Supporting Information

A Concise Asymmetric Synthesis of Torcetrapib

Meritxell Guino, ${ }^{a}$ Pim Huat Phua, ${ }^{a}$ Jean-Claude Caille ${ }^{b}$ and King Kuok (Mimi) Hii ${ }^{a}{ }^{a}$${ }^{a}$ Department of Chemistry, Imperial College London, Exhibition Road, South Kensington, LondonSW7 2AZ, United Kingdom.${ }^{b}$ PPG Fine Chemicals, Z. I. la Croix Cadeau, B. P. 79, 49242 Avrillé Cedex, France.
General Experimental S2
Experimental S2-S8
Table S1. Reaction optimisation 1: Dilution, reaction temperature and catalyst loading S4
Table S2. Reaction optimisation 2: Solvent and substrate ratio S4
Fig. S1/2. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of methyl carbamate phosphonate ester, 3a. S9-S10
Fig. S3/4. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of benzyl carbamate phosphonate ester, $\mathbf{3 b}$ S11-S12
Fig. S5/6. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of N-(pent-2-enoyl)methyl carbamate, 4a S13-S14
Fig. S7/8. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of N-(pent-2-enoyl)benzyl carbamate, $\mathbf{4} \mathbf{b}$ S15-S16
Fig. S9/10. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of N-[3-(4-trifluoromethyl-phenylamino)-pentanoyl]methylcarbamate, 2a.S17-S18
Figure S11/12. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of N-[3-(4-trifluoromethyl-phenylamino)-pentanoyl]benzyl carbamate, 2b...S19-S20Figure S13/14. HPLC chromatographs of (rac)- and (S)-2b (89\% ee)S21
Figure S15/16. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of (2R,4S)-(2-ethyl-6-trifluoromethyl-1,2,3,4-tetrahydroquinolin-4-yl)carbamic acid methyl ester, 5S22-S23
Fig. S17/18. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of (2R,4S)-2-ethyl-4-methoxycarbonylamino-6-
trifluoromethyl-3,4-dihydro-2H-quinoline-1-carboxylic acid ethyl ester, 6. S24-S25
Fig. S19/20. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of Torcetrapib, 1 (at $55^{\circ} \mathrm{C}$). S26-S27

General experimental

All reactions involving air and/or moisture sensitive compounds were conducted under an atmosphere of dry nitrogen, using oven-dried glassware and dry solvents. Nuclear magnetic resonance (NMR) spectra were recorded as solutions in CDCl_{3}. The peak positions are reported with shifts (δ) in ppm referenced to the residual undeuterated chloroform solvent peak ($\delta_{\mathrm{H}} 7.26, \delta_{\mathrm{C}}$ 77.00). The coupling constants (J) are reported in Hertz (Hz). The following abbreviations are used: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), and br (broad). Assignment of resonance signals (where given) was confirmed by relevant correlation experiments. Melting points were uncorrected.

Experimental

Preparation of the phosphonate esters $3 \mathbf{a}$ and $\mathbf{3 b}$: Under a N_{2} atmosphere, a mixture of alkyl carbamate (0.132 mol) and chloroacetyl chloride ($10.8 \mathrm{~mL}, 0.136 \mathrm{~mol}$) was heated at $110^{\circ} \mathrm{C}$ for 30 minutes, whereupon the reaction mixture solidified. After cooling to room temperature, the residue was trituration with diethyl ether (25 mL) to yield a pale yellow solid, which was collected by filtration. The solid was then placed in a flask with triethylphosphite ($44 \mathrm{~mL}, 0.259 \mathrm{~mol}$), and heated at $80^{\circ} \mathrm{C}$ under a N_{2} atmosphere for 48 hours. After cooling to room temperature, the solid residue was washed with n-hexane to remove the excess phosphite reagent, and may be used in the next step without further purification.

