \boldsymbol{\delta}=1.94-2.00(\mathrm{~m}, 2 \mathrm{H}), 2.13-2.17(\mathrm{~m}, 2 \mathrm{H}), 2.23(\mathrm{~s}, 6 \mathrm{H}), 2.55(\mathrm{t}, J$ $=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.28(\mathrm{~s}, 3 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 6.90(\mathrm{~s}, 2 \mathrm{H}), 7.03-7.13(\mathrm{~m}, 3 \mathrm{H}), 7.77-7.80(\mathrm{~m}, 2 \mathrm{H})$ ppm.
${ }^{13} \mathbf{C}-$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C}_{6} \mathbf{D}_{\mathbf{6}}$): $\boldsymbol{\delta}=18.6,19.5,33.0,33.4,50.9,59.7,120.2,127.8,128.5$, 130.0, 132.7, 137.4, 145.9, 153.0, 167.0, 173.1 ppm .

IR (neat): $\boldsymbol{v}_{\text {max }}\left(\mathrm{cm}^{-1}\right)=2945(\mathrm{w}), 1700(\mathrm{~s}), 1686(\mathrm{~s}), 1189(\mathrm{~s}), 1165(\mathrm{~s}), 798(\mathrm{~s}), 650(\mathrm{~s})$.
MS (70 eV, EI): $\boldsymbol{m} / \boldsymbol{z}(\%)=339\left(\mathrm{M}^{+}, 60\right), 324$ (25), 308 (27), 266 (65), 253 (55), 238 (100).
HRMS (EI): $\boldsymbol{m} / \boldsymbol{z}$ calcd. for: $\left[\mathbf{C}_{\mathbf{2}} \mathbf{H}_{\mathbf{2 5}} \mathbf{N O}_{\mathbf{3}}\right]$ 339.1834, found: 339.1845.

Typical procedure for Ir-catalyzed hydrogenation of the imines: A 25 mL Schlenkflask under an argon atmosphere was loaded with Ir-complex (0.005 mmol) and imine (0.5 mmol) in toluene: $\mathrm{MeOH}(4: 1)$. The mixture was stirred at room temperature for $10-15 \mathrm{~min}$. Then the solution was transferred under argon to an autoclave which was equipped with a glass tube and a stirring bar. The autoclave was then purged three times with hydrogen (5 bar) and finally pressurized to 10 bar . The reaction mixture was stirred for the indicated period of time until full conversion was achieved. Then the hydrogen gas was released, evaporated the solvents and filtered through a short pad of silica gel
Conversion was checked by ${ }^{1} \mathrm{H}$-NMR/GC and enantioselectivity was determined using either Chiral GC or Chiral HPLC.
(\boldsymbol{R})- N-phenyl-1-phenyl ethyl amine (11a) ${ }^{[4,7]}$: obtained as a yellow oil.

${ }^{1} \mathbf{H}-\mathrm{NMR}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \boldsymbol{\delta}=1.50(\mathrm{~d}, J=7.1 \mathrm{HZ}, 3 \mathrm{H}), 3.95(\mathrm{br}, \mathrm{NH}), 4.48(\mathrm{q}, J=6.9$ $\mathrm{Hz}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.65(\mathrm{t}, J=7.4 \mathrm{HZ}, 1 \mathrm{H}), 7.06(\mathrm{dd}, J=8.9 \mathrm{~Hz}, 7.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.22(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{t}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm}$.
The enantiomer ratio was determined by Chiral GC DEX-CB Column ($100{ }^{\circ} \mathrm{C}(5 \mathrm{~min}$), 5 ${ }^{\circ} \mathrm{C} / \mathrm{min} 160^{\circ} \mathrm{C}(50 \mathrm{~min})$);
With catalyst 8a: $\mathrm{t}_{\mathrm{r}}=20.9 \mathrm{~min}$ [minor], $\mathrm{t}_{\mathrm{r}}=21.1 \mathrm{~min}$ [major]; 84% ee .
$[\alpha]_{\mathrm{D}}{ }^{20}=-3.9\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$
With catalyst 9a: $\mathrm{t}_{\mathrm{r}}=20.9 \mathrm{~min}$ [minor], $\mathrm{t}_{\mathrm{r}}=21.1 \mathrm{~min}$ [major]; $84 \% \mathrm{ee}$. $[\alpha]_{\mathrm{D}}{ }^{20}=-3.9\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$
(R)-N-(4-methoxy)phenyl-1-phenyl ethylidene amine (11b) ${ }^{[7]}$: obtained as a yellow oil.

${ }^{1} \mathbf{H}-\mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C}_{6} \mathbf{D}_{\mathbf{6}}\right): \boldsymbol{\delta}=1.13(\mathrm{~d}, J=6.85 \mathrm{~Hz}, 3 \mathrm{H}), 3.31(\mathrm{br}, 1 \mathrm{H},-\mathrm{NH}), 3.54(\mathrm{~s}, 3 \mathrm{H})$, $4.17(\mathrm{q}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.32-6.73(\mathrm{~m}, 2 \mathrm{H}), 6.64-6.69(\mathrm{~m}, 2 \mathrm{H}), 7.00-7.05(\mathrm{~m}, 1 \mathrm{H}), 7.10-7.21$ (m, 4H) ppm.
The enantiomer ratio was determined by HPLC using Chiralcel OD-H column (flow rate 0.5 $\mathrm{ml} / \mathrm{min}$, heptane/iPrOH: $90 / 10, \lambda=215 \mathrm{~nm}, 25^{\circ} \mathrm{C}$);
With catalyst 8a: $\mathrm{t}_{\mathrm{r}}=14.9 \mathrm{~min}$ [major], $\mathrm{t}_{\mathrm{r}}=16.2 \mathrm{~min}$ [minor]; $88 \% \mathrm{ee}$.
$[\alpha]_{\mathrm{D}}{ }^{20}=+1.3\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$
With catalyst 9a: $\mathrm{t}_{\mathrm{r}}=14.9 \mathrm{~min}$ [major], $\mathrm{t}_{\mathrm{r}}=16.2 \mathrm{~min}$ [minor]; $88 \% \mathrm{ee}$.
$[\alpha]_{\mathbf{D}}{ }^{20}=+1.3\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$
(R)- N-(3,5,-Dimethyl)phenyl-1-phenyl ethyl amine (11c) ${ }^{[8]}$: Obtained as a pale yellow oil;

${ }^{1} \mathbf{H}$-NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C}_{6} \mathbf{D}_{\mathbf{6}}$): $\boldsymbol{\delta}=1.21(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.13(\mathrm{~s}, 6 \mathrm{H}), 3.71(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH})$, $4.32(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{~s}, 2 \mathrm{H}), 6.37(\mathrm{~s}, 1 \mathrm{H}), 7.06-7.08(\mathrm{~m}, 1 \mathrm{H}), 7.13-7.18(\mathrm{~m}, 2 \mathrm{H})$, 7.23-7.25 (m, 2H) ppm.
${ }^{13} \mathbf{C}-$ NMR ($75 \mathrm{MHz}, \mathbf{C}_{6} \mathbf{D}_{\mathbf{6}}$): $\boldsymbol{\delta}=21.6,24.8,53.5,112.0,120.0,126.1,127.0,128.8,138.5$, $145.8,147.6 \mathrm{ppm}$.
IR (neat): $\boldsymbol{v}_{\text {max }}\left(\mathbf{c m}^{-1}\right)=3406(\mathrm{br}, \mathrm{w}), 2914(\mathrm{w}), 1597(\mathrm{~s}), 1512(\mathrm{~m}), 1452(\mathrm{~m}), 1336(\mathrm{~m})$, 1184 (m), 822 (m), 696 (m).
MS (70 eV, EI): $\boldsymbol{m} / \boldsymbol{z}(\%)=225\left(\mathrm{M}^{+}, 39\right), 210(100), 121$ (34), 120 (10), 105 (42).
HRMS (EI): $\boldsymbol{m} / \boldsymbol{z}$ calcd. for: [$\mathbf{C}_{\mathbf{1 6}} \mathbf{H}_{\mathbf{1 9}} \mathbf{N}$] 225.1517, found: 225.1511.
The enantiomer ratio was determined by HPLC using Chiralcel OD-H column (flow rate 0.5 $\mathrm{mL} / \mathrm{min}$, heptane $/ \mathrm{iPrOH}: 90 / 10, \lambda=215 \mathrm{~nm}, 25^{\circ} \mathrm{C}$);

