SUPPORTING INFORMATION

Luminescent, Three-Coordinate Azadipyrromethene Complexes of d¹⁰ Copper, Silver, and Gold

Thomas S. Teets,[†] David V. Partyka,[†] Arthur J. Esswein,[‡] James B. Updegraff,[†] Matthias Zeller,[§] Allen D. Hunter,[§] and Thomas G. Gray^{*,†}

Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, and Department of Chemistry, Youngstown State University, 1 University Plaza, Youngstown, Ohio 44555

Contents

Experimental Methods	2
Preparation of 2–4	2
Absorption and Emission Spectra of 1–4	5
X-ray Structural Data for 2	9
X-ray Structural Data for 3	19
X-ray Structural Data for 4	49
Computational Methods	58
Cartesian Coordinates of Optimized 3'	59

Experimental Methods

Abbreviations: OTf = trifluoromethanesulfonate. DIPEA = diisopropylethylamine. THF = tetrahydrofuran. 2-MeTHF = 2-methyltetrahydrofuran.

General. PPh₃, PEt₃ AgOTf, diisopropylethylamine, and (CuOTf)₂·toluene were obtained commercially and used as received. PPh₃AgOTf¹ and (3,5-diphenyl-1H-pyrrol-2-yl)(3,5diphenylpyrrol-2-ylidene)amine] $(1)^2$ were prepared as previously described. Air-sensitive solids were handled and weighed in an inert-atmosphere glovebox operating at <10 ppm O₂.³ Reactions involving air-sensitive materials were carried out under an atmosphere of Argon using standard Schlenk-line techniques; solvents for such reactions were purified with an M-Braun SPS and purged with argon prior to use.⁴ ¹H and ³¹P NMR spectra were recorded on a Varian AS-400 spectrometer, operating at 400 MHz and 161.8 MHz respectively. Microanalyses were performed by Quantitative Technologies Inc. and by Robertson Microlit Laboratories. Emission measurements were made in degassed solvents. Steady state emission spectra were recorded on a Cary Eclipse fluorescence spectrometer or on an automated Photon Technology International (PTI) QM 4 fluorimeter equipped with a 150-W Xe arc lamp and a Hamamatsu R928 photomultiplier tube. Excitation light was excluded with appropriate glass filters. Sample solutions were added to a quartz EPR tube, freeze pump thaw degassed (4 cycles, 1×10^{-5} Torr) and flame sealed. Low temperature emission spectra were recorded in rigid solvent glass at 77 K by immersion of the sealed EPR tubes into a liquid nitrogen-filled dewar. Integrated emission quantum yields⁵ were determined in dry-deoxygenated chloroform at 23 ± 2 °C relative to $(Bu_4N)_2[Mo_6Cl_{14}]$ as a standard ($\phi_{em} = 0.19$, 436-nm excitation in CH₃CN).⁶ A 435.8 nm wavelength was used to excited samples. Quantum yields were corrected as follows:

$$\phi_{\rm s} = \phi_{\rm r} \left(\frac{A_{\rm r} \eta_{\rm s}^2 D_{\rm s}}{A_{\rm s} \eta_{\rm r}^2 D_{\rm r}} \right),\tag{1}$$

where the s and r indices designate the sample and reference samples, respectively, A is the absorbance at λ_{exc} , η is the average refractive index of the appropriate solution, and D is the integrated area under the corrected emission spectrum.⁷ Absorption spectra were obtained with a Cary 5 absorption spectrometer.

Compound 2. PPh₃CuOTf was generated *in situ* by stirring $(CuOTF)_2$ toluene (28 mg, 0.054 mmol) and PPh₃ (28 mg, 0.11 mmol) in 5 mL of THF for 20 min at room temperature. To the resulting solution was added a solution of **1** (48 mg, 0.11 mmol) in 7 mL THF via syringe,

¹ Lettko, L.; Wood, J. S.; Rausch, M. D. Inorg. Chim. Acta 2000, 308, 37-44.

² Gorman, A.; Killoran, J.; O'Shea, C.; Kenna, T.; Gallagher, W. M.; O'Shea, D. F. J. Am. Chem. Soc. 2004, 126, 10619-10631.

³ Armarego, W. L. F.; Perrin, D. D. *Purification of Laboratory Chemicals*, 4th ed.; Butterworth–Heinmann: Oxford, 1996.

⁴ Pangborn, A. P.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. *Organometallics* **1996**, *15*, 1518-1520.

⁵ Demas, J. N.; Crosby, G. A. J. Phys. Chem. **1971**, 75, 991–1024.

⁶ Maverick, A. W.; Najdzionek, J. S.; MacKenzie, D.; Nocera, D. G.; Gray, H. B. J. Am. Chem. Soc. **1983**, 105, 1878-1882.

⁷ Gray, T. G.; Rudzinski, C. M.; Meyer, E. E.; Holm, R. H.; Nocera, D. G. J. Am. Chem. Soc. 2003, 125, 4755-4770.

followed by DIPEA (0.16 mL, 0.98 mmol). The reaction mixture was stirred at room temperature for 1 h, at which time all volatiles were removed *in vacuo*. The resulting residue was dried *in vacuo* overnight to give a bluish-black solid, which taken up in ca. 4 mL toluene, filtered through celite, and crystallized by vapor diffusion of pentane in the glovebox. Yield: 75 mg (88 %). ¹H NMR (CDCl₃): δ 8.04 (dd, 4H), 7.93 (dd, 4H), 7.27-7.40 (m, 9H), 7.24 (s, 2H), 7.17 (t, 6H), 6.91-7.00 (m, 12H). ³¹P NMR (CDCl₃): δ 3.8 (s, br) ppm. UV-Vis (CHCl₃): λ (ϵ) 305 (38000), 597 (38000) nm. Emission (CHCl₃, λ_{ex} = 550 nm): λ 642 nm. Anal. Calcd. for C₅₀H₃₇N₃PCu: C, 77.55; H, 4.82; N, 5.43. Found: C, 77.55; H, 4.79; N, 5.30.

Compound 3. PPh₃AgOTf (58 mg, 0.11 mmol) and **1** (50 mg, 0.11 mmol) were dissolved in 12 mL THF, and DIPEA (0.16 mL, 0.98 mmol) was added via syringe. After stirring for 1 h at room temperature, the solvent was stripped via rotary evaporation. The resulting residue was taken up in 20 mL benzene, and washed with 2 x 20 mL H₂O. The organic layer was dried with MgSO₄ and evaporated to dryness. The product was crystallized from a concentrated THF solution via room temperature vapor diffusion of pentane. Yield: 51 mg (62 %). ¹H NMR (CDCl₃): δ 8.03 (dd, 4H), 7.96 (dd, 4H), 7.30-7.37 (m, 9H), 7.23 (s, 2H), 7.18 (td, 6H), 6.84-6.90 (m, 12H). ³¹P NMR (CDCl₃): δ 14.4 (s, br) ppm. UV-Vis (CHCl₃): λ (ϵ) 306 (30000), 615 (65000) nm. Emission (CHCl₃, λ_{ex} = 550 nm): λ 647 nm. Anal. Calcd. for C₅₀H₃₇N₃PAg: C, 73.35; H, 4.56; N, 5.13. Found: C, 73.08; H, 4.41; N, 5.13.

Compound 4. Sodium *tert*-butoxide (18 mg, 0.18 mmol) was suspended in 3 mL of THF, and this slurry was added to a 2 mL THF solution of **1** (47 mg, 0.11 mmol). The resultant suspension was stirred for 8 h in a glove box, and the solvent was removed in vacuo. A small amount of THF (~ 1 mL) was added to the flask to soften the residue, which was scraped into the THF with a spatula. Toluene (10 mL) was added, followed by (PPh₃)AuCl (51 mg, 0.10 mmol). The mixture was stirred for 48 h under an inert gas, and filtered in air. The filtrate (which was always contaminated with a small amount of free azadipyrromethene) was reduced to dryness via rotary evaporation, and a minimum of benzene was added. The benzene suspension was filtered, and pentane vapor was diffused. After 1-2 volume equivalents of pentane were diffused, the mother liquor was dumped into pentane, and allowed to stand for a day or more. Gold-colored crystals formed in erratic yields (26-54%). ¹H NMR (C₆D₆): δ 8.26 (dd, 4H, CH), 8.09-8.12 (m, 4H, CH), 7.35 (s, 2H, CH), 6.78-7.38 (m, 27H, CH) ppm. ³¹P NMR (C₆D₆): δ 30.7 ppm. UV-Vis (CHCl₃): λ (ε) 304 (40000), 600 (45000) nm. Emission (CHCl₃, $\lambda_{ex} = 550$ nm): $\lambda = 645$ nm. Anal. Calcd. for C₅₀H₃₇AuN₃P: C, 66.15; H, 4.11; N, 4.63. Found: C, 65.96; H, 3.92, N, 4.43.

X-Ray Structure Determinations. Single crystal X-ray data were collected on a Bruker AXS SMART APEX CCD diffractometer using monochromatic Mo K α radiation with the omega scan technique. The unit cells were determined using SMART⁸ and SAINT+.⁹ Data collection for all crystals was conducted at 100 K (-173.5°C). All structures were solved by direct methods and refined by full matrix least squares against F^2 with all reflections using SHELXTL.¹⁰

⁸ Bruker Advanced X-ray Solutions, *SMART for WNT/2000* (Version 5.628), Bruker AXS Inc., Madison, Wisconsin: USA, 1997-2002.

⁹ Bruker Advanced X-ray Solutions, *SAINT* (Version 6.45), Bruker AXS Inc., Madison, Wisconsin: USA, 1997-2003.

¹⁰ Bruker Advanced X-ray Solutions SHELXTL (Version 6.10), Bruker AXS Inc., Madison, Wisconsin: USA, 2000.

Refinement of extinction coefficients was found to be insignificant. All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were placed in standard calculated positions and all hydrogen atoms were refined with an isotropic displacement parameter 1.2 times that of the adjacent carbon atom. Absorption corrections were applied using SADABS. For complex **3** the data set was corrected using the program SQUEEZE.

Figure S1. UV-vis absorption spectra (25 °C, CHCl₃) from 300 to 800 nm of neutral (protonated) ligand **1** and complexes **2–4**.

Figure S2. Emission spectra (550-nm excitation, 25 °C, CHCl₃) neutral (protonated) ligand **1** and complexes **2–4**.

Figure S3. Room-temperature (298 ± 2 K, black) and low-temperature (77 K, red) emission spectra in 2-MeTHF glass: (a) **2**, (b), **3**, and (c) **4**. Local maxima of vibronic peaks at 77 K are indicated.

Figure S4. Room-temperature (298±2 K, black) and low-temperature (77 K, red) absorption spectra in 2-MeTHF: (a) **2**, (b), **3**, and (c) **4**. Local maxima of vibronic peaks at 77 K are indicated. Concentration of all solutions is 2×10^{-5} M.

X-Ray Structural Data for 2

Figure S5. Thermal ellipsoid plot of $(Ph_3P)Cu^{I}$ (tetraphenylazadipyrromethene) (2). Ellipsoids are drawn at 50% probability; data were collected at 100 K.

Table S1. Crystal data and structure refinement for 2.

```
Identification code: 06mz229m
Empirical formula: C50 H37 Cu N3 P
Formula weight: 774.34
Temperature: 100(2) K
Wavelength: 0.71073 Å
Crystal system: Monoclinic
Space group: P2_1/n
Unit cell dimensions:
a = 12.2778(8) Å, \alpha = 90°
b = 12.9304(8) Å, \beta = 92.5540(10)°
c = 23.6398(15) \text{ Å}, \gamma = 90^{\circ}
Volume, Z: 3749.3(4) Å<sup>3</sup>, 4
Density (calculated): 1.372 \text{ g/m}^3
Absorption coefficient: 0.666 mm<sup>-1</sup>
F(000): 1608
Crystal size: 0.57 \times 0.44 \times 0.14
Crystal shape, colour: plate, black
\theta range for data collection: 1.72 to 28.28°
Limiting indices: -16 \le h \le 14, -14 \le k \le 17, -18 \le l \le 31
Reflections collected: 31895
Independent reflections: 9282 (R(int) = 0.0283)
Completeness to \theta = 28.28°: 99.8 %
Absorption correction: multi-scan
Max. and min. transmission: 0.911 and 0.758
Refinement method: Full-matrix least-squares on F^2
Data / restraints / parameters: 9282 / 0 / 496
Goodness-of-fit on F^2: 1.023
Final R indices [I > 2\sigma(I)]: R1 = 0.0374, wR2 = 0.0936
R indices (all data): R1 = 0.0497, wR2 = 0.1009
Largest diff. peak and hole: 0.489 and -0.260 e \times {\rm \AA}^{-3}
```

Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating R-factors. Table S1 (continued). Crystal data and structure refinement for 2.

Treatment of hydrogen atoms:

All hydrogen atoms were placed geometrically and were refined with an isotropic displacement parameter 1.5 (methyl) or 1.2 times (all others) that of the neighboring carbon atom.

Table S2. Atomic coordinates [× 10^4] and equivalent isotropic displacement parameters [Å² × 10^3] for **2**. U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	Х	У	Z	U(eq)
C(1)	7930(1)	9751(2)	6671(1)	28(1)
C(2)	7860(2)	10541(2)	7062(1)	41(1)
C(3)	7361(2)	10374(2)	7568(1)	49(1)
C(4)	6930(2)	9412(2)	7683(1)	43(1)
C(5)	6992(2)	8619(2)	7295(1)	30(1)
C(6)	7502(1)	8779(2)	6783(1)	23(1)
C(7)	7569(1)	7929(1)	6380(1)	20(1)
C(8)	6813(1)	7096(1)	6316(1)	22(1)
C(9)	7148(1)	6480(1)	5882(1)	20(1)
C(10)	8124(1)	6979(1)	5686(1)	19(1)
C(11)	9538(1)	7060(1)	5035(1)	19(1)
C(12)	10008(1)	6639(1)	4535(1)	20(1)
C(13)	10911(1)	7237(1)	4447(1)	22(1)
C(14)	10965(1)	8015(1)	4874(1)	20(1)
C(15)	11741(1)	8877(1)	4903(1)	21(1)
C(16)	12742(1)	8799(2)	4643(1)	26(1)
C(17)	13477(2)	9612(2)	4665(1)	31(1)
C(18)	13228(2)	10519(2)	4938(1)	33(1)
C(19)	12233(2)	10618(2)	5190(1)	31(1)
C(20)	11497(1)	9803(1)	5173(1)	25(1)
C(21)	6630(1)	5514(1)	5681(1)	22(1)
C(22)	5613(2)	5227(2)	5878(1)	30(1)
C(23)	5107(2)	4316(2)	5708(1)	35(1)
C(24)	5594(2)	3665(2)	5334(1)	31(1)
C(25)	6602(2)	3929(2)	5132(1)	29(1)
C(26)	7116(1)	4841(2)	5304(1)	25(1)
C(27)	9552(1)	5799(1)	4179(1)	20(1)
C(28)	10238(1)	5133(1)	3897(1)	23(1)
C(29)	9819(2)	4367(2)	3538(1)	27(1)
C(30)	8704(2)	4252(2)	3454(1)	27(1)
C(31)	8010(2)	4904(2)	3734(1)	28(1)
C(32)	8425(1)	5670(2)	4091(1)	24(1)
C(33)	12408(1)	8911(1)	6578(1)	19(1)
C(34)	12770(1)	8217(1)	6175(1)	21(1)
C(35)	13863(1)	8200(2)	6043(1)	25(1)
C(36)	14601(1)	8870(2)	6312(1)	26(1)
C(37)	14249(1)	9551(2)	6715(1)	27(1)
C(38)	13156(1)	9579(1)	6848(1)	24(1)
C(39)	10745(1)	10217(1)	6988(1)	19(1)
C(40)	10542(1)	11019(1)	6605(1)	24(1)
C(41)	10422(2)	12025(2)	6795(1)	28(1)
C(42)	10493(1)	12245(1)	7369(1)	25(1)
C(43)	10685(2)	11457(1)	7752(1)	25(1)
C(44)	10805(1)	10446(1)	7566(1)	23(1)
C(45)	10872(1)	8145(1)	7366(1)	19(1)
C(46)	11776(1)	7920(2)	7724(1)	26(1)
C(47)	11645(2)	7419(2)	8234(1)	30(1)

C(48)	10617(2)	7144(2)	8399(1)	30(1)
C(49)	9719(2)	7355(2)	8045(1)	36(1)
C(50)	9845(2)	7841(2)	7531(1)	30(1)
Cu(1)	9882(1)	8395(1)	6016(1)	18(1)
N(1)	8368(1)	7852(1)	6013(1)	19(1)
N(2)	8658(1)	6649(1)	5248(1)	19(1)
N(3)	10154(1)	7901(1)	5237(1)	19(1)
P(1)	10955(1)	8909(1)	6720(1)	17(1)
P(1)	10955(1)	8909(1)	6720(1)	17(1)

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

C(1)-C(2)	1.383(3)	C(28)-C(29)	1.388(3)
C(1) - C(6)	1.392(3)	С(28)-Н(28)	0.9500
C(1) - H(1)	0.9500	C(29) - C(30)	1.382(3)
C(2) - C(3)	1.385(4)	С(29)-Н(29)	0.9500
C(2) - H(2)	0.9500	C(30) - C(31)	1.387(3)
C(3) - C(4)	1.384(4)	C(30) - H(30)	0.9500
C(3) - H(3)	0.9500	C(31) - C(32)	1.384(3)
C(4) - C(5)	1.380(3)	C(31) - H(31)	0.9500
C(4) - H(4)	0.9500	C(32) -H(32)	0.9500
C(5) - C(6)	1.403(3)	C (33) –C (38)	1.395(2)
C(5) - H(5)	0.9500	C(33) - C(34)	1.396(2)
C(6) - C(7)	1.460(2)	C(33) - P(1)	1.8299(16)
C(7) - N(1)	1.342(2)	C(34) - C(35)	1.392(2)
C(7) - C(8)	1.425(2)	С(34) – Н(34)	0.9500
C(8) - C(9)	1.375(2)	C (35) –C (36)	1.388(3)
С(8)-Н(8)	0.9500	С(35)-Н(35)	0.9500
C(9) - C(10)	1.455(2)	C(36)-C(37)	1.380(3)
C(9)-C(21)	1.472(2)	С(36)-Н(36)	0.9500
C(10)-N(2)	1.320(2)	C(37)-C(38)	1.392(2)
C(10)-N(1)	1.393(2)	С(37)-Н(37)	0.9500
C(11)-N(2)	1.323(2)	С(38)-Н(38)	0.9500
C(11)-N(3)	1.396(2)	C(39)-C(40)	1.392(2)
C(11)-C(12)	1.445(2)	C(39)-C(44)	1.396(2)
C(12)-C(13)	1.375(2)	C(39)-P(1)	1.8280(17)
C(12)-C(27)	1.470(2)	C(40)-C(41)	1.386(3)
C(13)-C(14)	1.425(2)	С(40)-Н(40)	0.9500
C(13)-H(13)	0.9500	C(41)-C(42)	1.384(3)
C(14)-N(3)	1.351(2)	С(41)-Н(41)	0.9500
C(14)-C(15)	1.466(2)	C(42)-C(43)	1.377(3)
C(15)-C(20)	1.395(3)	С(42)-Н(42)	0.9500
C(15)-C(16)	1.402(2)	C(43)-C(44)	1.389(3)
C(16)-C(17)	1.385(3)	С(43)-Н(43)	0.9500
C(16)-H(16)	0.9500	С(44)—Н(44)	0.9500
C(17)-C(18)	1.379(3)	C(45)-C(50)	1.393(2)
С(17)-Н(17)	0.9500	C(45)-C(46)	1.396(2)
C(18)-C(19)	1.389(3)	C(45)-P(1)	1.8256(18)
C(18)-H(18)	0.9500	C(46)-C(47)	1.384(3)
C(19)-C(20)	1.388(3)	С(46)-Н(46)	0.9500
С(19)-Н(19)	0.9500	C(47)-C(48)	1.384(3)
С(20)-Н(20)	0.9500	С(47)-Н(47)	0.9500
C(21)-C(26)	1.399(2)	C(48)-C(49)	1.382(3)
C(21)-C(22)	1.403(2)	С(48)-Н(48)	0.9500
C(22)-C(23)	1.382(3)	C(49)-C(50)	1.382(3)
С(22)-Н(22)	0.9500	С(49)-Н(49)	0.9500
C(23)-C(24)	1.377(3)	С(50)-Н(50)	0.9500
C(23)-H(23)	0.9500	Cu(1)-N(1)	1.9871(14)
C(24)-C(25)	1.389(3)	Cu(1)-N(3)	1.9917(14)
C(24)-H(24)	0.9500	Cu(1)-P(1)	2.1800(5)
C(25)-C(26)	1.390(3)		
C(25)-H(25)	0.9500	C(2)-C(1)-C(6)	120.26(19)
C(26)-H(26)	0.9500	C(2)-C(1)-H(1)	119.9
C(27)-C(28)	1.395(2)	C(6)-C(1)-H(1)	119.9
C(27)-C(32)	1.400(2)	C(1)-C(2)-C(3)	120.4(2)