Methyl carbamate phosphonate ester, 3a ($\mathrm{R}=\mathrm{Me}$, white solid, 87% yield, over 2 steps). mp 45$47{ }^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 9.09(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 4.20-4.10\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{OCH}_{2}\right), 3.74(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right), 3.30\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 24 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 1.36-1.21\left(6 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{3}\right) . \delta_{\mathrm{C}}\left(67.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 164.7$, 151.8, 63.5 (d, J 6.5 Hz), 52.8, 35.9 (d, J 131 Hz), 16.2 (d, J 6.5 Hz). m/z (EI) 253 (M+, 100\%), 131 (99), 105 (100), 77 (58).

Benzyl carbamate phosphonate ester, $\mathbf{3 b}$ ($\mathrm{R}=\mathrm{Bn}$, off-white solid, 88% yield over 2 steps). mp $101-102{ }^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 9.60(1 \mathrm{H}, \mathrm{br} . \mathrm{s}, \mathrm{NH}), 7.32(5 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.8 \mathrm{~Hz}, \mathrm{ArH}), 5.13(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 4.07\left(4 \mathrm{H}, \mathrm{q}, J 7.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.26\left(2 \mathrm{H}, \mathrm{d}, J=22.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 1.28(6 \mathrm{H}, \mathrm{t}, J 7.1 \mathrm{~Hz}$, $\mathrm{CH}_{2} \mathrm{CH}_{3}$); $\delta_{\mathrm{C}}\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) 164.6, 151.2, 135.0, 128.6, 128.5, 128.4, 67.7, 62.9 (d, J 6.8

Hz), 35.9 (d, J 130 Hz), 16.2 (d, J 6.8 Hz); m/z (EI) 329 (M ${ }^{+}, 30 \%$), 222 (23), 195 (32), 179 (49), 152 (58), 91 (100).

The HWE reaction: DBU ($6.6 \mathrm{~mL}, 43.5 \mathrm{mmol}$) and propionaldehyde ($3.2 \mathrm{~mL}, 43.5 \mathrm{mmol}$) were added successively to a solution of the phosphonate imide $\mathbf{3 a}$ ($11 \mathrm{~g}, 43.5 \mathrm{mmol}$) in THF (50 mL), with cooling in a water bath. Upon completion (TLC, $c a .8-12 \mathrm{~h}$), the reaction mixture was diluted with ethyl acetate $(400 \mathrm{~mL})$ and water (200 mL). The aqueous phase was extracted twice with ethyl acetate ($2 \times 200 \mathrm{~mL}$) and the combined organic extracts were washed with brine (200 mL) and dried over MgSO_{4}. Concentration under vacuum gave 4a as a pale yellow solid, which was recrystallised from EtOAc/hexane, giving the product as white crystals ($6.5 \mathrm{~g}, 95 \%$ yield). mp 87$88^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.84(1 \mathrm{H}, \mathrm{s}$ br, NH$), 7.20(1 \mathrm{H}, \mathrm{dt}, J 6.5,16 \mathrm{~Hz}, \mathrm{EtCH}=\mathrm{CH}), 6.82(1 \mathrm{H}$, dt, $J 1.5,16 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHCO}), 3.78\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 2.30\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.08\left(3 \mathrm{H}, \mathrm{t}, J 7.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$; $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 166.2(\mathrm{C}=\mathrm{O}), 152.9(\mathrm{CH}), 152.4(\mathrm{C}=\mathrm{O}), 120.3(\mathrm{CH}), 53.0\left(\mathrm{CH}_{3}\right), 25.7\left(\mathrm{CH}_{2}\right)$, $12.1\left(\mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z}(\mathrm{EI}) 157$ ($\left.{ }^{+}, 25 \%\right), 83$ (65), 82 (100), 55 (35).

