Efficient charge transport through a metal oxide semiconductor in the nanocomposite film with tris(2,2'-bipyridine)ruthenium(II)

Koji Sone ^{a),c)}, Masahiro Teraguchi ^{b),c)}, Takashi Kaneko ^{c)}, Toshiki Aoki ^{b),c)}, Masayuki Yagi ^{a),c)}*

^{a)} Faculty of Education and Human Sciences, Niigata University, 8050 Ikarashi-2, Niigata 950-2181, Japan.

b) Faculty of Engineering, Niigata University, 8050 Ikarashi-2, Niigata 950-2181, Japan.

^{c)} Center for Transdisciplinary Research, Niigata University, 8050 Ikarashi-2, Niigata 950-2181, Japan.

Supporting Information

Figure S1 The plot of the initial current density (j) at t = 10 ms vs E_f in the Cottrell plots of a Ru-WO₃ film.

Figure S2 Cottrell plots in PSCAS measurement of a neat WO₃ film in a 0.1 M KNO₃ aqueous solution (pH = 1.2) as measured with E_f changed.

Figure S3 Cottrell plots in PSCAS measurement of a Ru-WO₃ film and a Ru-Nf film in a potential step from 0.4~V to 1.5~V vs SCE in a 0.1~M KNO₃ aqueous solution (pH = 1.2) as measured at different temperature.

Figure S1 The plot of the initial current density (j) at t=10 ms vs E_f in the Cottrell plots of a Ru-WO₃ film ($\Gamma_{Ru}=2.0 \text{ x } 10^{-8} \text{ mol cm}^{-2}$). The conditions are indicated in Figure 3.

Figure S2 Cottrell plots in PSCAS measurement of a neat WO $_3$ film in a 0.1 M KNO $_3$ aqueous solution (pH = 1.2) as measured with $E_{\rm f}$ changed from 0.4 V to 0.9 V vs SCE.

Figure S3 Cottrell plots in PSCAS measurement of a Ru-WO₃ film (open symbols, Γ_{Ru} = 2.4 x 10^{-8} mol cm⁻²) and a Ru-Nf film (closed symbols, Γ_{Ru} = 2.3 x 10^{-8} mol cm⁻²) in a potential step from 0.4 V to 1.5 V vs SCE in a 0.1 M KNO₃ aqueous solution (pH = 1.2) as measured at different temperature.