SUPPORTING INFORMATION # Organocatalytic Conjugate Addition of Formaldehyde N,NDialkylhydrazones to β,γ -Unsaturated α -Keto Esters Raquel P. Herrera, David Monge, Eloísa Martín-Zamora, Rosario Fernández, and José M. Lassaletta **General Methods**. Purification of reaction products were carried out by flash chromatography on silica-gel (0.040-0.063 mm or 0.015-0.040 mm). Analytical tlc was performed on 0.25 mm silica gel 60-F plates. 1 H NMR spectra were recorded at 300 MHz, 400 MHz or 500 MHz; 13 C NMR spectra were recorded at 75 MHz, 100 MHz and 125 MHz in CD₃COCD₃ or CDCl₃ as the solvent. Chemical shifts were reported in the *δ* scale relative to residual CH₃COCH₃ (2.05 ppm) or CDCl₃ (7.26 ppm) for 1 H NMR and to the central line of CD₃COCD₃ (29.84 ppm) or CDCl₃ (77 ppm) for 13 C NMR. The enantiomeric excess (ee) of the products was determined by HPLC on chiral stationary phases (Daicel Chiralpak AD or AD-H). Racemic samples were obtained using as catalyst bis[3,5-bis(trifluoromethyl)phenyl]thiourea. **Materials**. All commercially available solvents and reagents were used as received. The β , γ unsaturated α -keto esters **5a-f** were obtained following literature procedures.¹ ¹H and ¹³C NMR spectra for compounds **5a**¹, **5b**² and **5f**² were consistent with values previously reported in the literature. ## (E)-Ethyl 6-methyl-2-oxohept-3-enoate (5c) Following the general procedure, compound **5c** was obtained as an orange oil in 42% yield. ¹H NMR (300 MHz, CDCl₃): δ 7.20-7.10 (m, 1H), 6.62 (d, J = 16.0 Hz, 1H), 4.33 (q, J = 7.2 Hz, 2H), 2.18 (t, J = 7.7 Hz, 2H), 1.86-1.77 (m, 1H), 1.36 (t, J = 7.0 Hz, 3H), 0.93 (d, J = 6.6 Hz, 6H). ¹³C NMR (125 MHz, CDCl₃): δ 183.8, 162.5, 160.4, 122.5, 62.3, 31.7, 21.2, 20.9, 14.1. HRMS (EI) m/z calcd. for C₁₀H₁₇O₃: 185.1178; found 185.1187. #### (E)-Ethyl 2-oxohex-3-enoate (5d) Following the general procedure, compound **5d** was obtained as an orange oil in 20% yield. ¹H NMR (300 MHz, CDCl₃): δ 7.17 (dt, J = 15.9, 6.9 Hz, 1H), 6.62 (d, J = 15.9 Hz, 1H), 4.32 (q, J = 7.1 Hz, 2H), 2.32-2.25 (m, 2H), 1.51-1.23 (m, 9H), 0.88 (t, J = 6.3 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 183.7, 162.7, 154.7, 125.1, 62.3, 33.1, 31.0, 27.4, 22.4, 14.0, 13.9. HRMS (EI) m/z calcd. for C₁₁H₁₉O₃: 199.1334; found 199.1329. S2 _ ⁽¹⁾ Jensen, K. B.; Thourhaunge, J., Hazell, R. G., Jørgensen, K. A. Angew. Chem. Int. Ed. 2001, 40, 160. ⁽²⁾ Sugimura, H.; Miura, M.; Yamada, N. Tetrahedron: Asymmetry 1997, 8, 4089. ## (E)-Ethyl 6,6-dimethyl-2-oxohept-3-enoate (5e). Following the general procedure, compound **5e** was obtained as orange oil in 30% yield. ¹H NMR (300 MHz, CD₃COCD₃): δ 7.19-7.08 (m, 1H), 6.53 (d, J = 15.9 Hz, 1H), 4.34 (q, J = 7.2 Hz, 2H), 2.27 (d, J = 8.1 Hz, 2H), 1.34 (t, J = 7.1 Hz, 3H), 0.98 (s, 9H). ¹³C NMR (75 MHz, CD₃COCD₃): δ 185.4, 164.2, 153.3, 129.0, 62.9, 48.0, 32.6, 29.7, 14.7. HRMS (EI) m/z calcd. for C₁₁H₁₉O₃: 199.1334; found 199.1341 ## General procedure for the preparation of catalysts 14a-g and 15. To a stirred solution of 3,5-bis(trifluoromethyl)phenyl isothiocyanate (5 mmol) in CH₂Cl₂ (10 mL), commercially available chiral amine (5 mmol) was added in one portion. After stirring the resulting solution at room temperature overnight, the solvent was evaporated under reduced pressure and the white solid purified by crystallisation (*n*-hexane/acetone). The ¹H and ¹³C NMR spectra for catalysts **14a**, ³ **14c**⁴ and **14d**⁵ are consistent with values previously reported in the literature. ## 1-[3,5-Bis(trifluoromethyl)phenyl]-3-[(S)-1-hydroxy-3-phenylpropan-2-yl]thiourea (14b) Following the general procedure, compound **14b** was obtained as a white solid in 90% yield. Mp 97-99 °C. 1 H NMR (300 MHz, CD₃COCD₃): δ 9.47 (br s, 1H), 8.35 (s, 2H), 7.69 (s, 1H), 7.63 (br s, 1H), 7.40-7-16 (m, 5H), 4.72 (br s, 1H), 4.35-4.02 (m, 1H), 3.80-3.55 (m, 2H), 3.11 (dd, J = 13.5, 6.0 Hz, 1H), 2.97 (dd, J = 13.5, 8.4 Hz, 1H). 13 C NMR (75) ⁽³⁾ Sohtome, Y.; Tanatani, A.; Hashimoto, Y.; Nagasawa, K. Tetrahedron Lett. 2004, 45, 5589. ⁽⁴⁾ Munslow, I. J.; Wade, A. R.; Deeth, R. J.; Scott, P. Chem. Commun. 2004, 2596. ⁽⁵⁾ Herrera, R. P.; Sgarzani, V.; Bernardi, L.; Ricci, A. Angew. Chem. Int. Ed. 2005, 44, 6576. MHz, CD₃COCD₃): δ 181.8, 144.9, 143.0, 132.0 (q, J = 132.0 Hz, CCF_3), 130.2, 129.2 127.2, 124.4 (q, J = 270.0 Hz, CF_3), 123.2, 117.4, 62.1, 58.2, 37.0. HRMS (EI) m/z calcd. for $C_{18}H_{17}F_6N_2OS$: 423.0966; found 423.0954. [α]²²_D –54 (c 0.3, CHCl₃). ## 1-[3,5-Bis(trifluoromethyl)phenyl]-3-[(R)-2,3-dihydro-1H-inden-1-yl]thiourea (14e) Following the general procedure, compound **14e** was obtained as a white solid in 90% yield. Mp 136-138 °C. ¹H NMR (300 MHz, CDCl₃): δ 8.50 (br s, 1H), 7.79 (s, 2H), 7.70 (s, 1H), 7.37 (d, J = 6.9 Hz, 1H), 7.27-7.19 (m, 3H), 6.41 (br s, 1H), 5.94 (br s, 1H), 3.05-2.72 (m, 