Supporting Information

Design, Synthesis and In Vivo SAR of a Novel Series of Pyrazolines as Potent Selective Androgen Receptor Modulators

Xuqing Zhang,* Xiaojie Li, George F. Allan, Tifanie Sbriscia, Olivia Linton, Scott G. Lundeen and Zhihua Sui

Drug Discovery, Johnson & Johnson Pharmaceutical Research and Development, LLC, 665 Stockton Drive, Exton, PA 19341, USA

Correspondence to Dr. Xuqing Zhang. Tel: 1-610-458-4137. Fax: 1-610-458-8249. E-mail: xzhang5@prdus.jnj.com

Contents of SI

	Page Numbers
Preparation of anilines 3	S2
Summary of Purity of Compounds	S 3
X-ray Single Crystallographic Data of (R)-13 [·] 0.5 CH ₂ Cl ₂	S4

1) Preparation of anilines 3

The required starting material anilies **3** were obtained from either commercial source or prepared by the known method. Some novel anilines were prepared by the following procedure.

4-Amino-3-ethyl-2-trifluoromethyl-benzonitrile and 4-Amino-5-chloro-2-trifluoromethyl-benzonitrile

These two anilines were prepared according to PCT Int. Appl. 2004, WO 2004045518.

4-Amino-5-ethyl-2-trifluoromethyl-benzonitrile

4-Amino-5-iodo-2-trifluoromethyl-benzonitrile (936 mg, 3.0 mmol), CuI (I) (57 mg, 0.3 mmol), PdCl₂(PPh)₃ (105.3 mg, 0.15 mmol), triethyl amine (1.01 g, 10 mmol) and ethynyl-trimethyl-silane (450 mg, 4.5 mmol) were mixed in THF (30 mL). The reaction mixture was stirred at room temperature overnight. Tetrabutylammonium fluoride (1.0 M in THF, 3.0 mL, 3.0 mmol) was added to the reaction mixture and stirred at room temperature for 20 min. The reaction was quenched by addition of H₂O and extracted with ethyl acetate. The organic layer was combined and washed with brine, dried over Na₂SO₄ and concentrated to afford the crude product 4-amino-5-ethynyl-2-trifluoromethyl-benzonitrile. The crude product (3.0 g, 90% pure) mixed with Pd/C (0.3 g) in methanol (50 ml) with the H₂ (40 psi). The reaction was shaked at room temperature for overnight. Upon separation on silica gel (100% CH₂Cl₂), the tile compound was obtained in pure form as a colorless liquid (3.0 g, 100%). ¹H NMR (CDCl₃) δ 7.50 (s, 1H), 7.00 (s, 1H), 4.50 (br, 2H), 2.50 (m, 2H), 1.30 (m, 3H). MS (m/z): 214,

(M+H)⁺.

4-Amino-5-methoxy-2-trifluoromethyl-benzonitrile

4-Amino-5-iodo-2-trifluoromethyl-benzonitrile (312 mg, 1.0 mmol), CuI (I) (20 mg, 0.1 mmol), Cs₂CO₃ (652 mg, 2.0 mmol) and 1,10-phenanthroline (36 mg, 0.2 mmol) were mixed in methanol (20 mL). The reaction was refluxed overnight and then solvent was removed under vacuum. Upon separation on silica gel (100% CH₂Cl₂), the tile compound was obtained in pure form as a colorless liquid (100 mg, 48%). ¹H NMR (CDCl₃) δ 7.05 (s, 1H), 6.90 (s, 1H), 4.50 (br, 2H), 3.90 (s, 3H). MS (m/z): 216, (M+H)⁺.

4-Amino-5-chloro-2-trifluoromethyl-benzonitrile

4-Amino-2-trifluoromethyl-benzonitrile (1.95 g, 10.5 mmol), NCS (2.07 g, 15.5 mmol) in MeOH (50 mL) at 0 $^{\circ}$ C was stirred for 2 hrs. The solvent was removed and the residue was partitioned between ethyl acetate and water. The organic layer was washed with sodium thiosulfate, water, brine, dried over anhydrous Na₂SO₄, filtered and concentrated to give the crude material, which was then purified by column chromatography using hexanes and ethyl acetate to yield the title compound (700 mg, 31%) as a brown solid along with side product 4-amino-3,5-dichloro-2-trifluoromethyl-benzonitrile.

¹H NMR (CDCl₃) δ 7.65 (s, 1H), 7.02 (s, 1H), 4.90 (br, s, 2H). MS (m/z): 221, (M+H)⁺.

4-Amino-5-cyano-2-trifluoromethyl-benzonitrile

4-Amino-5-iodo-2-trifluoromethyl-benzonitrile (467 mg, 1.5 mmol), CuCN (155 mg, 1.7 mmol) in NMP (10 mL) was heated at 150 °C for 4 hrs. The reaction mixture was passed through a pad of Celite. The solution was partitioned between ethyl acetate and water. The organic layer was washed with water, brine, dried over anhydrous Na_2SO_4 , filtered and concentrated to yield the title compound as brown solid (152 mg, 45%).

¹H NMR (CDCl₃) δ 7.82 (s, 1H), 7.15 (s, 1H), 5.45 (br, s, 2H). MS (m/z): 212, (M+H)⁺.

4-Amino-5-ethylsulfanyl-2-trifluoromethyl-benzonitrile

4-Amino-5-iodo-2-trifluoromethyl-benzonitrile (6.24 g, 20.0 mmol), CuI (I) (380 mg, 2.0 mmol), K₂CO₃ (6.52 g, 40.0 mmol) and ethyl thiol (1.25 g, 20.0 mmol) were mixed in ethanol (50 mL). The reaction was refluxed overnight and then solvent was removed under vacuum. Upon separation on silica gel (100% DCM), the tile compound was obtained in pure form as a colorless liquid (4.36 g, 90%). ¹H NMR (CDCl₃) δ 7.70 (s, 1H), 7.00 (s, 1H), 5.10 (br, 2H), 2.85 (m, 2H), 1.25 (m, 3H). MS (m/z): 264,

 $(M+H_2O)^+$.

2) Summary of Purity of Compounds¹

Cmpds	Formula	CHN Calculated	CHN Found	HPLC Purity
6a	$C_{20}H_{18}F_3N_5O_4$	C, 53.45; H, 4.04; N, 15.58	C, 53.70; H, 4.18; N, 14.97	97%
6b	$C_{21}H_{18}F_3N_5O_2$	C, 58.74; H, 4.23; N, 16.31	C, 58.32; H, 4.04; N, 16.37	-
6c	$C_{20}H_{15}F_6N_5O_4$	C, 47.72; H, 3.00; N, 13.91	C, 47.21; H, 3.12; N, 14.35	98%
6d	$C_{21}H_{18}F_6N_6O_2$	C, 65.27; H, 4.70; N, 21.75	C, 64.96; H, 5.47; N, 21.05	98%
6e	$C_{20}H_{18}ClF_3N_4O_2$	C, 54.74; H, 4.13; N, 12.77	C, 54.81; H, 4.05; N, 12.61	-
6f	$C_{21}H_{18}F_3N_5O_2$	C, 58.74; H, 4.23; N, 16.31	C, 58.24; H, 4.06; N, 16.30	-
6g	$C_{22}H_{20}F_3N_5O_2$ 0.35 EtOAc	C, 59.26; H, 4.85; N, 14.77	C, 59.54; H, 4.55; N, 15.01	-
6h	$C_{19}H_{14}F_4N_4O^{-}0.7$ MeOH	C, 57.32; H, 4.10; N, 14.57	C, 57.45; H, 3.88; N, 14.35	-
6i	$C_{18}H_{14}F_4N_4O_3$ 0.2 H_2O	C, 52.23; H, 3.51; N, 13.54	C, 52.10; H, 3.35; N, 13.78	-
7a	$C_{13}H_{11}F_{3}N_{4}O$	C, 52.71; H, 3.74; N, 18.91	C, 48.86; H, 3.95; N, 15.16	95%
7b	$C_{14}H_{13}F_{3}N_{4}O$	C, 54.19; H, 4.22; N, 18.06	C, 54.05; H, 4.10; N, 18.25	-
7c	$C_{14}H_{10}F_6N_4O$	C, 46.16; H, 2.77; N, 15.38	C, 46.29; H, 2.53; N, 15.28	-
7d	$C_{13}H_{10}F_6N_4O^{-}1.2~H_2O$	C, 40.64; H, 2.62; N, 14.58	C, 41.77; H, 3.34; N, 14.99	-
7e	$C_{13}H_{10}ClF_6N_3O^{-}0.2 CH_2Cl_2$	C, 41.78; H, 2.70; N, 11.24	C, 41.55; H, 2.90; N, 11.65	-
7 f	$C_{13}H_{10}BrF_6N_3O$	C, 37.34; H, 2.41; N, 10.05	C, 38.05; H, 2.75; N, 9.56	97%
7g	$C_{12}H_{10}Cl_2F_3N_3O^{-}0.2$ MeOH	C, 42.28; H, 3.14; N, 12.12	C, 42.40; H, 2.98; N, 11.75	-
7h	$C_{13}H_{11}F_{3}N_{4}O$	C, 52.71; H, 3.74; N, 18.91	C, 52.50; H, 3.65; N, 19.01	-
7i	$C_{15}H_{15}F_{3}N_{4}O$	C, 55.55; H, 4.66; N, 17.28	C, 55.62; H, 4.50; N, 17.15	-
7j	$C_{16}H_{17}F_3N_4O^{-}0.5 H_2O^{-}$	C, 55.33; H, 5.22; N, 16.13	C, 55.45; H, 5.60; N, 15.88	-
7k	$C_{15}H_{12}F_6N_4O$	C, 47.63; H, 3.26; N, 14.81	C, 47.61; H, 3.56; N, 15.12	-
71	$C_{15}H_{10}F_8N_4O$	C, 43.49; H, 2.43; N, 13.52	C, 43.11; H, 2.11; N, 13.90	-
7m	$C_{14}H_7F_9N_4O$	C, 40.21; H, 1.69; N, 13.40	C, 40.27; H, 1.35; N, 13.18	-
7n	$C_{14}H_{10}F_6N_4O$	C, 46.16; H, 2.77; N, 15.38	C, 46.14; H, 2.36; N, 15.30	-
70	$C_{16}H_{15}F_3N_4O_3$ 0.25 H_2O	C, 51.55; H, 4.19; N, 15.03	C, 51.76; H, 4.05; N, 14.88	-
7p	$C_{15}H_{14}F_6N_4O$	C, 47.63; H, 3.20; N, 14.81	C, 47.20; H, 2.97; N, 13.90	97%
7q	$C_{16}H_{12}F_6N_4O$	C, 48.99; H, 3.50; N, 14.28	C, 49.15; H, 3.11; N, 13.95	-
7r	$C_{16}H_{17}F_3N_4O^{-}0.5 C_5H_5N$	C, 58.80; H, 5.20; N, 16.68	C, 58.88; H, 5.17; N, 16.98	-
7s	$C_{17}H_{19}F_3N_4O$	C, 57.95; H, 5.44; N, 15.90	C, 57.77; H, 5.40; N, 15.75	-
8a	$C_{16}H_{14}F_6N_4O$	C, 48.99; H, 3.60; N, 14.28	C, 48.75; H, 3.46; N, 14.51	-
8b	$C_{16}H_{14}F_6N_4O$	C, 48.99; H, 3.60; N, 14.28	C, 48.71; H, 3.52; N, 14.55	-
8c	$C_{15}H_{12}F_6N_4O_2$ 0.2 EtOAc	C, 46.07; H, 3.33; N, 13.60	C, 45.88; H, 3.13; N, 13.51	-
8d	$C_{14}H_9ClF_6N_4O$	C, 42.18; H, 2.28; N, 14.05	C, 41.61; H, 1.88; N, 13.08	97%
8e	$C_{14}H_9IF_6N_4O$	C, 34.31; H, 1.85; N, 11.43	C, 34.25; H, 1.70; N, 11.64	-
8f	$C_{15}H_9F_6N_5O$	C, 46.28; H, 2.33; N, 17.99	C, 46.31; H, 3.10; N, 17.65	-
8g	$C_{16}H_{14}F_6N_4OS$	C, 45.28; H, 3.33; N, 13.20	C, 44.50; H, 3.45; N, 12.51	95%
9a	$C_{15}H_{12}F_6N_4O$	C, 47.63; H, 3.20; N, 14.81	C, 47.36; H, 3.38; N, 14.35	-
9b	$C_{16}H_{14}F_6N_4O$	C, 48.99; H, 3.60; N, 14.28	C, 48.75; H, 3.52; N, 14.15	-
9c	$C_{22}H_{20}F_3N_5O_2.0.5 H_2O$	C, 58.40; H, 4.68; N, 15.48	C, 58.38; H, 4.64; N, 15.38	-
9d	$C_{16}H_{17}F_3N_4O$	C, 56.80; H, 5.06; N, 16.56	C, 56.56; H, 4.91; N, 12.35	-
9e	$C_{14}H_{12}F_3N_3O_2.1.4H_2O$	C, 49.97; H, 4.43; N, 12.49	C, 50.13; H, 4.18; N, 12.38	-

9f	C ₁₉ H ₁₃ F ₄ N ₃ O ₂ 0.5 MeOH	C, 57.50; H, 3.71; N, 10.32	C, 57.75; H, 3.86; N, 9.98	-
9g	$C_{16}H_9F_9N_4O_2$	C, 41.75; H, 1.97; N, 12.17	C, 41.81; H, 2.23; N, 11.95	-
10a	$C_{15}H_{12}F_6N_4O$	C, 47.63; H, 3.20; N, 14.81	C, 47.46; H, 3.09; N, 13.89	-
10b	$C_{16}H_{14}F_6N_4O$	C, 48.99; H, 3.60; N, 14.28	C, 49.40; H, 3.13; N, 15.13	97%
10c	$C_{14}H_{10}F_6N_4S$	C, 44.21; H, 2.65; N, 14.73	C, 42.75; H, 1.89; N, 15.20	95%

¹ For those compounds without satisfied CHN analysis data, the purity was further checked by LC-MS condition.