With catalyst 8a: $\mathrm{t}_{\mathrm{r}}=9.7 \mathrm{~min}\left[\right.$ minor], $\mathrm{t}_{\mathrm{r}}=11.0 \mathrm{~min}$ [major]; $94 \% \mathrm{ee}$.
$[\alpha]_{\mathrm{D}}{ }^{20}=-12.8\left(\mathrm{c}=0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
With catalyst 9a: $\mathrm{t}_{\mathrm{r}}=9.5 \mathrm{~min}$ [minor], $\mathrm{t}_{\mathrm{r}}=10.7 \mathrm{~min}$ [major]; $93 \% e e$.
$[\alpha]_{\mathrm{D}}{ }^{20}=-11.3\left(\mathrm{c}=0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
(R)-(-)- N-(3,5-Dimethyl-4-methoxy)phenyl-1-phenyl ethyl amine (13a): Obtained as a pale yellow solid;

MP: $86.3^{\circ} \mathrm{C}$
${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \boldsymbol{\delta}=1.49(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 2.15(\mathrm{~s}, 6 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 4.41$ $(\mathrm{q}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{~s}, 2 \mathrm{H}), 7.22-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.29-7.39(\mathrm{~m}, 4 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}-$ NMR ($75 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\boldsymbol{\delta}=16.2,24.7,54.1,59.9,113.6,125.9,126.8,128.6,131.2$, 143.0, 145.2, 149.0 ppm .

IR (neat): $\boldsymbol{v}_{\text {max }}\left(\mathbf{c m}^{-1}\right)=3381(\mathrm{~m}), 2924(\mathrm{br}, \mathrm{m}), 1609(\mathrm{~m}), 1487(\mathrm{~s}), 1190(\mathrm{~s}), 1006(\mathrm{~s}), 830$ (m), 701 (m).

MS (70 eV, EI): $\boldsymbol{m} / \boldsymbol{z}(\%)=255\left(\mathbf{M}^{+}, 100\right), 240(87), 136(77), 105(98)$.
HRMS (EI): $\boldsymbol{m} / \boldsymbol{z}$ calcd. for: [$\mathbf{C}_{\mathbf{1 7}} \mathbf{H}_{\mathbf{2}} \mathbf{N O}$] 255.1623, found: 255.1627.
The enantiomer ratio was determined by HPLC using Chiralcel OD-H column (flow rate 1.0 $\mathrm{mL} / \mathrm{min}$, heptane $/ \mathrm{PrOH}: 80 / 20, \lambda=215 \mathrm{~nm}, 25^{\circ} \mathrm{C}$);

With catalyst 8a: $\mathrm{t}_{\mathrm{r}}=6.4 \mathrm{~min}$ [minor], $\mathrm{t}_{\mathrm{r}}=7.6 \mathrm{~min}$ [major]; $94 \% ~ e e$.
$[\alpha]_{D}{ }^{20}=-6.3\left(c=0.6, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$

With catalyst 9a: $\mathrm{t}_{\mathrm{r}}=10.1 \mathrm{~min}$ [minor], $\mathrm{t}_{\mathrm{r}}=11.7 \mathrm{~min}$ [major]; $92 \% \mathrm{ee}$.
$[\alpha]_{D}{ }^{20}=-5.7\left(c=0.6, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
(R)-(+)-N-(3,5-Dimethyl-4-methoxy)phenyl-1-(3-methyl)phenyl ethyl amine (13b): Obtained as a viscous yellow oil;

${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathbf{C}_{\mathbf{6}} \mathbf{D}_{\mathbf{6}}\right): \boldsymbol{\delta}=1.23(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 2.17(\mathrm{~s}, 6 \mathrm{H}), 3.37(\mathrm{~s}$, $3 \mathrm{H}), 3.42(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}), 4.29(\mathrm{q}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{~s}, 2 \mathrm{H}), 6.88-6.90(\mathrm{~m}, 1 \mathrm{H}), 7.10-7.12$ (m, 3H) ppm.
${ }^{13} \mathbf{C}$-NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C}_{6} \mathbf{D}_{\mathbf{6}}$): $\boldsymbol{\delta}=16.5,21.5,25.1,53.9,59.5,114.0,123.3,126.7,127.8$, 128.8, 131.1, 138.2, 143.8, 146.2, 149.5 ppm .

IR (neat): $\boldsymbol{v}_{\text {max }}\left(\mathbf{c m}^{-1}\right)=3396(\mathrm{br}, \mathrm{w}), 2923(\mathrm{w}), 1607(\mathrm{~s}), 1486(\mathrm{~s}), 1222(\mathrm{~s}), 1189(\mathrm{~m}), 1009$ (m), 835 (m), 784 (m).

MS (70 eV, EI): $\boldsymbol{m} / \boldsymbol{z}(\%)=271\left([\mathrm{M}+2 \mathrm{H}]^{+}, 9\right), 270\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right), 213(5)$.
HRMS (EI): $\boldsymbol{m} / \boldsymbol{z}$ calcd. for: $\left[\mathbf{C}_{\mathbf{1 8}} \mathbf{H}_{\mathbf{2 4}} \mathbf{N O}\right] ;[\mathbf{M}+\mathbf{H}]^{+}: 270.1858$, found: 270.1846
The enantiomer ratio was determined by HPLC using Chiralcel AD column (flow rate 0.5 $\mathrm{mL} / \mathrm{min}$, heptane $/ \mathrm{PrOH}: 90 / 10, \lambda=215 \mathrm{~nm}, 25^{\circ} \mathrm{C}$);

With catalyst 8a: $\mathrm{t}_{\mathrm{r}}=10.2 \mathrm{~min}$ [major], $\mathrm{t}_{\mathrm{r}}=11.8 \mathrm{~min}$ [minor]; $93 \% \mathrm{ee}$.
$[\alpha]_{D}{ }^{20}=+4\left(\mathrm{c}=0.6, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
With catalyst 9a: $\mathrm{t}_{\mathrm{r}}=10.4 \mathrm{~min}$ [major], $\mathrm{t}_{\mathrm{r}}=11.9 \mathrm{~min}$ [minor]; $92 \% \mathrm{ee}$.
$[\alpha]_{\mathrm{D}}{ }^{\mathbf{2 0}}=+2.7\left(\mathrm{c}=0.6, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
(R)-(+)-N-(3,5-Dimethyl-4-methoxy)phenyl-1-(4-phenyl)phenyl ethyl amine (13c): Obtained as a yellow powder.