3H), 1.97-1.85 (m, 1H). ¹³C NMR (75 MHz, CDCl₃): δ 180.3, 143.5, 141.5, 138.7, 133.5 (q, J = 33.8 Hz, CCF₃), 128.6, 127.0, 125.2, 124.0, 123.9, 122.7 (q, J = 271.5 Hz, CF₃), 119.6, 60.7, 33.4, 30.1. HRMS (EI) m/z ## 1-[(1S,2R)-2,3-Dihydro-2-hydroxy-1H-inden-1-yl]-3-(phenanthren-9-yl)thiourea (14f) calcd. for $C_{18}H_{14}F_6N_2S$: 404.0782; found 404.0777. $[\alpha]^{22}D + 34$ (c 2.1, CH₃COCH₃). white solid in 75% yield. Mp 112-116 °C. ¹H NMR (300 MHz, CD₃COCD₃): δ 9.27 (s, 1H), 8.88-8.78 (m, 2H), 8.28-8.23 (m, 1H), 7.97 (s, 1H), 7.95 (d, J = 1.5 Hz, 1H), 7.79-7.60 (m, 4H), 7.41-7.38 (m, 1H), 7.23 (d, J = 8.1 Hz, 1H), 7.15-7.09 (m, 3H), 6.04 (dd, J = 8.1, 5.1 Hz, 1H), 4.63 (dt, J = 5.0, 0.9 Hz, 1H), 4.18 (br s, 1H), 3.12 (dd, J = 16.5, 4.8 Hz, 1H), 2.81 (d, J = 16.5 Hz, 1H). ¹³C NMR (75 MHz, CD₃COCD₃): δ 184.2, 142.8, 141.5, 133.4, 132.7, 132.5, 130.8, 130.5, 129.7, 128.5, 128.4, 128.3, 128.2, 127.3, 127.0, 126.0, 125.6, 124.8, 124.2, 123.8, 73.6, 63.7, 41.0. HRMS (EI) m/z calcd. for C₂₅H₂₀N₂OS: 385.1375; found 385.1377. [α]²²_D -56 (c 0.5, Following the general procedure, compound 14f was obtained as a CH₃COCH₃). ## 1-[3,5-Bis(trifluoromethyl)phenyl]-3-[(1S,2R)-2-hydroxycyclopentyl]thiourea (14g) Following the general procedure, compound **14g** was obtained as a white solid in 85% yield. Mp 139-142 °C. ¹H NMR (300 MHz, CDCl₃): δ 8.60 (br s, 1H), 7.82 (s, 2H), 7.66 (s, 1H), 7.06 (d, J = 7.5 Hz, 1H), 4.46 (br s, 1H), 4.39-4.35 (m, 1H), 2.26-1.54 (m, 7H). ¹³C NMR (75 MHz, CDCl₃): δ 179.9, 144.8, 132.9 (q, J = 33.8 Hz, CCF₃), 123.2, 122.8 (q, J = 271.5 Hz, CF₃), 118.9, 73.0, 59.2, 33.3, 29.0, 20.41. HRMS (EI) m/z calcd. for C₁₄H₁₄F₆N₂OS: 372.0731; found 372.0706. [α]²²D -10 (c 2, CH₃COCH₃). ## 1-(3,5-bis(trifluoromethyl)phenyl)-3-((1S,2R)-2,3-dihydro-2-hydroxy-1H-inden-1-yl)urea (15) Following the general procedure, compound **15** was obtained as a white solid in 90% yield. Mp 222-225 °C. ¹H NMR (300 MHz, CD₃COCD₃): δ 8.90 (br s, 1H), 8.20 (s, 2H), 7.55 (s, 1H), 7.37-7.29 (m, 1H), 7.27-7.15 (m, 3H), 6.40 (br s, 1H), 5.29 (dd, J = 8.4, 5.1 Hz, 1H), 4.66-4.61 (m, 1H), 4.38-4.37 (m, 1H), 3.15 (dd, J = 16.5, 4.8 Hz, 1H), 2.91 (d, J = 16.2, 1H). ¹³C NMR (75 MHz, CD₃COCD₃): δ 155.9, 143.7, 143.4, 141.5, 133.5 (q, J = 32.3 Hz, CCF₃), 128.4, 127.4, 125.8, 125.2, 124.5 (q, J = 270.0 Hz, CF₃), 118.4, 114.8, 73.6, 58.8, 40.7. HRMS (EI) m/z calcd. for C₁₈H₁₄F₆N₂O₂: 404.0959; found 404.0963. [α]²²_D +36 (c 2.0, CH₃COCH₃). General procedure for the organocatalytic enantioselective formylation of β , γ -unsaturated α -keto esters with hydrazone 4. In a test tube, to a solution of the β , γ -unsaturated α -keto ester 5 (0.25 mmol) and catalyst **14d** (10.5 mg, 0.025 mmol) in CH₂Cl₂ (2.5 mL) cooled to -45 or -60 °C, **S5** hydrazone 4 (0.3 mmol) was added in one portion. The test tube was placed in a freezer at -45 or -60 °C for 72 h, then the product 8a was obtained by flash chromathography on silica gel treated with Et₃N (*n*-hexane-AcOEt mixtures). ## (R,E)-Ethyl 4-methyl-2-oxo-5-(pyrrolidin-1-ylimino)pentanoate (8a) Following the general procedure, compound 8a was obtained as an orange oil in 60% yield. The ee of the product was determined by HPLC using a Daicel Chiralpak AD column (n-hexane/i-PrOH = 99:1, flow rate 1 mL/min, τ_{major} = 25.0 min, $\tau_{\text{minor}} = 14.0 \text{ min}$). H NMR (500 MHz, CDCl₃): δ 6.44 (d, J = 3.5 Hz, 1H), 4.25 (q, J = 6.9 Hz, 2H), 3.10 (dd, J = 15.5, 8.6 Hz, 1H), 3.02-2.85 (m, 5H), 2.56 (dd, J =15.5, 5.5 Hz, 1H), 1.82-1.77 (m, 4H), 1.30 (t, J = 7.0 Hz, 3H), 1.10 (d, J = 7.0 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 193.6, 161.5, 138.6, 62.1, 51.4, 51.2, 42.7, 34.3, 23.0, 22.9, 18.9, 14.0. HRMS (EI) m/z calcd. for $C_{12}H_{19}N_2O_3$: 239.1396; found 239.1393. $[\alpha]^{25}_D$ -5.4 (c 0.7, CH₃COCH₃), 80% ee. ## (S,E)-Ethyl 5-methyl-2-oxo-4-[(pyrrolidin-1-ylimino)methyl]hexanoate (8b) Following the general procedure, compound 8b was obtained as an orange oil in 80% yield. The ee of the product was determined by HPLC using a Daicel Chiralpak AD-H column (*n*-hexane/*i*-PrOH = 99:1, flow rate 1 mL/min, τ_{major} 29.8 min, $\tau_{\text{minor}} = 15.3$ min). ¹H NMR (300 MHz, CD₃COCD₃): δ 6.48 (d, J= 3.6 Hz, 1H, 4.26 (q, J = 7.1 Hz, 2H), 3.22 (dd, J = 15.3, 10.5 Hz, 1H), 3.06-2.97 (m, 4H), 2.85-2.78 (m, 1H), 2.48 (dd, J = 15.3, 3.9 Hz, 1H), 1.94-1.76 (m, 5H), 1.31 (t, J = 7.1 Hz, 3H), 0.95 (d, 1.5)J = 6.3 Hz, 3H), 0.93 (d, J = 6.6 Hz, 3H). ¹³C NMR (75 MHz, CD₃COCD₃): δ 194.4, 162.8, 137.0, 62.4, 52.1, 46.5, 38.2, 31.7, 23.8, 20.1, 20.0, 14.5. HRMS (EI) m/z calcd. for $C_{14}H_{23}N_2O_3$: 267.1709; found 267.1695. $[\alpha]^{25}_D$ –13.8 (c 1.9, CH₃COCH₃), 78% ee. ## (R,E)-Ethyl 6-methyl-2-oxo-4-[(pyrrolidin-1-ylimino)methyl]heptanoate (8c) Following the general procedure, compound **8c** was obtained as an orange oil in 