C(1) $C(2)$ $U(2)$	110 0	$\alpha(10) \alpha(20) \pi(20)$	110 C
C(1) = C(2) = H(2)	119.8	C(19) = C(20) = H(20)	119.6
C(3) - C(2) - H(2)	119.8	C(15) - C(20) - H(20)	119.6
C(4) - C(3) - C(2)	119.8(2)	C(26) - C(21) - C(22)	117.32(16)
C(4) - C(3) - H(3)	120.1	C(26)-C(21)-C(9)	122.96(15)
С(2)-С(3)-Н(3)	120.1	C(22)-C(21)-C(9)	119.71(16)
C(5)-C(4)-C(3)	120.3(2)	C(23)-C(22)-C(21)	121.61(18)
C(5)-C(4)-H(4)	119.9	С(23)-С(22)-Н(22)	119.2
C(3)-C(4)-H(4)	119.9	С(21)-С(22)-Н(22)	119.2
C(4)-C(5)-C(6)	120.3(2)	C(24)-C(23)-C(22)	120.35(18)
C(4)-C(5)-H(5)	119.9	С(24)-С(23)-Н(23)	119.8
C(6) - C(5) - H(5)	119.9	С (22) –С (23) –Н (23)	119.8
C(1) - C(6) - C(5)	118.94(17)	C(23) - C(24) - C(25)	119.32(18)
C(1) - C(6) - C(7)	121.53(16)	C(23) = C(24) = H(24)	120 3
C(5) - C(6) - C(7)	11953(17)	C(25) = C(24) = H(24)	120.3
N(1) = C(7) = C(8)	111 50(15)	C(24) = C(25) = C(26)	120.5 120.55(18)
N(1) = C(7) = C(6)	122 82(15)	C(24) = C(25) = U(25)	110 7
R(1) = C(7) = C(6)	122.02(15)	$C(24) = C(25) = \Pi(25)$	110 7
C(8) - C(7) - C(8)	123.07(13)	C(25) = C(25) = H(25)	120.05/10)
C(9) = C(8) = C(7)	107.56(15)	C(25) = C(26) = C(21)	120.85(16)
C(9) - C(8) - H(8)	126.2	C(25) - C(26) - H(26)	119.6
C(7) - C(8) - H(8)	126.2	С(21)-С(26)-Н(26)	119.6
C(8) - C(9) - C(10)	105.04(15)	C(28)-C(27)-C(32)	118.00(16)
C(8)-C(9)-C(21)	126.42(15)	C(28)-C(27)-C(12)	120.48(15)
C(10)-C(9)-C(21)	128.52(15)	C(32)-C(27)-C(12)	121.46(16)
N(2)-C(10)-N(1)	126.51(15)	C(29)-C(28)-C(27)	121.13(16)
N(2)-C(10)-C(9)	123.51(15)	С(29)-С(28)-Н(28)	119.4
N(1)-C(10)-C(9)	109.95(14)	С(27)-С(28)-Н(28)	119.4
N(2)-C(11)-N(3)	128.40(15)	C(30)-C(29)-C(28)	120.17(17)
N(2)-C(11)-C(12)	121.53(15)	С(30)-С(29)-Н(29)	119.9
N(3)-C(11)-C(12)	110.06(14)	С(28)-С(29)-Н(29)	119.9
C(13)-C(12)-C(11)	105.46(15)	C(29)-C(30)-C(31)	119.45(17)
C(13)-C(12)-C(27)	128.14(15)	С(29)-С(30)-Н(30)	120.3
C(11)-C(12)-C(27)	126.25(15)	С(31)-С(30)-Н(30)	120.3
C(12)-C(13)-C(14)	107.56(15)	C(32) - C(31) - C(30)	120.54(17)
С(12) –С(13) –Н(13)	126.2	С(32)-С(31)-Н(31)	119.7
C(14) - C(13) - H(13)	126.2	C(30) - C(31) - H(31)	119.7
N(3) - C(14) - C(13)	111.13(15)	C(31) - C(32) - C(27)	120.71(17)
N(3) - C(14) - C(15)	$123 \ 31 \ (16)$	C(31) = C(32) = H(32)	119 6
C(13) = C(14) = C(15)	$125 \ 42(15)$	C(27) = C(32) = H(32)	119 6
C(20) = C(15) = C(16)	118 16(16)	C(38) = C(33) = C(34)	119 18(15)
C(20) = C(15) = C(14)	$121 \ 47(16)$	C(38) = C(33) = P(1)	123, 00(13)
C(16) = C(15) = C(14)	120 $35(17)$	C(34) = C(33) = D(1)	123.00(13)
C(17) - C(15) - C(14)	120.33(17)	C(34) = C(33) = P(1)	117.01(12)
C(17) = C(16) = C(15)	120.79(19)	C(35) = C(34) = C(35)	120.10(10)
C(17) = C(16) = H(16)	119.6	C(35) = C(34) = H(34)	119.9
C(15) - C(16) - H(16)	119.0	C(33) = C(34) = H(34)	119.9
C(18) - C(17) - C(16)	120.35(18)	C(36) - C(35) - C(34)	120.20(17)
C(18) - C(17) - H(17)	119.8	С (36) – С (35) – Н (35)	119.9
C(16) - C(17) - H(17)	119.8	C (34) -C (35) -H (35)	119.9
C(17) - C(18) - C(19)	119.73(18)	C(37) - C(36) - C(35)	119.83(16)
С(1/)-С(18)-Н(18)	120.1	С(37)-С(36)-Н(36)	120.1
С(19)-С(18)-Н(18)	120.1	С(35)-С(36)-Н(36)	120.1
C(20)-C(19)-C(18)	120.14(19)	C(36)-C(37)-C(38)	120.44(17)
С(20)-С(19)-Н(19)	119.9	С(36)-С(37)-Н(37)	119.8
С(18)-С(19)-Н(19)	119.9	С(38)-С(37)-Н(37)	119.8
C(19)-C(20)-C(15)	120.81(17)	C(37)-C(38)-C(33)	120.17(17)

С(37)-С(38)-Н(38)	119.9	С(46)-С(47)-Н(47)	119.7
С(33)-С(38)-Н(38)	119.9	С(48)-С(47)-Н(47)	119.7
C(40)-C(39)-C(44)	118.56(16)	C(49)-C(48)-C(47)	119.40(18)
C(40)-C(39)-P(1)	119.19(13)	С(49)-С(48)-Н(48)	120.3
C(44)-C(39)-P(1)	122.24(13)	С(47)-С(48)-Н(48)	120.3
C(41)-C(40)-C(39)	120.46(17)	C(50)-C(49)-C(48)	120.31(18)
C(41)-C(40)-H(40)	119.8	С(50)-С(49)-Н(49)	119.8
С(39)-С(40)-Н(40)	119.8	С(48)-С(49)-Н(49)	119.8
C(42)-C(41)-C(40)	120.46(18)	C(49)-C(50)-C(45)	120.85(17)
C(42)-C(41)-H(41)	119.8	С(49)-С(50)-Н(50)	119.6
C(40)-C(41)-H(41)	119.8	С(45)-С(50)-Н(50)	119.6
C(43)-C(42)-C(41)	119.64(17)	N(1)-Cu(1)-N(3)	94.49(6)
С(43)-С(42)-Н(42)	120.2	N(1)-Cu(1)-P(1)	130.08(4)
C(41)-C(42)-H(42)	120.2	N(3)-Cu(1)-P(1)	133.13(4)
C(42)-C(43)-C(44)	120.34(17)	C(7)-N(1)-C(10)	105.89(14)
С(42)-С(43)-Н(43)	119.8	C(7)-N(1)-Cu(1)	133.03(12)
С(44)-С(43)-Н(43)	119.8	C(10)-N(1)-Cu(1)	117.79(10)
C(43)-C(44)-C(39)	120.53(17)	C(10)-N(2)-C(11)	127.67(15)
С(43)-С(44)-Н(44)	119.7	C(14)-N(3)-C(11)	105.74(14)
С(39)-С(44)-Н(44)	119.7	C(14)-N(3)-Cu(1)	135.27(12)
C(50)-C(45)-C(46)	118.48(17)	C(11)-N(3)-Cu(1)	117.09(11)
C(50)-C(45)-P(1)	118.14(13)	C(45)-P(1)-C(39)	101.35(8)
C(46)-C(45)-P(1)	123.20(13)	C(45)-P(1)-C(33)	104.17(8)
C(47)-C(46)-C(45)	120.32(17)	C(39)-P(1)-C(33)	102.49(8)
С(47)-С(46)-Н(46)	119.8	C(45)-P(1)-Cu(1)	114.81(6)
С(45)-С(46)-Н(46)	119.8	C(39)-P(1)-Cu(1)	117.19(5)
C(46)-C(47)-C(48)	120.62(17)	C(33)-P(1)-Cu(1)	114.91(6)

Table S4. Anisotropic displacement parameters $[Å^2 \times 10^3]$ for **2**. The anisotropic displacement factor exponent takes the form: -2 $\pi 2$ [(h a*)² U11 + ... + 2 h k a* b* U12]

	U11	U22	U33	U23	U13	U12
C(1)	17(1)	29(1)	38(1)	-9(1)	0(1)	2(1)
C(2)	24(1)	35(1)	63(2)	-23(1)	0(1)	-1(1)
C(3)	30(1)	61(2)	57(2)	-38(1)	2(1)	1(1)
C(4)	29(1)	67(2)	35(1)	-21(1)	7(1)	3(1)
C(5)	21(1)	41(1)	29(1)	-6(1)	3(1)	3(1)
C(6)	14(1)	30(1)	24(1)	-6(1)	-2(1)	5(1)
C(7)	16(1)	24(1)	19(1)	0(1)	-1(1)	2(1)
C(8)	17(1)	25(1)	23(1)	0(1)	2(1)	1(1)
C(9)	16(1)	22(1)	22(1)	1(1)	1(1)	0(1)
C(10)	16(1)	21(1)	19(1)	1(1)	-1(1)	0(1)
C(11)	18(1)	21(1)	18(1)	1(1)	-1(1)	0(1)
C(12)	20(1)	23(1)	17(1)	0(1)	0(1)	-1(1)
C(13)	21(1)	28(1)	19(1)	0(1)	3(1)	-1(1)
C(14)	18(1)	23(1)	19(1)	3(1)	-2(1)	0(1)

C(15)	19(1)	26(1)	19(1)	6(1)	-3(1)	-3(1)
C(16)	23(1)	31(1)	25(1)	4(1)	1(1)	-3(1)
C(17)	23(1)	38(1)	33(1)	10(1)	2(1)	-6(1)
C(18)	28(1)	32(1)	39(1)	9(1)	-5(1)	-12(1)
C(19)	32(1)	24(1)	36(1)	3(1)	-6(1)	-4(1)
C(20)	22(1)	26(1)	26(1)	4(1)	-2(1)	-2(1)
C(21)	19(1)	23(1)	23(1)	1(1)	0(1)	-1(1)
C(22)	26(1)	29(1)	36(1)	-3(1)	10(1)	-3(1)
C(23)	26(1)	32(1)	45(1)	-1(1)	11(1)	-8(1)
C(24)	28(1)	26(1)	38(1)	-1(1)	0(1)	-8(1)
C(25)	26(1)	27(1)	34(1)	-4(1)	2(1)	-3(1)
C(26)	21(1)	27(1)	26(1)	-2(1)	2(1)	-5(1)
C(27)	22(1)	23(1)	15(1)	1(1)	1(1)	-1(1)
C(28)	21(1)	28(1)	20(1)	-1(1)	2(1)	-1(1)
C(29)	32(1)	27(1)	23(1)	-3(1)	4(1)	4(1)
C(30)	35(1)	26(1)	21(1)	-3(1)	-2(1)	-5(1)
C(31)	24(1)	34(1)	26(1)	-3(1)	-3(1)	-3(1)
C(32)	23(1)	30(1)	21(1)	-3(1)	-1(1)	2(1)
C(33)	16(1)	20(1)	20(1)	3(1)	-1(1)	0(1)
C(34)	19(1)	22(1)	21(1)	3(1)	-1(1)	1(1)
C(35)	23(1)	30(1)	23(1)	4(1)	3(1)	7(1)
C(36)	16(1)	30(1)	32(1)	12(1)	2(1)	2(1)
C(37)	19(1)	23(1)	38(1)	4(1)	-5(1)	-3(1)
C(38)	20(1)	22(1)	30(1)	-2(1)	-2(1)	1(1)
C(39)	14(1)	19(1)	22(1)	-3(1)	-1(1)	0(1)
C(40)	26(1)	25(1)	22(1)	0(1)	-3(1)	0(1)
C(41)	28(1)	22(1)	33(1)	4(1)	-4(1)	-1(1)
C(42)	17(1)	20(1)	36(1)	-6(1)	1(1)	0(1)
C(43)	25(1)	26(1)	25(1)	-7(1)	2(1)	-1(1)
C(44)	24(1)	24(1)	22(1)	-1(1)	-1(1)	1(1)
C(45)	20(1)	17(1)	21(1)	-2(1)	0(1)	1(1)
C(46)	20(1)	29(1)	28(1)	1(1)	-1(1)	4(1)
C(47)	28(1)	32(1)	29(1)	3(1)	-5(1)	7(1)
C(48)	39(1)	27(1)	25(1)	4(1)	3(1)	0(1)
C(49)	26(1)	45(1)	38(1)	11(1)	3(1)	-7(1)
C(50)	20(1)	37(1)	33(1)	7(1)	-3(1)	-4(1)
Cu(1)	16(1)	21(1)	18(1)	-3(1)	-1(1)	-1(1)
N(1)	17(1)	21(1)	19(1)	-1(1)	-1(1)	0(1)
N(2)	17(1)	20(1)	18(1)	1(1)	-1(1)	0(1)
N(3)	17(1)	21(1)	19(1)	0(1)	-1(1)	-2(1)
P(1)	15(1)	19(1)	19(1)	-2(1)	-1(1)	0(1)

	х	У	Z	U(eq)
н(1)	8272	9872	6324	34
H(2)	8155	11202	6983	49
Н(З)	7316	10919	7835	59
H(4)	6589	9297	8030	52
H(5)	6689	7962	7375	36
H(8)	6191	6986	6533	26
H(13)	11409	7147	4154	27
H(16)	12917	8182	4449	31
H(17)	14157	9544	4492	38
H(18)	13735	11075	4953	40
H(19)	12056	11245	5374	37
H(20)	10820	9876	5348	30
H(22)	5263	5668	6135	36
H(23)	4420	4139	5850	41
H(24)	5243	3042	5214	37
H(25)	6943	3482	4874	35
H(26)	7807	5009	5163	30
H(28)	11006	5204	3952	27
H(29)	10299	3922	3349	32
Н(30)	8416	3732	3206	33
H(31)	7243	4823	3681	34
Н(32)	7940	6114	4278	29
H(34)	12268	7754	5991	25
H(35)	14105	7728	5767	30
Н(Зб)	15346	8861	6219	31
H(37)	14756	10004	6903	32
Н(38)	12920	10054	7124	29
H(40)	10485	10876	6211	29
H(41)	10290	12568	6530	33
H(42)	10409	12935	7497	29
Н(43)	10736	11606	8146	30
H(44)	10930	9907	7834	28
Н(46)	12485	8111	7617	31
H(47)	12266	7262	8472	36
Н(48)	10529	6813	8753	36
Н(49)	9011	7165	8155	44
H(50)	9224	7969	7287	36

Table S5. Hydrogen coordinates (× $10^4)$ and isotropic displacement parameters (Å 2 × $10^3)$ for 2.

X-ray Structural Data for 3

Figure S6. Thermal ellipsoid plot of (Ph₃P)Ag^I(tetraphenylazadipyrromethene) (**3**). Ellipsoids are drawn at 50% probability; data were collected at 100 K.

```
Table S6. Crystal data and structure refinement for 3.
Identification code: JB061206
Empirical formula: C50 H37 Ag N3 P
Formula weight: 818.67
Temperature: 100(2) K
Wavelength: 0.71073 Å
Crystal system: Triclinic
Space group: Pī
Unit cell dimensions:
a = 15.0342(2) Å, \alpha = 89.4080(10)^{\circ}
b = 17.0484(3) Å, \beta = 77.7770(10)^{\circ}
c = 26.9464(4) \text{ Å}, \gamma = 70.7410(10)^{\circ}
Volume, Z: 6359.03(17) Å<sup>3</sup>, 6
Density (calculated): 1.283 Mg/m<sup>3</sup>
Absorption coefficient: 0.550 \text{ mm}^{-1}
F(000): 2520
Crystal size: 0.27 \times 0.24 \times 0.10 mm
Crystal shape, color: trapezoid, purple
\theta range for data collection: 3.15 to 27.50°
Limiting indices: -19 \le h \le 19, -22 \le k \le 21, -33 \le l \le 35
Reflections collected: 66123
Independent reflections: 27307 (R(int) = 0.0335)
Completeness to \theta = 25°: 95.2 %
Absorption correction: multi-scan
Max. and min. transmission: 0.9471 and 0.8657
Refinement method: Full-matrix least-squares on F^2
Data / restraints / parameters: 27307 / 954 / 1486
Goodness-of-fit on F^2: 1.681
Final R indices [I>2\sigma(I)]: R1 = 0.0369, wR2 = 0.0645
R indices (all data): R1 = 0.0500, wR2 = 0.0629
Largest diff. peak and hole: 0.924 and -0.767 e \times \text{\AA}^{-3}
```

Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit are based on F^2 , conventional R-factors R are based

on F, with F set to zero for negative F^2 . The threshold expression of F^2 > $2\sigma(F^2)$ is used only for calculating R-factors

Treatment of hydrogen atoms:

All hydrogen atoms were placed geometrically and were refined with an isotropic displacement parameter 1.5 (methyl) or 1.2 times (all others) that of the neighboring carbon atom.