4b was similarly prepared similarly from $\mathbf{3 b}$ as a white solid (88\%). Recrystallised from $\mathrm{EtOAc} /$ hexane, or column chromatography (EtOAc/n-hexane, 1:1, $R_{f}=0.71$); mp 96-97 ${ }^{\circ} \mathrm{C}$; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3268,1713,1670,1603$ and $1420 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.07(1 \mathrm{H}, \mathrm{br} . \mathrm{s}, \mathrm{NH}), 7.38$ ($5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 7.26 ($1 \mathrm{H}, \mathrm{dq}, ~ J ~ 15.3$ and 7.5, $\mathrm{CH}_{2} \mathrm{CH}$), 6.80 ($1 \mathrm{H}, \mathrm{d}, J 15.3, \mathrm{COCH}$), $5.20(2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 2.28-2.38\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 1.10\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.5, \mathrm{CH}_{3} \mathrm{CH}_{2}\right)$; $\delta_{\mathrm{C}}\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 166.0$ (C=O), 152.9 (C=O), 151.6 (1C, CH), 135.1 (1C, C), 128.7 (CH), 128.6 (1C, CH), 128.4 (2C, CH), $120.4(1 \mathrm{C}, \mathrm{CH}), 67.9\left(\mathrm{CH}_{2}\right), 25.7\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 12.1\left(1 \mathrm{C}, \mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z}(\mathrm{EI}) 233\left(\mathrm{M}^{+}, 40 \%\right), 179$ (30), 152 (32), 132 (45), 127 (65), 91 (100).

Aza-Michael reaction (reaction optimization/catalyst screening): Reaction optimisation was performed in a Radley's 12-placed reaction carousel, equipped with magnetic stirring and temperature control. A reaction tube was charged with the corresponding ligand (1.1 equiv. wrt Pd) and $\mathrm{Pd}(\mathrm{OTf})_{2} .2 \mathrm{H}_{2} \mathrm{O}(9.3 \mathrm{mg}, 5 \mathrm{~mol} \%, 0.02 \mathrm{mmol})$. The reaction tube was placed in the carousel and flushed with a nitrogen atmosphere, before the addition of anhydrous toluene (1 mL). The solution was allowed to stir for an hour at ambient temperature to generate the active catalyst. A solution of
the substrates - 4a (100 mg, 0.636 mmol) and 4-(trifluoromethyl)aniline ($53 \mu \mathrm{~L}, 0.424 \mathrm{mmol}$) were then added, followed by the addition of toluene, to attain the desired dilution. The temperature was obtained and maintained by adjustment of the thermostat, whereupon the reaction mixture was left for 72 hours. It was then filtered through a short column of silica gel, and evaporation of the solvent furnished a viscous residue, which was analysed by ${ }^{1} \mathrm{H}$ NMR spectroscopy and chiral HPLC.

Table S1. Reaction optimisation 1: Dilution, reaction temperature and catalyst loading.

Entry	Ligand	[4a] / M	[Pd] /mol\%	Temp/ ${ }^{\circ} \mathrm{C}$	Yield / \% ${ }^{a}$	ee/ $/{ }^{\text {b }}$
1	R-BINAP	0.3	5	rt	57	84
2	R-BINAP	0.2	5	rt	55	85
3	R-BINAP	0.16	5	rt	52	88
4	R-BINAP	0.6	2	rt	25	79
5	R-BINAP	0.4	2	rt	26	81
6	R-BINAP	0.3	2	rt	25	82
7	R-BINAP	0.16	5	50	75	85
8	R-BINAP	0.1	5	50	68	88
9	R-BINAP	0.08	5	50	64	91
10	R-BINAP	0.3	2	50	62	79
11	R-BINAP	0.2	2	50	62	81
12	R-BINAP	0.16	2	50	52	86
13	R-BINAP	0.1	2	50	48	88
14	R-BINAP	0.08	2	50	35	91
15	R-BINAP	0.06	2	50	33	89

Reaction conditions: 2-5 mol\% catalyst, 3 days, 1.5 equiv. 4a : 1 equiv. amine, alkene 4a ($100 \mathrm{mg}, 0.63 \mathrm{mmol}$); ${ }^{a}$ Calculated by ${ }^{1} \mathrm{H}$ NMR; ${ }^{b}$ Determined by chiral HPLC, (-)-(S)-enantiomer predominates in all cases.

Table S2. Reaction optimisation 2: Solvent and substrate ratio.