3) X-ray Single Crystallographic Data of (R)-13'0.5 CH₂Cl₂

Description of Single-Crystal Sample and Mounting Used for Data Collection:

- 1) Color: Colorless
- 2) Shape: Block
- 3) Dimensions: 0.03 mm. x 0.09 mm. x 0.09 mm.
- 4) Indices of Faces:
- 5) Crystal Mount: Crystal was frozen in Paratone N oil and suspended inside a nylon cryoloop.
- 6) Crystal Orientation: Crystal had a random orientation.

Space Group and Cell Data:

- 1) Crystal System: Triclinic Space Group and Number: P1 C (No. 1)
- 2) Number of Computer-Centered Reflections Used in the Least-Squares Refinement of the Cell Dimensions: 1384 having 7.64° < 2⊕(MoK) < 36.94° and measured at -80±2 °C</p>
- 3) Lattice Constants with esd's:

$\mathbf{a} = 8.604(3) \text{ Å}$	$\alpha = 87.075(6)^{\circ}$	$V = 2631(2) \text{ Å}^3$
b = 14.493(5) Å	$\beta = 84.034(6)^{\circ}$	Z = 4 formula units
$\mathbf{c} = 21.258(7) \text{ Å}$	$\gamma = 85.755(6)^{\circ}$	$\lambda = 0.71073 \text{ Å}$

- 4) Formula Weight: 675.77 amu Calculated Density: $1.706 \text{ g} \cdot \text{cm}^{-3}$
- 5) Linear Absorption Coefficient: $1.392 \text{ mm}^{-1} \text{F}(000) = 1324$.
- 6) Comments: The sample was recrystallized from a saturated dichloromethane solution.

Description of Data Collection:

- 1) Instrument: Bruker SMART APEX CCD Single Crystal Diffraction System
- 2) X-ray Source: Sealed fine-focus X-ray tube
- 3) Radiation: MoK Power: 50 kV 35 mA
- 4) Monochromator: Graphite
- 5) Incident Beam Collimator Diameter: 0.5 mm Temperature: -80±2°C
- 6) Scan Axis: Omega
- 7) Scan Width: $0.30^{\circ} 2\theta$ Range of Data : $7.64^{\circ} 46.51^{\circ}$
- 8) Sample to Detector Distance: 6.000 cm
- 9) Portion of Ewald Sphere Collected: Hemisphere
- 10) Number of frames collected: 1868 Seconds/frame: 20
- 11) Total Number of Reflections Collected: 16403
- 12) Number of Independent Reflections Collected: 13647
- 13) Data Collected: $-9 \le h \le 9$; $-16 \le k \le 16$; $-23 \le 1 \le 23R_{in} = 0.080$

Data Reduction:

Lorentz, polarization and absorption correction; Range of relative transmission factors: 0.925 -1.000 Empirical Correction using Measurements for Equivalent Reflections (143 Reflections used)

Structure Solution:

- 1) Method(s) Used in Structure Solution: Direct Methods: SHELXTL/PC
- 2) Hydrogen Atom Positions Located After Refinement Cycle #3 by Difference Fourier and Calculated

Structure Refinement:

- 1) Final Scale Factor: 0.1651(2)
- 2) Extinction Parameter⁶ Refined? No Form: $k[1+0.001(x)(F_c^2)(\lambda^3)/\sin(2\theta)]^{-1/4}$
- 3) Anomalous Dispersion Corrections for Which Atoms: I, Cl, F, O, N, C
- 4) Variable Occupancies for Which Atoms? None
- 5) Refinement Constraints/Restraints: The eight hydrogens bonded to nitrogen were initially located from a difference Fourier synthesis. They were then included in the structure factor calculations as idealized atoms (assuming sp²-hybridization of the nitrogen atoms and a N-H bond length of 0.88 Å) "riding" on their respective nitrogen atoms. The four methyl groups (C₁₅, C₄₅, C₇₅, C₁₀₅ and their hydrogens) were refined as rigid rotors (using idealized sp³-hybridized geometry and a C-H bond length of 0.98 Å) which were allowed to rotate around their respective C-C bonds in least-squares cycles. The remaining hydrogen atoms were included in the structure factor calculations as idealized atoms (assuming sp²- or sp³-hybridization of the carbon atoms and C-H bond lengths of 0.95-0.99 Å) "riding" on their respective carbon atoms. The isotropic thermal parameters of all hydrogen atoms were fixed at values 1.2 (nonmethyl) or 1.5 (methyl) times the equivalent isotropic thermal parameter of the carbon or nitrogen atom to which they are covalently bonded. Moderate restraints had to be applied to the anisotropic thermal parameters of eighteen nonhydrogen atoms.
- 6) Shift/Error Analysis for Final Least-Squares Cycle⁷: Maximum Shift for all Parameters: 0.000 σ_p

Mean Shift for all Parameters: 0.000 σ_{p}

7) Peaks found in Final Difference Fourier Map: There were no peaks present in the final difference Fourier map above the background level (0.71 $e^{-}/Å^{3}$). The minimum and mean electron density in the final difference Fourier were -0.98 and 0.00 $e^{-}/Å^{3}$, respectively. The rms deviation from the mean electron density was 0.10 $e^{-}/Å^{3}$.

Atom	Fractional Coordinates			Equivalent Isotropic
Type ^b	10^4 x	10^4 y	10^4 z	U, $Å^2 \times 10^{3}$ c
		Molec	cule 1	
I_1	5747(2)	1389(1)	-5863(1)	54(1)
F_1	654(15)	2345(9)	460(5)	72(4)
F_2	2455(19)	1679(10)	-98(6)	86(5)
F ₃	2656(19)	3039(10)	126(7)	82(5)
F_4	1793(18)	-370(10)	-3966(7)	75(5)
F_5	448(19)	-1382(9)	-3431(10)	103(7)
F_6	1933(17)	-600(10)	-2968(7)	74(5)
O_1	4664(18)	3883(10)	-2996(7)	47(4)
\mathbf{N}_1	2508(18)	3683(9)	-2328(7)	29(4)
N_2	363(16)	2756(9)	-2432(7)	21(4)
N_3	494(18)	3535(10)	-1525(7)	32(4)
N_4	1457(17)	3352(11)	-1012(7)	39(4)
N_5	-1767(19)	1869(11)	-2089(7)	30(4)
N_6	-1590(30)	-580(14)	-4728(9)	61(7)
C_1	1130(20)	3297(15)	-2111(9)	36(6)
C_2	871(19)	2793(11)	-604(9)	29(4)
C ₃	-600(20)	2388(14)	-786(8)	44(6)
C_4	-890(30)	2967(14)	-1421(11)	50(7)
C_5	-800(20)	2481(13)	-1996(9)	26(5)
C_6	3430(20)	3533(13)	-2907(10)	33(5)
N_7	2790(20)	3003(10)	-3308(8)	39(5)
C_8	3530(20)	2678(13)	-3892(9)	27(5)
C_9	4660(20)	3135(13)	-4258(9)	31(5)
C ₁₀	5270(20)	2745(14)	-4805(9)	34(6)
C ₁₁	4770(20)	1978(13)	-5031(9)	34(5)
C ₁₂	3650(30)	1487(14)	-4637(10)	37(6)
C ₁₃	2990(20)	1888(14)	-4081(10)	37(6)
C ₁₄	1630(30)	2474(13)	-36(10)	42(6)
C ₁₅	-2480(20)	3640(16)	-1297(13)	64(8)
C ₁₆	-1650(30)	1425(14)	-2650(10)	36(6)

Table 1. Atomic Coordinates for Nonhydrogen Atoms in Crystalline \mathbf{R} -C₂₂H₁₄F₆IN₇O \cdot 0.5 CH₂Cl₂^a

Atom	Fractional Coordinates			Equivalent Isotropic
Type ^b	10^4 x	10^4 y	10^4 z	U, $Å^2 \times 10^{3}$ c
C ₁₇	-460(30)	708(14)	-2764(10)	36(6)
C ₁₈	-400(30)	188(13)	-3317(9)	32(5)
C ₁₉	-1540(30)	392(13)	-3733(11)	42(7)
C ₂₀	-2670(30)	1039(14)	-3664(10)	30(6)
C ₂₁	-2750(20)	1578(14)	-3117(9)	35(6)
C ₂₂	950(30)	-513(16)	-3399(10)	46(7)
C ₂₃	-1530(30)	-149(15)	-4318(13)	53(7)
		Molec	ule 2	
I ₃₁	-6657(2)	-3319(1)	1488(1)	54(1)
F ₃₁	880(20)	-4221(11)	-4485(8)	122(6)
F ₃₂	1279(16)	-3360(10)	-3766(9)	121(6)
F ₃₃	892(15)	-4817(9)	-3559(7)	82(4)
F ₃₄	-6775(16)	1265(9)	-2419(7)	69(4)
F ₃₅	-7198(17)	1036(9)	-1438(6)	69(4)
F ₃₆	-5499(16)	1941(8)	-1811(7)	65(4)
O ₃₁	-5820(20)	-5258(10)	-1578(8)	61(5)
N ₃₁	-4763(18)	-4431(11)	-2437(7)	30(4)
N ₃₂	-4262(19)	-2892(11)	-2563(7)	26(4)
N ₃₃	-3740(20)	-3818(11)	-3394(8)	39(5)
N ₃₄	-2220(20)	-4272(10)	-3413(8)	52(5)
N ₃₅	-3414(19)	-1440(10)	-3030(8)	35(5)
N ₃₆	-3930(20)	1177(12)	-464(9)	60(5)
C ₃₁	-4300(20)	-3665(13)	-2736(9)	27(5)
C ₃₂	-1250(20)	-3747(14)	-3778(9)	41(5)
C ₃₃	-1970(30)	-2883(15)	-4038(10)	45(6)
C ₃₄	-3560(30)	-2819(12)	-3670(10)	33(6)
C ₃₅	-3670(20)	-2299(14)	-3036(9)	26(5)
C ₃₆	-5370(20)	-4520(14)	-1801(12)	37(6)
N ₃₇	-5201(19)	-3806(11)	-1423(8)	37(5)
C ₃₈	-5650(20)	-3715(13)	-770(9)	28(5)
C ₃₉	-6180(20)	-4439(14)	-400(10)	39(5)

Atom	Fractional Coordinates			Equivalent Isotropic
Type ^b	10^4 x	10^4 y	10^4 z	U, $Å^2 \times 10^{3}$ c
C40	-6540(30)	-4295(16)	258(14)	75(9)
C_{40}	-6160(20)	-3499(13)	523(9)	27(5)
C_{42}	-5480(30)	-2787(15)	165(10)	45(6)
C_{43}	-5220(20)	-2926(14)	-532(10)	40(6)
C_{44}	540(30)	-4041(18)	-3869(12)	62(7)
C_{45}	-4920(30)	-2498(16)	-4069(11)	61(7)
C_{46}	-3700(30)	-980(14)	-2474(10)	38(6)
C_{47}	-4740(20)	-235(14)	-2438(11)	37(6)
C_{48}	-4870(20)	348(13)	-1899(8)	24(5)
C_{49}	-3930(20)	128(14)	-1405(9)	31(5)
C ₅₀	-2830(20)	-641(14)	-1435(10)	38(6)
C ₅₁	-2730(30)	-1199(14)	-1960(15)	60(8)
C ₅₂	-5950(30)	1093(19)	-1881(13)	51(7)
C ₅₃	-3960(20)	724(14)	-869(10)	37(5)
		Molec	ule 3	
I ₆₁	-907(2)	3450(1)	5865(1)	54(1)
F ₆₁	7676(16)	-189(9)	415(6)	85(4)
F ₆₂	7090(16)	-750(8)	1333(6)	75(4)
F ₆₃	5425(17)	-629(9)	616(7)	107(6)
F ₆₄	3516(19)	5577(11)	3990(9)	91(6)
F ₆₅	4755(18)	6460(9)	3440(9)	94(6)
F ₆₆	3178(18)	5683(11)	3041(9)	97(6)
O ₆₁	294(17)	1316(10)	2926(7)	39(4)
N ₆₁	2382(17)	1607(9)	2207(7)	28(4)
N ₆₂	4454(18)	2548(10)	2321(7)	31(4)
N ₆₃	4351(17)	1867(10)	1383(7)	24(4)
N ₆₄	4498(17)	939(10)	1214(6)	29(4)
N ₆₅	6910(20)	3198(13)	2092(9)	52(6)
N ₆₆	6780(30)	5618(14)	4745(12)	83(8)
C ₆₁	3740(20)	1982(13)	1990(12)	37(6)
C ₆₂	6010(20)	757(13)	1065(8)	34(5)