MP: $156.2-157.9^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H}-$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C}_{6} \mathbf{D}_{\mathbf{6}}$): $\boldsymbol{\delta}=1.24(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 2.19(\mathrm{~s}, 6 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 3.43(\mathrm{br}$, $1 \mathrm{H}, \mathrm{NH}), 4.34(\mathrm{q}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{~s}, 2 \mathrm{H}), 7.09-7.13(\mathrm{~m}, 1 \mathrm{H}), 7.17-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.27-$ $7.31(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.47(\mathrm{~m}, 4 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{M H z}, \mathbf{C}_{6} \mathbf{D}_{\mathbf{6}}\right): \boldsymbol{\delta}=16.5,25.0,53.5,59.5,114.0,126.6,127.3,127.4,127.7$, 129.0, 131.2, 140.2, 141.5, 143.7, 145.2, 149.6 ppm.

IR (neat): $v_{\text {max }}\left(\mathbf{c m}^{\mathbf{- 1}}\right)=3354(\mathrm{w}), 2924(\mathrm{w}), 1604(\mathrm{~m}), 1484(\mathrm{~s}), 1217(\mathrm{~s}), 998(\mathrm{~s}), 827(\mathrm{~s})$, 767 (s), 699 (s).
MS (70 eV, EI): $\boldsymbol{m} / \boldsymbol{z}(\%)=331\left(\mathbf{M}^{+}, 41\right), 316$ (24), 181 (100), 165 (19), 151 (26), 136 (32).
HRMS (EI): $\boldsymbol{m} / \boldsymbol{z}$ calcd. for: $\left[\mathbf{C}_{\mathbf{2 3}} \mathbf{H}_{\mathbf{2 5}} \mathbf{N O}\right.$ 331.1936, found: 331.1930.
The enantiomer ratio was determined by HPLC using Chiralcel OD-H column (flow rate 0.5 $\mathrm{mL} / \mathrm{min}$, heptane $/ \mathrm{iPrOH}: 90 / 10, \lambda=215 \mathrm{~nm}, 25^{\circ} \mathrm{C}$);

With catalyst 8a: $\mathrm{t}_{\mathrm{r}}=17.5 \mathrm{~min}$ [minor], $\mathrm{t}_{\mathrm{r}}=23.1 \mathrm{~min}$ [major]; $92 \% \mathrm{ee}$.
$[\alpha]_{\mathrm{D}}{ }^{20}=+48.7\left(\mathrm{c}=0.6, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
With catalyst 9a: $\mathrm{t}_{\mathrm{r}}=17.7 \mathrm{~min}$ [minor], $\mathrm{t}_{\mathrm{r}}=23.5 \mathrm{~min}$ [major]; $90 \% \mathrm{ee}$. $[\alpha]_{\mathrm{D}}{ }^{20}=+47.3\left(\mathrm{c}=0.6, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
(R)-(+)-N-(3,5-Dimethyl-4-methoxy)phenyl-1-(4-trifluoromethyl)phenyl ethyl amine (13d): Obtained as a yellow oil;

${ }^{\mathbf{1}} \mathbf{H}-$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\boldsymbol{\delta}=1.50(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 2.14(\mathrm{~s}, 6 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 4.45$ $(\mathrm{q}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{~s}, 2 \mathrm{H}), 7.48(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$-NMR ($\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\boldsymbol{\delta}=16.2,24.7,54.1,59.9,113.8,124.2(\mathrm{q}, J=271.0 \mathrm{~Hz}), 125.6$ (q, $J=3.8 \mathrm{~Hz}$), 126.3, $129.6(\mathrm{q}, J=32.3 \mathrm{~Hz}), 131.4,142.3,149.3,149.4 \mathrm{ppm}$.
IR (neat): $\boldsymbol{v}_{\text {max }}\left(\mathrm{cm}^{-1}\right)=3349(\mathrm{~m}), 2966(\mathrm{w}), 1605(\mathrm{~m}), 1488(\mathrm{~m}), 1323(\mathrm{~s}), 1222(\mathrm{~s}), 1155$ (s), 1062 (s), 1005 (s$), 835(\mathrm{~s}), 607(\mathrm{~m})$.

MS (70 eV, EI): $\boldsymbol{m} / \boldsymbol{z}(\%)=323\left(\mathrm{M}^{+}, 100\right), 308$ (77), 293 (11), 173 (33), 150 (21), 136 (4).
HRMS (EI): $\boldsymbol{m} / \boldsymbol{z}$ calcd.for: $\left[\mathbf{C}_{\mathbf{1 8}} \mathbf{H}_{\mathbf{2 0}} \mathbf{F}_{\mathbf{3}} \mathbf{N O}\right.$] 323.1497, found: 323.1481.
The enantiomer ratio was determined by HPLC using Chiralcel OD-H column (flow rate 0.5 $\mathrm{mL} / \mathrm{min}$, heptane $/ \mathrm{PrOH}: 90 / 10, \lambda=215 \mathrm{~nm}, 25^{\circ} \mathrm{C}$);

With catalyst 9a: $\mathrm{t}_{\mathrm{r}}=14.4 \mathrm{~min}$ [minor], $\mathrm{t}_{\mathrm{r}}=18.5 \mathrm{~min}$ [major]; $89 \% \mathrm{ee}$.
$[\alpha]_{\mathrm{D}}{ }^{20}=+10.2\left(\mathrm{c}=0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
With catalyst 8a: $\mathrm{t}_{\mathrm{r}}=14.3 \mathrm{~min}$ [minor], $\mathrm{t}_{\mathrm{r}}=18.5 \mathrm{~min}$ [major]; $88 \% \mathrm{ee}$. $[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{20}=+9.9\left(\mathrm{c}=0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
(R)-(+)-N-(3,5-Dimethyl-4-methoxy)phenyl-1-(4-chloro)phenyl ethyl amine (13e): Obtained as a yellow oil;

${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathbf{C}_{6} \mathbf{D}_{\mathbf{6}}\right): \boldsymbol{\delta}=1.06(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.17(\mathrm{~s}, 6 \mathrm{H}), 3.27(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH})$, $3.38(\mathrm{~s}, 3 \mathrm{H}), 4.10(\mathrm{q}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{~s}, 2 \mathrm{H}), 6.91-6.95(\mathrm{~m}, 2 \mathrm{H}), 7.08-7.13(\mathrm{~m}, 2 \mathrm{H})$ ppm.
${ }^{13} \mathbf{C}$-NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C}_{6} \mathbf{D}_{\mathbf{6}}$): $\boldsymbol{\delta}=16.5,24.8,53.1,59.5,114.0,127.5,128.9,131.2,132.6$, $143.4,144.5,149.7 \mathrm{ppm}$.
IR (neat): $\boldsymbol{v}_{\text {max }}\left(\mathbf{c m}^{-1}\right)=2926(\mathrm{w}), 1608(\mathrm{~m}), 1487(\mathrm{~s}), 1337(\mathrm{w}), 1222(\mathrm{~s}), 1090(\mathrm{~m}), 1010$ (s), 825 (s), $730(\mathrm{~m}), 695(\mathrm{~m})$.