Entries	Solvent	Substrate ratio $^{\boldsymbol{a}}$	\% yield $^{\boldsymbol{b}}$	\%ee $^{\boldsymbol{c}}$
1	Toluene	$1.5: 1$	52	85
2	THF	$1.5: 1$	14	-
3	DCM	$1.5: 1$	30	69
4	MeOH	$1.5: 1$	13	-
5	DME	$1.5: 1$	17	-
6	Dioxane	$1.5: 1$	12	-
7	Toluene	$1: 1$	78	85
8	Toluene	$1: 1.5$	55	87
9^{d}	Toluene	$1: 1.5$	85	88

Reaction conditions: Unless otherwise stated, $5 \mathrm{~mol} \%$ catalyst, [4a] = $0.2 \mathrm{M}, \mathrm{RT}, 3$ days; ${ }^{a} \mathbf{4 a}$: aniline. ${ }^{b}$ Calculated by ${ }^{1}$ H NMR; ${ }^{c}$ Determined by chiral HPLC. (-)-(S)-Enantiomer predominates in all cases. ${ }^{d}$ At $50{ }^{\circ} \mathrm{C}$, with 0.08 M substrate.

(S)-N-[3-(4-trifluoromethyl-phenylamino)-pentanoyl]benzyl carbamate, 2b. Obtained using (R)-BINAP as the chiral phosphine. White solid, 79% yield. $R_{f}=0.23$ ($\mathrm{Et}_{2} \mathrm{O} / n$-pentane, 1:2); mp 99$100{ }^{\circ} \mathrm{C}$ (lit. $\left.{ }^{2} 100.6-101.4^{\circ} \mathrm{C}\right) .[\alpha]_{\mathrm{D}}{ }^{25}-18.5^{\circ}$ (c $=0.01 \mathrm{~g} / \mathrm{mL}$ in $\mathrm{CHCl}_{3}, 86 \%$ ee); Daicel Chiralpak AD, 10% IPA in n-hexane, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, t_{\mathrm{R}}=21.9$ (R-isomer) and 24.8 (S-isomer) min; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3367,3215,1727,1677,1601,1456,819$ and $704 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.89(1 \mathrm{H}$, br. s, CONH), 7.39 (7H, m, ArH), 6.59 (2H, d, J 8.4, ArH), 5.19 ($2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}$), 4.24 (1H, br. s, ArNH), 3.91-3.94 (1H, m, CH), 3.77 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}$), 3.12 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15.9$ and $6.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}$), 3.00 (1 H , dd, $J 15.9$ and $5.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}$), 1.62-1.75 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \mathrm{CH}_{2}$), $0.99\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.9 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right.$); $\delta_{\mathrm{C}}\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 173.0(\mathrm{C}=\mathrm{O}), 151.8(\mathrm{C}=\mathrm{O}), 149.9(\mathrm{C}), 134.8(\mathrm{C}), 129.0(\mathrm{CH}), 128.8(\mathrm{CH})$, 128.4 (CH), 126.7 (CH), 125.0 (q, J $270 \mathrm{~Hz}, \mathrm{CF}_{3}$), 118.6 (1C, q, J $33 \mathrm{~Hz}, \mathrm{CH}$), 111.2 (CH), 68.1 $\left(\mathrm{CH}_{2}\right), 51.3(\mathrm{CH}), 40.0\left(\mathrm{CH}_{2}\right), 27.9\left(\mathrm{CH}_{2}\right), 10.5\left(\mathrm{CH}_{3}\right) ; ~ m / z(\mathrm{EI}) 394\left(\mathrm{M}^{+}, 30 \%\right), 365(22), 257(18)$, 214 (25), 202 (75), 172 (29), 91 (100).