Atom	Fractional Coordinates			Equivalent Isotropic
Type ^b	10^4 x	10^4 y	10^4 z	U, $Å^2 \times 10^{3}$ c
C	7020(20)	1460(14)	1106(11)	40(6)
C_{63}	7020(20) 5880(20)	1409(14)	1310(0)	49(0) 28(5)
C_{64}	5800(20)	2299(13) 2720(15)	1319(9) 1020(12)	26(5)
C_{65}	3890(30) 1510(20)	2730(13)	1930(12)	40(0)
C_{66}	1310(30)	1700(12)	2834(9)	20(3)
N ₆₇	2197(18)	2181(10)	3229(7)	27(4)
C_{68}	1450(20)	2440(14)	3802(9)	28(5)
C ₆₉	440(30)	18/2(15)	4158(11)	4/(6)
C ₇₀	-230(20)	2175(14)	4788(10)	38(6)
C ₇₁	130(30)	2984(16)	5001(10)	43(6)
C ₇₂	1230(30)	3499(15)	4673(11)	49(7)
C ₇₃	1900(20)	3231(13)	4066(10)	35(6)
C ₇₄	6460(30)	-179(16)	844(10)	54(6)
C ₇₅	5890(30)	3017(16)	775(12)	67(8)
C ₇₆	6720(30)	3685(13)	2693(10)	30(5)
C ₇₇	5560(30)	4375(16)	2779(11)	44(7)
C ₇₈	5520(30)	4901(14)	3303(13)	51(8)
C ₇₉	6660(30)	4696(15)	3775(13)	52(7)
C ₈₀	7830(30)	3917(17)	3590(14)	62(8)
C ₈₁	7890(30)	3436(15)	3101(11)	49(7)
C ₈₂	4300(30)	5633(19)	3406(15)	60(8)
C ₈₃	6710(30)	5217(16)	4279(12)	54(8)
		Molec	ule 4	
I_{91}	1822(2)	-1526(1)	-1481(1)	52(1)
F91	1914(14)	-1726(9)	5130(6)	77(4)
For	3518(17)	-1984(14)	4334(7)	118(7)
- 22 F02	2700(20)	-594(12)	4543(9)	140(8)
- 33 Fo4	1500(20)	-6198(11)	2357(11)	127(8)
• 94 For	323(17)	-6646(9)	1600(8)	79(5)
- yo Far	223(17)	-5818(10)	1372(9)	91(6)
1 96	2213(17) 872(18)	-3010(10)	1572(7) 1545(7)	35(1)
091	022(10)	433(9)	1343(7)	33(4)

Atom	Fractional Coordinates			Equivalent Isotropic
Type ^b	10^4 x	10^4 y	10^4 z	U, $Å^2 x 10^{3}$ c
N ₉₁	70(20)	-405(11)	2406(8)	42(5)
N ₉₂	-590(20)	-1949(11)	2512(9)	42(5)
N ₉₃	-708(19)	-1078(10)	3422(8)	33(4)
N ₉₄	609(18)	-801(11)	3708(7)	42(4)
N ₉₅	-1338(19)	-3363(10)	3054(9)	35(5)
N ₉₆	-790(20)	-5508(13)	242(9)	62(6)
C ₉₁	-420(20)	-1131(14)	2780(12)	39(6)
C ₉₂	960(20)	-1478(15)	4120(8)	43(5)
C ₉₃	60(30)	-2355(16)	4132(12)	54(7)
C ₉₄	-1180(20)	-1993(13)	3662(9)	28(5)
C ₉₅	-1070(20)	-2521(14)	3042(11)	39(6)
C ₉₆	490(30)	-289(15)	1733(11)	36(6)
N ₉₇	558(19)	-1105(11)	1446(9)	38(5)
C ₉₈	860(30)	-1155(14)	768(11)	48(7)
C ₉₉	1730(20)	-554(14)	416(9)	38(5)
C ₁₀₀	1940(20)	-657(12)	-229(8)	30(5)
C ₁₀₁	1410(30)	-1378(15)	-520(10)	43(6)
C ₁₀₂	590(20)	-2027(14)	-109(13)	47(7)
C ₁₀₃	270(30)	-1893(14)	523(9)	43(6)
C ₁₀₄	2300(30)	-1428(18)	4523(12)	57(6)
C ₁₀₅	-2890(20)	-1936(13)	3954(9)	35(5)
C ₁₀₆	-1310(20)	-3809(13)	2512(13)	40(7)
C ₁₀₇	-350(30)	-4613(14)	2401(10)	39(6)
C ₁₀₈	-150(30)	-5061(13)	1821(12)	48(7)
C ₁₀₉	-1050(20)	-4706(13)	1327(11)	41(6)
C ₁₁₀	-2050(30)	-3966(15)	1391(11)	48(7)
C ₁₁₁	-2160(20)	-3485(13)	1997(9)	31(5)
C ₁₁₂	1160(40)	-5960(20)	1781(14)	76(11)
C ₁₁₃	-900(20)	-5181(15)	759(13)	53(7)
		Solvent Molecule of	f Crystallization	1
Cl _{1S}	5938(7)	130(4)	2704(3)	70(2)

Atom	F	Fractional Coordinates		
 Type ^b	10^4 x	10^4 y	10^4 z	U, $Å^2 \times 10^{3}$ c
Cl _{2S}	4126(9)	-1501(6)	2638(4)	108(3)
C_{1S}	4150(30)	-423(17)	2776(17)	126(14)
		Solvent Molecule of	of Crystallization	2
Cl _{3S}	456(14)	5986(7)	-2141(4)	163(4)
Cl _{4S}	-1541(8)	6297(5)	-986(4)	95(2)
C_{2S}	260(20)	5887(12)	-1286(9)	46(6)

^aThe numbers in parentheses are the estimated standard deviations in the last significant digit. ^bAtoms are labeled in agreement with Figure 1. ^cThis is one-third of the trace of the orthogonalized U_{ij} tensor.

Atom		Aniso	tropic Thermal	Parameters (Å ²	x 10 ³)	
Туре	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
			Molecule 1			
I_1	51(1)	70(1)	40(1)	-19(1)	7(1)	-8(1)
F_1	92(10)	98(10)	25(7)	1(6)	1(6)	-14(8)
F_2	115(13)	100(11)	37(9)	-12(8)	-13(8)	53(9)
F ₃	91(12)	82(11)	79(11)	-3(9)	-32(9)	-31(10
F_4	86(11)	82(10)	55(10)	-15(8)	20(8)	0(9)
F_5	75(12)	37(9)	210(20)	-22(10)	-61(12)	-5(8)
F_6	62(10)	101(12)	63(10)	-30(9)	-18(8)	4(9)
O_1	43(10)	56(10)	47(10)	-11(8)	-12(8)	-29(8)
N_1	48(11)	25(9)	15(9)	-13(7)	7(8)	-13(8)
N_2	21(7)	17(7)	28(7)	-6(6)	-10(6)	-11(6)
N_3	35(10)	45(11)	22(10)	-10(8)	-16(8)	-11(8)
N_4	38(10)	51(11)	31(10)	-26(8)	-3(8)	-7(9)
N_5	41(11)	38(10)	13(10)	-8(8)	-9(8)	-2(9)
N_6	83(17)	76(15)	25(12)	-30(11)	-3(11)	9(13
C_1	33(13)	55(14)	16(11)	9(10)	6(9)	12(11
C_2	25(11)	20(10)	45(12)	15(9)	-22(9)	-10(8)
C_3	48(15)	64(15)	13(12)	0(10)	20(10)	19(12
C_4	48(15)	42(13)	67(17)	-28(12)	5(12)	-36(12
C_5	29(9)	33(8)	17(8)	-12(7)	2(7)	0(7)
C_6	30(13)	38(12)	34(13)	-17(10)	-11(11)	-6(11
N_7	36(11)	26(9)	56(13)	-3(9)	10(9)	-20(8)
C_8	35(9)	28(8)	18(8)	-10(7)	3(7)	-2(7)
C_9	51(14)	28(11)	16(11)	-5(9)	-1(10)	-8(10
C ₁₀	42(14)	57(14)	4(11)	3(10)	-8(10)	-10(11
C ₁₁	38(9)	35(8)	28(9)	-16(7)	6(7)	-3(8)
C ₁₂	43(15)	34(12)	38(15)	-14(11)	-14(12)	-4(11
C ₁₃	40(14)	50(14)	22(13)	10(11)	-10(11)	-15(12
C ₁₄	71(16)	17(11)	39(13)	-1(10)	-7(12)	0(11
C ₁₅	24(13)	66(16)	100(20)	-43(15)	6(13)	0(12
C ₁₆	45(15)	32(12)	33(14)	-15(10)	15(11)	-24(11
C ₁₇	36(14)	39(13)	32(14)	-2(11)	2(11)	-9(12
C_{18}	45(15)	30(12)	19(12)	6(10)	9(11)	-7(11

Table 2. Anisotropic Thermal Parameters for Nonhydrogen Atoms in Crystalline ${\rm I\!R}\text{-}C_{22}H_{14}F_6{\rm I\!N_7O}^+0.5~{\rm CH_2Cl_2}^{a,b}$

Table 2.(continued)
-----------	------------

Atom		Anisot	tropic Thermal	Parameters ($Å^2$	$x 10^{3}$)	
Type ^c	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C	55(16)	15(11)	50(1())	14(11)	26(12)	11(10)
C_{19}	55(16)	15(11)	52(16)	-14(11)	36(13)	-11(12)
C_{20}	37(14)	34(13)	18(11)	13(10)	-2(10)	-11(12)
C ₂₁	39(13)	43(12)	17(12)	7(10)	20(10)	-3(10)
C_{22}	58(15)	58(15)	19(11)	-8(11)	27(11)	-21(13)
C_{23}	90(20)	27(13)	46(19)	9(13)	-18(16)	-2(13)
]	Molecule 2			
I ₃₁	64(1)	64(1)	35(1)	-9(1)	2(1)	-2(1)
F ₃₁	163(17)	91(12)	97(13)	-19(9)	58(12)	25(11)
F ₃₂	56(10)	89(11)	225(19)	-55(12)	17(11)	-43(9)
F ₃₃	78(10)	63(9)	106(12)	-26(8)	5(8)	-18(8)
F ₃₄	55(9)	84(10)	65(11)	-19(8)	-16(8)	32(7)
F ₃₅	86(11)	64(9)	47(9)	-2(7)	48(8)	7(8)
F ₃₆	68(10)	29(7)	97(11)	4(7)	-6(8)	-1(7)
O ₃₁	82(14)	33(10)	70(13)	-24(9)	3(11)	-28(10)
N ₃₁	32(10)	36(10)	18(10)	-7(8)	14(8)	1(8)
N ₃₂	41(11)	23(9)	13(9)	10(7)	4(8)	-8(8)
N ₃₃	41(12)	34(11)	39(12)	3(9)	8(9)	-4(9)
N ₃₄	79(14)	22(9)	56(12)	-15(8)	-8(10)	-8(10)
N ₃₅	48(12)	23(10)	32(11)	-9(8)	19(9)	-10(8)
N ₃₆	66(13)	59(13)	58(13)	-34(11)	7(10)	-7(10)
C ₃₁	44(14)	18(11)	16(11)	6(9)	10(10)	-12(10)
C ₃₂	50(14)	42(13)	32(12)	-22(10)	8(10)	-10(11)
C ₃₃	64(17)	51(14)	22(12)	-1(11)	3(11)	-26(13)
C ₃₄	50(15)	18(11)	33(14)	-10(10)	-14(11)	-3(10)
C ₃₅	20(11)	41(13)	18(12)	-11(10)	-1(9)	3(10)
C ₃₆	6(11)	25(12)	80(19)	5(12)	-6(11)	-7(9)
N ₃₇	39(11)	27(10)	44(12)	12(9)	2(9)	-18(8)
C_{38}	42(12)	33(11)	8(11)	-11(9)	8(9)	7(10)
C ₃₉	45(9)	43(9)	28(9)	15(7)	-2(7)	-4(8)
C_{40}	80(20)	41(15)	100(20)	2(15)	29(17)	-18(14)
C_{41}	32(6)	29(6)	22(6)	-8(5)	-6(5)	-6(5)
C_{42}	67(16)	54(15)	18(12)	-7(11)	-19(11)	-12(13)