MS (70 eV, EI): $\boldsymbol{m} / \boldsymbol{z}(\%)=289\left(\mathrm{M}^{+}, 87\right), 276$ (20), 274 (69), 150 (28), 139 (100), 136 (83).
HRMS (EI): $\boldsymbol{m} / \boldsymbol{z}$ calcd. for: [$\mathbf{C}_{\mathbf{1 7}} \mathbf{H}_{\mathbf{2 0}} \mathbf{N}^{\mathbf{3 5}} \mathbf{C l O}$] 289.1233, found: 289.1227.
The enantiomer ratio was determined by HPLC using Chiralcel OD-H column (flow rate 0.5 $\mathrm{mL} / \mathrm{min}$, heptane $/ \mathrm{PrOH}: 90 / 10, \lambda=215 \mathrm{~nm}, 25^{\circ} \mathrm{C}$);

With catalyst 8a: $\mathrm{t}_{\mathrm{r}}=13.7 \mathrm{~min}$ [minor], $\mathrm{t}_{\mathrm{r}}=17.1 \mathrm{~min}$ [major]; $92 \% \mathrm{ee}$.
$[\alpha]_{\mathrm{D}}{ }^{20}=+8.3\left(\mathrm{c}=0.6, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
With catalyst 9a: $\mathrm{t}_{\mathrm{r}}=13.9 \mathrm{~min}$ [minor], $\mathrm{t}_{\mathrm{r}}=17.5 \mathrm{~min}$ [major]; $92 \% \mathrm{ee}$.
$[\alpha]_{\mathrm{D}}{ }^{20}=+8.3\left(\mathrm{c}=0.6, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
(R)-(+)- N-(3,5-Dimethyl-4-methoxy)phenyl-1-(4-carbomethoxy)phenyl ethyl amine (13f):

Obtained as a yellow solid;

MP: $113.7-115.2^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathbf{C}_{6} \mathbf{D}_{\mathbf{6}}\right): \boldsymbol{\delta}=1.08(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 2.16(\mathrm{~s}, 6 \mathrm{H}), 3.34(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH})$, $3.36(\mathrm{~s}, 3 \mathrm{H}), 3.47(\mathrm{~s}, 3 \mathrm{H}), 4.18(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{~s}, 2 \mathrm{H}), 7.14-7.15(\mathrm{~m}, 2 \mathrm{H}), 8.07-8.09$ (m, 2H) ppm.
${ }^{13}$ C-NMR (100 MHz, $\left.\mathbf{C}_{6} \mathbf{D}_{\mathbf{6}}\right): \boldsymbol{\delta}=16.5,24.6,51.4,53.6,59.5,114.0,126.1,129.5,130.3$, 131.2, 143.4, 149.7, 151.4, 166.5 ppm .

IR (neat): $\boldsymbol{v}_{\text {max }}\left(\mathbf{c m}^{-1}\right)=3350(\mathrm{~m}), 2994(\mathrm{w}), 1713(\mathrm{~s}), 1605(\mathrm{~m}), 1431(\mathrm{~m}), 1279(\mathrm{~s}), 1220$ (s), 1114 (s), 1009 (s), 831 (s), 764 (s), 712 (s).

MS (70 eV, EI): $\boldsymbol{m} / \boldsymbol{z}(\%)=313\left(\mathrm{M}^{+}, 94\right), 298(90), 163$ (100), 136 (80), 150 (41).
HRMS (EI): $\boldsymbol{m} / \boldsymbol{z}$ calcd. for: $\left[\mathbf{C}_{\mathbf{1}} \mathbf{H}_{\mathbf{2 3}} \mathbf{N O}_{\mathbf{3}}\right]$ 313.1678, found: 313.1679.
The enantiomer ratio was determined by HPLC using Chiralcel OD-H column (flow rate 0.5 $\mathrm{mL} / \mathrm{min}$, heptane $/ \mathrm{iPrOH}: 90 / 10, \lambda=215 \mathrm{~nm}, 25^{\circ} \mathrm{C}$);

With catalyst 8a: $\mathrm{t}_{\mathrm{r}}=25.2 \mathrm{~min}$ [minor], $\mathrm{t}_{\mathrm{r}}=28.9 \mathrm{~min}$ [major]; $94 \% \mathrm{ee}$.
$[\alpha]_{\mathrm{D}}{ }^{20}=+23.3\left(\mathrm{c}=0.6, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
With catalyst 9a: $\mathrm{t}_{\mathrm{r}}=24.2 \mathrm{~min}$ [major], $\mathrm{t}_{\mathrm{r}}=28.0 \mathrm{~min}$ [minor]; $92 \% \mathrm{ee}$.
$[\alpha]_{\mathrm{D}}{ }^{20}=+22.0\left(\mathrm{c}=0.6, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
(R)-(-)-N-(3,5-Dimethyl-4-methoxy)phenyl-1-(3-fluoro)phenyl ethyl amine (13g): Obtained as a yellow oil;

${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathbf{C}_{6} \mathbf{D}_{\mathbf{6}}\right): \boldsymbol{\delta}=1.07(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 2.16(\mathrm{~s}, 6 \mathrm{H}), 3.28(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH})$, $3.37(\mathrm{~s}, 3 \mathrm{H}), 4.14(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{~s}, 2 \mathrm{H}), 6.67-6.72(\mathrm{~m}, 1 \mathrm{H}), 6.88-6.91(\mathrm{~m}, 2 \mathrm{H})$, 7.00-7.03 (m, 1H) ppm.
${ }^{13} \mathbf{C}-$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C}_{\mathbf{6}} \mathbf{D}_{\mathbf{6}}$): $\boldsymbol{\delta}=16.5,24.7,53.4(\mathrm{~d}, J=1.8 \mathrm{~Hz}), 59.5,113.0(\mathrm{~d}, J=21.6$ $\mathrm{Hz}), 113.8(\mathrm{~d}, J=21.3 \mathrm{~Hz}), 113.9,121.7(\mathrm{~d}, J=2.6 \mathrm{~Hz}), 130.3(\mathrm{~d}, J=7.9 \mathrm{~Hz}), 131.2,143.4$, $149.6(\mathrm{~d}, J=6.1 \mathrm{~Hz}), 149.7,163.7(\mathrm{~d}, J=245.5 \mathrm{~Hz}) \mathrm{ppm}$.
IR (neat): $\boldsymbol{v}_{\text {max }}\left(\mathbf{c m}^{-1}\right)=3389$ (br, w), 2927 (w), 1608 (m), 1485 (s), 1222 (s), 1009 (s), 835 (m), 784 (s), 696 (s).

MS (70 eV, EI): $\boldsymbol{m} / \boldsymbol{z}(\%)=275\left([\mathrm{M}+2 \mathrm{H}]^{+}, 7\right), 274\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right), 193(5)$.
HRMS (EI): $\boldsymbol{m} / \boldsymbol{z}$ calcd. for: $\left[\mathbf{C}_{\mathbf{1 7}} \mathbf{H}_{\mathbf{2 1}} \mathbf{N F O}\right] ;[\mathbf{M + H}]^{+}: 274.1607$, found: 274.1595
The enantiomer ratio was determined by HPLC using Chiralcel OD-H column (flow rate 0.5 $\mathrm{mL} / \mathrm{min}$, heptane $/ \mathrm{iPrOH}: 90 / 10, \lambda=215 \mathrm{~nm}, 25^{\circ} \mathrm{C}$);

With catalyst 8a: $\mathrm{t}_{\mathrm{r}}=14.6 \mathrm{~min}$ [minor], $\mathrm{t}_{\mathrm{r}}=18.0 \mathrm{~min}$ [major]; 93% ee.
$[\alpha]_{\mathrm{D}}{ }^{20}=-12\left(\mathrm{c}=0.6, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
With catalyst 9a: $\mathrm{t}_{\mathrm{r}}=14.8 \mathrm{~min}$ [minor], $\mathrm{t}_{\mathrm{r}}=18.3 \mathrm{~min}$ [major]; $91 \% \mathrm{ee}$.
$[\alpha]_{\mathrm{D}}{ }^{20}=-10.7\left(\mathrm{c}=0.6, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
(R)-(+)-N-(3,5-Dimethyl-4-methoxy)phenyl-1-(2-methyl)phenyl ethyl amine (13h): Obtained as a viscous yellow oil;