75% yield. The ee of the product was determined by HPLC using a Daicel Chiralpak AD-H column (n-hexane/i-PrOH = 99:1, flow rate 1 mL/min, $\tau_{\text{major}} = 15.5$ min, $\tau_{\text{minor}} = 10.8$ min). ¹H NMR (500 MHz, CD₃COCD₃): δ 6.42 (d, J = 4.5 Hz, 1H), 4.24 (q, J = 14.0, 7.0 Hz, 2H), 3.02 (dd, J = 15.5, 9.0 Hz, 1H), 2.98-2.88 (m, 5H), 2.61 (dd, J = 15.3, 4.8 Hz, 1H), 1.81-1.77 (m, 4H), 1.74-1.66 (m, 1H), 1.43-1.37 (m, 1H), 1.35-1.22 (m, 4H), 1.11 (d, J = 7.0 Hz, 3H), 1.06 (d, J = 7.5 Hz, 3H). ¹³C NMR (125 MHz, CD₃COCD₃): δ 194.1, 162.5, 138.2, 62.4, 51.9, 43.9, 42.2, 38.3, 26.3, 23.7, 23.2, 23.0, 22.7, 14.3. HRMS (EI) m/z calcd. for C₁₅H₂₅N₂O₃: 281.1865; found 281.1854. [α]²⁰_D -4.5 (c 1.0, CH₃COCH₃), 78% ee. ## (R,E)-Ethyl 2-oxo-4-[(pyrrolidin-1-ylimino)methyl]nonanoate (8d) Following the general procedure, compound **8d** was obtained as an orange oil in 61% yield. The ee of the product was determined by HPLC using a Daicel Chiralpak AD column (n-hexane/i-PrOH = 99:1, flow rate 1 mL/min, $\tau_{\text{major}} = 32.2$ min, $\tau_{\text{minor}} = 19.0$ min). ¹H NMR (300 MHz, CD₃COCD₃): δ 6.47 (d, J = 3.9 Hz, 1H), 4.26 (q, J = 7.2 Hz, 2H), 3.10 (dd, J = 15.6, 9.3 Hz, 1H), 3.01-2.97 (m, 4H), 2.88-2.85 (m, 1H), 2.62 (dd, J = 15.3, 4.8 Hz, 1H), 1.85-1.78 (m, 4H), 1.60-1.22 (m, 11H), 0.89 (t, J = 6.9 Hz, 3H). ¹³C NMR (75 MHz, CD₃COCD₃): δ 194.0, 162.0, 138.0, 62.3, 51.8, 41.5, 40.2, 34.3, 32.6, 31.4, 28.7. 28.2, 27.8, 27.3, 23.6, 23.0, 14.3. HRMS (EI) m/z calcd. for $C_{16}H_{27}N_2O_3$: 295.2022; found 295.2034. $[\alpha]_D^{20} = 0.7$ (c=0.9, CH_3COCH_3), 70% ee. ## (R,E)-Ethyl 6,6-dimethyl-2-oxo-4-[(pyrrolidin-1-ylimino)methyl]heptanoate (8e) Following the general procedure, compound **8e** was obtained as an orange oil in 64% yield. The ee of the product was determined by HPLC using a Daicel Chiralpak AD-H column (n-hexane/i-PrOH = 99:1, 1 mL/min, $\tau_{\text{major}} = 25.4$ min, $\tau_{\text{minor}} = 14.3$ min). 1 H NMR (500 MHz, CD₃COCD₃): δ 6.46 (d, J = 4.5 Hz, 1H), 4.26 (q, J = 7.2 Hz, 2H), 3.09-2.96 (m, 6H), 2.68 (dd, J = 14.7, 4.5 Hz, 1H), 1.83-1.78 (m, 4H), 1.54 (dd, J = 14.1, 6.9 Hz, 1H), 1.36-1.28 (m, 1H), 1.31 (t, J = 6.9 Hz, 3H), 0.95 (s, 9H). 