(2R,4S)-(2-Ethyl-6-trifluoromethyl-1,2,3,4-tetrahydroquinolin-4-yl)carbamic acid methyl ester, 5. The acyclic precursor (R)-5 ($190 \mathrm{mg}, 0.60 \mathrm{mmol}$) was dissolved in $95 \% \mathrm{aq}$. EtOH (5 mL) with stirring. Sodium borohydride ($17 \mathrm{mg}, 0.45 \mathrm{mmol}$) was then added in one portion. At the cessation of effervescence, the solution was cooled to $-10{ }^{\circ} \mathrm{C}$, and a solution of $\mathrm{MgCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(135$ $\mathrm{mg}, 0.66 \mathrm{mmol}$) in water (0.5 mL) was added dropwise via syringe. The mixture was then warmed to $0^{\circ} \mathrm{C}$, and stirring was continued for 2 h . The reaction was quenched by the addition of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 $\mathrm{mL})$ and dilute $\mathrm{HCl}(1 \mathrm{M}, 5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The layers were separated at room temperature, and the aqueous layer was extracted with further portions of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 5 \mathrm{~mL})$. The combined organic extracts were washed with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$, brine (10 mL) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent yielded the cyclic product 5 as a white solid, which was dried under vacuum at $50{ }^{\circ} \mathrm{C}$ overnight ($166 \mathrm{mg}, 92 \%$). The compound was of sufficient purity to be employed in the next step without further purification. For analytical purposes, a small sample was purified by column chromatography on flash silica gel (30% ethyl acetate in hexane). m.p. $124-125.5^{\circ} \mathrm{C}$ (lit. ${ }^{2} 139.0-$ $140.5^{\circ} \mathrm{C}$, recrys. from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane). $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.39\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\mathrm{a}}\right), 7.24(1 \mathrm{H}, \mathrm{d}, J 8.2$
$\left.\mathrm{Hz}, \mathrm{H}_{\mathrm{b}}\right), 6.49\left(1 \mathrm{H}, \mathrm{d}, J 8.2 \mathrm{~Hz}, \mathrm{H}_{\mathrm{c}}\right), 5.02\left(1 \mathrm{H}, \mathrm{td}, J 6.0,9.6 \mathrm{~Hz}, \mathrm{H}_{4}\right), 4.81(1 \mathrm{H}, \mathrm{d}, J 9.6 \mathrm{~Hz}, \mathrm{NH}), 4.10$ (1 H , br. s, NH), 3.77 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}$), 3.47-3.40 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}$), $2.34\left(1 \mathrm{H}, \mathrm{ddd}, J 2.4,6.0,12.3 \mathrm{~Hz}, \mathrm{H}_{3}\right.$), 1.42-1.53 ($3 \mathrm{H}, \mathrm{m}, \mathrm{H}_{3}{ }^{\prime}$ and $\mathrm{CH}_{2} \mathrm{CH}_{3}$), $1.01\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) . \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 157.0$ (C=O), 147.4 (C), 125.5 (q, J $3 \mathrm{~Hz}, \mathrm{CH}$), 123.8 (q, J $3 \mathrm{~Hz}, \mathrm{CH}$), 124.8 (q, J $270 \mathrm{~Hz}, \mathrm{CF}_{3}$), 113.4 (CH), $52.3(\mathrm{CH}), 52.2(\mathrm{OMe}), 47.9(\mathrm{CH}), 35.2\left(\mathrm{CH}_{2}\right), 29.0\left(\mathrm{CH}_{2}\right), 9.6\left(\mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z}(\mathrm{ESI}+) 303.1310$ $\left(\mathrm{MH}^{+}\right), \mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~F}_{3}$ requires 303.1320.