${ }^{1} \mathbf{H}-\mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C}_{6} \mathbf{D}_{6}\right): \boldsymbol{\delta}=1.18(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 2.16(\mathrm{~s}, 6 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}), 3.37$ (brs, 4H), $4.50(\mathrm{q}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.09(\mathrm{~s}, 2 \mathrm{H}), 7.01-7.03(\mathrm{~m}, 2 \mathrm{H}), 7.05-7.10(\mathrm{~m}, 1 \mathrm{H}), 7.39-$ 7.41 (m, 1H) ppm.
${ }^{13} \mathbf{C - N M R}\left(75 \mathrm{MHz}, \mathbf{C}_{\mathbf{6}} \mathbf{D}_{\mathbf{6}}\right): \boldsymbol{\delta}=16.5,18.9,22.7,50.1,59.5,113.7,125.1,126.8,126.9$, $130.8,131.1,134.8,143.5,143.7,149.5 \mathrm{ppm}$.
IR (neat): $\boldsymbol{v}_{\text {max }}\left(\mathrm{cm}^{-1}\right)=3406$ (br, w), $2964(\mathrm{~m}), 2920(\mathrm{~m}), 1617(\mathrm{~s}), 1500(\mathrm{~s}), 1447(\mathrm{~m}), 1317$ (m), 801 (m), 698 (s).

MS (70 eV, EI): $\boldsymbol{m} / \boldsymbol{z}(\%)=269\left(\mathrm{M}^{+}, 100\right), 254(72), 151$ (35), 136 (51), 119 (68), 91 (13).
HRMS (EI): $\boldsymbol{m} / \boldsymbol{z}$ calcd. for: [$\mathbf{C}_{\mathbf{1 8}} \mathbf{H}_{\mathbf{2 3}} \mathbf{N O}$ 269.1780, found: 269.1774.
The enantiomer ratio was determined by HPLC using Chiralcel OD-H column (flow rate 0.5 $\mathrm{mL} / \mathrm{min}$, heptane $/ \mathrm{iPrOH}: 90 / 10, \lambda=215 \mathrm{~nm}, 25^{\circ} \mathrm{C}$);

With catalyst 8a: $\mathrm{t}_{\mathrm{r}}=13.9 \mathrm{~min}$ [major], $\mathrm{t}_{\mathrm{r}}=15.7 \mathrm{~min}$ [minor]; $94 \% \mathrm{ee}$.
$[\alpha]_{\mathrm{D}}{ }^{20}=+1.8\left(\mathrm{c}=0.6, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
With catalyst 9a: $\mathrm{t}_{\mathrm{r}}=13.9 \mathrm{~min}$ [major], $\mathrm{t}_{\mathrm{r}}=15.7 \mathrm{~min}$ [minor]; $93 \% \mathrm{ee}$.
$[\alpha]_{\mathrm{D}}{ }^{20}=+1.7\left(\mathrm{c}=0.6, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
(R)-(-)-N-(3,5-Dimethyl-4-methoxy)phenyl-1-(2-naphthyl) ethyl amine (13i): Obtained as a viscous yellow oil;

${ }^{1} \mathbf{H}-\mathrm{NMR}\left(\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C}_{6} \mathbf{D}_{\mathbf{6}}\right): \boldsymbol{\delta}=1.27(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 2.14(\mathrm{~s}, 6 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}), 3,53(\mathrm{br}$, NH, 1H), 4.43 (q, $J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{~s}, 2 \mathrm{H}), 7.21-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.35(\mathrm{dd}, J=8.4 \mathrm{~Hz}, 1.6$ $\mathrm{Hz}, 1 \mathrm{H}$), 7.60-7.63 (m, 3H), 7,73 (s, 1H) ppm.
${ }^{13}$ C-NMR ($\mathbf{1 5 0} \mathbf{~ M H z}, \mathbf{C}_{6} \mathbf{D}_{6}$): $\boldsymbol{\delta}=16.5,24.9,54.0,59.5,114.0,124.6,124.8,125.6,126.2$, $127.9,128.1,128.7,131.2,133.3,134.2,143.6,143.8,149.6 \mathrm{ppm}$.
IR (neat): $v_{\text {max }}\left(\mathbf{c m}^{-1}\right)=3405(\mathrm{br}, \mathrm{w}), 2864(\mathrm{~m}), 2910(\mathrm{~m}), 1687(\mathrm{~s}), 1510(\mathrm{~s}), 1477(\mathrm{~m}), 1297$ (m), 891 (m), 698 (s).

MS (70 eV, EI): $\boldsymbol{m} / \boldsymbol{z}(\%)=305\left(\mathrm{M}^{+}, 56\right), 290(30), 155(100), 136$ (35).
HRMS (EI): $\boldsymbol{m} / \boldsymbol{z}$ calcd. for: [$\mathbf{C}_{\mathbf{2 1}} \mathbf{H}_{\mathbf{2 3}} \mathbf{N O}$] 305.1780, found: 305.1785.
The enantiomer ratio was determined by HPLC using Chiralcel OD-H column (flow rate 0.5 $\mathrm{mL} / \mathrm{min}$, heptane $/ \mathrm{iPrOH}: 90 / 10, \lambda=215 \mathrm{~nm}, 25^{\circ} \mathrm{C}$);

With catalyst 8a: $\mathrm{t}_{\mathrm{r}}=9.1 \mathrm{~min}$ [minor], $\mathrm{t}_{\mathrm{r}}=10.2 \mathrm{~min}$ [major]; $92 \% e e$.
$[\alpha]_{\mathrm{D}}{ }^{20}=-22.4\left(\mathrm{c}=0.6, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
With catalyst 9a: $\mathrm{t}_{\mathrm{r}}=9.1 \mathrm{~min}$ [minor], $\mathrm{t}_{\mathrm{r}}=10.2 \mathrm{~min}$ [major]; $92 \% e e$.
$[\alpha]_{\mathrm{D}}{ }^{20}=-22.3\left(\mathrm{c}=0.6, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
(R)-(+)-N-(3,5-Dimethyl-4-methoxy)phenyl-1-phenyl propyl amine (13j): Obtained as a yellow oil;

${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathbf{C}_{6} \mathbf{D}_{\mathbf{6}}\right): \boldsymbol{\delta}=0.75(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.48-1.55(\mathrm{~m}, 2 \mathrm{H}), 2.10(\mathrm{~s}, 6 \mathrm{H})$, $3.30(\mathrm{~s}, 3 \mathrm{H}), 3.43(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}), 4.04(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{~s}, 2 \mathrm{H}), 6.98-7.02(\mathrm{~m}, 1 \mathrm{H})$, 7.09-7.13 (m, 3H), 7.17-7.18 (m, 1H) ppm.
${ }^{13}$ C-NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C}_{6} \mathbf{D}_{\mathbf{6}}$): $\boldsymbol{\delta}=10.9,16.5,31.9,59.5,60.1,114.0,126.7,127.0,128.7$, 131.1, 144.0, $144.8,149.5 \mathrm{ppm}$.

IR (neat): $\boldsymbol{v}_{\text {max }}\left(\mathbf{c m}^{\mathbf{- 1}}\right)=3394(\mathrm{br}, \mathrm{w}), 2930(\mathrm{~m}), 1608(\mathrm{~m}), 1487(\mathrm{~s}), 1220(\mathrm{~s}), 1009(\mathrm{~s}), 835$ (m), 750 (m), 698 (s).