Atom		Aniso	tropic Thermal	Parameters ($Å^2$	x 10 ³)	
Type ^c	U_{11}	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U_{12}
C ₁₂	42(14)	33(12)	40(15)	-2(11)	20(11)	6(10)
	65(8)	60(8)	61(8)	-9(5)	-6(5)	-6(5)
C44	80(20)	64(16)	43(16)	-1(13)	-15(14)	-11(15)
	50(20)	26(12)	35(14)	-5(10)	25(12)	-7(11)
C_{46}	18(12)	38(13)	52(16)	11(11)	7(10)	-6(10)
C_{47}	22(11)	39(12)	7(10)	6(9)	4(8)	12(10)
C_{48}	22(11) 23(11)	38(12)	27(12)	13(9)	4(9)	7(10)
C50	38(14)	37(13)	40(14)	21(11)	-22(11)	-4(11)
C ₅₁	26(14)	26(13)	130(30)	14(15)	-7(16)	0(11)
C ₅₂	20(14)	70(20)	57(19)	-16(15)	20(12)	-9(14)
C ₅₃	33(13)	34(13)	43(14)	-18(11)	2(10)	4(10)
- 55			Molecule 3	10(11)	_(10)	.(10)
I ₆₁	53(1)	73(1)	37(1)	-15(1)	9(1)	-17(1)
F ₆₁	97(11)	85(10)	65(9)	-25(8)	10(8)	40(8)
F ₆₂	108(12)	52(8)	57(9)	-11(7)	17(8)	32(8)
F ₆₃	98(12)	84(11)	150(15)	-90(11)	-46(11)	9(9)
F ₆₄	75(12)	93(12)	95(14)	-2(10)	15(10)	45(10)
F ₆₅	82(12)	31(8)	165(17)	-20(9)	7(11)	6(8)
F ₆₆	66(12)	106(13)	123(16)	-44(11)	-53(11)	44(10)
O ₆₁	37(10)	52(10)	29(9)	-19(7)	6(8)	-12(8)
N ₆₁	31(10)	21(8)	33(10)	0(7)	-7(8)	-7(7)
N_{62}	33(9)	32(9)	24(9)	19(7)	13(7)	-3(8)
N ₆₃	26(9)	32(9)	13(9)	3(7)	-2(7)	-1(7)
N_{64}	34(10)	32(9)	24(9)	-21(7)	-2(7)	-8(7)
N ₆₅	54(13)	64(13)	47(14)	-1(10)	-19(11)	-39(11)
N_{66}	120(20)	47(14)	90(20)	10(14)	-31(17)	-32(14)
C ₆₁	19(12)	11(10)	81(19)	-6(11)	7(11)	4(9)
C ₆₂	30(12)	48(13)	24(11)	-3(9)	1(9)	7(10)
C ₆₃	34(14)	48(14)	65(16)	-19(12)	5(12)	5(11)
C ₆₄	18(11)	43(12)	22(12)	-19(10)	11(9)	-1(9)
C ₆₅	34(14)	46(14)	58(17)	-15(12)	1(12)	6(12)
C ₆₆	42(14)	20(11)	19(12)	-8(9)	-8(10)	-5(10)

Atom		Aniso	tropic Thermal	Parameters ($Å^2$	x 10 ³)	
Type ^c	U_{11}	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
N	26(10)	40(10)	12(0)	2(9)	$\mathbf{Q}(7)$	7(0)
N ₆₇	26(10)	40(10)	13(9)	-3(8)	8(7)	-7(8)
C_{68}	12(10)	49(12)	24(11)	-8(9)	-4(8)	8(9)
C ₆₉	45(15)	46(14)	48(16)	-4(12)	6(12)	-3(12)
C_{70}	28(13)	43(13)	43(16)	22(11)	-16(12)	0(11)
C ₇₁	65(17)	45(14)	24(13)	-3(11)	-19(12)	-12(12)
C ₇₂	69(19)	43(14)	37(16)	0(12)	-14(14)	-7(14)
C ₇₃	36(13)	30(12)	38(15)	-19(10)	12(11)	-6(10)
C_{74}	69(18)	58(16)	36(14)	-16(13)	-5(13)	7(14)
C ₇₅	51(16)	71(17)	74(19)	37(14)	1(13)	-14(13)
C_{76}	41(13)	29(11)	21(12)	-19(9)	7(10)	-7(10)
C ₇₇	38(15)	56(16)	40(16)	-20(13)	7(12)	-16(13)
C_{78}	32(15)	23(13)	100(20)	22(14)	-9(15)	-16(12)
C ₇₉	42(14)	45(14)	70(17)	27(13)	0(13)	-33(12)
C_{80}	52(15)	55(15)	67(18)	28(14)	4(13)	43(12)
C ₈₁	76(19)	30(13)	44(16)	-29(12)	14(14)	-21(13)
C_{82}	13(12)	67(16)	100(20)	-42(15)	-5(13)	6(12)
C ₈₃	90(20)	43(15)	28(16)	-19(13)	3(14)	1(14)
			Molecule 4			
Ioi	69(1)	57(1)	29(1)	-4(1)	2(1)	-11(1)
F ₀₁	60(9)	121(12)	49(8)	-6(8)	-7(7)	1(8)
F ₀₂	43(9)	230(20)	80(11)	-45(12)	14(8)	7(11)
F 92	150(17)	117(15)	177(18)	-11(13)	-99(14)	-70(13)
F 93	180(20)	58(11)	140(20)	7(12)	-12(16)	49(12)
F ₉₄	70(10)	36(8)	130(14)	-8(8)	-4(9)	1(7)
F 95	61(11)	69(10)	125(15)	21(10)	52(10)	20(8)
	58(11)	19(8)	26(9)	9(7)	52(10) 6(8)	-14(7)
091 N	53(11)	$\frac{1}{(0)}$	20(7)	5(7)	16(10)	-1+(7)
1N91 NT	52(12)	16(0)	45(13)	-U(7) 1(0)	10(10)	-10(9)
1N92	0/(14)	10(9) 21(10)	43(13)	1(9)	7(9)	-30(9)
1N93	44(11)	51(10)	20(10)	-ን(ð) 14(9)	/(ð)	-20(8)
N ₉₄	55(12)	54(11)	20(9)	-14(8)	-5(8)	-8(9)
N_{95}	32(11)	14(9)	59(13)	-5(9)	4(9)	-4(8)

Atom		Aniso	tropic Thermal	Parameters (Å ²	x 10 ³)	
Type ^c	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
N96	69(14)	69(14)	48(12)	-13(11)	15(10)	-14(11
C ₉₁	25(11)	27(13)	62(17)	21(12)	-7(11)	7(10
C ₉₂	53(14)	66(15)	14(10)	-24(10)	-3(10)	-10(12
C ₉₃	55(17)	60(16)	53(17)	-14(13)	-14(13)	-20(14
C ₉₄	42(13)	33(12)	12(11)	-9(9)	7(10)	-14(10
C ₉₅	40(14)	35(13)	48(16)	-9(11)	-35(12)	-10(11
C ₉₆	37(14)	33(14)	38(15)	-2(12)	2(11)	-6(11
N ₉₇	35(11)	29(10)	52(13)	-12(9)	1(9)	-5(8)
C ₉₈	73(18)	28(12)	40(16)	13(11)	13(13)	-11(12
C ₉₉	29(13)	52(13)	28(12)	-18(10)	20(10)	4(10
C ₁₀₀	67(14)	19(10)	5(9)	-5(8)	-6(9)	-3(10
C ₁₀₁	55(10)	50(9)	26(9)	-11(7)	-4(7)	-10(8)
C ₁₀₂	33(13)	20(11)	90(18)	-35(11)	-3(12)	8(10
C ₁₀₃	88(19)	30(13)	13(13)	10(10)	-12(12)	-9(13
C ₁₀₄	49(16)	57(17)	64(18)	20(14)	-16(14)	-11(14
C ₁₀₅	35(13)	34(12)	34(13)	-17(10)	12(10)	7(10
C ₁₀₆	3(11)	11(10)	100(20)	-13(12)	8(12)	3(8)
C ₁₀₇	58(16)	37(13)	23(13)	-11(10)	-1(11)	-8(12
C ₁₀₈	41(14)	13(11)	90(20)	-5(12)	5(13)	1(10
C ₁₀₉	42(14)	32(13)	49(15)	-15(12)	-21(12)	24(11
C ₁₁₀	59(16)	41(14)	46(15)	-26(11)	10(12)	-15(12
C ₁₁₁	21(11)	38(11)	33(12)	8(9)	-16(9)	14(9)
C ₁₁₂	130(30)	60(20)	29(16)	5(14)	41(18)	0(20
C ₁₁₃	34(14)	37(14)	90(20)	2(14)	6(13)	-1(11
		Solvent Mole	cule of Crystal	lization 1		
Cl _{1S}	85(5)	74(4)	51(4)	-15(3)	-1(3)	6(4)
Cl _{2S}	102(6)	106(6)	120(7)	-56(5)	-5(5)	-13(5)
C_{1S}	39(16)	60(19)	260(40)	50(20)	40(20)	3(14
		Solvent Mole	cule of Crystal	lization 2		
Cl _{3S}	276(13)	124(8)	87(7)	-33(6)	-36(7)	37(8)
Cl _{4S}	57(4)	90(5)	143(7)	-26(5)	-27(4)	0(4)
C_{2S}	70(16)	23(11)	51(14)	4(10)	-48(12)	0(10

Atom		Anisotropi	c Thermal Parar	meters ($Å^2 \times 10^3$	3)	
Type ^c	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂

^aThe numbers in parentheses are the estimated standard deviations in the last significant digit. ^bThe form of the anisotropic thermal parameter is: $exp[-2\pi^2(U_{11}h^2a^{*2} + U_{22}k^2b^{*2} + U_{33}l^2c^{*2} + 2U_{12}hka^*b^* + U_{12}hka^*b^*]$ $2U_{13}hla*c* + 2U_{23}klb*c*)].$

^cAtoms are labeled in agreement with Figure 1.

Atom	- c ⁴	Fractional Coordinates	- ~ ⁴	
Туре	10°x	10 ⁴ y	10 ⁴ z	
		Molecule 1		
H_{1N}	2859	4070	-2077	
H _{3a}	-1482	2489	-461	
H _{3b}	-419	1718	-858	
H_{7N}	1834	2844	-3200	
H_9	5009	3700	-4133	
H_{10}	6109	3033	-5042	
H ₁₂	3359	901	-4750	
H ₁₃	2168	1605	-3835	
H_{15a}	-2428	4188	-1586	
H_{15b}	-2572	3832	-860	
H_{15c}	-3388	3305	-1372	
H_{17}	306	574	-2469	
H_{20}	-3422	1147	-3968	
H_{21}	-3569	2053	-3060	
		Molecule 2		
H_{31N}	-4685	-4934	-2656	
H _{33a}	-2063	-2913	-4498	
H _{33b}	-1361	-2350	-3964	
H _{37N}	-4742	-3332	-1613	
H ₃₉	-6302	-5018	-572	
H_{40}	-7046	-4754	518	
H ₄₂	-5205	-2244	348	
H ₄₃	-4761	-2466	-806	
H_{45a}	-5141	-3003	-4330	
H_{45b}	-4625	-1963	-4343	
H_{45c}	-5846	-2322	-3791	
H ₄₇	-5402	-92	-2772	
H ₅₀	-2160	-781	-1104	
H ₅₁	-2011	-1729	-1976	
		Molecule 3		
H_{61N}	1971	1267	1942	
H_{63a}	7778	1595	829	

Table 3.Atomic Coordinates for Hydrogen Atoms in Crystalline ${\rm I\!R}\text{-}C_{22}H_{14}F_6{\rm I\!N_7O}^+0.5~{\rm CH_2Cl_2}^a$