(2R,4S)-2-Ethyl-4-methoxycarbonylamino-6-trifluoromethyl-3,4-dihydro-2H-quinoline-1-
carboxylic acid ethyl ester, 6. A 3-necked round-bottom flask equipped with a nitrogen inlet and a condenser was charged with a magnetic stirrer bar, the tetrahydroquinoline 7 ($110 \mathrm{mg}, 0.36 \mathrm{mmol}$), anhydrous pyridine ($150 \mu \mathrm{~L}, 1.95 \mathrm{mmol}$.) and dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. The mixture was cooled to $0{ }^{\circ} \mathrm{C}$, before the addition of ethyl chloroformate ($180 \mu \mathrm{~L}, 1.80 \mathrm{mmol}$), causing the the development of a red colour solution. Stirring was continued at $0{ }^{\circ} \mathrm{C}$ for 30 min , then at room temperature for a further 2 h , during which the colour of the solution slowly discharged to light yellow. Excess chloroformate was destroyed by the addition of 1 M aq. $\mathrm{NaOH}(2 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The layers were separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. The organic extracts were washed with dilute $\mathrm{HCl}(1 \mathrm{M}, 3 \mathrm{~mL})$ and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated to dryness. Trituration of the residue furnished the required product as a white solid (111 mg, 82\%). m.p. 153$155{ }^{\circ} \mathrm{C}$ (lit. ${ }^{2} 157.3-157.6^{\circ} \mathrm{C}$). $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 55^{\circ} \mathrm{C}\right) 7.58\left(1 \mathrm{H}, \mathrm{d}, J 8.0 \mathrm{~Hz}, \mathrm{H}_{\mathrm{b}}\right), 7.49(1 \mathrm{H}, \mathrm{d}, J$ $8.0 \mathrm{~Hz}, \mathrm{H}_{\mathrm{c}}$), $7.49\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\mathrm{a}}\right), 4.88(1 \mathrm{H}$, br. d, $J 9.0 \mathrm{~Hz}, \mathrm{NH}), 4.80\left(1 \mathrm{H}, \mathrm{ddd}, J 5.0,9.0,10.0 \mathrm{~Hz}, \mathrm{H}_{4}\right)$, $4.48\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}\right), 4.17-4.29\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.54\left(1 \mathrm{H}, \mathrm{ddd}, J 5.0,8.0,13.0 \mathrm{~Hz}, \mathrm{H}_{3}\right), 1.61-1.66$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.49-1.57\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{3}{ }^{\prime}\right), 1.43-1.49\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.30(3 \mathrm{H}, \mathrm{t}, J 7.5 \mathrm{~Hz}$, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$), $0.86\left(3 \mathrm{H}, \mathrm{t}, J 7.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) . \delta_{\mathrm{C}}\left(125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 156.4(\mathrm{C}=\mathrm{O}), 154.4(\mathrm{C}=\mathrm{O})$, 139.4 (C), 134.12 (C), 126.26 (q, J $33 \mathrm{~Hz}, ~ C), 126.2$ (CH), 124.3 (q, J $4 \mathrm{~Hz}, \mathrm{CH}$), 124.0 (q, J 272 $\mathrm{Hz}, \mathrm{CF}_{3}$), $120.7(\mathrm{q}, ~ J 4 \mathrm{~Hz}, \mathrm{CH}), 62.2\left(\mathrm{CH}_{2} \mathrm{O}\right), 53.4(\mathrm{OMe}), 52.6(\mathrm{CH}), 46.7(\mathrm{CH}), 37.9\left(\mathrm{CH}_{2}\right), 28.2$ $\left(\mathrm{CH}_{2}\right), 14.4\left(\mathrm{CH}_{3}\right), 9.8\left(\mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z}(\mathrm{CI}+) 392\left(\mathrm{MNH}_{4}^{+}, 100 \%\right), \mathrm{m} / \mathrm{z}(\mathrm{ESI}+) 397.1356\left(\mathrm{MNa}^{+}\right)$, $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~F}_{3} \mathrm{Na}$ requires 397.1351.