Table S7. Atomic coordinates [× 10⁴] and equivalent isotropic displacement parameters $[Å^2 \times 10^3]$ for **3.** U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	X	V	Z	U (ea)
		2	_	- (- 1)
Agl	0.405551(14)	0.172793(12)	0.971474(8)	0.02904(5)
Ag2	0.620248(12)	0.365208(11)	0.748755(7)	0.01926(5)
Ag3	0.895352(12)	0.315869(11)	0.479884(7)	0.01635(4)
Р3	0.75857(4)	0.27524(4)	0.48876(2)	0.01538(13)
P2	0.72606(4)	0.22990(4)	0.72036(2)	0.01744(13)
P1	0.30178(5)	0.31187(4)	0.97783(3)	0.03299(18)
N4	0.46330(13)	0.43825(12)	0.76879(7)	0.0205(5)
NG	0.63544(13)	0.49298(11)	0.75680(7)	0.0189(4)
N7	0.93512(13)	0.41384(11)	0.51684(7)	0.0158(4)
N9	1.05267(13)	0.27022(11)	0.44472(7)	0.0168(4)
N1	0.54722(15)	0.11685(12)	0.99481(8)	0.0259(5)
C115	0.70347(15)	0.29217(14)	0.43356(8)	0.0161(5)
C121	0.78119(15)	0.16437(13)	0.49665(9)	0.0165(5)
C126	0.72994(16)	0.13351(14)	0.53683(9)	0.0199(5)
C58	0.71794(17)	0.51029(14)	0.74659(9)	0.0203(5)
C65	0.82129(15)	0.22478(14)	0.66456(9)	0.0171(5)
N8	1.10612(13)	0.33326(11)	0.50851(7)	0.0171(4)
C69	0.92011(16)	0.16525(15)	0.58217(9)	0.0227(6)
C122	0.85499(16)	0.10837(14)	0.46075(9)	0.0242(6)
C127	0.66425(15)	0.32794(13)	0.54386(8)	0.0150(5)
C105	1.12058(15)	0.27919(14)	0.46990(9)	0.0167(5)
C70	0.84675(16)	0.16642(14)	0.62382(9)	0.0188(5)
C128	0.56727(16)	0.33826(14)	0.54729(9)	0.0204(5)
C106	1.21367(16)	0.21603(14)	0.44904(9)	0.0188(5)
C145	1.30431(16)	0.20010(15)	0.46655(9)	0.0223(6)
C107	1.19805(16)	0.17125(14)	0.41216(9)	0.0207(5)
C.5	0.54878(17)	0.01517(14)	0.90255(9)	0.0222(6)
C131	0.62205(16)	0.39943(14)	0.62653(9)	0.0198(5)
C120	0.66258(16)	0.23749(15)	0.41748(9)	0.0221(6)
C104	1 02455(16)	0, 39336(14)	0.52985(9)	0 0165(5)
C129	0 49791(17)	0.37882(15)	0.59047(9)	0.0238(6)
C132	0.69136(16)	0.35834(13)	0.58388(9)	0.0233(3)
N2	0.62228(14)	0.036031(13)	0.92167(8)	0.0215(5)
N3	0.02220(11) 0.44949(14)	0.01010(12) 0.05681(12)	0.92107(0) 0.92145(8)	0.0210(5) 0.0235(5)
C 9 5	0.55534(17)	0.00001(12) 0.71698(15)	0.72451(10)	0.0238(6)
C103	1 01803(16)	0.45043(14)	0.72101(10) 0.57129(9)	0.0230(0) 0.0185(5)
C56	0.60580(17)	0.43043(14) 0.62907(14)	0.37123(9) 0.73392(9)	0.0100(5) 0.0219(6)
C119	0.00000(17) 0.62663(17)	0.02007(14) 0.24974(15)	0.7333(9)	0.0219(0) 0.0254(6)
C108	1 09952(16)	0.24574(15) 0.20510(14)	0.21038(9)	0.0234(5)
C 5 5	1.05552(10) 0.56271(16)	0.56576(14)	0.74934(9)	0 0191(5)
N5	0.00271(10) 0.46904(13)	0.57898(12)	0.75598(7)	0.0189(1)
CAE	0.40904(13) 0.73706(17)	-0 06083(15)	0.73330(7) 0.81860(0)	0.0109(4) 0.0220(5)
C-10 C-6	0.75700(17) 0.56200(16)	-0.03594(14)	0.01000(9) 0.85603(0)	0.0220(3)
C15	0.50209(10) 0.65500(16)	-0.03304(14)	0.000000(3)	0.0210(3)
C19	0.03300(10) 0.74650(10)	-0.00330(14) -0.10314(15)	0.02204(9) 0.75719/10	0.0203(3)
C19	0.14000(10) 0.00701(17)	-0.19014(10)	0.75255(10)	0.0200(0)
C 5 0	0.02/21(1/)	-0.10909(10)	0.73333(9) 0.7011/(0)	0.0237(0)
000	U.UUUUUU(I/)	∪•⊥∪∪//(⊥4)	∪・/シエエ4(ツ)	0.0240(0)

C4	0.62377(17)	0.05689(14)	0.96259(9)	0.0234(6)
C3	0.71330(18)	0.04910(15)	0.97758(9)	0.0260(6)
C71	0.79161(17)	0.17527(14)	0.76708(9)	0.0210(5)
C67	0.94535(18)	0.27892(15)	0.62209(10)	0.0267(6)
C66	0.87070(17)	0.28146(15)	0.66320(9)	0.0230(6)
C57	0.70256(17)	0.59296(14)	0.73142(9)	0.0239(6)
C72	0.88976(18)	0.12933(15)	0.75460(10)	0.0261(6)
C101	0.87652(16)	0.48024(14)	0.54752(9)	0.0175(5)
C102	0.92539(16)	0.50463(14)	0.58118(9)	0.0186(5)
C130	0.52553(17)	0.40965(14)	0.62998(9)	0.0227(6)
C52	0.29929(17)	0.47401(16)	0.78337(9)	0.0269(6)
C53	0.31809(17)	0.54731(15)	0.77716(9)	0.0242(6)
C110	1.08109(17)	0.08906(15)	0.36350(9)	0.0243(6)
C116	0.70814(15)	0.35986(14)	0.40469(9)	0.0190(5)
C59	0.80965(16)	0.45158(14)	0.75467(9)	0.0205(5)
C114	0.96679(16)	0.22597(15)	0.36365(9)	0.0204(5)
C47	0.82234(17)	-0.10386(15)	0.78449(9)	0.0256(6)
C113	0.91832(17)	0.19452(16)	0.33530(9)	0.0258(6)
C150	1.37527(18)	0.12056(16)	0.45712(10)	0.0297(6)
C118	0.63236(16)	0.31650(15)	0.34467(9)	0.0244(6)
C109	1.04893(16)	0.17360(14)	0.37884(9)	0.0188(5)
C2	0.68811(19)	0.10454(15)	1.01904(10)	0.0308(6)
C139	1.09229(16)	0.45003(15)	0.59923(9)	0.0199(5)
C135	0.63895(16)	0.53564(14)	0.50837(9)	0.0213(5)
C134	0.73705(16)	0.50682(13)	0.50538(9)	0.0185(5)
C136	0.57560(17)	0.57688(14)	0.55258(9)	0.0229(6)
C133	0.77380(16)	0.51737(13)	0.54726(9)	0.0174(5)
C54	0.42275(17)	0.52465(15)	0.76719(9)	0.0213(5)
C82	0.59818(16)	0.18952(15)	0.67389(9)	0.0216(5)
C64	0.81157(18)	0.38935(15)	0.78878(9)	0.0231(6)
C146	1.32414(17)	0.26056(16)	0.49266(10)	0.0269(6)
C140	1.08625(17)	0.52346(16)	0.62453(9)	0.0247(6)
C68	0.97015(17)	0.22092(15)	0.58144(9)	0.0231(6)
C138	0.70893(17)	0.56111(14)	0.59108(9)	0.0214(5)
C77	0.66931(16)	0.15865(14)	0.70169(9)	0.0185(5)
C81	0.55554(17)	0.13808(15)	0.65703(10)	0.0253(6)
C117	0.67296(16)	0.37208(15)	0.36079(9)	0.0227(6)
C63	0.89853(19)	0.33266(16)	0.79470(10)	0.0298(6)
C80	0.58212(18)	0.05534(16)	0.66831(10)	0.0286(6)
C143	1.23197(17)	0.37846(17)	0.63365(10)	0.0291(6)
C144	1.16675(17)	0.37713(16)	0.60439(9)	0.0249(6)
C8	0.40423(17)	0.03104(14)	0.89039(10)	0.0241(6)
C'78	0.69541(17)	0.07550(14)	0.71285(9)	0.0234(6)
C89	0.24434(18)	0.63144(16)	0./818/(10)	0.0290(6)
C73	0.9351(2)	0.08620(16)	0.79131(11)	0.0321(7)
	0.59501(19)	0.75487(15)	0.683/0(10)	0.0270(6)
	0.38932(17)	0.40885(15)	0.7763(9)	0.0247(6)
C60	0.89667(18)	0.43633(16) 0.02697(14)	0.72757(10)	0.0287(6)
C125	0.4/101(1/) 0.75200/171	-0.02007(14) 0.0/200715)	0.0000(10)	0.0233(0) 0.0261(6)
C76	0.74070(19)	0.07020(15) 0.17895(16)	0.34090(10) 0.81724(10)	0.0201(0)
C96	0 47005(17)	0.76432(15)	0 75760(10)	0.0267(6)
C83	0 40217(17)	0 32026(15)	0.78086(10)	0 0278(6)
C62	0.98413(19)	0.33790(17)	0.76722(11)	0.0343(7)
	- , - /	、 /	、 = /	/

C1 0.5 C33 0.5 C9 0.2 C88 0.3 C14 0.2 C39 0.8 C123 0.8 C137 0.6 C79 0.6	8698(19) 0. 304(2) 0. 9792(18) 0. 4677(19) 0. 3585(18) 0. 1179(18) -0. 7650(19) 0. 1084(16) 0. 5127(18) 0.	14484 (15) 21211 (16) 06240 (15) 28629 (17) 10141 (15) 00634 (16) 02348 (15) 59070 (14) 02425 (15)	1.02808(10) 1.06755(10) 0.89610(11) 0.75830(10) 0.94179(11) 0.95462(9) 0.46469(10) 0.59355(10) 0.69636(10)	0.0294(6) 0.0345(7) 0.0279(6) 0.0323(7) 0.0322(7) 0.0261(6) 0.0332(7) 0.0233(6) 0.0273(6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1000000000000000000000000000000000000	02425 (15) 08881 (17) 05816 (16) 45123 (18) 13267 (18) 08062 (16) 11059 (16) 16288 (18) 39988 (17) 26794 (16) 01370 (17) 13191 (16) 22579 (17) 84672 (15) 83785 (16) 13567 (18) 10333 (17) 52409 (17) 88339 (16) 00696 (16) 05467 (17) 11137 (19) 20264 (18) 18397 (17) 24202 (18) 64066 (18) 03828 (18) 29393 (19) 15142 (18) 26531 (18) 12403 (18) 08540 (18)	0.84012(11) 0.84012(11) 0.33544(10) 0.65894(10) 0.90696(10) 0.92657(10) 0.32116(10) 0.50062(12) 0.73397(11) 0.80666(10) 0.96132(10) 0.94682(12) 1.08939(10) 0.74948(11) 0.67641(11) 0.67641(11) 0.85361(11) 0.47341(11) 0.65418(10) 0.70914(11) 0.50506(10) 0.85570(12) 0.91478(10) 0.75976(11) 0.80816(11) 0.75976(11) 0.80816(11) 0.77440(10) 0.94181(10) 1.12457(11) 0.78435(12) 1.08262(11) 0.90627(13) 0.86091(13)	0.0273 (6) 0.0273 (6) 0.0380 (7) 0.0309 (6) 0.0312 (6) 0.0312 (6) 0.0314 (7) 0.0314 (7) 0.0306 (6) 0.0377 (7) 0.0344 (7) 0.0312 (7) 0.0312 (7) 0.0312 (7) 0.0374 (7) 0.0374 (7) 0.0375 (7) 0.0325 (7) 0.0329 (7) 0.0329 (7) 0.0357 (7) 0.0357 (7) 0.0357 (7) 0.0357 (7) 0.0357 (7) 0.0351 (7) 0.0361 (7) 0.0361 (7) 0.0361 (7) 0.0461 (9) 0.0452 (8) 0.0447 (8) 0.0447 (8)
C16 0.2	2420(18) 0.	29401 (16)	0.79560(12) 0.89566(10)	0.0298(6)
	819(2) 0.	7181721	0.00040(11) 0.78035(11)	0.0342(7)
C92 0.1	$0 \pm 9(2) = 0.$	7870(2)	0.70033(11) 0.79305(11)	0.0440(9)
C27 0.1	343(2) 0.	35659(17)	1 04120(12)	0.0389(8)
C15 0.2	103(2) 0.	34077(17)	$\begin{array}{c} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	0 0439(8)
C37 0.5	222(3) 0.	33184(19)	1 11765(12)	0 0587(11)
C93 0.1	907(2) 0	77972(19)	$0 \ 80087(13)$	0.0572(10)
C21 0.3	770(2) 0.	3741 (2)	0.95550(14)	0.0570(10)
C28 0.2	316(3) 0.	43275(19)	1.06065(14)	0.0659(12)
C22 0.3	649(3) 0.	4244(2)	0.91648(14)	0.0710(12)
C29 0.1	791(4) 0.	4626(3)	1.10964(19)	0.0905(19)

C18	0.0759(2)	0.3831(2)	0.87932(14)	0.0730(13)
C32	0.1851(3)	0.3122(3)	1.07126(14)	0.0799(14)
C36	0.4265(3)	0.3471(2)	1.13760(11)	0.0552(11)
C20	0.1266(3)	0.4098(3)	0.95350(16)	0.115(2)
C30	0.1314(3)	0.4198(4)	1.1385(2)	0.111(2)
C19	0.0614(3)	0.4311(3)	0.92264(18)	0.135(3)
C23	0.4298(6)	0.4637(3)	0.89739(18)	0.120(2)
C31	0.1312(3)	0.3439(4)	1.11975(16)	0.116(2)
C24	0.5040(5)	0.4582(4)	0.9195(3)	0.181(3)
C25	0.169(6)	0.292(8)	0.409(11)	0.295(8)
C26	0.123(4)	0.207(6)	0.311(8)	0.228(6)

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. Table S8. Bond lengths $[\text{\AA}]$ and angles [deg] for 3.

Atom	A	В	Dist	C15b	P1	1.863
	C1	N1	1.346	C16a	H16b	0.884
	C1	C2	1.415	C16a	H16a	0.930
	C1	C33	1.473	C16a	C15b	1.336
	C2	Н2	0.931	C16a	C17a	1.390
	C2	C3	1.372	C16a	C15a	1.391
	C2	C1	1.415	C16a	C17b	1.494
	C3	C2	1.372	C16b	H16b	0.930
	C3	C4	1.456	C16b	H16a	0.985
	C3	C39	1.475	C16b	C17a	1.278
	C4	N2	1.319	C16b	C17b	1.381
	C4	N1	1.395	C16b	C15b	1.394
	C4	C3	1.456	C16b	C15a	1.455
	C5	N2	1.322	C17a	H17a	0.931
	C5	NЗ	1.402	C17a	H17b	0.976
	C5	C6	1.452	C17a	C16b	1.278
	C6	C7	1.367	C17a	C16a	1.390
	C6	C5	1.452	C17a	C18a	1.391
	C6	C45	1.473	C17a	C18b	1.448
	C7	H7	0.929	C17b	H17a	0.891
	C7	C6	1.367	C17b	H17b	0.931
	C7	C8	1.431	C17b	C18a	1.360
	C.8	N.3	1.344	C17b	C18b	1.360
	C8	C7	1.431	C17b	C16b	1.381
	C8	C 9	1.468	C17b	C16a	1.494
	C9	C10	1.396	C18a	H18a	0.930
	C9	C14	1.399	C18a	H18b	1.142
	C 9	C.8	1.468	C18a	C17b	1.360
	C10	H10	0.930	C18a	C19a	1.388
	C10	C11	1.386	C18a	C17a	1.391
	C10	C9	1.396	C18a	C19b	1.491
	C11	H11	0.931	C18b	H18b	0.929
	C11	C12	1.386	C18b	H18a	1.053
	C11	C10	1.386	C18b	C17b	1.360
	C12	H12	0.931	C18b	C19b	1.361
	C12	C13	1.369	C18b	C17a	1.448
	C12	C11	1.386	C18b	C19a	1.556
	C13	H13	0.930	C19a	H19a	0.931
	C13	C12	1.369	C19a	H19b	1.279
	C13	C14	1.380	C19a	C18a	1.388
	C14	H14	0.929	C19a	C20a	1.391
	C14	c13	1.380	C19a	C20b	1.542
	C14	C9	1.399	C19a	C18b	1.556
	C15a	C20a	1.390	C19b	H19b	0.930
	C15a	C16a	1.391	C19b	H19a	1.309
	C15a	C16b	1.455	C19b	C18b	1.361
	C15a	C20b	1.495	C19h	C20b	1.364
	C15a	P1	1.800	C19b	C18a	1.491
	C15b	C16a	1.336	C19b	C20a	1.614
	C15b	C16b	1.394	C20a	H20a	0.929
	C15b	C20b	1.407	C20a	H20b	1.227
	C15b	C20a	1.483	C20a	C15a	1.390

C20a	C19a	1.391	
C20a	C15b	1.483	
C20a	C19b	1.614	
C20b	H20b	0.929	
C20b	н20а	1 288	
C20D	C19b	1 364	
C20D	C19D C1Eb	1 407	
	C15b C15b	1.407	
C20b	CI5a	1.495	
C20b	C19a	1.542	
C21a	C26b	1.266	
C21a	C22a	1.388	
C21a	C26a	1.390	
C21a	C22b	1.429	
C21a	P1	1.891	
C21b	C22a	1.360	
C21b	C22b	1.390	
C21b	C26b	1.390	
C21b	C26a	1 625	
C21b	P1	1 729	
C222	ц 1 1 2 2	0 931	
C22a	022h	1 152	
C22a	C23D C21b	1 260	
CZZA	C21D	1.360	
CZZA	CZIA	1.388	
C22a	C23a	1.391	
C22b	H22a	0.876	
C22b	H22b	0.930	
C22b	C21b	1.390	
C22b	C23b	1.391	
C22b	C21a	1.429	
C23a	C24b	0.848	
C23a	H23a	0.929	
C23a	H23b	1.275	
C23a	C24a	1.390	
C23a	C22a	1.391	
C23b	H23b	0.930	
C23b	H23a	0.957	
C23b	C22a	1.152	
C2.3b	C24b	1.389	
C23b	C22b	1 391	
C24a	C24b	0 868	
C24a	0210 Н24а	0.929	
C24a	11240 11246	1 232	
C24a	C222	1 200	
C24a	C25a	1 200	
C24a	C25a C25b	1 422	
C24a	0250	1.422	
CZ4b	CZ3a	0.848	
C24b	C24a	0.868	
C24b	H24b	0.930	
C24b	C23b	1.389	
C24b	C25b	1.390	
C25a	H25a	0.929	
C25a	C25b	1.306	
C25a	C24a	1.390	
C25a	C26a	1.390	

C25b	H25b	0.931
C25b	C25a	1.306
C25b	C24b	1.390
C25b	C26b	1.390
C25b	C24a	1.422
C26a	H26a	0.931
C26a	C26b	1.002
C26a	C25a	1.390
C26a	C21a	1.390
C26a	C21b	1.625
C26b	H26b	0.929
C26b	C26a	1.002
C26b	C21a	1.266
C26b	C21b	1.390
C26b	C25b	1.390
C27a	C28b	1.336
C27a	C28a	1.390
C27a	C32a	1.390
C27a	C32D	1 720
C27a	PI C222	1 1 1 2
C27b	C28b	1 390
C27b	C32b	1 390
C27b	C28a	1 517
C27b	P1	1 909
C28a	H28a	0 931
C28a	C27a	1.390
C28a	C29a	1.390
C28a	C27b	1.517
C28b	H28b	0.931
C28b	C29a	1.120
C28b	C27a	1.336
C28b	C29b	1.388
C28b	C27b	1.390
C29a	H29a	0.928
C29a	H29b	0.943
C29a	C28b	1.120
C29a	C28a	1.390
C29a	C30a	1.391
C29b	H29b	0.931
C29b	C28b	1.388
C29b	C30b	1.391
C30a	H30a	0.930
C30a	H30b	1.324
C30a	C31a	1.390
C30a	C29a	1.391
	HJUD	0.930
	HJUA	1.041
		1.055
C30b	COLD	1 201
	U212	U 030 T.3AT
C315	C30b	1 055
C31a	C305	1 390
UJIA	UJZA	1.390