Fractional Coordinates Atom $10^4 z$ Type^b $10^4 x$ 10^4 y H_{63b} 7602 1289 1570 3155 2341 3124 H_{67N} 1304 H_{69} 185 4003 H_{70} -914 1796 5041 1545 4037 4850 H_{72} H_{73} 2651 3595 3839 5094 876 H_{75a} 3521 5648 2729 391 H_{75b} H_{75c} 6919 3266 707 4796 4490 2483 H₇₇ H_{80} 8616 3763 3871 H_{81} 8668 2947 3021 Molecule 4 99 H_{91N} 133 2613 -436 -2512 4558 H_{93a} H_{93b} 721 -2894 3972 413 -1617 1677 H_{97N} -72 606 H99 2184 -203 H_{100} 2475 -483 H_{102} 247 -2563 -280 H_{103} -335 -2306 784 -3570 H_{10e} -1636 3647 $H_{\rm 10f}$ -2970 -1574 4334 -3210 -2562 H_{10g} 4067 215 -4877 2740 H_{107} H_{110} -2681 -3752 1060 -2937 H_{111} -2830 2039 Solvent Molecule of Crystallization 1 3677 -341 H_{1Sa} 3212 3444 -76 2490 H_{1Sb} Solvent Molecule of Crystallization 2 435 5229 H_{2Sa} -1146

Atom Type ^b	10^4 x	Fractional Coordinates 10^4 v	10^4 z	
U	1062	6738	1110	
H_{2Sb}	1062	6238	-1118	

^aThe eight hydrogens bonded to nitrogen were initially located from a difference Fourier synthesis. They were then included in the structure factor calculations as idealized atoms (assuming sp²-hybridization of the nitrogen atoms and a N-H bond length of 0.88 Å) "riding" on their respective nitrogen atoms. The four methyl groups (C₁₅, C₄₅, C₇₅, C₁₀₅ and their hydrogens) were refined as rigid rotors (using idealized sp³-hybridized geometry and a C-H bond length of 0.98 Å) which were allowed to rotate around their respective C-C bonds in least-squares cycles. The remaining hydrogen atoms were included in the structure factor calculations as idealized atoms (assuming sp²- or sp³-hybridization of the carbon atoms and C-H bond lengths of 0.95-0.99 Å) "riding" on their respective carbon atoms. The isotropic thermal parameters of all hydrogen atoms were fixed at values 1.2 (nonmethyl) or 1.5 (methyl) times the equivalent isotropic thermal parameter of the carbon or nitrogen atom to which they are covalently bonded.

^bHydrogen atoms bonded to carbon are labeled with the same numerical subscript(s) as their carbon atoms and carry an additional literal subscript (a, b, c, e, f or g) where necessary to distinguish between hydrogens bonded to the same carbon. Hydrogen atoms bonded to nitrogen are labeled with the same numerical subscript(s) as their nitrogen and carry an additional literal subscripted N. The three hydrogen atoms bonded to methyl carbon C_{105} are labeled H_{10e} , H_{10f} and H_{10g} .

Type ^b	Length, Å	Type ^b	Length, Å	
	Molecule 1	M	olecule 2	
I ₁ -C ₁₁	2.08(2)	I ₃₁ -C ₄₁	2.09(2)	
$F_{1}-C_{14}$	1.31(2)	F ₃₁ -C ₄₄	1.35(3)	
F_2-C_{14}	1.31(2)	F_{32} - C_{44}	1.25(2)	
$F_{3}-C_{14}$	1.32(2)	F ₃₃ -C ₄₄	1.30(2)	
$F_{4}-C_{22}$	1.37(2)	F_{34} - C_{52}	1.40(3)	
F ₅ -C ₂₂	1.37(2)	F ₃₅ -C ₅₂	1.37(2)	
F ₆ -C ₂₂	1.29(3)	F_{36} - C_{52}	1.34(3)	
O ₁ -C ₆	1.21(2)	O ₃₁ -C ₃₆	1.22(2)	
N ₃ -N ₄	1.43(2)	N ₃₃ -N ₃₄	1.42(2)	
N_1 - C_1	1.38(2)	N ₃₁ -C ₃₁	1.32(2)	
N_1 - C_6	1.42(2)	N ₃₁ -C ₃₆	1.41(3)	
N ₂ -C ₁	1.32(2)	N ₃₂ -C ₃₁	1.20(2)	
N ₂ -C ₅	1.37(2)	N ₃₂ -C ₃₅	1.38(2)	
N ₃ -C ₁	1.37(2)	N ₃₃ -C ₃₁	1.46(2)	
N ₃ -C ₄	1.49(2)	N ₃₃ -C ₃₄	1.55(2)	
N ₄ -C ₂	1.26(2)	N ₃₄ -C ₃₂	1.34(2)	
N ₅ -C ₅	1.29(2)	N ₃₅ -C ₃₅	1.28(2)	
N ₅ -C ₁₆	1.38(2)	N ₃₅ -C ₄₆	1.38(2)	
C_6-N_7	1.35(2)	C ₃₆ -N ₃₇	1.36(3)	
N ₇ -C ₈	1.43(2)	N ₃₇ -C ₃₈	1.42(2)	
N ₆ -C ₂₃ 1.10	N(3) N ₃₆ -C ₅₃	1.11(2)	× /	
C ₂ -C ₃	1.52(2)	C ₃₂ -C ₃₃	1.46(3)	
$C_2 - C_{14}$	1.46(2)	C ₃₂ -C ₄₄	1.57(3)	

Table 4. Bond Lengths in Crystalline \mathbf{R} -C₂₂H₁₄F₆IN₇O $^{\circ}$ 0.5 CH₂Cl₂ a

Type ^b	Length, Å	Type ^b	Length, Å	
C ₃ -C ₄	1.58(3)	C ₃₃ -C ₃₄	1.52(3)	
C_4 - C_5	1.44(3)	C ₃₄ -C ₃₅	1.57(3)	
C ₄ -C ₁₅	1.63(3)	C ₃₄ -C ₄₅	1.53(3)	
C ₈ -C ₉	1.38(2)	C ₃₈ -C ₃₉	1.36(3)	
$C_{8}-C_{13}$	1.36(2)	C ₃₈ -C ₄₃	1.36(2)	
$C_{9}-C_{10}$	1.37(3)	C ₃₉ -C ₄₀	1.43(3)	
C ₁₀ -C ₁₁	1.35(2)	C_{40} - C_{41}	1.38(3)	
C ₁₁ -C ₁₂	1.43(3)	C_{41} - C_{42}	1.38(3)	
C ₁₂ -C ₁₃	1.40(3)	C_{42} - C_{43}	1.50(3)	
C ₁₆ -C ₁₇	1.42(3)	C_{46} - C_{47}	1.35(3)	
C ₁₆ -C ₂₁	1.43(3)	C ₄₆ -C ₅₁	1.44(3)	
C_{17} - C_{18}	1.42(3)	C ₄₇ -C ₄₈	1.45(3)	
C ₁₈ -C ₁₉	1.38(3)	C ₄₈ -C ₄₉	1.39(3)	
C_{18} - C_{22}	1.49(3)	C ₄₈ -C ₅₂	1.37(3)	
C_{19} - C_{20}	1.31(3)	C ₄₉ -C ₅₀	1.41(3)	
C ₁₉ -C ₂₃	1.50(3)	C ₄₉ -C ₅₃	1.46(3)	
C_{20} - C_{21}	1.43(3)	C ₅₀ -C ₅₁	1.40(3)	
М	lolecule 3	Ν	Iolecule 4	
I ₆₁ -C ₇₁	2.09(2)	I ₉₁ -C ₁₀₁	2.06(2)	
F ₆₁ -C ₇₄	1.32(2)	F ₉₁ -C ₁₀₄	1.36(2)	
F ₆₂ -C ₇₄	1.41(2)	F_{92} - C_{104}	1.32(3)	
F ₆₃ -C ₇₄	1.28(2)	F_{93} - C_{104}	1.28(2)	
F_{64} - C_{82}	1.36(3)	F_{94} - C_{112}	1.31(3)	
F_{65} - C_{82}	1.30(3)	F ₉₅ -C ₁₁₂	1.36(3)	
F_{66} - C_{82}	1.28(3)	F ₉₆ -C ₁₁₂	1.22(3)	
O_{61} - C_{66}	1.22(2)	O ₉₁ -C ₉₆	1.15(2)	

Table 4. (continued)

Type ^b	Length, Å	Type ^b	Length, Å	
N ₆₃ -N ₆₄	1.40(2)	N ₉₃ -N ₉₄	1.42(2)	
N ₆₁ -C ₆₁	1.36(2)	N ₉₁ -C ₉₁	1.35(3)	
N ₆₁ -C ₆₆	1.48(2)	N ₉₁ -C ₉₆	1.45(3)	
N ₆₂ -C ₆₁	1.32(2)	N ₉₂ -C ₉₁	1.36(3)	
N ₆₂ -C ₆₅	1.46(3)	N ₉₂ -C ₉₅	1.42(3)	
N ₆₃ -C ₆₁	1.36(3)	N ₉₃ -C ₉₁	1.37(3)	
N ₆₃ -C ₆₄	1.49(2)	N ₉₃ -C ₉₄	1.47(2)	
Net-Cea	1 32(2)	Not-Coz	1 32(2)	
N ₆₅ -C ₆₅	1.23(2)	N ₉₅ -C ₉₅	1.26(2)	
N C	1 49(2)	N C	1 25(2)	
$N_{65}-C_{76}$	1.48(3)	$N_{95}-C_{106}$	1.35(3)	
C_{66} -N ₆₇	1.32(2)	$C_{96}-IN_{97}$	1.35(2)	
N ₆₇ -C ₆₈	1.38(2)	N97-C98	1.45(3)	
N ₆₆ -C ₈₃	1.18(3)	N ₉₆ -C ₁₁₃	1.21(3)	
C ₆₂ -C ₆₃	1.45(2)	C ₉₂ -C ₉₃	1.54(3)	
C ₆₂ -C ₇₄	1.47(3)	C_{92} - C_{104}	1.50(3)	
C ₆₃ -C ₆₄	1.51(3)	C ₉₃ -C ₉₄	1.56(3)	
C ₆₄ -C ₆₅	1.47(3)	C ₉₄ -C ₉₅	1.55(3)	
C ₆₄ -C ₇₅	1.52(3)	C_{94} - C_{105}	1.54(3)	
C ₆₈ -C ₆₉	1.39(3)	C ₉₈ -C ₉₉	1.35(3)	
C ₆₈ -C ₇₃	1.39(2)	C_{98} - C_{103}	1.36(3)	
C ₆₉ -C ₇₀	1.48(3)	C_{99} - C_{100}	1.38(2)	
C_{70} - C_{71}	1.34(3)	C_{100} - C_{101}	1.37(2)	

Type ^b	Length, Å	Type ^b	Length, Å	
	1.27(2)	C C	1 44(2)	
C_{71} - C_{72}	1.37(3)	C_{101} - C_{102}	1.44(3)	
C ₇₂ -C ₇₃	1.43(3)	C_{102} - C_{103}	1.37(3)	
C ₇₆ -C ₇₇	1.37(3)	C_{106} - C_{107}	1.40(3)	
C ₇₆ -C ₈₁	1.40(3)	C_{106} - C_{111}	1.41(3)	
C77-C78	1.38(3)	C_{107} - C_{108}	1.41(3)	
C ₇₈ -C ₇₉	1.46(3)	C_{108} - C_{109}	1.41(3)	
C ₇₈ -C ₈₂	1.45(3)	C_{108} - C_{112}	1.65(4)	
C ₇₉ -C ₈₀	1.50(3)	C_{109} - C_{110}	1.33(3)	
C ₇₉ -C ₈₃	1.35(3)	C ₁₀₉ -C ₁₁₃	1.41(3)	
C_{80} - C_{81}	1.28(3)	C_{110} - C_{111}	1.49(3)	
	Solvent M	olecules of Crystallizatio	n	
Mo	plecule 1	Mo	blecule 2	
Cl _{1S} -C _{1S}	1.78(2)	Cl _{3S} -C _{2S}	1.81(2)	
Cl _{2S} -C _{1S}	1.61(3)	Cl _{4S} -C _{2S}	1.70(2)	

^aThe numbers in parentheses are the estimated standard deviations in the last significant digit. ^bAtoms are labeled in agreement with Figure 1.