(2R,4S)-4-[(3,5-Bis(trifluoromethyl)benzyl)methoxycarbonylamino]-2-ethyl-6-trifluoromethyl-3,4-dihydro-2H-quinoline-1-carboxylic acid ethyl ester, $\mathbf{1}$ (Torcetrapib). A 2-neck round bottom flask was charged with a magnetic stirrer bar, compound 7 ($108 \mathrm{mg}, 0.29 \mathrm{mmol}$) and potassium tertbutoxide (35 mg , 0.31 mmol .) under an N_{2} atmosphere. Dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL}$) was added, and the solution was stirred at room temperature for 5 min to generate a yellow solution, before the addition of 3,5-bis(trifluoromethyl)benzyl bromide ($54 \mu \mathrm{~L}, 0.29 \mathrm{mmol}$.). Stirring was continued for 4 h , whereupon a suspension was formed. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and water (5 mL) were added, and the layers were separated. The aqueous layer was further extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 5 \mathrm{~mL})$ and the combined organic extract was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. The product was initially obtained as a sticky residue after column chromatography, which turned into a foamy white solid after it was triturated with n-hexane and dried under vacuum ($90 \mathrm{mg}, 52 \%$), $R_{f}=0.44$ (EtOAc/hexane, 1: 4). m.p. 54-56 ${ }^{\circ} \mathrm{C}$ [lit. (monoethanolate): $\left.{ }^{1} \mathrm{mp} 54-58^{\circ} \mathrm{C}\right] . \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 55^{\circ} \mathrm{C}\right) 7.80\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\mathrm{e}}\right), 7.74(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{H}_{\mathrm{d}}\right), 7.59\left(1 \mathrm{H}, \mathrm{d}, J 8.0 \mathrm{~Hz}, \mathrm{H}_{\mathrm{b}}\right), 7.52\left(1 \mathrm{H}, \mathrm{d}, J 8.0 \mathrm{~Hz}, \mathrm{H}_{\mathrm{c}}\right), 7.14\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\mathrm{a}}\right), 4.8-5.2\left(2 \mathrm{H}, \mathrm{br} ., \mathrm{CH}_{2} \mathrm{~N}\right.$ and H_{4}), 4.32-4.38 $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}\right)$, 4.17-4.30 $\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{~N}\right)$, $3.81(3 \mathrm{H}$, br. s, OMe$), 2.27$ (1 H , br. s, H_{3}), 1.63-1.72 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{3}$), 1.40-1.49 ($2 \mathrm{H}, \mathrm{m} \mathrm{H} \mathrm{H}_{3}$ and $\mathrm{CH}_{2} \mathrm{CH}_{3}$), $1.30(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.5$ $\mathrm{Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}$), 0.75 (3H, br. t, J $7.2 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2}$); $\delta_{\mathrm{C}}\left(125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}, 5{ }^{\circ} \mathrm{C}\right.$) 157.3 (br. s, C=O), 154.4 (C=O), 141.6 (br. s, C), 133.5 (br. s, C), 132.3 (q, J $34 \mathrm{~Hz}, \mathrm{C}$), 127.3 (CH, CH ${ }_{\mathrm{d}}$), 126.9 (CH, CHb), 126.7 (br. q, J $33 \mathrm{~Hz}, \mathrm{C}$), 124.4 (CH, CH ${ }_{\mathrm{c}}$), 124.1 (q, J $273 \mathrm{~Hz}, \mathrm{CF}_{3}$), 123.2 (q, J 273 $\mathrm{Hz}, \mathrm{CF}_{3}$), $121.5\left(\mathrm{CH}, \mathrm{CH}_{\mathrm{e}}\right)$, $119.6\left(\mathrm{CH}, \mathrm{CH}_{\mathrm{a}}\right.$), $62.3\left(\mathrm{CH}_{2} \mathrm{O}\right), 54.4\left(\mathrm{CH}, \mathrm{C}_{2}\right), 53.5$ (br. s, OMe), 47.0 (br. s, CH, C4), 36.8 (br. s, $\mathrm{CH}_{2}, \mathrm{C}_{3}$), $29.1\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 14.3\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, $9.3\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right) . \delta_{\mathrm{F}}(376.5$ $\mathrm{MHz}, \mathrm{CDCl}_{3}, 55^{\circ} \mathrm{C}$) -61.3 (1F), -62.1 (2F). m/z (CI+) $618\left(\mathrm{MNH}_{4}{ }^{+}\right), \mathrm{m} / \mathrm{z}(\mathrm{ESI}+) 601.1758\left(\mathrm{MH}^{+}\right)$, $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~F}_{9}$ requires 601.1749.

References

[^0]2. Damon, D. B.; Dugger, R. W.; Hubbs, S. E;. Scott, J. M.; Scott, R. W. Org. Process Res. \& Dev.