MS (70 eV, EI): $\boldsymbol{m} / \boldsymbol{z}(\%)=269\left(\mathrm{M}^{+}, 21\right), 240(100), 136$ (9), 91 (15).
HRMS (EI): $\boldsymbol{m} / \boldsymbol{z}$ calcd. for: [$\mathbf{C}_{\mathbf{1 8}} \mathbf{H}_{\mathbf{2 3}} \mathbf{N O}$ 269.1780, found: 269.1791.
The enantiomer ratio was determined by HPLC using Chiralcel AD column (flow rate 0.5 $\mathrm{mL} / \mathrm{min}$, heptane $/ \mathrm{iPrOH}: 90 / 10, \lambda=215 \mathrm{~nm}, 25^{\circ} \mathrm{C}$);

With catalyst 8a: $\mathrm{t}_{\mathrm{r}}=10.4 \mathrm{~min}$ [major], $\mathrm{t}_{\mathrm{r}}=12.4 \mathrm{~min}$ [minor]; $94 \% \mathrm{ee}$.
$[\alpha]_{\mathrm{D}}{ }^{20}=+2.0\left(\mathrm{c}=0.6, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
With catalyst 9a: $\mathrm{t}_{\mathrm{r}}=10.3 \mathrm{~min}$ [major], $\mathrm{t}_{\mathrm{r}}=12.3 \mathrm{~min}$ [minor]; $92 \% \mathrm{ee}$. $[\alpha]_{\mathrm{D}}{ }^{20}=+1.9\left(\mathrm{c}=0.6, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
(R)-(+)- N-(3,5-Dimethyl-4-methoxy)phenyl-1-phenyl-hexylamine (13k):obtained as a pale yellow oil.

${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathbf{C}_{6} \mathbf{D}_{\mathbf{6}}\right): \boldsymbol{\delta}=0.82(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.15-1.32(\mathrm{~m}, 6 \mathrm{H}), 1.52-1.58(\mathrm{~m}$, 2 H), $2.14(\mathrm{~s}, 6 \mathrm{H}) .3 .34(\mathrm{~s}, 3 \mathrm{H}), 3.52(\mathrm{br}, \mathrm{NH}), 4.18(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{~s}, 2 \mathrm{H}), 7.00-7.04$ $(\mathrm{m}, 1 \mathrm{H}), 7.12-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.24(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$-NMR ($\mathbf{1 0 0} \mathbf{M H z}, \mathbf{C}_{6} \mathbf{D}_{6}$) $\boldsymbol{\delta}=14.2,16.5,22.9,26.4,32.1,39.3,58.8,59.5,114.0,126.7$, 127.0, 128.7, 131.1, 144.0, 145.3, 149.5 ppm .

IR (neat): $v_{\text {max }}\left(\mathbf{c m}^{-1}\right)=2928(\mathrm{~m}), 1608(\mathrm{~m}), 1488(\mathrm{~m}), 1222(\mathrm{~s}), 1011(\mathrm{~m}), 832(\mathrm{~m}), 755$ (m), 698 (s).

MS (70 eV, EI): $\boldsymbol{m} / \boldsymbol{z}(\%)=327\left(\mathrm{M}^{+}, 37\right), 241$ (100), 226 (8), 117 (17).
HRMS (EI): $\boldsymbol{m} / \boldsymbol{z}$ calcd. for: [$\mathbf{C}_{\mathbf{2 1}} \mathbf{H}_{\mathbf{2 9}} \mathbf{N O}$] 311.2249, found: 311.2248.
The enantiomer ratio was determined by HPLC using a Chiralcel OD-H column (flow rate 0.5 $\mathrm{mL} / \mathrm{min}$, heptane/iPrOH: $95 / 5, \lambda=215 \mathrm{~nm}, 25^{\circ} \mathrm{C}$);

With catalyst 8a: $\mathrm{t}_{\mathrm{r}}=11.0 \mathrm{~min}$ [minor], $\mathrm{t}_{\mathrm{r}}=12.3 \mathrm{~min}$ [major]; $95 \% \mathrm{ee}$.
$[\alpha]_{\mathrm{D}}{ }^{20}=+2.4\left(\mathrm{c}=0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$

With catalyst 9a: $\mathrm{t}_{\mathrm{r}}=11.7 \mathrm{~min}$ [minor], $\mathrm{t}_{\mathrm{r}}=12.9 \mathrm{~min}$ [major]; $94 \% \mathrm{ee}$. $[\alpha]_{\mathrm{D}}{ }^{20}=+2.1\left(\mathrm{c}=0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
(R) -(-)-5-[(N-(3,5-Dimethyl-4-methoxy)phenyl)amino]-1,5-diphenylpentan-1-one (131): obtained as a dark brown oil.

${ }^{1} \mathbf{H}$-NMR ($400 \mathrm{MHz}, \mathbf{C}_{6} \mathbf{D}_{6}$): $\boldsymbol{\delta}=1.59-1.68(\mathrm{~m}, 3 \mathrm{H}), 1.81-1.87(\mathrm{~m}, 1 \mathrm{H}), 2.17(\mathrm{~s}, 6 \mathrm{H}), 2.46-$ $2.48(\mathrm{~m}, 2 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{br}, \mathrm{NH}), 4.25(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{~s}, 2 \mathrm{H}), 7.02-7.09(\mathrm{~m}$, $3 \mathrm{H})$, 7.11-7.14 (m, 2H), 7.17-7.18 (m, 1H), 7.26-7.28 (m, 2H), 7.80-7.82 (m, 2H) ppm.
${ }^{13} \mathbf{C}-$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C}_{6} \mathbf{D}_{\mathbf{6}}$): $\boldsymbol{\delta}=16.5,21.0,37.8,38.6,58.7,59.5,114.0,126.7,127.0$, $128.2,128.6,128.8,131.1,132.7,137.5,144.0,145.1,149.5,198.7 \mathrm{ppm}$.
IR (neat): $v_{\text {max }}\left(\mathbf{c m}^{-1}\right)=3010(\mathrm{w}), 1788(\mathrm{~m}), 1685(\mathrm{~s}), 1129(\mathrm{~m}), 1155(\mathrm{~s}), 1009(\mathrm{~m}), 795$ (m).

MS (70 eV, EI): $\boldsymbol{m} / \boldsymbol{z}(\%)=389\left([\mathrm{M}+2 \mathrm{H}]^{+}, 22\right), 388\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right), 237(15)$.
HRMS (EI): $\boldsymbol{m} / \boldsymbol{z}$ calcd. for: $\left[\mathbf{C}_{\mathbf{2 6}} \mathbf{H}_{\mathbf{3 0}} \mathbf{N O}_{\mathbf{2}}\right.$] 388.2270, found: 388.2277.
The enantiomer ratio was determined by HPLC using a Chiralcel AD column (flow rate 0.2 $\mathrm{mL} / \mathrm{min}$, heptane $/ \mathrm{PrOH}: 80 / 20, \lambda=215 \mathrm{~nm}, 25^{\circ} \mathrm{C}$);

With catalyst 8a: $\mathrm{t}_{\mathrm{r}}=57.0 \mathrm{~min}$ [major], $\mathrm{t}_{\mathrm{r}}=64.5 \mathrm{~min}$ [minor]; 99% ee .
$[\alpha]_{\mathrm{D}}{ }^{20}=-11\left(\mathrm{c}=0.4, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
With catalyst 9a: $\mathrm{t}_{\mathrm{r}}=57.2 \mathrm{~min}$ [major], $\mathrm{t}_{\mathrm{r}}=64.7 \mathrm{~min}$ [minor]; $98 \% \mathrm{ee}$.
$[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{20}=-9\left(\mathrm{c}=0.4, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
(R)-(+)-Methyl 4-[(N-(3,5-dimethyl-4-methoxy)phenyl)amino]-4-phenyl butanoate (13m): obtained as a dark brown oil.