Туре	Angle, (deg)	Type ^b	Angle, (deg)
Molec	ule 1	Ν	Aolecule 2
$C_1N_1C_6$	128(2)	$C_{31}N_{31}C_{36}$	126(2)
$C_1N_2C_5$	103(2)	$C_{31}N_{32}C_{35}$	112(2)
$C_1N_3N_4$	117(2)	$N_{34}N_{33}C_{31}$	109(2)
$V_4N_3C_4$	109(2)	$N_{34}N_{33}C_{34}$	107(1)
$C_1N_3C_4$	103(2)	$C_{31}N_{33}C_{34}$	102(1)
$C_2N_4N_3$	112(2)	$C_{32}N_{34}N_{33}$	108(2)
$C_2C_3C_4$	101(1)	$C_{32}C_{33}C_{34}$	102(2)
$V_{3}C_{4}C_{3}$	103(2)	$C_{33}C_{34}N_{33}$	103(2)
$C_5C_4N_3$	102(2)	$N_{33}C_{34}C_{35}$	99(2)
$V_{3}C_{4}C_{15}$	110(2)	$C_{45}C_{34}N_{33}$	111(2)
$C_5C_4C_3$	118(2)	$C_{33}C_{34}C_{35}$	116(2)
$C_{3}C_{4}C_{15}$	108(2)	$C_{33}C_{34}C_{45}$	114(2)
$C_5C_4C_{15}$	114(2)	$C_{45}C_{34}C_{35}$	112(2)
$C_{1}C_{14}F_{2}$	105(2)	$F_{32}C_{44}F_{31}$	107(2)
$C_{1}C_{14}F_{3}$	107(2)	$F_{33}C_{44}F_{31}$	105(2)
$C_{1}C_{14}C_{2}$	114(2)	$F_{31}C_{44}C_{32}$	107(2)
$C_2C_{14}F_3$	104(2)	$F_{32}C_{44}F_{33}$	117(2)
$C_{2}C_{14}C_{2}$	113(2)	$F_{32}C_{44}C_{32}$	108(2)
$C_{3}C_{14}C_{2}$	114(2)	$F_{33}C_{44}C_{32}$	112(2)
$C_{5}C_{22}F_{4}$	104(2)	$F_{35}C_{52}F_{34}$	99(2)
$_{6}C_{22}F_{4}$	107(2)	$F_{36}C_{52}F_{34}$	100(2)
$_{4}C_{22}C_{18}$	111(2)	$C_{48}C_{52}F_{34}$	116(2)
$C_{6}C_{22}F_{5}$	104(2)	$F_{36}C_{52}F_{35}$	103(2)
$5C_{22}C_{18}$	111(2)	$F_{35}C_{52}C_{48}$	116(2)
$C_{6}C_{22}C_{18}$	118(2)	$F_{36}C_{52}C_{48}$	120(2)
$C_5N_5C_{16}$	120(2)	$C_{35}N_{35}C_{46}$	120(2)
$V_2C_1N_1$	125(2)	$N_{32}C_{31}N_{31}$	132(2)
$V_3C_1N_1$	117(2)	$N_{31}C_{31}N_{33}$	112(2)
$V_2C_1N_3$	118(2)	$N_{32}C_{31}N_{33}$	117(2)

Table 5.	Bond Angles in Crystalline \mathbf{R} -C ₂₂ H ₁₄ F ₆ IN ₇ O $^{\circ}$ 0.5 CH ₂ Cl ₂ a
----------	---

Type ^b	Angle, (deg)	Type ^b	Angle, (deg)	
$N_4C_2C_3$	114(2)	N ₃₄ C ₃₂ C ₃₃	116(2)	
$N_4C_2C_{14}$	123(2)	$N_{34}C_{32}C_{44}$	120(2)	
$C_{14}C_2C_3$	122(2)	$C_{33}C_{32}C_{44}$	124(2)	
$N_5C_5N_2$	125(2)	N ₃₅ C ₃₅ N ₃₂	131(2)	
$N_2C_5C_4$	113(2)	$N_{32}C_{35}C_{34}$	108(2)	
$N_5C_5C_4$	122(2)	N ₃₅ C ₃₅ C ₃₄	121(2)	
$O_1C_6N_1$	119(2)	$O_{31}C_{36}N_{31}$	121(2)	
$O_1C_6N_7$	127(2)	$O_{31}C_{36}N_{37}$	121(2)	
$N_7C_6N_1$	115(2)	$N_{37}C_{36}N_{31}$	117(2)	
$C_6N_7C_8$	126(2)	$C_{36}N_{37}C_{38}$	130(2)	
$C_9C_8N_7$	124(2)	$C_{39}C_{38}N_{37}$	121(2)	
$C_{13}C_8N_7$	115(2)	$C_{43}C_{38}N_{37}$	114(2)	
$C_{13}C_8C_9$	121(2)	$C_{39}C_{38}C_{43}$	123(2)	
$C_{10}C_9C_8$	118(2)	$C_{38}C_{39}C_{40}$	118(2)	
$C_{11}C_{10}C_9$	124(2)	$C_{41}C_{40}C_{39}$	121(2)	
$C_{10}C_{11}I_1$	123(2)	$C_{40}C_{41}I_{31}$	120(2)	
$C_{12}C_{11}I_1$	119(1)	$C_{42}C_{41}I_{31}$	118(1)	
$C_{10}C_{11}C_{12}$	117(2)	$C_{42}C_{41}C_{40}$	122(2)	
$C_{13}C_{12}C_{11}$	119(2)	$C_{41}C_{42}C_{43}$	116(2)	
$C_8C_{13}C_{12}$	120(2)	$C_{38}C_{43}C_{42}$	120(2)	
$N_5C_{16}C_{17}$	120(2)	$C_{47}C_{46}N_{35}$	120(2)	
$N_5C_{16}C_{21}$	124(2)	$N_{35}C_{46}C_{51}$	120(2)	
$C_{17}C_{16}C_{21}$	116(2)	$C_{47}C_{46}C_{51}$	119(2)	
$C_{16}C_{17}C_{18}$	120(2)	$C_{46}C_{47}C_{48}$	121(2)	
$C_{19}C_{18}C_{17}$	118(2)	$C_{49}C_{48}C_{47}$	120(2)	
$C_{17}C_{18}C_{22}$	115(2)	$C_{52}C_{48}C_{47}$	119(2)	
$C_{19}C_{18}C_{22}$	126(2)	$C_{52}C_{48}C_{49}$	121(2)	
$C_{20}C_{19}C_{18}$	125(2)	$C_{48}C_{49}C_{50}$	120(2)	
$C_{18}C_{19}C_{23}$	120(2)	$C_{48}C_{49}C_{53}$	121(2)	
$C_{20}C_{19}C_{23}$	115(3)	$C_{50}C_{49}C_{53}$	118(2)	
$C_{19}C_{20}C_{21}$	118(2)	$C_{51}C_{50}C_{49}$	119(2)	

Table 5. (continued)

Type ^b	Angle, (deg)	Type ^b	Angle, (deg)	
$C_{20}C_{21}C_{16}$	122(2)	$C_{50}C_{51}C_{46}$	121(2)	
N ₆ C ₂₃ C ₁₉	176(3)	N ₃₆ C ₅₃ C ₄₉	178(2)	
М	olecule 3	Мо	blecule 4	
$C_{61}N_{61}C_{66}$	128(2)	$C_{91}N_{91}C_{96}$	133(2)	
$C_{61}N_{62}C_{65}$	104(2)	$C_{91}N_{92}C_{95}$	102(2)	
$C_{61}N_{63}N_{64}$	113(1)	$C_{91}N_{93}N_{94}$	112(2)	
$N_{64}N_{63}C_{64}$	112(1)	N94N93C94	113(2)	
$C_{61}N_{63}C_{64}$	106(1)	$C_{91}N_{93}C_{94}$	106(1)	
$C_{62}N_{64}N_{63}$	105(1)	$C_{92}N_{94}N_{93}$	105(2)	
$C_{62}C_{63}C_{64}$	103(2)	$C_{92}C_{93}C_{94}$	98(2)	
$N_{63}C_{64}C_{63}$	102(1)	N93C94C93	106(2)	
$C_{65}C_{64}N_{63}$	102(2)	N93C94C95	101(2)	
$N_{63}C_{64}C_{75}$	109(2)	$N_{93}C_{94}C_{105}$	111(2)	
$C_{65}C_{64}C_{63}$	117(2)	$C_{95}C_{94}C_{93}$	114(2)	
$C_{63}C_{64}C_{75}$	114(2)	$C_{105}C_{94}C_{93}$	115(2)	
$C_{65}C_{64}C_{75}$	112(2)	$C_{105}C_{94}C_{95}$	109(2)	
$F_{61}C_{74}F_{62}$	101(2)	$F_{92}C_{104}F_{91}$	105(2)	
$F_{63}C_{74}F_{61}$	106(2)	$F_{93}C_{104}F_{91}$	107(2)	
$F_{61}C_{74}C_{62}$	112(2)	$F_{91}C_{104}C_{92}$	111(2)	
$F_{63}C_{74}F_{62}$	107(2)	$F_{93}C_{104}F_{92}$	111(2)	
$F_{62}C_{74}C_{62}$	110(2)	$F_{92}C_{104}C_{92}$	112(2)	
$F_{63}C_{74}C_{62}$	118(2)	$F_{93}C_{104}C_{92}$	111(2)	
$F_{65}C_{82}F_{64}$	97(2)	$F_{94}C_{112}F_{95}$	105(2)	
$F_{66}C_{82}F_{64}$	102(2)	$F_{96}C_{112}F_{94}$	120(4)	
$F_{64}C_{82}C_{78}$	114(3)	$F_{94}C_{112}C_{108}$	108(2)	
$F_{66}C_{82}F_{65}$	108(3)	$F_{96}C_{112}F_{95}$	109(2)	
$F_{65}C_{82}C_{78}$	116(2)	$F_{95}C_{112}C_{108}$	103(3)	

Type ^b	Angle, (deg)	Type ^b	Angle, (deg)	
$F_{66}C_{82}C_{78}$	117(2)	$F_{96}C_{112}C_{108}$	111(2)	
C65N65C76	122(2)	$C_{95}N_{95}C_{106}$	120(2)	
$N_{62}C_{61}N_{61}$	123(2)	$N_{91}C_{91}N_{92}$	119(2)	
$N_{63}C_{61}N_{61}$	120(2)	$N_{91}C_{91}N_{93}$	122(2)	
$N_{62}C_{61}N_{63}$	116(2)	$N_{92}C_{91}N_{93}$	119(2)	
$N_{64}C_{62}C_{63}$	116(2)	$N_{94}C_{92}C_{93}$	118(2)	
$N_{64}C_{62}C_{74}$	116(2)	$N_{94}C_{92}C_{104}$	121(2)	
$C_{63}C_{62}C_{74}$	128(2)	$C_{104}C_{92}C_{93}$	121(2)	
$N_{65}C_{65}N_{62}$	124(2)	$N_{95}C_{95}N_{92}$	128(2)	
$N_{62}C_{65}C_{64}$	110(2)	$N_{92}C_{95}C_{94}$	112(2)	
$N_{65}C_{65}C_{64}$	126(2)	$N_{95}C_{95}C_{94}$	121(2)	
$O_{61}C_{66}N_{61}$	117(2)	O ₉₁ C ₉₆ N ₉₁	117(2)	
$O_{61}C_{66}N_{67}$	129(2)	O ₉₁ C ₉₆ N ₉₇	131(2)	
$N_{67}C_{66}N_{61}$	114(2)	N97C96N91	111(2)	
$C_{66}N_{67}C_{68}$	122(2)	$C_{96}N_{97}C_{98}$	122(2)	
$N_{67}C_{68}C_{69}$	122(2)	C99C98N97	123(2)	
$N_{67}C_{68}C_{73}$	118(2)	$C_{103}C_{98}N_{97}$	114(2)	
$C_{69}C_{68}C_{73}$	119(2)	$C_{99}C_{98}C_{103}$	123(2)	
$C_{68}C_{69}C_{70}$	118(2)	$C_{98}C_{99}C_{100}$	118(2)	
$C_{71}C_{70}C_{69}$	120(2)	$C_{101}C_{100}C_{99}$	123(2)	
$C_{70}C_{71}I_{61}$	120(2)	$C_{100}C_{101}I_{91}$	122(2)	
$C_{72}C_{71}I_{61}$	119(2)	$C_{102}C_{101}I_{91}$	123(2)	
$C_{70}C_{71}C_{72}$	121(2)	$C_{100}C_{101}C_{102}$	115(2)	
$C_{71}C_{72}C_{73}$	120(2)	$C_{103}C_{102}C_{101}$	122(2)	
$C_{68}C_{73}C_{72}$	121(2)	$C_{98}C_{103}C_{102}$	118(2)	
C77C76N65	119(2)	$N_{95}C_{106}C_{107}$	122(2)	
$C_{81}C_{76}N_{65}$	114(2)	$N_{95}C_{106}C_{111}$	124(2)	
$C_{77}C_{76}C_{81}$	126(2)	$C_{107}C_{106}C_{111}$	114(2)	
$C_{76}C_{77}C_{78}$	119(2)	$C_{106}C_{107}C_{108}$	125(2)	
$C_{77}C_{78}C_{79}$	121(2)	$C_{109}C_{108}C_{107}$	118(2)	

Table 5. (continued)

Type ^b	Angle, (deg)	Type ^b	Angle, (deg)	
	100(0)			
$C_{77}C_{78}C_{82}$	120(2)	$C_{107}C_{108}C_{112}$	116(2)	
$C_{82}C_{78}C_{79}$	120(3)	$C_{109}C_{108}C_{112}$	126(2)	
$C_{78}C_{79}C_{80}$	112(2)	$C_{110}C_{109}C_{108}$	122(2)	
$C_{83}C_{79}C_{78}$	123(3)	$C_{113}C_{109}C_{108}$	118(2)	
$C_{83}C_{79}C_{80}$	125(3)	$C_{110}C_{109}C_{113}$	120(2)	
$C_{81}C_{80}C_{79}$	128(3)	$C_{109}C_{110}C_{111}$	118(2)	
$C_{80}C_{81}C_{76}$	115(2)	$C_{106}C_{111}C_{110}$	123(2)	
N ₆₆ C ₈₃ C ₇₉	175(3)	$N_{96}C_{113}C_{109}$	174(3)	
	Solvent M	lolecules of Crystallization	on	
Μ	olecule 1	Mo	blecule 2	
$Cl_{2S}C_{1S}Cl_{1S}$	121(2)	$Cl_{4S}C_{2S}Cl_{3S}$	112(1)	

^aThe numbers in parentheses are the estimated standard deviations in the last significant digit. ^bAtoms are labeled in agreement with Figure 1.