2006, 10, 472-480.

Fig. S1. ${ }^{1} \mathbf{H}$ NMR spectrum of methyl carbamate phosphonate ester 3a

Fig. S2. ${ }^{13} \mathrm{C}$ NMR spectrum of methyl carbamate phosphonate ester 3a

Fig. S3. ${ }^{1} \mathbf{H}$ NMR spectrum of benzyl carbamate phosphonate ester 3b

Fig. S4. ${ }^{13} \mathrm{C}$ NMR spectrum of benzyl carbamate phosphonate ester 3b

Fig. S5. ${ }^{1} \mathbf{H}$ NMR spectrum of N-(Pent-2-enoyl)methyl carbamate, 4a

Fig. S6. ${ }^{13}$ C NMR spectrum of \boldsymbol{N}-(Pent-2-enoyl)methyl carbamate, 4a

Fig. S7. ${ }^{1}$ H NMR spectrum of \boldsymbol{N}-(Pent-2-enoyl)benzyl carbamate, 4b

Fig. S8. ${ }^{13}$ C NMR spectrum of N-(Pent-2-enoyl)benzyl carbamate, 4b

Fig. S9. ${ }^{1}$ H NMR spectrum of N-[3-(4-trifluoromethyl-phenylamino)-pentanoyl]methyl carbamate, 2a

Fig. S10. ${ }^{13} \mathrm{C}$ NMR spectrum of N-[3-(4-trifluoromethyl-phenylamino)-pentanoyl]methyl carbamate, 2a

Fig. S11. ${ }^{1} \mathbf{H}$ NMR spectrum of N-[3-(4-trifluoromethyl-phenylamino)-pentanoyl]benzyl carbamate, $\mathbf{2 b}$

Fig. S12. ${ }^{13} \mathrm{C}$ NMR sepctrum of N-[3-(4-trifluoromethyl-phenylamino)-pentanoyl]benzyl carbamate, $\mathbf{2 b}$

Fig. S13. HPLC chromatograph of rac-N-[3-(4-trifluoromethyl-phenylamino)-pentanoyl]benzyl carbamate, rac-2b

Fig. S14. HPLC chromatograph of (S)-N-[3-(4-trifluoromethyl-phenylamino)-pentanoyl]benzyl carbamate, N-[3-(4-trifluoromethyl-phenylamino)-pentanoyl]benzyl carbamate, (S)-2b (89\% ee).

Fig. S15. ${ }^{1} \mathrm{H}$ NMR spectrum of (2R,4S)-(2-Ethyl-6-trifluoromethyl-1,2,3,4-tetrahydroquinolin-4-yl)carbamic acid methyl ester, 5.

Fig. S16. ${ }^{13}$ C NMR spectrum of (2R,4S)-(2-Ethyl-6-trifluoromethyl-1,2,3,4-tetrahydroquinolin-4-yl)carbamic acid methyl ester, 5.

Fig. S17. ${ }^{1} \mathrm{H}$ NMR spectrum of (2R,4S)-2-Ethyl-4-methoxycarbonylamino-6-trifluoromethyl-3,4-dihydro-2H-quinoline-1-carboxylic Acid Ethyl Ester, 6.

S18. ${ }^{13}$ C NMR spectrum of (2R,4S)-2-Ethyl-4-methoxycarbonylamino-6-trifluoromethyl-3,4-dihydro-2H-quinoline-1-carboxylic acid ethyl ester, 6.

Fig. S19. ${ }^{1} \mathrm{H}$ NMR spectrum of Torcetrapib, 1 (at $55^{\circ} \mathrm{C}$).

Torcetrapib at 500 MHz at 328 K

Fig. S20. ${ }^{13} \mathrm{C}$ NMR spectrum of Torcetrapib, 1 (at $55^{\circ} \mathrm{C}$).

[^0]: 1. Damon, D. B.; Dugger, R. W.; Magnus-Aryitey, G.; Ruggeri, R. B.; Wester, R. T.; Tu, M.; Abramov, Y. Org. Process Res. \& Dev. 2006, 10, 464-471.