${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathbf{C}_{6} \mathbf{D}_{6}\right): \boldsymbol{\delta}=2.15(\mathrm{~s}, 6 \mathrm{H}), 2.16-2.21(\mathrm{~m}, 2 \mathrm{H}), 2.53(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H})$, $2.80(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{br}, \mathrm{NH}), 4.24(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.19(\mathrm{~s}, 2 \mathrm{H}), 7.00-7.04(\mathrm{~m}, 2 \mathrm{H}), 7.09-7.13(\mathrm{~m}, 2 \mathrm{H}), 7.17(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$-NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C}_{6} \mathbf{D}_{6}$): $\boldsymbol{\delta}=16.5,31.1,33.6,51.1,58.1,59.4,114.0,126.6,128.5$, $128.8,131.1,132.8,143.7,149.6,173.5 \mathrm{ppm}$.
IR (neat): $v_{\text {max }}\left(\mathbf{c m}^{-1}\right)=3393$ (br, w), 2949 (w), 1732 (s), 1488 (s), 1220 (s), 1162 (s), 1009 (s), 837 (m), 750 (s$), 700$ (s).

MS (70 eV, EI): $\boldsymbol{m} / \boldsymbol{z}(\%)=327\left(\mathrm{M}^{+}, 37\right), 241$ (100), 226 (8), 117 (17).

HRMS (EI): \boldsymbol{m} / z calcd. for: $\left[\mathrm{C}_{\mathbf{2 0}} \mathbf{H}_{\mathbf{2 5}} \mathrm{NO}_{3}\right]$ 327.1834, found: 327.1825.
The enantiomer ratio was determined by HPLC using a Chiralcel OD-H column (flow rate 0.5 $\mathrm{mL} / \mathrm{min}$, heptane $/ \mathrm{iPrOH}: 80 / 20, \lambda=215 \mathrm{~nm}, 25^{\circ} \mathrm{C}$);

With catalyst 8a: $\mathrm{t}_{\mathrm{r}}=19.5 \mathrm{~min}$ [major], $\mathrm{t}_{\mathrm{r}}=25.3 \mathrm{~min}$ [minor]; $92 \% \mathrm{ee}$.
$[\alpha]_{\mathrm{D}}{ }^{20}=+21\left(\mathrm{c}=0.6, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
With catalyst 9a: $\mathrm{t}_{\mathrm{r}}=19.6 \mathrm{~min}$ [major], $\mathrm{t}_{\mathrm{r}}=25.4 \mathrm{~min}$ [minor]; $90 \% \mathrm{ee}$.
$[\alpha]_{\mathrm{D}}{ }^{20}=+15.7\left(\mathrm{c}=0.6, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
(R)-(+)-Methyl 5-[(N-(3,5-dimethyl-4-methoxy)phenyl)amino]-4-phenyl pentanoate $(13 n)$: obtained as a yellow oil.

${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathbf{C}_{6} \mathbf{D}_{\mathbf{6}}\right): \boldsymbol{\delta}=1.51-1.53(\mathrm{~m}, 3 \mathrm{H}), 1.64-1.68(\mathrm{~m}, 1 \mathrm{H}), 2.01-2.04(\mathrm{~m}, 2 \mathrm{H})$, $2.17(\mathrm{~s}, 6 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{br}, \mathrm{NH}), 4.17(\mathrm{t}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}) 6.19(\mathrm{~s}, 2 \mathrm{H})$, 7.03-7.05 (m, 1H), 7.12-7.16 (m, 2H), 7.19-7.21 (m, 2H) ppm.
${ }^{13}$ C-NMR ($100 \mathrm{MHz}, \mathbf{C}_{6} \mathrm{D}_{6}$): $\boldsymbol{\delta}=16.5,22.0,33.6,38.4,50.9,58.4,59.5,113.9,126.6,127.1$, $128.7,131.1,143.8,144.8,149.5,173.1 \mathrm{ppm}$.
IR (neat): $\boldsymbol{v}_{\text {max }}\left(\mathbf{c m}^{-1}\right)=2949(\mathrm{w}), 1732(\mathrm{~s}), 1684(\mathrm{~m}), 1488(\mathrm{~m}), 1222(\mathrm{~s}), 1152(\mathrm{~m}), 1010$ (m), 753 (m), 700 (s).

MS (70 eV, EI): $\boldsymbol{m} / \boldsymbol{z}(\%)=341\left(\mathrm{M}^{+}, 100\right), 310(13), 241$ (45), 240 (46), 225 (18).
HRMS (EI): $\boldsymbol{m} / \boldsymbol{z}$ calcd. for: $\left[\mathbf{C}_{\mathbf{2 1}} \mathbf{H}_{\mathbf{2 7}} \mathbf{N O}_{\mathbf{3}}\right.$] 341.1991, found: 341.1979.
The enantiomer ratio was determined by HPLC using a Chiralcel OD-H column (flow rate 0.5 $\mathrm{mL} / \mathrm{min}$, heptane $/ \mathrm{PrOH}: 80 / 20, \lambda=215 \mathrm{~nm}, 25^{\circ} \mathrm{C}$);

With catalyst 8a: $\mathrm{t}_{\mathrm{r}}=16.1 \mathrm{~min}$ [minor], $\mathrm{t}_{\mathrm{r}}=17.3 \mathrm{~min}$ [major]; $98 \% \mathrm{ee}$. $[\alpha]_{\mathrm{D}}{ }^{20}=+8\left(\mathrm{c}=0.6, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$

With catalyst 9a: $\mathrm{t}_{\mathrm{r}}=16.1 \mathrm{~min}$ [minor], $\mathrm{t}_{\mathrm{r}}=17.3 \mathrm{~min}$ [major]; $98 \% \mathrm{ee}$. $[\alpha]_{D}{ }^{20}=+8.1\left(c=0.6, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$

General procedure for the preparation of primary amines: To a 50 mL round-bottomed flask was added amine of type $13(0.40 \mathrm{mmol})$ in $\mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}(28 \mathrm{~mL} ; 6: 1)$. CAN (660 mg , 3.0 equiv.) was added at $0{ }^{\circ} \mathrm{C}$ and warmed to room temperature and stirred for overnight. Washed the mixture with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and the aqueous layer was made alkaline by adding 2 N NaOH . Extracted the aqueous layer with ethyl acetate $(4 \times 20 \mathrm{~mL})$ and washed the combined organic layers with brine, dried over MgSO_{4} and isolated the primary amine by column chromatography (silica gel, n-pentane:ethyl acetate ($1: 1 ; 2 \% \mathrm{Et}_{3} \mathrm{~N}$)).

(\boldsymbol{R})-(+)- α-methyl benzylamine ($\mathbf{1 4})^{[9]}$: Purified by flash chromatography (silica gel; n pentane:ethyl acetate $1: 1\left(2 \% \mathrm{Et}_{3} \mathrm{~N}\right)$) to afford the desired compound ($49 \mathrm{mg}, 85 \%$) as a yellow oil.

$\left[\alpha_{\mathrm{D}}{ }^{\mathbf{2 0}}=+28.9\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)\right.$
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \boldsymbol{\delta}=1.58(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.68(\mathrm{br}, 2 \mathrm{H}), 4.25(\mathrm{q}, J=6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.30-7.43(\mathrm{~m}, 5 \mathrm{H}) \mathrm{ppm}$.
$(\boldsymbol{R})-(+)-\alpha$-methyl benzylamine (15) ${ }^{[10]}$: Purified by flash chromatography (silica gel; n pentane:ethyl acetate $1: 1\left(2 \% \mathrm{Et}_{3} \mathrm{~N}\right)$) to afford the desired compound ($51 \mathrm{mg}, 82 \%$) as a yellow oil.