Table S8	3 (cont	inued).			
C31a	C30a	1.390	C44	C39	1.399
C31a	C32b	1.521	C45	C50	1.397
C31b	H31a	0.827	C45	C46	1.401
C31b	H31b	0.931	C45	C6	1.473
C31b	C30b	1.389	C46	H46	0.930
C31b	C32b	1.390	C46	C47	1.389
C31b	C32a	1.529	C46	C45	1.401
C32a	H32a	0.931	C47	H47	0.930
C32a	C27b	1.143	C47	C48	1.383
C32a	H32b	1.325	C47	C46	1.389
C32a	C31a	1.390	C48	H48	0.929
C32a	C27a	1.390	C48	C47	1.383
C32a	C31b	1.529	C48	C49	1.387
C32b	H32a	0.867	C49	H49	0.929
C32b	H32b	0.931	C49	C50	1.386
C32b	C27b	1.390	C49	C48	1.387
C32b	C31b	1.390	C50	H50	0.931
C32b	C31a	1.521	C50	C49	1.386
C32b	C2/a	1.681	C50	C45	1.39/
C33	C34	1.382	C51	N4	1.345
033	C38	1.406	C51	C52	1.420
C33	CL	1.4/3	C51	083	1.465
C34	H34 C22	0.930	C52	HJZ CE2	1 271
C34	C35 C35	1.302	C52	C55 CE1	1.3/1
C34 C35	U35 1125	1.405	C52	C51 C52	1.42U
C35	пор СЗб	0.930	C53	C52	1.571
C35	C34	1 405	C53	C94	1 433
C36	ЦЗЧ НЗ6	0 930	C54	N5	1 327
C36	C37	1 365	C54	NJ NJ	1 401
C36	C35	1 371	C54	C53	1 453
C37	Н37	0.929	C55	N.5	1.325
C37	C36	1.365	C55	N6	1.402
C37	C38	1.386	C55	C56	1.453
C38	Н38	0.929	C56	C57	1.360
C38	C37	1.386	C56	C55	1.453
C38	C33	1.406	C56	C95	1.483
C39	C40	1.387	C57	Н57	0.930
C39	C44	1.399	C57	C56	1.360
C39	C3	1.475	C57	C58	1.421
C40	H40	0.930	C58	NG	1.339
C40	C41	1.387	C58	C57	1.421
C40	C39	1.387	C58	C59	1.471
C41	H41	0.930	C59	C60	1.395
C41	C42	1.369	C59	C64	1.397
C41	C40	1.387	C59	C58	1.471
C42	H42	0.929	C60	H60	0.930
C42	C41	1.369	C60	C61	1.390
C42	C43	1.381	C60	C59	1.395
C43	H43	0.930	C61	H61	0.930
C43	C42	1.381	C61	C62	1.379
C43	C44	1.389	C61	C60	1.390
C44	H44	0.930	C62	H62	0.930
C44	C43	1.389	C62	C61	1.379

C62	CG3	1 382	C80	C81	1 389
002	1160	1.002	600	1101	1.000
663	HOS	0.929	681	HØL	0.930
C63	C62	1.382	C81	C82	1.378
C63	C64	1.394	C81	C80	1.389
C64	Н64	0.930	C82	H82	0.931
C64	C63	1.394	C82	C81	1.378
C 6 4	C59	1 397	C82	C77	1 405
065	C70	1 201	C02	C 9 9	1 400
005	070	1.391	000	000	1.400
C65	066	1.395	083	084	1.403
C65	P2	1.825	C83	C51	1.465
C66	H66	0.930	C84	H84	0.929
C66	C67	1.387	C84	C85	1.383
C66	C65	1.395	C84	C83	1.403
C67	Н67	0 930	C.85	Н85	0 930
007		1 207	C 9 5	C 9 4	1 202
007	000	1.307	285	C04 202	1 207
067	068	1.388	085	086	1.38/
C68	H68	0.931	C86	H86	0.930
C68	C69	1.387	C86	C85	1.387
C68	C67	1.388	C86	C87	1.392
C69	Н69	0.928	C87	Н87	0.931
C69	C70	1 384	C87	C88	1 383
C 6 9	C 6 8	1 387	C87	C86	1 392
070	1170	1.307	C07	1100	1.392
C70	H/U	0.930	088	H88	0.931
C70	C69	1.384	C88	C87	1.383
C70	C65	1.391	C88	C83	1.400
C71	C72	1.392	C89	C94	1.383
C71	C76	1.401	C89	C90	1.393
C71	P2	1.821	C89	C53	1.477
C72	 н72	0 929	C90	н90	0 929
072	072	1 206	C90	C 0 1	1 201
072	071	1,200	090	C91 C91	1.391
C72	C71	1.392	090	089	1.393
C73	H73	0.930	C91	H91	0.929
C73	C74	1.379	C91	C92	1.366
C73	C72	1.386	C91	C90	1.391
C74	Н74	0.930	C92	Н92	0.931
C74	C73	1.379	C92	C91	1.366
C74	C75	1 391	C92	C93	1 376
C75	U75	0 931	C92	п03 СЭЭ	0 930
075	1175 a76	1 200	C93	1195	1 270
C75	076	1.386	(93	092	1.376
C/5	C / 4	1.391	C93	C94	1.400
C76	Н76	0.930	C94	H94	0.930
C76	C75	1.386	C94	C89	1.383
C76	C71	1.401	C94	C93	1.400
C77	C78	1.378	C95	C96	1.395
C77	C82	1 405	C 9 5	C100	1 397
C77	D2	1 820	C 95	C56	1 / 83
070	エム ロフロ	T.023		U06	1.405
	п/б	0.930	096	пур	U.931
C/8	C / 1	1.3/8	C96	0.97	1.386
C78	C79	1.401	C96	C95	1.395
C79	H79	0.930	C97	Н97	0.931
C79	C80	1.376	C97	C98	1.375
C79	C78	1.401	C97	C96	1.386
C80	H80	0.930	C98	Н98	0.931
C80	C79	1 376	Cas	C 97	1 375
	<u> </u>		0.00	<u> </u>	±•0/0

C98	C99	1.382	
C99	Н99	0.929	
C99	C98	1.382	
C99		1.386	
C100	COO	0.929	
C100	C95	1 397	
C100	N7	1.338	
C101	C102	1.429	
C101	C133	1.459	
C102	H102	0.930	
C102	C103	1.368	
C102	C101	1.429	
C103	C102	1.368	
C103	C104	1.455	
C103	N8	1 324	
C104	N7	1.394	
C104	C103	1.455	
C105	N8	1.328	
C105	N9	1.393	
C105	C106	1.459	
C106	C107	1.369	
C106	C105	1.459	
C106	U145 H107	1.469	
C107	C106	1.369	
C107	C108	1.419	
C108	N9	1.348	
C108	C107	1.419	
C108	C109	1.464	
C109	C110	1.399	
C109	C114	1.404	
C109 C110	U108 U110	1.404	
C110	C111	1 375	
C110	C109	1.399	
C111	H111	0.930	
C111	C110	1.375	
C111	C112	1.393	
C112	H112	0.930	
C112	C113	1.379	
C112	UIII U113	1.393	
C113	C112	1 379	
C113	C114	1.388	
C114	H114	0.929	
C114	C113	1.388	
C114	C109	1.404	
C115	C120	1.390	
C115	C116 D2	1.392	
C116	гэ µ116	U 03U T'05à	
C116	C115	1.392	
<u> </u>	0 0		

C116	C117	1.393
C117	H117 C118	0.930
C117	C116	1.393
C118	H118	0.930
C118	C119	1.383
C118 C119	С117 н119	1.389
C119	C118	1.383
C119	C120	1.392
C120	H120	0.930
C120	C115 C119	1.390
C121	C126	1.393
C121	C122	1.396
C121	P3 u122	1.822
C122 C122	C123	1.380
C122	C121	1.396
C123	H123	0.931
C123 C123	C122 C124	1.380 1.386
C124	H124	0.929
C124	C125	1.379
C124	C123	1.386
C125 C125	C124	1.379
C125	C126	1.387
C126	H126	0.930
C126 C126	C125 C121	1.387
C127	C132	1.391
C127	C128	1.395
C127 C128	РЗ н128	1.821
C120	C129	1.393
C128	C127	1.395
C129	H129	0.930
C129 C129	C128	1.393
C130	H130	0.930
C130	C129	1.387
CI30 C131	СІЗІ н131	1.388 0.931
C131	C132	1.387
C131	C130	1.388
C132 C132	H132 C131	0.930 1 387
C132	C127	1.391
C133	C134	1.400
C133	C138	1.403
C134	H134	1.409 0.930
C134	C135	1.380

C134	C133	1 400	н
C135	0135 H135	0 931	H
C135	C134	1 380	H
C135	C136	1 394	H
C136	н136	0 931	H
C136	C137	1 381	H
C136	C135	1 394	н Н
C137	н137	0 930	н Н
C137	C138	1 380	H
C137	C136	1 381	H
C138	H138	0 929	H
C138	C137	1 380	H
C138	C133	1.403	H
C139	C144	1.393	H
C139	C140	1 398	H
C139	C103	1 471	H
C140	H140	0 931	H
C140	C141	1 385	H
C140	C139	1.398	H
C141	H141	0.931	H
C141	C140	1.385	H
C141	C142	1.387	H
C142	H142	0.929	H
C142	C143	1.381	H
C142	C141	1.387	H
C143	H143	0.930	H
C143	C142	1.381	H
C143	C144	1.387	H
C144	H144	0.930	H
C144	C143	1.387	H
C144	C139	1.393	H
C145	C146	1.394	H
C145	C150	1.407	H
C145	C106	1.469	H.
C146	H146	0.930	H.
C146	C147	1.380	H.
C146	C145	1.394	H.
C147	H147	0.929	H.
C147	C146	1.380	H2
C147	C148	1.389	H
C148	H148	0.929	H
C148	C149	1.373	H
C148	C147	1.389	H2
C149	H149	0.930	H2
C149	C148	1.373	H2
C149	C150	1.382	H
C150	H150	0.930	H
C150	C149	1.382	H.
C150	C145	1.407	H
H2	C2	0.931	H.
Н7	C7	0.929	H
H10	C10	0.930	H
H11	C11	0.931	H
H12	C12	0.931	H

H13	C13	0.930
H14	C14	0.929
H16a	C16a	0.930
H16a	C16b	0.985
H16b	C16a	0.884
H16b	C16b	0.930
H17a	C17b	0.891
H17a	C17a	0.931
H17b	C17b	0.931
H17b	C17a	0.976
H18a	C18a	0.930
H18a	C18b	1.053
H18b	C18b	0.929
H18b	C18a	1.142
H19a	C19a	0.931
H19a	C19b	1.309
H19b	C19b	0.930
H19b	C19a	1.279
H20a	C20a	0.929
H20a	C20b	1.288
H20b	C20b	0.929
H20b	C20a	1.227
H22a	C22b	0.876
H22a	C22a	0.931
H22b	C22b	0.930
H23a	H23b	0.818
H23a	C23a	0.929
H23a	C23b	0.957
H23b	H23a	0.818
H23b	C23b	0.930
H23b	C23a	1.275
H24a	C24a	0.929
H24b	C24b	0.930
H24b	C24a	1.232
H25a	C25a	0.929
H25b	C25b	0.931
H26a	C26a	0.931
H26b	C26b	0.929
H28a	C28a	0.931
H28b	C28b	0.931
H29a	H29b	0.832
H29a	C29a	0.928
H29b	H29a	0.832
H29b	C29b	0.931
HZ9D	C29a	0.943
H3Ua	H30D	0.813
HJUA	C3Ua	0.930
HJUA	U30D	1.041
DUCH U202	HJUA C20b	0.013
дусл чосц	aueu	1 201
пзир 1 спо	C312	1.324 0 007
пэта Пэта	U317 U317	0.02/
пэта пзта	C31~	0.930
пэта	UJIA	0.900

H31b	H31a	0.930	Н97	C97	0.931
u31h	C31h	0 931	цох	CAS	0 931
11510		0.931	1150	0.00	0.951
H32a	C32b	0.867	Н99	C99	0.929
H32a	C32a	0.931	H100	C100	0.929
uзрр	COCh	0 021	u102	C102	0 930
пзир	0320	0.931	11102		0.950
H32b	C32a	1.325	H107	C107	0.930
Н34	C34	0.930	H110	C110	0.929
ц35	C35	0 930	ц111	C111	0 930
1155	~~~	0.000			0.000
H36	C36	0.930	HIIZ	C112	0.930
Н37	C37	0.929	H113	C113	0.931
н38	C38	0 929	Н114	C114	0 929
114.0	C10	0 020	11116	0116	0 0 2 0
H40	C40	0.930			0.930
H41	C41	0.930	H117	C117	0.930
H42	C42	0.929	H118	C118	0.930
н43	C43	0 930	н119	C119	0 929
11 1 0	C 1 4	0.020	11120	0110	0.020
П44	044	0.930	HIZU	CIZU	0.930
H46	C46	0.930	H122	C122	0.931
H47	C47	0.930	H123	C123	0.931
н48	C48	0 929	н124	C124	0 929
1140		0.020	11124	0124	0.929
H49	C49	0.929	H125	C125	0.930
Н50	C50	0.931	H126	C126	0.930
Н52	C52	0.930	Н128	C128	0.931
1152	C57	0 020	u120	C120	0 030
пј/	0.57	0.930	піся	0129	0.930
H60	C60	0.930	H130	C130	0.930
Н61	C61	0.930	H131	C131	0.931
н62	C62	0 930	н132	C132	0 930
1162	002	0.020	111 2 4	C124	0 0 2 0
ноз	005	0.929	HI34	C134	0.930
H64	C64	0.930	H135	C135	0.931
H66	C66	0.930	H136	C136	0.931
н67	C67	0 930	н137	C137	0 930
1107		0.001	111.07	0120	0.000
НОО	608	0.931	HIJO	C138	0.929
Н69	C69	0.928	H140	C140	0.931
Н7О	C70	0.930	H141	C141	0.931
Н72	C72	0 929	Н142	C142	0 929
1172	072	0.020	111 1 2	C1 4 2	0 0 2 0
п/3	C73	0.930	П143	C145	0.930
Н74	C74	0.930	H144	C144	0.930
Н75	C75	0.931	H146	C146	0.930
Н76	C76	0 930	Н147	C147	0 929
1170	070	0.020	LI1 / O	C149	0 020
н/о	0.70	0.930	П140	0140	0.929
H'/9	C'/9	0.930	H149	C149	0.930
Н8О	C80	0.930	H150	C150	0.930
н81	C81	0 930	N1	C1	1 346
1101	001	0.021	N1	01	1 205
HØZ	682	0.931	IN L	C4	1.395
H84	C84	0.929	N1	Ag1	2.249
Н85	C85	0.930	N2	C4	1.319
н86	C 8 6	0 930	N2	C 5	1 322
1100	007	0.001	112	00	1 244
H8/	087	0.931	N3	08	1.344
H88	C88	0.931	N3	С5	1.402
Н90	C90	0.929	NЗ	Aq1	2.233
Н91	C91	0 929	N4	C51	1 345
1100	C02	0.021	т Л	051	1 101
пу∠	092	0.931	114	034	1.401
Н9З	C93	0.930	N4	Ag2	2.223
Н94	C94	0.930	N5	C55	1.325
Н96	C96	0.931	N5	C54	1.327
				~ ~ .	

	N6 N6 N7 N7 N8 N9 N9 P1 P1 P1 P1 P1 P1 P1 P1 P1	C58 C55 Ag2 C101 C104 Ag3 C104 C105 C108 C105 Ag3 C21b C27a C15a C15b C21a C27b Ag1	1.33 1.40 2.27 1.33 1.39 2.25 1.32 1.32 1.34 1.39 2.22 1.72 1.73 1.80 1.80 1.89 1.90 2.35	9 2 9 8 4 6 4 8 8 3 6 9 9 0 3 1 9 3	P2 P2 P2 P3 P3 P3 P3 P3 Ag1 Ag1 Ag1 Ag2 Ag2 Ag2 Ag2 Ag3 Ag3 Ag3	C71 C65 C77 Ag2 C127 C121 C115 Ag3 N3 N1 P1 N4 N6 P2 N9 N7 P3	1.821 1.825 2.353 1.821 1.822 1.822 2.343 2.233 2.249 2.353 2.229 2.353 2.229 2.353 2.229 2.353 2.229 2.353 2.229 2.353	
Atom	A	B	С	Angle	H12	C12	C11	119.96
	N1	C1 C1	C2	112.05	C13	C12	C11	120.09
	NI C2	C1	C33	123.02	H13 u13	C13	C12	120.00
	СZ H2	C2	C33	124.09	п13 С12	C13	C14 C14	119 95
	H2	C2	C1	126.41	H14	C14	C13	119 28
	C3	C2	C1	107.12	H14	C14	C9	119.22
	C2	C3	C4	105.81	C13	C14	C9	121.50
	C2	C3	C39	125.93	C20a	C15a	C16a	119.98
	C4	C3	C39	128.26	C20a	C15a	C16b	116.30
	N2	C4	N1	128.52	C20a	C15a	C20b	29.59
	N2	C4	C3	121.98	C20a	C15a	P1	122.94
	N1	C4	C3	109.27	C16a	C15a	C16b	3.73
	N2	C5	N3	128.87	C16a	C15a	C20b	112.21
	N2	C5	C6	121.58	C16a	C15a	P1	117.01
	N3	C5	C6	109.50	C16b	C15a	C20b	108.74
	C7	C6	C5	105.67	C16b	C15a	P1	120.65
	C'/	C6	C45	127.14	C20b	C15a	P1	120.35
	05	C6	C45	127.12	Cl6a Cl6a	CI5D Cl5b	C16b C20b	4.05
	H/ 117	C7	C6 C0	126.20	CI6a C16a	C15b C15b	C20D	117 25
	п/ Сб	C7		107 57	C16a	C15b	D1	116 21
	N3	C8	C7	111 23	C16b	C15b	C20b	117 79
	N3	C8	C9	123.16	C16b	C15b	C20a	114.23
	C7	C8	C9	125.55	C16b	C15b	P1	120.26
	C10	С9	C14	117.61	C20b	C15b	C20a	29.68
	C10	С9	C8	120.60	C20b	C15b	P1	121.63
	C14	С9	C8	121.78	C20a	C15b	P1	113.72
	H10	C10	C11	119.70	H16b	C16a	H16a	21.07
	H10	C10	С9	119.59	H16b	C16a	C15b	129.93
	C11	C10	С9	120.71	H16b	C16a	C17a	110.97
	H11	C11	C12	119.94	H16b	C16a	C15a	125.18
	H11	C11	C10	119.92	H16b	C16a	C17b	112.58
	C12	C11	C10	120.13	H16a	C16a	C15b	118.78
	H12	C12	C13	119.95	H16a	C16a	C17a	120.05

H16a	C16a	C15a	119.95	H18a	C18a	C17b	116.10
H16a	C16a	C17b	119.59	H18a	C18a	C19a	120.04
C15b	C16a	C17a	118.95	H18a	C18a	C17a	119.98
C15b	C16a	C15a	14.81	H18a	C18a	C19b	117.26
C15b	C16a	C17b	117.48	H18b	C18a	C17b	105.04
C17a	C16a	C15a	120.00	H18b	C18a	C19a	117.49
C17a	C16a	C17b	5.55	H18b	C18a	C17a	111.67
C15a	C16a	C17b	120.13	H18b	C18a	C19b	97.23
H16b	C16b	H16a	19.85	C17b	C18a	C19a	123.49
H16b	C16b	C17a	117.39	C17b	C18a	C17a	7.14
H16b	C16b	C17b	119.25	C17b	C18a	C19b	112.33
H16b	C16b	C15b	119 39	C19a	C18a	C17a	119 98
H16b	C16b	C15a	115 16	C19a	C18a	C19b	31 97
H16a	C16b	C17a	126 13	C17a	C18a	C19b	112 97
1110a 1116a	C16b	C17b	125.73	U19h	C18b	U185	36 72
u16a	CIGD	C15b	100 77	U10D	CIOD	017b	110 50
nita ulto	CIOD		110 15	II OD	CIOD	C1 0b	110 20
H10a		C15a	110.45	HLOD HLOD		C19D	119.38
CI/a			6.05	HI8D		CI/a	122.72
CI/a	C16b	CI5b	122.85	d81H	C18p	CI9a	119.26
C17a	C16b	C15a	123.37	H18a	C18b	C17b	107.60
C17b	C16b	C15b	121.35	H18a	C18b	C19b	119.10
C17b	C16b	C15a	123.63	H18a	C18b	C17a	106.89
C15b	C16b	C15a	14.13	H18a	C18b	C19a	99.74
H17a	C17a	H17b	7.34	C17b	C18b	C19b	121.05
H17a	C17a	C16b	119.70	C17b	C18b	C17a	6.14
H17a	C17a	C16a	119.99	C17b	C18b	C19a	112.07
H17a	C17a	C18a	120.02	C19b	C18b	C17a	117.62
H17a	C17a	C18b	115.58	C19b	C18b	C19a	30.88
H17b	C17a	C16b	126.82	C17a	C18b	C19a	106.46
H17b	C17a	C16a	127.09	H19a	C19a	H19b	51.68
H17b	C17a	C18a	112.88	H19a	C19a	C18a	119.91
H17b	C17a	C18b	109.73	H19a	C19a	C20a	120.01
C16b	C17a	C16a	0.77	H19a	C19a	C20b	120.62
C16b	C17a	C18a	120.28	H19a	C19a	C18b	118.36
C16b	C17a	C18b	119 84	H19b	C19a	C18a	104 90
C16a	C17a	C18a	119 99	н19b	C19a	C20a	111 21
C16a	C17a	C18b	119.99	и19b	C195	C204	89.26
C182	C17a	C18b	21 8/	и19b	C195	C18b	88 66
U175	C17b	U17b	7 01	C185		C205	120 08
пт/а u175	C17b	C105	126 01	C10a		C20a	111 50
п1/а 1117-а	C17b	CI0d C10b	120.01	CI0a C10a	C19a	C20D	20 14
HI/a			112 20		CI9a cloa		20.14
HI/a			113.38	CZUa	CI9a		28.81
HI/a	C17b	CI6a	113.57	C20a	CI9a	C18D	11/.61
H17b	C17b	C18a	119.01	C20b	C19a	C18b	100.10
H17b	C17b	C18b	120.54	H19b	C19b	H19a	50.42
H17b	C17b	C16b	120.59	H19b	C19b	C18b	119.51
H17b	C17b	C16a	120.77	H19b	C19b	C20b	119.24
C18a	C17b	C18b	22.93	H19b	C19b	C18a	120.12
C18a	C17b	C16b	115.29	H19b	C19b	C20a	117.58
C18a	C17b	C16a	115.02	H19a	C19b	C18b	107.95
C18b	C17b	C16b	118.87	H19a	C19b	C20b	108.51
C18b	C17b	C16a	118.69	H19a	C19b	C18a	92.18
C16b	C17b	C16a	0.32	H19a	C19b	C20a	87.00
H18a	C18a	H18b	33.80	C18b	C19b	C20b	121.24