13 C NMR (75 MHz, CD₃COCD₃): δ 193.7, 162.4, 139.9, 62.3, 51.8, 48.0, 44.6, 36.9, 31.7, 29.3, 23.6, 14.3. HRMN calcd. for C₁₆H₂₉N₂O₃: 297.2178, found: 297.2175. [α]²⁰_D -2.1 (c 0.5, CH₃COCH₃), 58% ee. #### (S,E)-Ethyl 4-cyclohexyl-2-oxo-5-(pyrrolidin-1-ylimino)pentanoate (8f) Following the general procedure, compound **8f** was obtained as an orange oil in 82% yield. The ee of the product was determined by HPLC using a Daicel Chiralpak AD-H column (n-hexane/i-PrOH = 99:1, flow rate 1 mL/min, $\tau_{\text{major}} = 25.9$ min, $\tau_{\text{minor}} = 23.7$ min). ¹H NMR (300 MHz, CD₃COCD₃): δ 6.49 (d, J = 3.9 Hz, 1H), 4.26 (q, J = 7.2 Hz, 2H), 3.22 (dd, J = 15.3, 10.4 Hz, 1H), 3.01-2.97 (m, 4H), 2.84-2.76 (m, 1H), 2.51 (dd, J = 15.3, 3.9 Hz, 1H), 1.85-1.50 (m, 9H), 1.31 (t, J = 7.0 Hz, 3H), 1.26-1.03 (m, 6H). ¹³C NMR (125 MHz, CD₃COCD₃): δ 194.2, 162.5, 137.1, 62.2, 51.9, 41.9, 38.2, 31.0, 30.8, 27.3, 27.3, 27.2, 26.1, 23.6, 14.3. HRMS (EI) m/z calcd. for C₁₇H₂₇N₂O₃: 307.2021; found 307.2014. [α]²⁰_D –3.6 (c 1.3, CH₃COCH₃), 72% ee. ## General procedure for the synthesis of nitrile derivatives 16a and 16b. In a test tube, to a solution of product **8a,b** (0.25 mmol) in MeOH (2 mL), cooled to -25 °C, a suspension of MMPP (0.18mmol) in MeOH (1 mL) was added dropwise. The mixture was stirred for 18h and then poured into a mixture of CH₂Cl₂ (5 mL) and water (10 mL). The organic layer was separated, washed with brine (10 mL) and water (10 mL) and dried over Na₂SO₄. The solvent was removed and the residue purified by column chromatography to afford pure compounds **16a** and **16b**. ## (R)-Ethyl 4-cyano-2-oxopentanoate (16a) Following the general procedure, compound **16a** was obtained as an orange oil in 74% yield. The ee of the product was determined by chiral GC using a γ -TA column (150 °C, $t_r(S) = 15.4$ min, $t_r(R) = 18.5$ min). H NMR (300 MHz, CD₃COCD₃): δ 4.29 (q, J = 7.0 Hz, 2H), 3.42-3.11 (m, 3H), 1.36 (d, J = 7.2 Hz, 3H), 1.31 (t, J = 7.0 Hz, 3H). The column (75 MHz, CD₃COCD₃): δ 190.1, 159.4, 121.5, 63.1, 42.9, 19.9, 17.6, 13.9. HRMS (EI) m/z calcd. for C₈H₁₁NO₃: 169.0739; found 169.0735. [α]²⁰_D -8.5 (c 0.5, CHCl₃), 76% ee. #### (S)-Ethyl 4-cyano-5-methyl-2-oxohexanoate (16b) Following the general procedure, compound 16b was obtained as orange oil in 88% yield. The ee of the product was determined by chiral GC using a γ -TA column (130 °C, $t_r(R) = 55.2$ min, $t_r(S) = 57.4$ min). H NMR (300 MHz, CD₃COCD₃): δ 4.37 (q, J = 7.2 Hz, 2H), 3.35-3.25 (m, 1H), 3.12-3.01 (m, 2H), 1.94- 1.89 (m, 1H), 1.40 (t, J = 7.0 Hz, 3H), 1.12 (d, J = 6.5 Hz, 3H), 1.07 (d, J = 6.5 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 