Type ^b	Angle, (deg)	Type ^b	Angle, (deg)	
Ν	Molecule 1	М	olecule 2	
$C_1 - N_3 - N_4 - C_2$	-119(2)	C ₃₁ -N ₃₃ -N ₃₄ -C ₃₂	-123(2)	
$C_4-N_3-N_4-C_2$	-2(2)	C ₃₄ -N ₃₃ -N ₃₄ -C ₃₂	-13(2)	
$C_5 - N_2 - C_1 - N_3$	-9(2)	C ₃₅ -N ₃₂ -C ₃₁ -N ₃₃	0(3)	
$C_5-N_2-C_1-N_1$	174(2)	C ₃₅ -N ₃₂ -C ₃₁ -N ₃₁	180(2)	
$N_4 - N_3 - C_1 - N_2$	126(2)	N_{34} - N_{33} - C_{31} - N_{32}	103(2)	
$C_4 - N_3 - C_1 - N_2$	6(2)	C_{34} - N_{33} - C_{31} - N_{32}	-10(2)	
$N_4-N_3-C_1-N_1$	-57(2)	N_{34} - N_{33} - C_{31} - N_{31}	-77(2)	
$C_4-N_3-C_1-N_1$	-177(2)	C_{34} - N_{33} - C_{31} - N_{31}	170(2)	
$C_6-N_1-C_1-N_2$	-5(3)	C_{36} - N_{31} - C_{31} - N_{32}	0(4)	
$C_6-N_1-C_1-N_3$	178(2)	C_{36} - N_{31} - C_{31} - N_{33}	-180(2)	
$N_3 - N_4 - C_2 - C_{14}$	179(2)	N ₃₃ -N ₃₄ -C ₃₂ -C ₄₄	177(2)	
$N_3 - N_4 - C_2 - C_3$	6(2)	N ₃₃ -N ₃₄ -C ₃₂ -C ₃₃	1(2)	
$N_4-C_2-C_3-C_4$	-6(2)	N ₃₄ -C ₃₂ -C ₃₃ -C ₃₄	11(2)	
C_{14} - C_{2} - C_{3} - C_{4}	-180(2)	C_{44} - C_{32} - C_{33} - C_{34}	-165(2)	
$C_1-N_3-C_4-C_5$	0(2)	C_{31} - N_{33} - C_{34} - C_{35}	14(2)	
$N_4 - N_3 - C_4 - C_5$	-125(2)	N_{34} - N_{33} - C_{34} - C_{35}	-101(2)	
$C_1-N_3-C_4-C_3$	123(2)	C_{31} - N_{33} - C_{34} - C_{33}	134(2)	
$N_4 - N_3 - C_4 - C_3$	-2(2)	N ₃₄ -N ₃₃ -C ₃₄ -C ₃₃	19(2)	
C_1 - N_3 - C_4 - C_{15}	-122(2)	C_{31} - N_{33} - C_{34} - C_{45}	-103(2)	
N_4 - N_3 - C_4 - C_{15}	113(2)	N_{34} - N_{33} - C_{34} - C_{45}	142(2)	
$C_2-C_3-C_4-C_5$	116(2)	C_{32} - C_{33} - C_{34} - C_{35}	90(2)	
$C_2-C_3-C_4-N_3$	5(2)	C_{32} - C_{33} - C_{34} - N_{33}	-17(2)	
$C_2 - C_3 - C_4 - C_{15}$	-112(2)	C_{32} - C_{33} - C_{34} - C_{45}	-138(2)	
C_{16} - N_5 - C_5 - N_2	2(3)	$C_{46} \text{-} N_{35} \text{-} C_{35} \text{-} N_{32}$	2(3)	
C_{16} - N_5 - C_5 - C_4	179(2)	C_{46} - N_{35} - C_{35} - C_{34}	173(2)	
$C_1 - N_2 - C_5 - N_5$	-173(2)	C_{31} - N_{32} - C_{35} - N_{35}	-178(2)	
$C_1 - N_2 - C_5 - C_4$	9(2)	C_{31} - N_{32} - C_{35} - C_{34}	10(2)	
$N_3-C_4-C_5-N_5$	177(2)	N_{33} - C_{34} - C_{35} - N_{35}	172(2)	
$C_3-C_4-C_5-N_5$	64(3)	C_{33} - C_{34} - C_{35} - N_{35}	62(3)	
C_{15} - C_{4} - C_{5} - N_{5}	-65(3)	C_{45} - C_{34} - C_{35} - N_{35}	-71(2)	
$N_3-C_4-C_5-N_2$	-5(2)	N_{33} - C_{34} - C_{35} - N_{32}	-15(2)	
$C_3-C_4-C_5-N_2$	-118(2)	C_{33} - C_{34} - C_{35} - N_{32}	-125(2)	

Table 6. Torsion Angles in Crystalline \mathbf{R} -C₂₂H₁₄F₆IN₇O $^{\circ}$ 0.5 CH₂Cl₂ a

Type ^b	Angle, (deg)	Type ^b	Angle, (deg)	
C ₁₅ -C ₄ -C ₅ -N ₂	113(2)	C45-C34-C35-N32	102(2)	
$C_1 - N_1 - C_6 - O_1$	-175(2)	$C_{31}-N_{31}-C_{36}-O_{31}$	177(2)	
$C_1 - N_1 - C_6 - N_7$	6(3)	C ₃₁ -N ₃₁ -C ₃₆ -N ₃₇	-13(3)	
O ₁ -C ₆ -N ₇ -C ₈	7(4)	O ₃₁ -C ₃₆ -N ₃₇ -C ₃₈	-9(3)	
N1-C6-N7-C8	-174(2)	N ₃₁ -C ₃₆ -N ₃₇ -C ₃₈	-178(2)	
C ₆ -N ₇ -C ₈ -C ₁₃	154(2)	C ₃₆ -N ₃₇ -C ₃₈ -C ₄₃	176(2)	
C ₆ -N ₇ -C ₈ -C ₉	-28(3)	C ₃₆ -N ₃₇ -C ₃₈ -C ₃₉	9(3)	
C_{13} - C_{8} - C_{9} - C_{10}	-2(3)	C ₄₃ -C ₃₈ -C ₃₉ -C ₄₀	11(3)	
N7-C8-C9-C10	180(2)	N ₃₇ -C ₃₈ -C ₃₉ -C ₄₀	177(2)	
$C_8-C_9-C_{10}-C_{11}$	4(3)	C_{38} - C_{39} - C_{40} - C_{41}	-9(4)	
C_9 - C_{10} - C_{11} - C_{12}	-7(3)	C_{39} - C_{40} - C_{41} - C_{42}	3(4)	
$C_9-C_{10}-C_{11}-I_1$	-179(2)	C_{39} - C_{40} - C_{41} - I_{31}	-179(2)	
C_{10} - C_{11} - C_{12} - C_{13}	8(3)	C_{40} - C_{41} - C_{42} - C_{43}	1(3)	
I_1 - C_{11} - C_{12} - C_{13}	-180(2)	I_{31} - C_{41} - C_{42} - C_{43}	-177(2)	
$C_9-C_8-C_{13}-C_{12}$	4(3)	C ₃₉ -C ₃₈ -C ₄₃ -C ₄₂	-7(3)	
N7-C8-C13-C12	-178(2)	N ₃₇ -C ₃₈ -C ₄₃ -C ₄₂	-174(2)	
C_{11} - C_{12} - C_{13} - C_8	-7(3)	C_{41} - C_{42} - C_{43} - C_{38}	0(3)	
$N_4-C_2-C_{14}-F_1$	145(2)	N_{34} - C_{32} - C_{44} - F_{31}	115(2)	
$C_3-C_2-C_{14}-F_1$	-43(2)	C_{33} - C_{32} - C_{44} - F_{31}	-69(3)	
$N_4-C_2-C_{14}-F_2$	-96(2)	N_{34} - C_{32} - C_{44} - F_{32}	-130(2)	
$C_3-C_2-C_{14}-F_2$	77(2)	C_{33} - C_{32} - C_{44} - F_{32}	46(3)	
$N_4-C_2-C_{14}-F_3$	22(3)	N_{34} - C_{32} - C_{44} - F_{33}	0(3)	
$C_3-C_2-C_{14}-F_3$	-165(2)	C_{33} - C_{32} - C_{44} - F_{33}	176(2)	
$C_5 - N_5 - C_{16} - C_{17}$	76(2)	C_{35} - N_{35} - C_{46} - C_{47}	-120(2)	
$C_5 - N_5 - C_{16} - C_{21}$	-110(2)	C_{35} - N_{35} - C_{46} - C_{51}	69(3)	
$N_5 - C_{16} - C_{17} - C_{18}$	175(2)	N_{35} - C_{46} - C_{47} - C_{48}	-170(2)	
C_{21} - C_{16} - C_{17} - C_{18}	0(3)	C_{51} - C_{46} - C_{47} - C_{48}	1(3)	
C_{16} - C_{17} - C_{18} - C_{19}	-1(3)	C_{46} - C_{47} - C_{48} - C_{49}	-1(3)	
C_{16} - C_{17} - C_{18} - C_{22}	177(2)	C_{46} - C_{47} - C_{48} - C_{52}	-180(2)	
C_{17} - C_{18} - C_{19} - C_{20}	1(3)	C_{47} - C_{48} - C_{49} - C_{50}	2(3)	
C_{22} - C_{18} - C_{19} - C_{20}	-177(2)	C_{52} - C_{48} - C_{49} - C_{50}	180(2)	

Table 6. (continued)