C18b	C19b	C18a	21.23	C26a	C21b	P1	114.23
C18b	C19b	C20a	115.65	H22a	C22a	C23b	101.85
C20b	C19b	C18a	116.22	H22a	C22a	C21b	110.03
C20b	C19b	C20a	27.31	H22a	C22a	C21a	120.07
C18a	C19b	C20a	101.62	H22a	C22a	C23a	119.83
H20a	C20a	H20b	50.97	C23b	C22a	C21b	146.81
H20a	C20a	C15a	120.00	C23b	C22a	C21a	135.95
H20a	C20a	C19a	120.04	C23b	C22a	C23a	22.23
H20a	C20a	C15b	122.41	C21b	C22a	C21a	10.89
H20a	C20a	C19b	120.52	C21b	C22a	C23a	129.93
H20b	C20a	C15a	106.19	C21a	C22a	C23a	120.10
H20b	C20a	C19a	110.60	H22a	C22b	H22b	70.25
H20b	C20a	C15b	97.19	H22a	C22b	C21b	111.37
H20b	C20a	C19b	88.37	H22a	C22b	C23b	88.44
C15a	C20a	C19a	119.96	H22a	C22b	C21a	120.79
C15a	C20a	C15b	13.72	H22b	C22b	C21b	120.07
C15a	C20a	C19b	111.18	H22b	C22b	C23b	119.93
C19a	C20a	C15b	115.79	H22b	C22b	C21a	126.00
C19a	C20a	C19b	29.66	C21b	C22b	C23b	120.01
C15b	C20a	C19b	101.12	C21b	C22b	C21a	10.56
H20b	C20b	H20a	48.41	C23b	C22b	C21a	113.36
H20b	C20b	C19b	120.22	C24b	C23a	H23a	106.32
H20b	C20b	C15b	120.28	C24b	C23a	H23b	143.68
H20b	C20b	C15a	117.61	C24b	C23a	C24a	36.40
H20b	C20b	C19a	119.28	C24b	C23a	C22a	121.59
H20a	C20b	C19b	114.82	H23a	C23a	H23b	39.83
H20a	C20b	C15b	104.43	H23a	C23a	C24a	119.99
H20a	C20b	C15a	92.85	H23a	C23a	C22a	120.05
H20a	C20b	C19a	90.82	H23b	C23a	C24a	135.69
C19b	C20b	C15b	119.51	H23b	C23a	C22a	93.01
C19b	C20b	C15a	120.36	C24a	C23a	C22a	119.95
C19b	C20b	C19a	31.16	H23b	C23b	H23a	51.37
C15b	C20b	C15a	13.64	H23b	C23b	C22a	136.47
C15b	C20b	C19a	111.27	H23b	C23b	C24b	119.95
C15a	C20b	C19a	104.87	H23b	C23b	C22b	120.02
C26b	C21a	C22a	104.53	H23a	C23b	C22a	147.04
C26b	C21a	C26a	44.02	H23a	C23b	C24b	72.02
C26b	C21a	C22b	126.49	H23a	C23b	C22b	158.63
C26b	C21a	P1	114.88	C22a	C23b	C24b	101.36
C22a	C21a	C26a	119.96	C22a	C23b	C22b	22.78
C22a	C21a	C22b	22.63	C24b	C23b	C22b	120.03
C22a	C21a	P1	122.53	C24b	C24a	H24a	106.68
C26a	C21a	C22b	129.67	C24b	C24a	H24b	48.92
C26a	C21a	P1	117.48	C24b	C24a	C23a	35.40
C22b	C21a	P1	109.52	C24b	C24a	C25a	121.75
C22a	C21b	C22b	23.21	C24b	C24a	C25b	70.00
C22a	C21b	C26b	99.55	H24a	C24a	H24b	57.76
C22a	C21b	C26a	107.04	H24a	C24a	C23a	119.92
C22a	C21b	P1	137.81	H24a	C24a	C25a	120.09
C22b	C21b	_ C26b	119.97	H24a	C24a	C25b	125.92
C22b	C21b	C26a	115.41	H24b	C24a	C23a	70.99
C22b	C21b	P1	121.37	H24b	C24a	C25a	149.05
C2.6h	C21b	 C26a	37.83	H24b	C24a	C2.5h	99 04
C26b	C21b	P1	118.20	C2.3a	C24a	C25a	119.99
	~						

C23a	C24a	C25b	88.97	C28a	C27a	P1	121.80
C25a	C24a	C25b	55.31	C32a	C27a	C32b	18.12
C23a	C24b	C24a	108.20	C32a	C27a	P1	118.17
C23a	C24b	H24b	118.40	C32b	C27a	P1	111.00
C23a	C24b	C23b	2.29	C32a	C27b	C28b	109.78
C23a	C24b	C25b	121.56	C32a	C27b	C32b	23.13
C24a	C24b	H24b	86.36	C32a	C27b	C28a	129.19
C24a	C24b	C23b	109.60	C32a	C27b	P1	121.66
C24a	C24b	C25b	74.06	C28b	C27b	C32b	119.97
H24b	C24b	C23b	120.04	C28b	C27b	C28a	19.41
H24b	C24b	C25b	120.00	C28b	C27b	P1	123.47
C23b	C24b	C25b	119.96	C32b	C27b	C28a	137.37
H25a	C25a	C25b	123.42	C32b	C27b	P1	116.53
H25a	C25a	C24a	120.02	C28a	C27b	P1	105.62
H25a	C25a	C26a	120.01	H28a	C28a	C27a	119.94
C25b	C25a	C24a	63.59	H28a	C28a	C29a	120.02
C25b	C25a	C26a	83.83	H28a	C28a	C27b	129.03
C24a	C25a	C26a	119.97	C27a	C28a	C29a	120.04
H25b	C25b	C25a	91.33	C27a	C28a	C27b	11.35
H25b	C25b	C24b	120.04	C29a	C28a	C27b	110.53
H25b	C25b	C26b	119.91	H28b	C28b	C29a	94.39
H25b	C25b	C24a	106.42	H28b	C28b	C27a	107.73
C25a	C25b	C24b	95.06	H28b	C28b	C29b	120.03
C25a	C25b	C26b	83.44	H28b	C28b	C27b	119.94
C25a	C25b	C24a	61.10	C29a	C28b	C27a	157.26
C24b	C25b	C26b	120.05	C29a	C28b	C29b	27.45
C24b	C25b	C24a	35.95	C29a	C28b	C27b	144.27
C26b	C25b	C24a	121.76	C27a	C28b	C29b	131.99
H26a	C26a	C26b	112.14	C27a	C28b	C27b	13.03
H26a	C26a	C25a	119.92	C29b	C28b	C27b	120.03
H26a	C26a	C21a	120.06	H29a	C29a	H29b	52.81
H26a	C26a	C21b	117.44	H29a	C29a	C28b	138.61
C26b	C26a	C25a	95.90	H29a	C29a	C28a	120.00
C26b	C26a	C21a	61.38	H29a	C29a	C30a	120.06
C26b	C26a	C21b	58.28	H29b	C29a	C28b	156.87
C25a	C26a	C21a	120.02	H29b	C29a	C28a	162.51
C25a	C26a	C21b	122.50	H29b	C29a	C30a	69.61
C21a	C26a	C21b	4.47	C28b	C29a	C28a	19.72
H26b	C26b	C26a	89.97	C28b	C29a	C30a	100.95
H26b	C26b	C21a	122.54	C28a	C29a	C30a	119.93
H26b	C26b	C21b	120.00	H29b	C29b	C28b	120.05
H26b	C26b	C25b	120.02	H29b	C29b	C30b	119.91
C26a	C26b	C21a	74.60	C28b	C29b	C30b	120.04
C26a	C26b	C21b	83.89	H30a	C30a	H30b	37.40
C26a	C26b	C25b	96.38	H30a	C30a	C31a	120.06
C21a	C26b	C21b	9.99	H30a	C30a	C29a	119.92
C21a	C26b	C25b	116.58	H30b	C30a	C31a	84.93
C21b	C26b	C25b	119.98	H30b	C30a	C29a	151.99
C28b	C27a	C28a	21.26	C31a	C30a	C29a	120.03
C28b	C27a	C32a	99.19	H30b	C30b	H30a	48.33
C28b	C27a	C32b	105.24	H30b	C30b	C31a	134.75
C28b	C27a	P1	142.60	H30b	C30b	C31b	120.05
C28a	C27a	C32a	119.98	H30b	C30b	C29b	119.98
C28a	C27a	C32b	123.44	H30a	C30b	C31a	149.82

H30a	C30b	C31b	166.80	C31a	C32b	C27a	97.39
H30a	C30b	C29b	72.02	C34	C33	C38	119.33
C31a	C30b	C31b	30.38	C34	C33	C1	121.95
C31a	C30b	C29b	99.14	C38	C33	C1	118.71
C31h	C30b	C29b	119 97	н34	C34	C33	120 35
Ц31а	C31a	C30b	95 60	нзд	C 3 4	C 3 5	120.37
нэта µ31э	C31a	C322	119 97	C33	C34	C35	119 28
1131a 1131a	C31a	C305	120 06	U35	C35	C36	119.20
1131a 1121a	C31a	CODA	109 65	1135	C35	C34	110 50
020b	C31a	C32D	141 62	036	C35 C35	C34	120 02
C30b	C31a	C32a	141.03	1120	035	034	120.82
	C31a	C30a	28.29	H36	036	037	120.08
C30b	C31a	C32b	137.53	H36	036	C35	120.03
C32a	C31a	C30a	119.98	037	036	C35	119.89
C32a	C31a	C32b	21.69	H37	C37	C36	119.61
C30a	C31a	C32b	127.52	Н37	C37	C38	119.59
H31a	C31b	H31b	63.56	C36	C37	C38	120.80
H31a	C31b	C30b	78.83	Н38	C38	C37	120.17
H31a	C31b	C32b	129.64	Н38	C38	C33	120.06
H31a	C31b	C32a	114.92	C37	C38	C33	119.77
H31b	C31b	C30b	119.98	C40	C39	C44	118.13
H31b	C31b	C32b	120.04	C40	C39	С3	119.53
H31b	C31b	C32a	132.61	C44	C39	C3	122.33
C30b	C31b	C32b	119.99	Н4О	C40	C41	119.33
C30b	C31b	C32a	104.65	Н4О	C40	C39	119.36
C32b	C31b	C32a	21.56	C41	C40	C39	121.31
H32a	C32a	C27b	121 48	H41	C41	C42	119 97
нз2а Н32а	C32a	₩32b	31 47	н41	C41	C40	119 96
нз2а Н32а	C32a	C31a	120 04	C42	C41	C40	120 07
H32a	C32a	C27a	119 92	С42 Н42	C42	C41	120.07
1132a 1132a	C32a	C31h	100 68	u/2	C42	C13	120.15
1152a C27b	C32a	U302	100.00	C11	C42	C43	110 02
C27D C27b	C32a	ПЗZD С21-	117 74	U41 U42	C42	C43	110 60
C27D C27b	C32a	COId COId	11/./4	П43 1142	C43	C4Z	110.77
	C32a	C27a	0.//	H43	C43	044	120.77
C27b	C32a		128.05	042	C43	C44	120.54
H32b	C32a	C3Ia	11/.13	H44	C44	C43	119.88
H32b	C32a	C27a	113.34	H44	C44	C39	120.00
H32b	C32a	C31b	90.00	C43	C44	C39	120.12
C31a	C32a	C27a	120.04	C50	C45	C46	118.11
C31a	C32a	C31b	27.92	C50	C45	C6	120.46
C27a	C32a	C31b	134.37	C46	C45	C6	121.35
H32a	C32b	H32b	47.04	H46	C46	C47	119.67
H32a	C32b	C27b	104.37	H46	C46	C45	119.62
H32a	C32b	C31b	115.74	C47	C46	C45	120.71
H32a	C32b	C31a	112.92	H47	C47	C48	119.78
H32a	C32b	C27a	100.09	H47	C47	C46	119.70
H32b	C32b	C27b	119.95	C48	C47	C46	120.51
H32b	C32b	C31b	120.05	Н48	C48	C47	120.28
H32b	C32h	C31a	140.58	H48	C48	C49	120.40
H32h	C32h	C27a	117 71	C47	C48	C49	119 32
C27h	C32b	C31h	120 00	Н49	C49	C50	119 77
C27h	C32D	C312	96 37	н⊿о	CAQ	CAR	110 71
C272	C322	C275	70.57 70.57	050	CAG	C10	120 50
C211		C2/d	4.3/		049	C40	110 57
	C3ZD	C3IA	20.U0	UCH		C49	110 50
COID	C3ZD	CZ/a	122.11	нэи	050	C45	119.59

C49	C50	C45	120.83	C6	9 C68	C67	119.73
N4	C51	C52	111.56	H6	9 C69	C70	119.87
N4	C51	C83	122 80	нб	9 C69	C 68	119 83
052	C51	C03	125 64	110 C7		C60	120.20
052	CJ1 250	C05	125.04	C7		000	110.74
H52	C52	053	126.31	H /	0 070	069	119.74
H52	C52	C51	126.38	H7	0 C70	C65	119.82
C53	C52	C51	107.30	C6	9 C70	C65	120.44
C52	C53	C54	106.00	C7	2 C71	C76	119.18
C52	C53	C89	125.35	C7	2 C71	P2	122.61
C54	C53	C89	128 59	C7	6 C71	P2	118 20
N5	C54	N/	127 36	U7 Н7	2 C72	C73	119 90
NE	C54	052	100 55	117		C73	110 04
N O	C54	C55	123.33	H /		C71	119.94
N4	C54	053	108.98	C7	3 C72	C71	120.16
N5	C55	N6	128.04	H'/	3 C73	C'/4	119.78
N5	C55	C56	123.27	H7	3 C73	C72	119.70
NG	C55	C56	108.66	C7	4 C73	C72	120.52
C57	C56	C55	106.26	Н7	4 C74	C73	120.00
C.57	C.5.6	C95	126.67	Н7	4 C74	C75	120.02
C55	C56	C 95	127 03	C7	3 C74	C75	119 97
1157	C50 CE7	C J J	127.03	C7		070	120.00
HJ/	C57	C56	126.34	H /	5 C75	C76	120.06
H5 /	C57	C58	126.33	Н /	5 C75	C / 4	120.01
C56	C57	C58	107.33	C7	6 C75	C74	119.92
NG	C58	C57	111.58	H7	6 C76	C75	119.93
NG	C58	C59	122.47	Н7	6 C76	C71	119.86
C57	C58	C59	125.77	C7	5 C76	C71	120.21
C60	C59	C64	118.52	С7	8 C77	C82	119.54
C 6 0	C 5 9	C 5 8	120 09	C7	8 C77	P2	123 16
C64	C59	C58	121 38	C 9	2 C77	г <u>2</u> р2	117 28
	CJ9	CJ8 CC1	121.30	0		EZ CZZ	110.02
HOU	000	001	119.73	H /	8 C78	C//	119.83
H60	C60	C59	119.73	H7	8 C'/8	C79	119.97
C61	C60	C59	120.53	C7	7 C78	C79	120.20
H61	C61	C62	119.83	H7	9 C79	C80	120.08
H61	C61	C60	119.92	Н7	9 C79	C78	120.19
C62	C61	C60	120.25	C8	0 C79	C78	119.73
Н62	C.62	C61	119 85	н8	0 C80	C79	119 82
H62	C 62	C63	119 99	н8	0 C80	C81	119 78
061	C 6 2	C 6 3	120 16	110 C7		C01	120.40
	C02	C03	120.10	C7		201	120.40
H63	063	662	120.06	H8		082	119.94
H63	C63	C64	120.05	H8	1 C81	C80	119.97
C62	C63	C64	119.89	C8	2 C81	C80	120.09
H64	C64	C63	119.69	H8	2 C82	C81	119.98
H64	C64	C59	119.69	Н8	2 C82	C77	120.00
C63	C64	C59	120.63	C8	1 C82	C77	120.02
C70	C 6 5	C66	119 03	C8	8 (83	C84	118 62
C70	C 6 5	D2	122 77	00 C8	8 C83	C51	110.02
	C 0 J		110 10	C0		CJI CE1	101 04
000	065	PZ	110.19			C31 205	121.94
Нбб	066	C6/	119./3	H8	4 C84	C85	119./5
H66	C66	C65	119.79	H8	4 C84	C83	119.75
C67	C66	C65	120.49	C8	5 C84	C83	120.49
Н67	C67	C66	119.96	Н8	5 C85	C84	119.92
Н67	C67	C68	120.05	Н8	5 C85	C86	119.85
C66	C67	C68	119.99	C.8	4 C85	C86	120.23
нбя	CER	C 6 9	120 15	ос 10	6 C86	C 2 5	120 04
ц69 П68	C68	C67	120.13	110 110	6 C26	C05	120.04
1100	000	C0/	$\bot \angle \cup \cdot \bot \supset$	по	0 000	C0/	TZ0.03

C85	C86	C87	119.94	N7	C104	C103	109.30
Н87	C87	C88	119.94	N8	C105	N9	127.44
Н87	C87	C86	120.03	N8	C105	C106	123.42
C88	C87	C86	120.02	N9	C105	C106	109.08
H88	C88	C87	119.62	C107	C106	C105	105.58
H88	C88	C83	119.75	C107	C106	C145	126.99
C87	C88	C83	120.63	C105	C106	C145	127.30
C94	C89	C90	118.55	H107	C107	C106	126.17
C94	C89	C53	121.78	H107	C107	C108	126.06
C90	C89	C53	119.65	C106	C107	C108	107.77
Н90	C90	C91	119.73	N9	C108	C107	111.15
Н90	C90	C89	119.76	N 9	C108	C109	121.81
C91	C90	C89	120.51	C107	C108	C109	126.94
Н91	C91	C92	119.81	C110	C109	C114	118.10
Н91	C91	C90	119.83	C110	C109	C108	120.19
C92	C91	C90	120.36	C114	C109	C108	121.70
Н92	C92	C91	119.95	H110	C110	C111	119.55
Н92	C92	C93	119.91	H110	C110	C109	119.61
C91	C92	C93	120.13	C111	C110	C109	120.84
Н93	C93	C92	120.00	H111	C111	C110	119.68
Н93	C93	C94	120.08	H111	C111	C112	119.78
C92	C93	C94	119.92	C110	C111	C112	120.53
Н94	C94	C89	119.76	H112	C112	C113	120.18
Н94	C94	C93	119.73	H112	C112	C111	120.28
C89	C94	C93	120.51	C113	C112	C111	119.54
C96	C95	C100	118.57	H113	C113	C112	119.77
C96	C95	C56	120.89	H113	C113	C114	119.93
C100	C95	C56	120.47	C112	C113	C114	120.30
Н96	C96	C97	119.71	H114	C114	C113	119.64
Н96	C96	C95	119.75	H114	C114	C109	119.68
C97	C96	C95	120.53	C113	C114	C109	120.67
Н97	C97	C98	119.82	C120	C115	C116	119.02
Н97	C97	C96	119.84	C120	C115	РЗ	122.39
C98	C97	C96	120.34	C116	C115	P3	118.46
Н98	C98	C97	120.06	H116	C116	C115	119.69
Н98	C98	C99	120.04	H116	C116	C117	119.73
C97	C98	C99	119.91	C115	C116	C117	120.58
Н99	C99	C98	119.88	H117	C117	C118	119.99
Н99	C99	C100	119.77	H117	C117	C116	120.06
C98	C99	C100	120.35	C118	C117	C116	119.95
H100	C100	C99	119.87	H118	C118	C119	120.17
H100	C100	C95	119.85	H118	C118	C117	120.17
C99	C100	C95	120.28	C119	C118	C117	119.66
N7	C101	C102	111.69	H119	C119	C118	119.78
N7	C101	C133	122.44	H119	C119	C120	119.80
C102	C101	C133	125.80	C118	C119	C120	120.42
H102	C102	C103	126.50	H120	C120	C115	119.82
H102	C102	C101	126.51	H120	C120	C119	119.82
C103	C102	C101	106.99	C115	C120	C119	120.35
C102	C103	C104	105.87	C126	C121	C122	118.90
C102	C103	C139	125.40	C126	C121	РЗ	123.79
C104	C103	C139	128.68	C122	C121	РЗ	117.30
N8	C104	N7	127.86	H122	C122	C123	119.76
N8	C104	C103	122.82	H122	C122	C121	119.73