$\left[\alpha_{1}\right]^{\mathbf{2 0}}=+18.9\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$
${ }^{1} \mathbf{H}-$ NMR $\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \boldsymbol{\delta}=1.48(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.62(\mathrm{br}, 2 \mathrm{H}), 4.21(\mathrm{q}, J=6.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.15-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.87-7.99(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm}$.
(R)-(+)-5-Phenylpyrrolidin-2-one (16) ${ }^{[11]}$: Purified by flash chromatography (silica gel; n pentane:ethylacetate $1: 1\left(2 \% \mathrm{Et}_{3} \mathrm{~N}\right)$) to afford the title compound $(46 \mathrm{mg}, 72 \%)$ as a pale oil.

${ }^{1} \mathbf{H}-$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$): $\boldsymbol{\delta}=1.97-2.11(\mathrm{~m}, 1 \mathrm{H}), 2.40-2.72(\mathrm{~m}, 3 \mathrm{H}), 4.82(\mathrm{t}, J=7.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.70$ (brs, NH), 7.34-7.48 (m, 5H) ppm.
${ }^{13}$ C-NMR ($75 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\boldsymbol{\delta}=30.9,31.4,58.2,125.8,127.8,128.9,143.0,178.9 \mathrm{ppm}$.
MS (70 eV, EI): $\boldsymbol{m} / \boldsymbol{z}(\boldsymbol{\%})=161\left(\mathbf{M}^{+}, 67\right), 117$ (100), 104 (8), 77 (17).
HRMS (EI): $\boldsymbol{m} / \boldsymbol{z}$ calcd. for: [$\mathbf{C}_{\mathbf{1 0}} \mathbf{H}_{\mathbf{1 1}} \mathbf{N O}$] 161.0841, found: 161.0843.
The enantiomer ratio was determined by Chiral GC using a Chiral DEX-CB column $\left(100{ }^{\circ} \mathrm{C}\right.$ (5), $5^{\circ} \mathrm{C} / \mathrm{min}$ to $160^{\circ} \mathrm{C}(60)$)

With catalyst 8a: $\mathrm{t}_{\mathrm{r}}=36.7 \mathrm{~min}$ [major], $\mathrm{t}_{\mathrm{r}}=41.0 \mathrm{~min}$ [minor]; $92 \% \mathrm{ee}$.
$[\alpha]_{\mathrm{D}}{ }^{20}=+41.0\left(\mathrm{c}=0.4, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
With catalyst 9a: $\mathrm{t}_{\mathrm{r}}=36.7 \mathrm{~min}$ [major], $\mathrm{t}_{\mathrm{r}}=41.0 \mathrm{~min}$ [minor]; $90 \% \mathrm{ee}$.
$[\alpha]_{\mathrm{D}}{ }^{20}=+37.5\left(\mathrm{c}=0.4, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
(\boldsymbol{R})-(+)-6-Phenylpiperidin-2-one (17) ${ }^{[12]}$: purified by flash chromatography (silica gel; n pentane:ethyl acetate $1: 1\left(2 \% \mathrm{Et}_{3} \mathrm{~N}\right)$) to furnish the title compound ($55 \mathrm{mg} .78 \%$) as a pale yellow solid.

MP: $118-119{ }^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H}-$ NMR ($400 \mathrm{MHz}, \mathbf{C}_{6} \mathbf{D}_{6}$): $\boldsymbol{\delta}=1.19-1.27(\mathrm{~m}, 2 \mathrm{H}), 1.42-1.48(\mathrm{~m}, 2 \mathrm{H}), 2.04-2.11(\mathrm{~m}, 1 \mathrm{H})$, 2.15-2.22 (m, 1H), 3.94-3.97 (m, 1H), $6.80(b r, s, N H), ~ 6.98-7.06(m, 3 H), 7.09-7.13(m, 2 H)$ ppm.
${ }^{13} \mathbf{C}$-NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C}_{\mathbf{6}} \mathbf{D}_{\mathbf{6}}$): $\boldsymbol{\delta}=19.6,31.2,32.1,57.3,126.4,127.5,128.7,143.7,171.4$ ppm.
IR (neat): $\boldsymbol{v}_{\text {max }}\left(\mathbf{c m}^{\mathbf{- 1}}\right)=3266$ (br, w), 2955 (w), 1655 (s), 1623 (s), 1478 (s$), 1355$ (s$), 1175$ (m), 737 (s), 695 (s).

MS (70 eV, EI): $\boldsymbol{m} / \boldsymbol{z}(\%)=176\left([\mathrm{M}+\mathrm{H}]^{+}, 12\right), 175\left(\mathrm{M}^{+}, 100\right), 119(26), 106(34), 98(10), 77$ (11).

HRMS (EI): $\boldsymbol{m} / \boldsymbol{z}$ calcd. for: $\left[\mathbf{C}_{\mathbf{1 1}} \mathbf{H}_{\mathbf{1 3}} \mathbf{N O}\right] 175.0997$ found 175.0989
The enantiomer ratio was determined by Chiral GC using a Chiral DEX-CB column $\left(100{ }^{\circ} \mathrm{C}\right.$ (5), $5^{\circ} \mathrm{C} / \mathrm{min}$ to $160^{\circ} \mathrm{C}(60)$)
$\mathrm{t}_{\mathrm{r}}=38.7 \mathrm{~min}$ [minor], $\mathrm{t}_{\mathrm{r}}=40.8 \mathrm{~min}$ [major]; $97 \% \mathrm{ee}$.
$[\alpha]_{\mathrm{D}}{ }^{\mathbf{2 0}}=+40.0\left(\mathrm{c}=2.0, \mathrm{CHCl}_{3}\right)$

References:

[1]. Guillaneux, D.; Kagan, H. B. J. Org. Chem. 1995, 60, 2502.
[2]. Bruice, T. C.; Kharasch, N.; Winzler, R. J. J. Org. Chem. 1953, 18, 83.
[3]. Reger, D. L.; Wright, T. D.; Little, C. A.; Lamba, J. J. S.; Smith, M. D. Inorg. Chem. 2001, 40, 3810
[4]. Schnider, P.; Koch, G.; Prétôt, R.; Wang, G.; Bohnen, F. M.; Krüger, C.; Pfaltz, A Chem. Eur. J. 1997, 3, 887.
[5]. Barluenga, J. ; Fernández, A. M. ; Aznar, F. ; Valdés, C. Chem. Eur. J. 2004, 10, 494.
[6]. Scheiper, B.; Bonnekessel, M.; Krause, H.; Fuerstner, A. J. Org. Chem. 2004, 69, 3943.
[7]. Iwadate, N.; Yoshida, K.; Imamoto, T. Org. Lett. 2006, 8, 2289;
[8]. Kwong, F. Y.; Buchwald, S. L. Org. Lett, 2003, 5, 793.
[9]. Chi, Y.; Zhou, Y.; Zhang, X. J. Org. Chem. 2003, 10, 4120.
[10]. Mereyala, H. B.; Pola, P. Tetrahedron: Asymmetry 2003, 14, 2683.
[11]. Ramachandran, P. V.; Burghardt, T. E. Chem. Eur. J. 2005, 11, 4387.
[12]. Davis, F. A.; Chao, B.; Fang, T.; Szewczyk, J. M. Org. Lett. 2000, 2, 1041.