Type ^b	Angle, (deg)	Type ^b Angle, (deg)	
C17-C18-C19-C23	-179(2)	C47-C48-C49-C53	177(2)
$C_{22}-C_{18}-C_{19}-C_{23}$	3(3)	C ₅₂ -C ₄₈ -C ₄₉ -C ₅₃	-5(3)
$C_{18}-C_{19}-C_{20}-C_{21}$	0(3)	$C_{48}-C_{49}-C_{50}-C_{51}$	-2(3)
$C_{23}-C_{19}-C_{20}-C_{21}$	180(2)	C ₅₃ -C ₄₉ -C ₅₀ -C ₅₁	-177(2)
C ₁₉ -C ₂₀ -C ₂₁ -C ₁₆	0(3)	C ₄₉ -C ₅₀ -C ₅₁ -C ₄₆	2(3)
N ₅ -C ₁₆ -C ₂₁ -C ₂₀	-174(2)	N ₃₅ -C ₄₆ -C ₅₁ -C ₅₀	169(2)
C ₁₇ -C ₁₆ -C ₂₁ -C ₂₀	0(3)	C ₄₇ -C ₄₆ -C ₅₁ -C ₅₀	-2(3)
C ₁₉ -C ₁₈ -C ₂₂ -F ₆	178(2)	C ₄₉ -C ₄₈ -C ₅₂ -F ₃₆	57(3)
C ₁₇ -C ₁₈ -C ₂₂ -F ₆	1(3)	C47-C48-C52-F36	-124(2)
C ₁₉ -C ₁₈ -C ₂₂ -F ₅	-61(3)	C49-C48-C52-F35	-67(3)
C ₁₇ -C ₁₈ -C ₂₂ -F ₅	121(2)	C47-C48-C52-F35	111(2)
C ₁₉ -C ₁₈ -C ₂₂ -F ₄	54(3)	C49-C48-C52-F34	177(2)
C ₁₇ -C ₁₈ -C ₂₂ -F ₄	-124(2)	C_{47} - C_{48} - C_{52} - F_{34}	-5(3)
C_{20} - C_{19} - C_{23} - N_6	-83(40)	C50-C49-C53-N36	45(57)
C_{18} - C_{19} - C_{23} - N_6	97(39)	C48-C49-C53-N36	-130(56)
	Molecule 3		Molecule 4
C_{61} - N_{63} - N_{64} - C_{62}	-119(2)	C91-N93-N94-C92	-121(2)
C_{64} - N_{63} - N_{64} - C_{62}	2(2)	C94-N93-N94-C92	-1(2)
C_{65} - N_{62} - C_{61} - N_{63}	-10(2)	C95-N92-C91-N93	1(3)
C_{65} - N_{62} - C_{61} - N_{61}	177(2)	C95-N92-C91-N91	179(2)
N_{64} - N_{63} - C_{61} - N_{62}	135(2)	N94-N93-C91-N92	123(2)
C_{64} - N_{63} - C_{61} - N_{62}	11(2)	C94-N93-C91-N92	-1(3)
N_{64} - N_{63} - C_{61} - N_{61}	-52(2)	N94-N93-C91-N91	-56(3)
C_{64} - N_{63} - C_{61} - N_{61}	-176(2)	C94-N93-C91-N91	-179(2)
C_{66} - N_{61} - C_{61} - N_{62}	-4(3)	C96-N91-C91-N92	-1(4)
C_{66} - N_{61} - C_{61} - N_{63}	-176(2)	C96-N91-C91-N93	178(2)
N_{63} - N_{64} - C_{62} - C_{74}	-178(2)	N93-N94-C92-C104	-179(2)
N_{63} - N_{64} - C_{62} - C_{63}	8(2)	N93-N94-C92-C93	6(2)
N_{64} - C_{62} - C_{63} - C_{64}	-14(2)	N94-C92-C93-C94	-8(2)
C_{74} - C_{62} - C_{63} - C_{64}	173(2)	C_{104} - C_{92} - C_{93} - C_{94}	178(2)
C_{61} - N_{63} - C_{64} - C_{65}	-6(2)	C91-N93-C94-C95	0(2)

Table 6. (continued)

Type ^b	Angle, (deg)	Type ^b	Angle, (deg)	
N64-N63-C64-C65	-131(2)	N94-N93-C94-C95	-123(2)	
$C_{61}-N_{63}-C_{64}-C_{63}$	116(2)	C ₉₁ -N ₉₃ -C ₉₄ -C ₉₃	120(2)	
N ₆₄ -N ₆₃ -C ₆₄ -C ₆₃	-9(2)	N94-N93-C94-C93	-3(2)	
C ₆₁ -N ₆₃ -C ₆₄ -C ₇₅	-124(2)	C91-N93-C94-C105	-116(2)	
N ₆₄ -N ₆₃ -C ₆₄ -C ₇₅	111(2)	N94-N93-C94-C105	122(2)	
C ₆₂ -C ₆₃ -C ₆₄ -C ₆₅	123(2)	C92-C93-C94-C95	116(2)	
C ₆₂ -C ₆₃ -C ₆₄ -N ₆₃	12(2)	C92-C93-C94-N93	6(2)	
C ₆₂ -C ₆₃ -C ₆₄ -C ₇₅	-105(2)	C92-C93-C94-C105	-117(2)	
C76-N65-C65-N62	-5(4)	C106-N95-C95-N92	-6(3)	
C76-N65-C65-C64	173(2)	C ₁₀₆ -N ₉₅ -C ₉₅ -C ₉₄	177(2)	
C_{61} - N_{62} - C_{65} - N_{65}	-176(2)	C91-N92-C95-N95	-177(2)	
C_{61} - N_{62} - C_{65} - C_{64}	6(2)	C91-N92-C95-C94	0(2)	
N_{63} - C_{64} - C_{65} - N_{65}	-178(2)	N93-C94-C95-N95	177(2)	
C_{63} - C_{64} - C_{65} - N_{65}	72(3)	C93-C94-C95-N95	65(2)	
C_{75} - C_{64} - C_{65} - N_{65}	-61(3)	C_{105} - C_{94} - C_{95} - N_{95}	-65(3)	
N_{63} - C_{64} - C_{65} - N_{62}	0(2)	N93-C94-C95-N92	0(2)	
C_{63} - C_{64} - C_{65} - N_{62}	-110(2)	C93-C94-C95-N92	-113(2)	
C_{75} - C_{64} - C_{65} - N_{62}	117(2)	C_{105} - C_{94} - C_{95} - N_{92}	117(2)	
C_{61} - N_{61} - C_{66} - O_{61}	179(2)	C ₉₁ -N ₉₁ -C ₉₆ -O ₉₁	178(2)	
C_{61} - N_{61} - C_{66} - N_{67}	-3(3)	C91-N91-C96-N97	-7(3)	
O_{61} - C_{66} - N_{67} - C_{68}	-11(3)	O91-C96-N97-C98	-10(4)	
N_{61} - C_{66} - N_{67} - C_{68}	171(2)	N91-C96-N97-C98	176(2)	
C_{66} - N_{67} - C_{68} - C_{73}	-153(2)	C96-N97-C98-C103	-154(2)	
C_{66} - N_{67} - C_{68} - C_{69}	36(3)	C96-N97-C98-C99	30(3)	
C_{73} - C_{68} - C_{69} - C_{70}	5(3)	C_{103} - C_{98} - C_{99} - C_{100}	5(4)	
N_{67} - C_{68} - C_{69} - C_{70}	176(2)	N97-C98-C99-C100	-180(2)	
C_{68} - C_{69} - C_{70} - C_{71}	0(3)	C_{98} - C_{99} - C_{100} - C_{101}	-5(3)	
C_{69} - C_{70} - C_{71} - C_{72}	-6(3)	C_{99} - C_{100} - C_{101} - C_{102}	1(3)	
C_{69} - C_{70} - C_{71} - I_{61}	177(2)	C_{99} - C_{100} - C_{101} - I_{91}	-178(2)	
C_{70} - C_{71} - C_{72} - C_{73}	6(4)	C_{100} - C_{101} - C_{102} - C_{103}	4(3)	
I_{61} - C_{71} - C_{72} - C_{73}	-176(2)	I_{91} - C_{101} - C_{102} - C_{103}	-177(2)	

Table 6. (continued)

Type ^b	Angle, (deg)	Type ^b	Angle, (deg)	
C ₆₉ -C ₆₈ -C ₇₃ -C ₇₂	-5(3)	C99-C98-C103-C102	0(4)	
N ₆₇ -C ₆₈ -C ₇₃ -C ₇₂	-176(2)	N97-C98-C103-C102	-176(2)	
C ₇₁ -C ₇₂ -C ₇₃ -C ₆₈	0(3)	C ₁₀₁ -C ₁₀₂ -C ₁₀₃ -C ₉₈	-4(4)	
N ₆₄ -C ₆₂ -C ₇₄ -F ₆₁	147(2)	N94-C92-C104-F91	138(2)	
C_{63} - C_{62} - C_{74} - F_{61}	-40(3)	C ₉₃ -C ₉₂ -C ₁₀₄ -F ₉₁	-48(3)	
N ₆₄ -C ₆₂ -C ₇₄ -F ₆₂	-102(2)	N94-C92-C104-F92	-106(2)	
C_{63} - C_{62} - C_{74} - F_{62}	72(3)	C_{93} - C_{92} - C_{104} - F_{92}	68(3)	
N_{64} - C_{62} - C_{74} - F_{63}	22(3)	N94-C92-C104-F93	19(3)	
C_{63} - C_{62} - C_{74} - F_{63}	-164(2)	C_{93} - C_{92} - C_{104} - F_{93}	-167(2)	
C65-N65-C76-C77	-64(3)	C95-N95-C106-C107	124(2)	
C_{65} - N_{65} - C_{76} - C_{81}	122(2)	C95-N95-C106-C111	-52(3)	
N65-C76-C77-C78	-172(2)	N_{95} - C_{106} - C_{107} - C_{108}	-173(2)	
C_{81} - C_{76} - C_{77} - C_{78}	2(3)	C_{111} - C_{106} - C_{107} - C_{108}	3(3)	
C76-C77-C78-C79	-3(3)	C_{106} - C_{107} - C_{108} - C_{109}	-4(3)	
C76-C77-C78-C82	-180(2)	C_{106} - C_{107} - C_{108} - C_{112}	175(2)	
C77-C78-C79-C80	3(3)	C_{107} - C_{108} - C_{109} - C_{110}	1(3)	
C_{82} - C_{78} - C_{79} - C_{80}	180(2)	C_{112} - C_{108} - C_{109} - C_{110}	-178(2)	
C77-C78-C79-C83	177(2)	C_{107} - C_{108} - C_{109} - C_{113}	-177(2)	
C82-C78-C79-C83	-7(3)	C_{112} - C_{108} - C_{109} - C_{113}	4(3)	
C_{78} - C_{79} - C_{80} - C_{81}	-2(3)	C_{108} - C_{109} - C_{110} - C_{111}	3(3)	
C_{83} - C_{79} - C_{80} - C_{81}	-176(3)	C_{113} - C_{109} - C_{110} - C_{111}	-180(2)	
C_{79} - C_{80} - C_{81} - C_{76}	1(4)	C_{109} - C_{110} - C_{111} - C_{106}	-3(3)	
N_{65} - C_{76} - C_{81} - C_{80}	173(2)	N_{95} - C_{106} - C_{111} - C_{110}	177(2)	
C_{77} - C_{76} - C_{81} - C_{80}	0(3)	C_{107} - C_{106} - C_{111} - C_{110}	1(3)	
C79-C78-C82-F66	-168(2)	C_{109} - C_{108} - C_{112} - F_{96}	61(4)	
C_{77} - C_{78} - C_{82} - F_{66}	9(4)	C_{107} - C_{108} - C_{112} - F_{96}	-119(3)	
C_{79} - C_{78} - C_{82} - F_{65}	62(3)	C_{109} - C_{108} - C_{112} - F_{95}	-56(3)	
C_{77} - C_{78} - C_{82} - F_{65}	-121(3)	C_{107} - C_{108} - C_{112} - F_{95}	125(2)	
C_{79} - C_{78} - C_{82} - F_{64}	-49(3)	C_{109} - C_{108} - C_{112} - F_{94}	-167(2)	
C_{77} - C_{78} - C_{82} - F_{64}	128(2)	C_{107} - C_{108} - C_{112} - F_{94}	14(3)	
C_{80} - C_{79} - C_{83} - N_{66}	-44(41)	C_{110} - C_{109} - C_{113} - N_{96}	37(22)	

Table 6. (continued)

Type ^b	Angle, (deg)	Type ^b	Angle, (deg)	
C ₇₈ -C ₇₉ -C ₈₃ -N ₆₆	143(39)	C108-C109-C113-N96	-145(21)	

^aThe numbers in parentheses are the estimated standard deviations in the last significant digit. ^bAtoms are labeled in agreement with Figure 1.

Donor	Acceptor	Distance	Distance	Angle	Angle	Angle	Asymmetrie
Atom	Atom	Å	Å	deg.	deg.	deg.	Unit
$(D)^{a}$	(A)	D A	H A	D-H A	H-D A	$H^{}A$ - X^b	of A ^c
N_1 - H_{1N}	O ₃₁	2.820	1.96	164	11	118(C ₃₆)	x+1, y+1,
N ₇ -H _{7N}	N_2	2.708	1.98	139	29	94(C ₁)	x, y, z
						163(C ₅)	x, y, z
N ₇ -H _{7N}	I_{61}	3.765	3.26	119	49	101(C ₇₁)	x, y, z-1
N ₃₁ -H _{31N}	O_1	2.864	2.03	158	15	129(C ₆)	x-1, y-1, z
N ₃₇ -H _{37N}	N ₃₂	2.787	2.10	134	33	92(C ₃₁)	x, y, z
						154(C ₃₅)	x, y, z
N_{61} - H_{61N}	O ₉₁	2.754	1.89	167	9	127(C ₉₆)	x, y, z
N ₆₇ -H _{67N}	N ₆₂	2.679	1.98	135	31	96(C ₆₁)	x, y, z
						155(C ₆₅)	x, y, z
N ₉₁ -H _{91N}	O ₆₁	2.805	1.94	170	7	121(C ₆₆)	x, y, z
N97-H97N	N ₉₂	2.667	1.96	137	30	97(C ₉₁)	x, y, z
						158(C ₉₅)	x, y, z

 $Type^b$

Angle, (deg)

Type^b

^a The hydrogen atom involved in the interaction is also indicated.

Angle, (deg)

^b The symbol X is used to denote other atoms which are bonded to the acceptor atom.

^c All donor atoms belong to the asymmetric unit for which fractional atomic coordinates are given in Tables 1 and 3.