~ 1 ~ ~	~1 ~ ~	-1-0-1	100 50		- 1	-1-0-0	
C123	C122	C121	120.50	C141	C140	C139	121.16
H123	C123	C122	119.79	H141	C141	C140	120.02
H123	C123	C124	119.84	H141	C141	C142	119.88
C122	C123	C124	120.37	C140	C141	C142	120.10
H124	C124	C125	120.26	H142	C142	C143	120.25
H124	C124	C123	120.34	H142	C142	C141	120.35
C125	C124	C123	119.40	C143	C142	C141	119.40
H125	C125	C124	119.60	H143	C143	C142	119.84
H125	C125	C126	119.57	H143	C143	C144	119.65
C124	C125	C126	120.83	C142	C143	C144	120.51
H126	C126	C125	120.02	H144	C144	C143	119.48
H126	C126	C121	119.99	H144	C144	C139	119.57
C125	C126	C121	119.98	C143	C144	C139	120.94
C132	C127	C128	119.30	C146	C145	C150	117.59
C1.32	C127	P.3	118.15	C146	C145	C106	122.80
C128	C127	-0 P3	122 55	C150	C145	C106	119 61
H128	C128	C129	119 97	н146	C146	C147	119 72
H128	C128	C127	119 91	н146	C146	C145	119 53
C129	C128	C127	120 13	C147	C146	C145	120 74
U120	C120	C130	110 00	U1/7	C140	C146	110 62
u129	C129	C128	110.90	11147 11147	C147	C140	119.02
C120	C129	C120	120 22	C146	C147	C140	120 77
UI 20	C129	C120	120.23	U140	C147	C140	120.77
ПІЗО 11120	C130	C129	120.14	H140	C140	C149 C147	120.30
ПI 30 С1 20	CI 30	CI31 0121	120.20	H140 Q140	0140	0147	120.30
CI29	CI30 0121	CI3I 0122	119.60	C149	C148 C140	CI47	119.26
HIJI	CI3I a121	CI32	119.79	H149	C149 c140	C148 c150	119.72
HIJI aloo	CI3I 6121	CI30 G120	119.82	H149	C149	C150	119.82
CI32	CI3I ~120	CI30	120.38	C148	C149	C150	120.45
H132	C132	CI3I	119.//	HI50	C150	C149	119.45
H132	C132	C127	119.88	H150	C150	C145	119.47
C131	C132	C127	120.35	C149	C150	C145	121.07
C134	C133	C138	118.06	C16a	H16a	C16b	5.89
C134	C133	C101	122.19	C16a	H16b	C16b	6.52
C138	C133	C101	119.65	C17b	H17a	C17a	10.68
H134	C134	C135	119.66	C17b	H17b	C17a	10.11
H134	C134	C133	119.64	C18a	H18a	C18b	30.84
C135	C134	C133	120.70	C18b	H18b	C18a	27.92
H135	C135	C134	119.80	C19a	H19a	C19b	37.18
H135	C135	C136	119.79	C19b	H19b	C19a	38.45
C134	C135	C136	120.41	C20a	H20a	C20b	34.67
H136	C136	C137	120.27	C20b	H20b	C20a	37.23
H136	C136	C135	120.33	C22b	H22a	C22a	35.54
C137	C136	C135	119.40	H23b	H23a	C23a	93.47
H137	C137	C138	119.69	H23b	H23a	C23b	62.62
H137	C137	C136	119.78	C23a	H23a	C23b	33.44
C138	C137	C136	120.53	H23a	H23b	C23b	66.02
H138	C138	C137	119.56	H23a	H23b	C23a	46.69
H138	C138	C133	119.63	C23b	H23b	C23a	22.24
C137	C138	C133	120.82	C24b	H24b	C24a	44.72
C144	C139	C140	117.87	H29b	H29a	C29a	64.51
C144	C139	C103	122.54	H29a	H29b	C29b	102.48
C140	C139	C103	119.48	H29a	H29b	C29a	62.69
H140	C140	C141	119.44	C29b	H29b	C29a	40.55
H140	C140	C139	119.40	H30b	H30a	C30a	98.59
-							

H30b	H30a	C30b	58.73
C30a	H30a	C30b	39.88
H30a	H30b	C30b	72.95
H30a	H30b	C30a	44.02
C30b	H30b	C30a	28.95
C31b	H31a	H31b	63.65
C31b	H31a	C31a	47.72
881b	H31a	C31a	111 37
H31a	H31b	C31b	52 79
C32h	H32a	C32a	36 25
C32b	из2b	C32a	20.82
CJ2D C1	M1	CJZa C1	105 75
C1	IN 1		131 /8
	IN L NT 1	Agi Ngi	110 75
C4		AGI	120 10
C4	NZ	05	130.10
08	N 3	05	105.95
C8	N 3	Agl	131.68
C5	N3	Agl	118.05
C51	N4	C54	106.13
C51	N4	Ag2	127.55
C54	N4	Ag2	125.75
C55	N5	C54	128.23
C58	N6	C55	106.12
C58	NG	Ag2	126.53
C55	N6	Ag2	121.26
C101	N7	C104	106.12
C101	N7	Aq3	128.12
C104	N7	Aq3	119.95
C104	N8	C105	127.93
C108	N9	C105	106 40
C108	N9	Da3	126 10
C105	N9	Aa3	121 91
C21b	D1	C27a	105 25
C21D	л т р1	C155	95 96
C21D	г 1 р1	CIJA C15b	106 02
C21D C21b	PI D1		106.92
	PI D1	CZIA	111 25
	PI D1		111.35
	PI D1	Agi	105.59
C2/a	PI	C15a	103.13
C27a	Pl	C15b	100.31
C27a	Pl	C21a	99.37
C27a	P1	C27b	8.30
C27a	P1	Agl	121.29
C15a	P1	C15b	10.97
C15a	P1	C21a	100.28
C15a	P1	C27b	107.38
C15a	P1	Ag1	121.62
C15b	P1	C21a	111.25
C15b	P1	C27b	103.17
C15b	P1	Ag1	116.36
C21a	P1	C27b	105.21
C21a	P1	Aq1	106.98
C27b	P1	Aq1	113.40
C71	 P2	C65	103.65

C71 C71 C65 C65	P2 P2 P2 P2	C77 Ag2 C77 Ag2	104.11 114.23 103.31 114.71
C 77	P2	Ag2	115.37
C127	P3	C121	104.91
C127	РЗ	C115	107.07
C127	РЗ	Ag3	112.53
C121	РЗ	C115	102.43
C121	РЗ	Ag3	114.61
C115	РЗ	Ag3	114.30
N3	Ag1	N1	86.30
NЗ	Ag1	P1	139.25
N1	Ag1	P1	130.54
N4	Ag2	NG	82.89
N4	Ag2	P2	140.72
N6	Ag2	P2	135.77
N9	Ag3	N7	82.20
N9	Ag3	РЗ	140.64
N7	Ag3	РЗ	136.37

Table S9. Anisotropic displacement parameters $[Å^2 \times 10^3]$ for **3**. The anisotropic displacement factor exponent takes the form: -2 $\pi 2$ [(h a*)² U11 + ... + 2 h k a* b* U12]

U	11	U22	U33	U23	U13	U12
 С (15д)	41(5)	24 (5)	54(6)	-10(4)	-18(4)	1 (3)
C(16A)	22(6)	19(6)	22(6)	7(4)	-7(4)	$\cap (4)$
C(17A)	19(4)	24(5)	27(5)	-14(4)	2(3)	-7(3)
C(18A)	30(4)	54(5)	41 (4)	-4(4)	-14(3)	-5(3)
C(19A)	57(5)	60(5)	73(6)	-22(4)	-34(4)	21(4)
C(20A)	53(5)	49(5)	64 (5)	-26(4)	-36(4)	12(3)
P(1)	30(1)	24(1)	37(1)	-2(1)	-11(1)	3(1)
C(15B)	20(3)	22 (4)	27(4)	5(3)	-8(2)	-4(3)
C(16B)	32(7)	30(7)	42 (8)	-11(5)	5(5)	-10(5)
C(17B)	39(6)	46(7)	39(7)	6(5)	-15(4)	-13(5)
C(18B)	23(3)	49(4)	40(4)	-6(3)	-7(3)	-7(3)
C(19B)	31(3)	52(4)	45(4)	-20(3)	-12(3)	10(3)
C(20B)	27(3)	44(4)	41(4)	-16(3)	-6(3)	3 (3)
P(2)	19(1)	14(1)	17(1)	2(1)	-4(1)	-5(1)
P(3)	13(1)	16(1)	17(1)	-1(1)	-4(1)	-4(1)
C(21A)	69(6)	32(5)	62(6)	38(4)	-32(5)	-20(4)
C(22A)	81(5)	29(4)	35(4)	-4(3)	-20(4)	-28(4)
C(23A)	148(8)	87(6)	71(6)	44(5)	-66(6)	-87(6)
C(24A)	146(7)	107(6)	75(6)	27(5)	-43(5)	-100(5)
C(25A)	91(5)	95(5)	67(5)	45(4)	-41(4)	-74(4)
C(26A)	58(4)	54(4)	44(4)	27(3)	-26(3)	-33(3)
Ag(1)	28(1)	22(1)	26(1)	-2(1)	-1(1)	2(1)
C(21B)	45(5)	54(6)	65(6)	23(5)	-25(4)	-18(4)
C(22B)	28(3)	32(4)	37(3)	5(3)	-2(3)	-2(3)
C(23B)	63(5)	78(6)	68(5)	25(4)	-28(4)	-39(4)
C(24B)	99(6)	56(5)	101(7)	36(5)	0(5)	-49(4)
C(25B)	64(5)	97(6)	155(7)	44(6)	-17(5)	-42(4)
C(26B)	63(5)	64(5)	116(6)	50(5)	-23(4)	-23(4)
Ag (2)	20(1)	14(1)	19(1)	0(1)	-2(1)	-3(1)
C(27A)	36(4)	28(4)	37(4)	-3(3)	-21(3)	4(3)
C(28A)	68(6)	32(4)	33(4)	-5(3)	-23(4)	2(3)
C(29A)	59(5)	34(4)	45(5)	-3(3)	-21(4)	1(3)
C(30A)	45(5)	52(5)	39(4)	-14(4)	-10(3)	10(4)
C(31A)	44(4)	74(5)	51(4)	-10(4)	2(3)	-12(4)
C(32A)	48(4)	53(5)	49(5)	-26(4)	-8(3)	-8(4)
Ag (3)	12(1)	17(1)	19(1)	-1(1)	-3(1)	-5(1)
C(27B)	24(4)	25(4)	27(3)	-11(3)	-5(3)	-1(3)
C(28B)	43(4)	24(3)	27(4)	-3(3)	-1/(3)	2(3)
C (29B)	3/(4)	∠6(3) CE(E)	$\angle / (4)$	-14(3)	$-\perp \perp (3)$	-1(3)
C(30B)	ン/(4) 61/5)	ゆつ (つ) フラ (三)	4∠(4) ∧⊃(∧)	-20(4)	- 6 (3) 2 (2)	-30(3)
C (37B)	38(V) 01(2)	13 (J) 16 (A)	40 (4) 25 (2)	-0(4) -8(3)	2 (2) 2 (3)	-39(4) -22(3)
C(32B)	JO (4) AR (2)	40(4) つつ(1)	33(3) 16(1)	-0(3)	∠() _2(1)	-22(3)
C(1)	40 (2) 12 (2)	23(1)	$\pm 0(\pm)$ 2A(1)	∠ (⊥) 1 (1)	-0(⊥) -15(1)	-4(1)
C(2)	42 (Z) 33 (1)	∠∪(⊥) 23(1)	∠ч(⊥) 21 (1)	⊥ (⊥) २ (1)	-10(1)	-4(1)
C(3)	30(1)	23(1) 19(1)	2 ± (±) 17(1)	2(1)	-5(1)	-1 (1)
\sim (\perp)	00(1)		± ' (±/	∠ \ ⊥ /	○ (±)	- (- /

C(5)	24(1)	17(1)	20(1)	2(1)	0(1)	-4(1)
C(6)	25(1)	14(1)	24(1)	1(1)	-3(1)	-7(1)
C(7)	24(1)	18(1)	27(1)	-1(1)	-2(1)	-8(1)
C(8)	23(1)	18(1)	29(1)	4(1)	-1(1)	-7(1)
C(9)	24(1)	20(1)	38(2)	8(1)	-2(1)	-8(1)
C(10)	28(1)	34(2)	46(2)	0(1)	-4(1)	-11(1)
C(11)	29(2)	49(2)	61(2)	9(2)	-15(1)	-16(1)
C(12)	18(1)	38(2)	72(2)	10(2)	0(1)	-7(1)
C(13)	27(1)	30(2)	53(2)	8(1)	5(1)	-7(1)
C(14)	26(1)	24(1)	44(2)	6(1)	2(1)	-7(1)
C(33)	51(2)	23(1)	20(1)	0(1)	-13(1)	6(1)
C(34)	53(2)	26(1)	20(1)	2(1)	-7(1)	5(1)
C(35)	60(2)	39(2)	18(1)	2(1) 4(1)	-6(1)	17(1)
C(36)	85(3)	34(2)	28(2)	-12(1)	-27(2)	17(2)
C(37)	88(3)	30(2)	13(2)	-13(1)	-40(2)	8(2)
C(37)	62(2)	30(2)	43(2)	-13(1)	-40(2)	0 (Z) 2 (1)
C(30)	02(2)	32(2)	30(Z) 17(1)	-3(1)	-25(1)	(1)
C(39)	30(I) 40(2)	30(I) 32(2)	\perp / (\perp)	4 (⊥) E (1)	-0(1) 15(1)	-3(1)
C(40)	40(2)	32(2)	22(1)	5(L) 10(1)	-15(1)	-9(1)
C(41)	30(1) 07(1)	50(2)	28(1)	10(1)	-12(1)	-9(1)
C(42)	27(1)	53(2)	30(2)	0(1)	-6(1)	$\cup (\bot)$
C(43)	35(2)	40(2)	29(1)	-9(1)	-/(1)	$\perp (\perp)$
C(44)	29(1)	35(2)	27(1)	-2(1)	-10(1)	$-\perp(\perp)$
C(45)	21(1)	19(1)	22(1)	2(1)	-4(1)	-5(1)
C(46)	26(1)	21(1)	22(1)	-3(1)	-5(1)	-9(1)
C(47)	21(1)	33(1)	26(1)	0(1)	-6(1)	-11(1)
C(48)	21(1)	28(1)	23(1)	-2(1)	-1(1)	-1(1)
C(49)	31(1)	18(1)	28(1)	-6(1)	-5(1)	-5(1)
C(50)	24(1)	19(1)	31(1)	-2(1)	-7(1)	-6(1)
C(51)	26(1)	25(1)	23(1)	2(1)	0(1)	-8(1)
C(52)	20(1)	33(1)	26(1)	4(1)	-1(1)	-8(1)
C(53)	23(1)	27(1)	21(1)	3(1)	-2(1)	-4(1)
C(54)	25(1)	20(1)	16(1)	1(1)	-2(1)	-3(1)
C(55)	25(1)	15(1)	16(1)	-4(1)	-3(1)	-3(1)
C(56)	31(1)	15(1)	21(1)	-3(1)	-7(1)	-7(1)
C(57)	29(1)	18(1)	27(1)	-4(1)	-6(1)	-9(1)
C(58)	27(1)	18(1)	16(1)	-4(1)	-6(1)	-6(1)
C(59)	25(1)	17(1)	22(1)	-8(1)	-8(1)	-5(1)
C(60)	30(1)	28(1)	31(1)	-2(1)	-10(1)	-11(1)
C(61)	23(1)	40(2)	38(2)	-7(1)	-5(1)	-9(1)
C(62)	27(1)	34(2)	39(2)	-6(1)	-15(1)	1(1)
C(63)	37(2)	26(1)	29(1)	-1(1)	-15(1)	-5(1)
C(64)	27(1)	21(1)	22(1)	-4(1)	-7(1)	-7(1)
C(65)	18(1)	16(1)	17(1)	3(1)	-5(1)	-3(1)
C(66)	31(1)	20(1)	19(1)	0(1)	-4(1)	-11(1)
C(67)	30(1)	25(1)	27(1)	5(1)	-6(1)	-15(1)
C(68)	21(1)	29(1)	19(1)	6(1)	-3(1)	-6(1)
C(69)	22(1)	22(1)	21(1)	-2(1)	-7(1)	1(1)
C(70)	19(1)	16(1)	22(1)	$\frac{1}{1}(1)$	-7(1)	-4(1)
C(71)	29(1)	15(1)	22(1)	$\frac{1}{3}(1)$	-9(1)	-8(1)
C(72)	34(1)	21(1)	25(1)	2(1)	-12(1)	-6(1)
C(73)	34(1)	29(1)	36(2)	2 (1) 2 (1)	-18(1)	-6(1)
C(74)	51(2)	38(2)	34(2)	1 3 (1)	-24(1)	-19(1)
C(75)	53(2)	47(2)	21(2)	12(1)	-12(1)	-26(1)
C(76)	34(1)	34(1)	24(1)	7(1)	-7(1)	-14(1)
\sim $\langle \cdot \circ \rangle$				· \ _ /	· (± /	(- /

C(77)	19(1)	19(1)	16(1)	0(1)	1(1)	-8(1)
C(78)	26(1)	20(1)	26(1)	1(1)	-2(1)	-6(1)
C(79)	31(1)	15(1)	33(1)	2(1)	0(1)	-9(1)
C(80)	32(1)	25(1)	31(1)	-1(1)	-2(1)	-17(1)
C(81)	26(1)	28(1)	28(1)	3(1)	-7(1)	-14(1)
C(82)	23(1)	19(1)	24(1)	3(1)	-3(1)	-7(1)
C(83)	21(1)	24(1)	32(1)	4(1)	6(1)	-6(1)
C(84)	24(1)	31(1)	37(2)	10(1)	2(1)	-10(1)
C(85)	30(1)	30(2)	42(2)	11(1)	9(1)	-4(1)
C(86)	45(2)	27(2)	47(2)	4(1)	16(1)	-15(1)
C(87)	42(2)	37(2)	46(2)	0(1)	6(1)	-23(1)
C(88)	30(1)	30(1)	35(2)	2(1)	2(1)	-12(1)
C(89)	27(1)	29(1)	22(1)	5(1)	2(1)	0(1)
C(90)	28(1)	44(2)	26(1)	2(1)	-5(1)	1(1)
C(91)	33(2)	58(2)	28(2)	6(1)	-7(1)	14(1)
C(92)	41(2)	41(2)	36(2)	12(1)	8(1)	17(1)
C(93)	43(2)	29(2)	68(2)	3(2)	1/(2)	2(1)
C(94)	28(2)	29(2)	63(2)	4(1)	8(1) 10(1)	$-\perp(\perp)$
C(95)	29(1)	16(1)	28(1)	-4(1)	-12(1)	-8(1)
C(96)	29(1)	18(1)	37(2)	$-\perp(\perp)$	-8(1)	-9(1)
C(97)	28(1) 20(2)	18(1)	53(2)	-5(1)	$-\perp\perp(\perp)$	-5(1)
C(98)	39(2)	$\perp 4(\perp)$	55(Z)	4 (1) 0 (1)	-22(1)	-8(1)
C(99)	4/(Z) 25(1)	22(1)	39(2)	8 (1) 0 (1)	-17(1)	-10(1)
C(100)	35(1) 20(1)	22(1)	30(1)	$\cup (1)$	-13(1)	-13(1)
C(101)	20(1) 21(1)	10(1) 16(1)	19(1)	4(1)	-4(1)	-7(1)
C(102)	$2 \pm (1)$ 20(1)	10(1)	20(1) 21(1)	-1(1)	-3(1)	-12(1)
C(103)	20(1) 18(1)	17(1)	21(1) 19(1)	3(1)	-4(1)	-12(1)
C(104)	10(1) 14(1)	17(1) 18(1)	20(1)	4(1)	-3(1)	-7(1)
C(105)	16(1)	10(1) 18(1)	25(1)	4(1)	-3(1)	-5(1)
C(107)	16(1)	19(1)	23(1) 24(1)	-1(1)	-1(1)	-2(1)
C(108)	17(1)	18(1)	18(1)	1(1)	-2(1)	-4(1)
C(109)	17(1)	23(1)	16(1)	-2(1)	$\frac{1}{1}(1)$	-6(1)
C(110)	23(1)	22(1)	24(1)	-5(1)	-4(1)	-2(1)
C(111)	34(1)	25(1)	30(1)	-8(1)	-4(1)	-7(1)
C(112)	33(1)	36(2)	25(1)	-7(1)	-9(1)	-13(1)
C(113)	24(1)	35(1)	18(1)	-1(1)	-5(1)	-6(1)
C(114)	20(1)	23(1)	16(1)	-1(1)	0(1)	-3(1)
C(115)	13(1)	18(1)	16(1)	-2(1)	-4(1)	-2(1)
C(116)	15(1)	20(1)	22(1)	-2(1)	-3(1)	-4(1)
C(117)	18(1)	26(1)	20(1)	4(1)	-4(1)	-3(1)
C(118)	18(1)	32(1)	19(1)	-2(1)	-7(1)	-1(1)
C(119)	24(1)	29(1)	26(1)	-6(1)	-9(1)	-8(1)
C(120)	23(1)	20(1)	22(1)	0(1)	-7(1)	-6(1)
C(121)	17(1)	15(1)	20(1)	0(1)	-9(1)	-4(1)
C(122)	24(1)	21(1)	25(1)	3(1)	-2(1)	-4(1)
C(123)	37(2)	18(1)	31(1)	-2(1)	0(1)	1(1)
C(124)	45(2)	16(1)	39(2)	4(1)	-9(1)	-6(1)
C(125)	32(1)	25(1)	29(1)	6(1)	-8(1)	-15(1)
C(126)	20(1)	21(1)	22(1)	2(1)	-6(1)	-8(1)
C(127)	17(1)	12(1)	18(1)	2(1)	-3(1)	-3(1)
C(128)	⊥ / (⊥) 1 ⊑ / 1 \	$\angle 3(\perp)$	$\angle \angle (\bot)$	$\cup (\bot)$	-6(1)	-6(1)
C(129)	10(1) 05(1)	∠6(⊥) 10(1)	∠6(⊥) 17(1)	6(1) 2(1)	$-\angle (\bot)$	- J (L)
C(130)	∠⊃(⊥)	$\bot \supset (\bot)$	上 / (上)	∠ (⊥)	∪(⊥)	- ⊥ (⊥)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(131)	27(1)	17(1)	17(1)	2(1)	-7(1)	-5(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(132)	18(1)	15(1)	21(1)	5(1)	-6(1)	-5(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(133)	19(1)	12(1)	22(1)	2(1)	-4(1)	-4(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(134)	22(1)	13(1)	20(1)	0(1)	-4(1)	-4(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(135)	24(1)	16(1)	25(1)	2(1)	-10(1)	-5(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(136)	17(1)	19(1)	31(1)	2(1)	-6(1)	-2(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(137)	21(1)	19(1)	25(1)	-2(1)	-3(1)	-1(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(138)	25(1)	18(1)	22(1)	-1(1)	-6(1)	-7(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(139)	19(1)	26(1)	20(1)	1(1)	-3(1)	-13(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(140)	25(1)	28(1)	24(1)	1(1)	-3(1)	-14(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(141)	32(1)	38(2)	27(1)	-3(1)	-7(1)	-22(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(142)	27(1)	51(2)	27(1)	4(1)	-11(1)	-24(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(143)	22(1)	40(2)	30(1)	6(1)	-9(1)	-11(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(144)	24(1)	29(1)	26(1)	1(1)	-6(1)	-13(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(145)	17(1)	20(1)	31(1)	8(1)	-4(1)	-7(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(146)	19(1)	25(1)	40(2)	6(1)	-6(1)	-10(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(147)	28(1)	39(2)	52(2)	8(1)	-17(1)	-21(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(148)	22(1)	44(2)	59(2)	22(1)	-20(1)	-16(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(149)	23(1)	29(1)	57(2)	15(1)	-13(1)	-5(1)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C(150)	24(1)	23(1)	41(2)	8(1)	-10(1)	-7(1)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	N(1)	35(1)	19(1)	19(1)	1(1)	-5(1)	1(1)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	N(2)	25(1)	16(1)	20(1)	1(1)	-3(1)	-3(1)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	N(3)	24(1)	18(1)	24(1)	3(1)	0(1)	-3(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N(4)	22(1)	17(1)	22(1)	2(1)	-1(1)	-5(1)
N (6) $21(1)$ $17(1)$ $17(1)$ $-2(1)$ $-5(1)$ $-3(1)$ N (7) $16(1)$ $15(1)$ $19(1)$ $1(1)$ $-3(1)$ $-5(1)$ N (8) $17(1)$ $18(1)$ $19(1)$ $5(1)$ $-4(1)$ $-9(1)$ N (9) $16(1)$ $19(1)$ $17(1)$ $1(1)$ $-3(1)$ $-5(1)$	N(5)	23(1)	18(1)	15(1)	-2(1)	-3(1)	-4(1)
N (7)16 (1)15 (1)19 (1)1 (1)-3 (1)-5 (1)N (8)17 (1)18 (1)19 (1)5 (1)-4 (1)-9 (1)N (9)16 (1)19 (1)17 (1)1 (1)-3 (1)-5 (1)	N(6)	21(1)	17(1)	17(1)	-2(1)	-5(1)	-3(1)
N (8)17 (1)18 (1)19 (1)5 (1)-4 (1)-9 (1)N (9)16 (1)19 (1)17 (1)1 (1)-3 (1)-5 (1)	N(7)	16(1)	15(1)	19(1)	1(1)	-3(1)	-5(1)
N(9) 16(1) 19(1) 17(1) 1(1) $-3(1)$ $-5(1)$	N(8)	17(1)	18(1)	19(1)	5(1)	-4(1)	-9(1)
	N(9)	16(1)	19(1)	17(1)	1(1)	-3(1)	-5(1)

	х	У	Z	U(eq)
H(16A)	2767	2427	8906	27
H(17A)	1677	2796	8379	29
H(18A)	431	4067	8530	52
H(19A)	276	4968	9206	84
H(20A)	1367	4598	9733	71
H(16B)	2811	2548	8812	44
H(17B)	1622	2839	8350	49
H(18B)	175	3870	8656	46
H(19B)	-92	4617	9400	58
H(20B)	1004	4264	9907	50
H(22A)	3469	4108	8904	54
H(23A)	4497	4875	8684	100
H(24A)	5447	5011	9230	110
H(25A)	5369	4380	9998	84
H(26A)	4341	3613	10219	55
H(22B)	2835	4479	9146	42
H(23B)	3913	5114	8739	77
H(24B)	5468	4708	8877	100
H(25B)	5946	3666	9423	123
H(26B)	4868	3031	9830	96
H(28A)	2886	4577	10339	56
H(29A)	2041	5185	11142	58
H(30A)	1009	4597	11650	62
H(31A)	821	3400	11354	72
H(32A)	1666	2792	10551	63
H(28B)	2437	4667	10467	40
H(29B)	1546	5090	11291	38
H(30B)	906	4192	11777	60
H(31B)	1156	2871	11439	68
H(32B)	2047	2448	10614	47
H(2)	7298	1140	10375	37
H(7)	4562	-534	8254	28
H(10)	2967	284	8248	44
н(11)	1.311	796	8334	.54
H(12)	318	1455	9097	.54
H(13)	975	1.581	9776	47
H(14)	2622	1070	9696	40
H(34)	4045	1898	10810	45
H(35)	3189	3032	11396	58
н(36)	3921	3936	11598	67
H(37)	5535	3672	11272	68
H(38)	6412	2561	10687	55
H(40)	8805	637	9794	37
H(41)	10364	-236	9474	4.3
H(42)	10638	-1457	9017	48
н(43)	9351	-1816	8885	45

Table S10. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (A^2 x 10^3) for ${\bf 3}.$

H(44)	7781	-955	9209	39
H(46)	7346	-162	8392	27
H(47)	8766	-879	7822	32
H(48)	8847	-1988	7306	32
Н(49)	7493	-2380	7365	32
н(50)	6069	-1669	7931	30
H(52)	2383	4684	7900	33
H(57)	7496	6176	7213	29
H(60)	8973	4986	70.51	35
н(61)	10422	4037	7154	41
H(62)	10432	2997	7708	42
н (63)	8993	2907	8174	36
н (64)	7535	3856	8078	28
н (66)	8537	3210	6901	20
H(67)	9786	3161	6219	32
н (68)	10196	2190	5539	29
н (69)	9353	1270	5548	29
H(70)	8153	1270	6244	23
ц(70)	9250	1275	7214	20
II (72)	10007	547	7822	30
$\Pi(73)$	0152	502	9646	15
п(74) п(75)	91JZ 7522	1201	0040	4J 45
н(75)	7525	L304 0111	00/1	40
H(70)	0/03		8264 7210	30
H(78)	7433	545 217	7312	30
H(79)	6679	-317	7042	33
H(8U)	5527	205	6569	34
H(81)	5083	1590	6380	31
H(82)	5789	2458	6667	27
H(84)	5048	2896	8228	39
H(85)	5245	1496	8254	46
H(86)	4357	940	/84/	52
H(8/)	3219	1801	7439	50
H(88)	3001	3205	7421	39
H(90)	1393	5941	7653	44
H(91)	210	7241	7755	56
H(92)	541	8398	7967	60
Н(93)	2050	8270	8094	66
Н(94)	3236	6963	8016	54
Н(96)	4431	7402	7854	33
H(97)	3668	8776	7714	40
H(98)	4339	9393	7040	41
Н(99)	5764	8628	6490	40
Н(100)	6525	7246	6614	33
Н(102)	8993	5499	6053	22
Н(107)	12445	1261	3917	25
H(110)	11363	531	3723	30
H(111)	10544	12	3258	37
H(112)	9169	891	3025	37
Н(113)	8631	2297	3258	32
H(114)	9444	2828	3730	25
H(116)	7346	3970	4154	24
H(117)	6755	4176	3417	27
H(118)	6102	3242	3147	29
H(119)	5990	2137	3631	31

H(120)	6589	1923	4364	26
H(122)	8904	1287	4341	29
Н(123)	9255	-128	4401	39
H(124)	8425	-638	5080	41
H(125)	7204	278	5679	33
H(126)	6801	1699	5608	24
H(128)	5486	3180	5207	25
H(129)	4335	3857	5926	29
H(130)	4793	4373	6587	27
H(131)	6408	4200	6531	24
H(132)	7561	3508	5822	21
H(134)	7791	4803	4752	23
H(135)	6150	5266	4803	26
H(136)	5086	5952	5548	28
H(137)	5687	6196	6231	29
H(138)	7322	5712	6191	26
H(140)	10375	5726	6214	30
H(141)	11450	5734	6710	36
H(142)	12669	4512	6790	38
H(143)	12815	3294	6360	36
H(144)	11723	3276	5879	30
H(146)	12793	3145	4981	33
H(147)	14174	2820	5293	44
H(148)	15332	1505	5124	47
H(149)	15075	507	4657	44
Н(150)	13647	790	4394	35

X-ray Structural Data for 4

0

Figure S7. Thermal ellipsoid plot of $(Ph_3P)Au^{I}$ (tetraphenylazadipyrromethene) (4). Ellipsoids are drawn at 50% probability; data were collected at 100 K.

Table S11. Crystal data and structure refinement for 4. Identification code: JU092206 Empirical formula: C50 H37 Au P N3 Formula weight: 907.76 Temperature: 100(2) K Wavelength: 0.71073 Å Crystal system: Monoclinic Space group: $P2_1/n$ Unit cell dimensions: a = 12.3616(2) Å, $\alpha = 90^{\circ}$ $b = 12.9923(2) \text{ Å}, \beta = 90.6780(10)^{\circ}$ c = 23.7047(5) Å, $\gamma = 90^{\circ}$ Volume, Z: 3806.84(12) Å³, 4 Density (calculated): 1.584 Mg/m³ Absorption coefficient: 3.947 mm^{-1} F(000): 1808 Crystal size: $0.44 \times 0.42 \times 0.18$ mm Crystal shape, colour: irregular chunk, violet heta range for data collection: 1.72 to 29.58° Limiting indices: $-17 \le h \le 17$, $-17 \le k \le 18$, $-32 \le 1 \le 32$ Reflections collected: 119551 Independent reflections: 10670 (R(int) = 0.0232)Completeness to θ = 29.58°: 99.9 % Absorption correction: multi-scan Max. and min. transmission: 0.2535 and 0.4939 Refinement method: Full-matrix least-squares on F^2 Data / restraints / parameters: 10670 / 0 / 496 Goodness-of-fit on F^2 : 1.009 Final *R* indices $[I > 2\sigma(I)]$: R1 = 0.0157, wR2 = 0.0401 R indices (all data): R1 = 0.0180, wR2 = 0.0413Largest diff. peak and hole: 1.177 and -0.560 e \times ${\rm \AA}^{-3}$

Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit are based on F^2 , conventional R-factors R are based

on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating R-factors

Treatment of hydrogen atoms:

All hydrogen atoms were placed geometrically and were refined with an isotropic displacement parameter 1.5 (methyl) or 1.2 times (all others) that of the neighboring carbon atom.

Table S12. Atomic coordinates [× 10^4] and equivalent isotropic displacement parameters [Å² × 10^3] for **4.** U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	X	У	Z	U (eq)
 Au1	501.928(4)	340.112(4)	108.096(2)	17.08(2)
P1	607.13(3)	393.96(3)	178.043(15)	14.67(6)
Nl	512.30(9)	288.00(10)	18.03(5)	17.1(2)
N2	363.65(10)	163.36(9)	20.51(5)	17.0(2)
N3	332.58(9)	282.65(9)	97.11(5)	16.8(2)
C28	788.01(12)	331.66(11)	118.82(6)	20.1(3)
C27	896.85(13)	331.77(13)	104.68(7)	25.3(3)
C17	580.98(10)	524.60(11)	201.84(6)	16.3(2)
C29	675.38(11)	381.57(12)	-14.00(6)	18.4(3)
C6	204.32(13)	350.84(14)	230.70(8)	28.2(3)
C11	593.54(11)	318.76(11)	242.52(6)	17.2(3)
C4	254.75(11)	288.44(11)	136.03(6)	17.5(3)
C20	547.01(12)	727.42(12)	236.10(8)	25.2(3)
C2	212.65(11)	145.60(11)	85.67(6)	17.4(3)
C23	751.23(11)	394.87(11)	162.27(6)	17.1(3)
C15	664.38(14)	241.02(13)	327.82(7)	27.1(3)
C24	824.52(12)	458.10(12)	191.20(7)	21.9(3)
C16	680.96(12)	293.53(12)	277.49(7)	22.4(3)
C1	309.30(11)	196.34(11)	64.60(6)	16.4(2)
C19	569.75(13)	652.54(12)	275.56(7)	24.9(3)
C26	969.23(12)	394.50(13)	133.41(7)	26.6(3)
C3	179.79(11)	205.54(11)	130.38(6)	18.8(3)
C22	557.65(12)	600.84(12)	162.16(7)	22.8(3)
C18	585.77(12)	551.02(12)	258.84(6)	21.2(3)
C14	560.84(15)	214.62(13)	343.83(7)	28.4(3)
C10	290.65(12)	468.93(13)	166.81(8)	26.4(3)
С9	286.03(14)	545.05(16)	207.88(10)	40.8(5)
C30	650.32(12)	475.24(12)	12.01(6)	21.3(3)
C13	473.70(14)	239.30(15)	309.31(8)	33.0(4)
C25	933.54(12)	457.57(13)	176.71(8)	26.1(3)
C21	541.11(13)	701.95(13)	179.50(8)	27.7(3)
C12	489.57(13)	290.30(14)	258.69(7)	26.9(3)

C5	250.18(11)	370.90(12)	177.94(7)	20.4(3)
C8	241.56(16)	524.44(19)	259.83(10)	49.2(6)
C7	200.93(15)	427.43(19)	271.23(9)	42.8(5)
C37	502.92(12)	159.66(11)	-50.21(6)	17.9(3)
C35	596.79(11)	296.91(11)	-17 16(6)	17.7(3)
C36	594.50(12)	217 71(12)	-59.03(6)	20.2(3)
C45	161.06(11)	50 23(11)	65 79(6)	18.8(3)
C47	158.78(13)	-107.46(13)	10 95(7)	25.4(3)
C46	210.72(12)	-17.47(12)	27.98(7)	21.2(3)
C34	777.24(12)	370.99(13)	-39.04(7)	22.9(3)
C32	826.40(13)	542.91(13)	-10.13(8)	28.2(3)
C31	725.08(13)	555 13(13)	13.76(7)	25.8(3)
C33	852.13(13)	450.99(13)	-36.44(7)	27.1(3)
C39	459.96(11)	75.12(11)	-85.08(6)	17.7(3)
C40	530.33(12)	7.15(12)	-111.89(6)	20.4(3)
C44	348.26(12)	62.70(12)	-93.95(6)	21.9(3)
C43	309.27(13)	-15.27(13)	-128.76(7)	25.7(3)
C38	452.3(11)	203.81(11)	-1.07(6)	16.6(2)
C50	58.0(13)	23.0(13)	86.9(7)	25.(3)
C48	57.32(13)	-132.52(13)	31.41(8)	27.4(3)
C49	7.73(13)	-67.18(13)	69.31(8)	28.6(3)
C42	379.74(14)	-81.54(12)	-155.65(7)	25.3(3)
C41	490.38(13)	-70.13(12)	-146 98(7)	24.5(3)

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Table	s13.	Bond	lengths	[Å]	and	angles	[deg]	for	4.
-------	------	------	---------	-----	-----	--------	-------	-----	----

Aul Pl 2.2088(3)	C10 C9 1.389(2)
Aul N3 2.2349(12)	C10 C5 1.395(2)
Aul N1 2.2448(12)	C9 C8 1.381(3)
P1 C17 1.8188(14)	C30 C31 1.390(2)
P1 C11 1.8234(15)	C13 C12 1.387(2)
P1 C23 1.8245(14)	C8 C7 1.385(4)
N2 C1 1.3207(18)	C37 C36 1.378(2)
N2 C38 1.3250(18)	C37 C38 1.4467(19)
N3 C4 1.3429(18)	C37 C39 1.470(2)
N3 C1 1.3888(18)	C35 C36 1.430(2)
N1 C35 1.3494(18)	C45 C50 1.406(2)
N1 C38 1.3933(18)	C45 C46 1.402(2)
C28 C27 1.391(2)	C47 C48 1.389(2)
C28 C23 1.398(2)	C47 C46 1.391(2)
C27 C26 1.384(3)	C34 C33 1.393(2)
C17 C22 1.394(2)	C32 C33 1.386(3)
C17 C18 1.395(2)	C32 C31 1.390(2)
C29 C30 1.401(2)	C39 C40 1.398(2)
C29 C34 1.405(2)	C39 C44 1.404(2)
C29 C35 1.469(2)	C40 C41 1.391(2)
C6 C7 1.384(3)	C44 C43 1.389(2)
C6 C5 1.404(2)	C43 C42 1.385(2)
C11 C16 1.393(2)	C50 C49 1.386(2)
C11 C12 1.395(2)	C48 C49 1.385(2)
C4 C3 1.426(2)	C42 C41 1.389(2)
C4 C5 1.463(2)	
C20 C21 1.383(3)	P1 Au1 N3 137.36(3)
C20 C19 1.376(2)	P1 Au1 N1 140.33(3)
C2 C3 1.380(2)	N3 Au1 N1 81.51(4)
C2 C1 1.4579(19)	C17 P1 C11 102.80(6)
C2 C45 1.469(2)	C17 P1 C23 103.59(6)
C23 C24 1.397(2)	C11 P1 C23 105.96(7)
C15 C14 1.383(2)	C17 P1 Au1 115.04(5)
C15 C16 1.392(2)	C11 P1 Au1 113.59(5)
C24 C25 1.395(2)	C23 P1 Au1 114.57(5)
C19 C18 1.392(2)	C1 N2 C38 127.46(13)
C26 C25 1.389(3)	C4 N3 C1 106.32(11)
C22 C21 1.392(2)	C4 N3 Au1 125.38(9)
C14 C13 1.383(3)	C1 N3 Au1 121.47(9)

```
Table S13, continued.
```

C35 N1 C38 106.16(12) C35 N1 Au1 127.99(9) C38 N1 Au1 120.65(9) C27 C28 C23 120.08(15) C26 C27 C28 120.25(15) C22 C17 C18 119.02(14) C22 C17 P1 119.33(11) C18 C17 P1 121.64(11) C30 C29 C34 118.36(14) C30 C29 C35 121.57(13) C34 C29 C35 120.04(14) C7 C6 C5 120.05(18) C16 C11 C12 118.99(14) C16 C11 P1 123.12(11) C12 C11 P1 117.81(12) N3 C4 C3 111.29(13) N3 C4 C5 122.78(13) C3 C4 C5 125.93(13) C21 C20 C19 119.88(15) C3 C2 C1 104.94(12) C3 C2 C45 126.28(13) C1 C2 C45 128.76(13) C24 C23 C28 119.51(13) C24 C23 P1 122.17(11) C28 C23 P1 118.30(11) C14 C15 C16 120.21(15) C23 C24 C25 119.96(15) C15 C16 C11 120.29(14) N2 C1 N3 126.66(13) N2 C1 C2 123.44(13) N3 C1 C2 109.89(12) C20 C19 C18 120.32(15) C27 C26 C25 120.13(14) C2 C3 C4 107.54(12) C21 C22 C17 120.07(15) C19 C18 C17 120.30(15) C13 C14 C15 119.82(15) C9 C10 C5 119.99(17) C8 C9 C10 120.46(19) C31 C30 C29 120.77(14) C14 C13 C12 120.38(16)

C26 C25 C24 120.06(15) C20 C21 C22 120.40(15) C13 C12 C11 120.30(15) C10 C5 C6 119.18(15) C10 C5 C4 121.58(14) C6 C5 C4 119.24(15) C7 C8 C9 119.99(17) C8 C7 C6 120.32(19) C36 C37 C38 105.55(12) C36 C37 C39 127.99(13) C38 C37 C39 126.34(13) N1 C35 C36 111.00(12) N1 C35 C29 123.30(13) C36 C35 C29 125.59(13) C37 C36 C35 107.34(12) C50 C45 C46 117.69(14) C50 C45 C2 119.44(14) C46 C45 C2 122.85(13) C48 C47 C46 120.75(15) C47 C46 C45 120.56(14) C33 C34 C29 120.45(15) C33 C32 C31 119.64(15) C30 C31 C32 120.30(16) C32 C33 C34 120.46(15) C40 C39 C44 118.40(14) C40 C39 C37 120.34(13) C44 C39 C37 121.22(13) C41 C40 C39 120.64(14) C43 C44 C39 120.44(14) C42 C43 C44 120.72(15) N2 C38 N1 128.70(13) N2 C38 C37 121.38(13) N1 C38 C37 109.90(12) C49 C50 C45 121.39(15) C49 C48 C47 119.44(15) C48 C49 C50 120.17(15) C43 C42 C41 119.28(15) C42 C41 C40 120.51(15)

Table S14. Anisotropic displacement parameters $[Å^2 \times 10^3]$ for **4**. The anisotropic displacement factor exponent takes the form: -2 $\pi 2$ [(h a*)² Ul1 + ... + 2 h k a* b* Ul2]

	U11	U22	U33	U23	U13	U12
 A111	17.22(3)	16.28(3)	17.64(3)	-2.37(2)	-3.81(2)	-1.38(2)
P1	12.15(14)	15.94(15)	15.91(15)	-2.30(12)	-0.40(12)	-0.32(12)
N2	15.3(5)	18.8(6)	16.9(6)	-0.1(4)	-0.3(4)	-0.6(4)
NЗ	13.9(5)	18.2(6)	18.1(5)	-2.1(4)	-0.2(4)	-0.7(4)
N1	15.7(5)	19.8(6)	15.7(5)	-1.7(4)	-0.2(4)	-2.3(4)
C28	18.0(6)	23.2(7)	19.1(7)	2.1(5)	0.7(5)	2.3(5)
C27	21.1(7)	31.6(8)	23.2(7)	5.8(6)	5.1(6)	8.0(6)
C17	12.2(5)	15.7(6)	20.8(6)	-2.5(5)	-0.9(5)	-0.4(5)
C29	17.2(6)	21.6(7)	16.3(6)	3.4(5)	-1.6(5)	-2.6(5)
C6	18.7(7)	39.7(10)	26.3(8)	-7.5(7)	3.9(6)	0.6(6)
C11	18.5(6)	15.4(6)	17.7(6)	-2.5(5)	0.1(5)	-0.4(5)
C4	14.2(6)	19.3(7)	18.9(6)	-0.5(5)	-1.0(5)	1.6(5)
C20	16.6(6)	17.9(7)	41.3(9)	-6.2(6)	1.0(6)	-1.3(5)
C2	13.8(6)	18.4(6)	20.0(7)	0.5(5)	-0.4(5)	-0.6(5)
C23	13.6(6)	18.2(6)	19.5(6)	1.9(5)	-0.2(5)	0.3(5)
C15	30.4(8)	26.4(8)	24.5(8)	3.4(6)	-2.3(6)	6.0(6)
C24	17.2(6)	19.9(7)	28.7(8)	-0.4(6)	-2.3(5)	-0.8(5)
C16	18.9(6)	24.5(7)	23.8(7)	2.1(6)	0.4(5)	3.4(6)
C1	13.4(5)	17.9(6)	17.9(6)	0.2(5)	-0.9(5)	-1.7(5)
C19	23.5(7)	24.7(8)	26.5(8)	-8 5(6)	3.4(6)	-1.7(6)
C26	14.6(6)	30.7(8)	34.5(9)	14.4(7)	3.4(6)	3.1(6)
C3	14.8(6)	20.1(7)	21.6(7)	-0.3(5)	2.4(5)	0.1(5)
C22	24.0(7)	21.1(7)	23.2(7)	0.6(6)	-3.6(6)	-2.0(6)
C18	23.2(7)	20.2(7)	20.3(7)	-2.5(5)	-0.7(5)	0.6(5)
C14	37.6(9)	24.2(8)	23.3(8)	3.9(6)	3.1(7)	-1.1(7)
C10	17.0(6)	25.6(8)	36.6(9)	-9.5(7)	0.7(6)	1.0(6)
С9	23.4(8)	33.7(9)	65.3(14)	-25.8(9)	5.3(8)	-3.9(7)
C30	18.3(6)	22.3(7)	23.2(7)	2.0(6)	-1.4(5)	-2.2(5)
C13	27.0(8)	40.3(10)	31.7(9)	7.6(8)	4.6(7)	-8.7(7)
C25	16.0(6)	23.8(7)	38.4(9)	6.7(7)	-4.2(6)	-3.7(5)
C21	27.0(7)	18.2(7)	37.6(9)	5.1(6)	-5.9(7)	-1.8(6)
C12	18.6(7)	34.5(9)	27.7(8)	5.1(7)	-1.0(6)	-4.4(6)
C5	11.9(6)	25.3(7)	24.0(7)	-6.3(6)	-1.4(5)	2.3(5)
C8	28.0(9)	61.3(14)	58.5(14)	-43.2(12)	7.2(9)	-4.5(9)
C7	28.4(9)	66.7(14)	33.6(10)	-24.6(10)	7.6(7)	-1.4(9)
C37	17.8(6)	20.8(7)	14.9(6)	-0.8(5)	0.1(5)	-0.5(5)
C35	16.6(6)	20.4(7)	16.2(6)	1.4(5)	-0.5(5)	-1.7(5)
C36	18.5(6)	25.2(7)	17.1(6)	-0.8(5)	2.2(5)	-1.6(5)
C45	16.4(6)	18.2(6)	21.7(7)	1.3(5)	-1.0(5)	-2.2(5)
C47	24.9(7)	22.3(7)	29.1(8)	-3.6(6)	0.2(6)	-2.6(6)
C46	18.3(6)	21.3(7)	24.1(/)	-1.4(6)	0.0000(5)	-2.8(5)
C34	21.2(7)	24.2(7)	23.4(/)	3.9(6)	2.9(6)	-2.0(6)
C32	23.1(7)	27.3(8)	34.2(9)	6.0(/)	-1./(6)	-9.3(6)
C31 022	26.6(7)	19.8(7)	31.1(8)	1.4(6)	-3.0(6)	-2.8(6)
033	19.5(/)	30.7(8)	31.2(8)	6.U(/)	3.5(b) 0.0(E)	-4.4(6)
C39	20.5(6)	19.3(6)	101(D)	$\cup \cdot \delta(\mathbf{S})$		-1.9(5)
C4U	19.6(6)	∠∠.७(/) ⊃⊑ 4(7)	19.1(/)	$\cup \cdot \forall (5)$	∠.∠(5) 2 E(E)	0.5(5)
C44 C13	∠∪./(/) 23 7(7)	∠J.4(/) 20, 1 (Q)	$\pm 9.0(7)$ 21.0(7)	-4.2(0)	-2.0(3)	-25(6)
U-1-J	23.1(1)	ムノ・エ (U)	∠ (/)	J. 4 (0)	J. 4 (U)	2.0(0)

C38	15.8(6)	18.7(6)	15.3(6)	-1.2(5)	-0.8(5)	-1.4(5)
C50	21.1(7)	23.7(7)	31.6(8)	-1.7(6)	6.3(6)	-3.8(6)
C48	25.3(7)	21.5(7)	35.2(9)	-0.9(7)	-1.4(7)	-7.6(6)
C49	21.5(7)	26.2(8)	38.2(9)	0.3(7)	5.8(6)	-7.9(6)
C42	33.7(8)	21.2(7)	21.0(7)	-4.3(6)	-4.1(6)	-3.0(6)
C41	29.6(8)	22.1(7)	21.8(7)	-2.2(6)	2.6(6)	2.2(6)

Table S15. Hydrogen coordinates (× $10^4)$ and isotropic displacement parameters $({\rm \AA}^2$ × $10^3)$ for ${\bf 4.}$

	Х	У	Z	U(eq)
Н28	7386	2886	989	24
H27	9216	2886	752	30
H6	1756	2846	2386	34
H20	5354	7965	2477	30
H15	7244	2233	3513	33
H24	8001	5014	2207	26
H16	7522	3123	2669	27
Н19	5745	6702	3144	30
H26	10435	3944	1235	32
НЗ	1184	1937	1532	23
H22	5530	5838	1232	27
H18	6000	4995	2864	25
H14	5496	1796	3785	34
H10	3214	4837	1312	32
Н9	3137	6117	2002	49
Н30	5814	4843	286	26
H13	4025	2212	3203	40
H25	9834	5004	1965	31
H21	5257	7537	1523	33
H12	4294	3059	2349	32
Н8	2388	5768	2877	59
Н7	1706	4134	3070	51
Н36	6465	2071	-876	24
H47	1931	-1523	-150	30
H46	2804	-18	139	25
Н34	7952	3088	-579	28
Н32	8777	5973	-84	34
H31	7068	6184	314	31
Н33	9213	4425	-528	33
H40	6062	138	-1061	25
H44	2990	1079	-760	26
H43	2335	-232	-1342	31
Н50	233	676	1118	31
H48	222	-1940	195	33
H49	-613	-843	839	34
H42	3527	-1342	-1798	30
H41	5392	-1155	-1652	29

Computational Methods

Spin-restricted Scalar-relativistic density-functional calculations were executed within the zero-order regular approximation, as implemented in the Amsterdam Density Functional package (ADF2004).¹¹⁻¹³ In these computations, the local density functional is that of Vosko, Wilk, and Nusair.¹⁴ Geometries were optimized with the revised Perdew-Becke-Ernzerhof Scalar relativistic interactions were included within the zero-order regular functional.^{15,16} approximation (ZORA).¹⁷⁻²⁰ Atomic orbitals of all atoms were constructed from triple- ζ basis sets of Slater orbitals (ADF database TZP) with one set of diffuse functions added. Core electronic shells (one or more principle quantum numbers below the valence level) were frozen for all atoms. The electron density was fitted with sets of auxiliary s, p, d, f, and g-functions centered on all nuclei, along with the Coulomb and exchange potentials, in every self-consistent field cycle. Geometries were optimized in the gas-phase (no inclusion of solvent) with the Broyden-Fletcher-Goldfarb-Shano algorithm; the convergence criterion was that successive energies differ by not more than 1×10^{-5} H (the default is 1×10^{-3} H). Analytical harmonic frequency calculations on $(H_3P)Ag(1)$ (3') returned a frequency 4.73*i* cm⁻¹ corresponding to phenyl rotation. Tightening of convergence criteria did not eliminate this imaginary-frequency mode, and the structure was deemed converged. Vertical excitation energies were calculated with single-point time-dependent density-functional theory (TDDFT) calculations,²¹⁻²³ performed with the statistical average of model exchange-correlation potentials (SAOP)²⁴⁻²⁶ at the geometry previously optimized with the rPBE functional. Solvation was treated implicitly with a conductor-like screening model (COSMO).²⁷ Basis sets for time-dependent calculations are those used in geometry optimization. Time-dependent calculations employed the Davidson algorithm; error tolerances in the square of the excitation energies and the trial-vector orthonormality cutoff were both set to 10^{-8} .

¹¹ SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, http://www.scm.com.

¹² te Velde, G.; Bickelhaupt, F. M.; Baerends, E. J.; Fonseca Guerra, C.; van Gisbergen, S. J. A.; Snijders, J. G.; Ziegler, T. J. Comput. Chem. 2001, 22, 931–967.

¹³ Fonseca Guerra, C.; Visser, O.; Snijders, J. G.; te Velde, G.; Baerends, E. J. In *Methods and Techniques for Computational Chemistry*; Clementi, E., Corongiu, C., Eds.; STEF: Cagliari, 1995; pp 303–395.

¹⁴ Vosko, S. H.; Wilk, L.; Nusair, M. Can. J. Phys. **1980**, 58, 1200–1211.

¹⁵ Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. **1996**, 77, 3865–3868.

¹⁶ Hammer, B.; Hansen, L. B.; Norskov, J. K. Phys. Rev. **1999**, *B59*, 7413–7421.

¹⁷ Van Lenthe, E.; Baerends, E. J.; Snijders, J. G. J. Chem. Phys. **1993**, 99, 4597–4610.

¹⁸ Van Lenthe, E.; Baerends, E. J.; Snijders, J. G. J. Chem. Phys. **1994**, 101, 9783–9792.

¹⁹ Van Lenthe, E.; Snijders, J. G.; Baerends, E. J. J. Chem. Phys. **1996**, 105, 6505–6516.

²⁰ Van Lenthe, E.; van Leeuwen, R.; Baerends, E. J.; Snijders, J. G. Int. J. Quantum Chem. **1996**, 57, 281–293.

²¹ van Gisbergen, S. J. A.; Kootstra, F.; Schipper, P. R. T.; Gritsenko, O. V.; Snijders, J. G.; Baerends, E. J. *Phys. Rev. A* **1998**, *57*, 2556–2571.

²² Jamorski, C.; Casida, M. E.; Salahub, D. R. J. Chem. Phys. **1996**, 104, 5134–5147.

²³ Bauernschmitt, R.; Ahlrichs, R. Chem. Phys. Lett. **1996**, 256, 454–464.

²⁴ Schipper, P. R. T.; Gritsenko, O. V.; van Gisbergen, S. J. A.; Baerends, E. J. J. Chem. Phys. **2000**, 112, 1344–1352.

²⁵ Gritsenko, O. V.; Schipper, P. R. T.; Baerends, E. J. Chem. Phys. Lett. 1999, 302, 199–207.

²⁶ Grüning, M.; Gritsenko, O. V.; van Gisbergen, S. J. A.; Baerends, E. J. J. Chem. Phys. **2002**, 116, 9591–9601.

²⁷ Klamt, A. J. Phys. Chem. **1995**, 99, 2224–2235.

Cartesian Coordinates of Optimized 3'

Atom	Х	Y	Z (Angstrom)
1.Ag	11.690905	10.873963	14.426765
2.P	13.135465	11.722963	16.143063
З.Н	13.067071	13.105007	16.477686
4.H	14.552523	11.647881	16.024289
5.Н	13.044618	11.224368	17.473575
6.C	8.789146	12.593372	15.721760
7.H	9.284992	12.754645	14.763413
8 C	8 566711	13 670680	16 587549
9 H	8 914760	14 668435	16 309780
10 C	7 874277	13 479361	17 794396
10.C	7 693965	1/ 32162/	18 / 6577/
12 0	7.000000	12 100124	18 123/01
12.C	6 962244	12.190124	10.123401
13.n	7 6202544	11 120661	17 256707
14.0	7.020234	10 100175	17.230/9/
15.H	7.256727	10.1281/5	17.528864
16.C	8.323142	11.295/53	16.041148
17.C	8.508774	10.173872	15.106939
18.C	7.607788	9.075124	14.934225
19.H	6.699275	8.909453	15.505043
20.C	8.093512	8.291409	13.893584
21.C	9.320458	8.964330	13.444700
22.C	11.084193	9.104589	11.810408
23.C	11.671545	8.575481	10.573576
24.C	12.774056	9.381814	10.314524
25.Н	13.409791	9.346343	9.434778
26.C	12.830926	10.376659	11.342779
27.C	13.775232	11.503968	11.391038
28.C	15.073717	11.384583	10.841079
29.Н	15.390546	10.430015	10.417075
30.C	15,962425	12.465741	10.851559
31.Н	16.961581	12.348052	10.426259
32 C	15 574913	13 696918	11 405226
32.0 33 н	16 265549	14 542880	11 404010
34 C	14 285706	13 835030	11 944860
эл . е 35 н	13 96/1/2	11 796648	12 351933
36 0	13 396605	12 753627	11 937105
30.С 37 ц	12 379/01	12 880096	12 310965
38 C	7 159099	7 073794	13 355769
30.0	6 055007	6 000012	12 464622
39.C	5.0JJ907	7 606209	12 005602
40.H	5.448116	7.090308	13.895692
41.0	5.430858	5./35321	13.003487
42.H	4.34/249	5.630283	13.095560
43.C	6.190636	4./11051	12.414190
44.H	5.704397	3.801758	12.052854
45.C	7.579212	4.869897	12.293024
46.H	8.182641	4.082290	11.836205
47.C	8.207699	6.032463	12.757516
48.H	9.285763	6.140201	12.661133
49.C	11.196840	7.464628	9.727932
50.C	12.131000	6.684259	9.001638
51.Н	13.198251	6.879539	9.123012
52.C	11.711668	5.652247	8.154693
53.H	12.453735	5.061109	7.612785

54.C	10.343155	5.371057	8.008336
55.Н	10.013238	4.566788	7.346394
56.C	9.405327	6.133412	8.720880
57.Н	8.337817	5.928610	8.612991
58.C	9.822924	7.166462	9.570143
59.Н	9.084602	7.756235	10.109451
60.N	9.542620	10.104851	14.232651
61.N	10.011632	8.557400	12.381421
62.N	11.833216	10.208138	12.246267