190.2, 160.1, 119.7, 63.2, 39.7, 32.7, 29.8, 20.8, 18.4, 14.0. HRMS (EI) m/z calcd. for C₁₀H₁₆NO₃: 198.1130; found 198.1126. [α]²⁰D –11.3 (c 0.8, CHCl₃), 68% ee # (R)-Dimethyl 2-methylsuccinate (17)⁶ MeO _____OMe Dry ozone was bubbled through a solution of hydrazone **8a** (0.4 mmol) in MeOH (3 mL) at -78 °C until permanent blue colour. The solution was allowed to warm until room temperature. The solvent was removed was allowed to warm until room temperature. The solvent was removed under reduced pressure and the crude was treated with a mixture of aqueous solution of HCOOH (90%, 0.6 mL, 15 mmol) and H₂O₂ (30%, 0.6 mL, 6.9 mmol). The mixture was stirred for 14 h at room temperature and then the solvent was removed under reduced pressure. The remaining crude in MeOH (2 mL) was treated with SOCl₂ (0.09 mL, 1.2 mmol) and stirred at 70 °C for 20 h. The solvent was removed under reduced pressure, and the residue was purified by column chromatography to give pure **17** in 56% yield. The ee of the product was determined by chiral GC using a γ -TA column (100 °C, $\tau_{\text{major}}(R) = 13.4 \text{ min}$, $\tau_{\text{minor}}(S) = 13.1 \text{ min}$). H NMR (300 MHz, CDCl₃): δ 3.71 (s, 3H), 3.69 (s, 3H), 3.01-2.88 (m, 1H), 2.76 (dd, J = 16.5, 8.1 Hz, 1H), 2.42 (dd, J = 16.4, 10.0 Hz, 1H) 1.24 (d, J = 7.2 Hz, 3H). C NMR (75 MHz, CDCl₃): δ 175.7, 172.3, 51.9, 51.7, 37.4, 35.7, 17.0. HRMS (EI) m/z calcd. for C₆H₉O₃: 129.0552; found 129.0548. [α]²⁰_D +3.1 (c 0.7, CHCl₃), 73% ee. (6) Guibé-Jampel, E.; Rousseau, G.; Salaün, J. J. Chem. Soc., Chem. Commun. 1987, 1080. HPLC data for **8a:** Daicel Chiralpak AD column (*n*-hexane/*i*-PrOH = 99:1, flow rate 1 mL/min) ## Processed Channel: PDA 243.8 nm | | Processed Channel | Retention
Time (min) | Area | % Area | Height | |---|-------------------|-------------------------|-----------|--------|---------| | 1 | PDA 243.8 nm | 13.987 | 11794168 | 9.76 | 282285 | | 2 | PDA 243.8 nm | 25.003 | 109031499 | 90.24 | 1530035 | HPLC data for **8b:** Daicel Chiralpak AD-H column (*n*-hexane/*i*-PrOH = 99:1, flow rate 1 mL/min) ## Processed Channel: PDA 235.6 nm | | Processed Channel | Retention
Time (min) | Area | % Area | Height | |---|-------------------|-------------------------|-----------|--------|---------| | 1 | PDA 235.6 nm | 15.308 | 17628472 | 11.35 | 913453 | | 2 | PDA 235.6 nm | 29.838 | 137720913 | 88.65 | 1810067 | HPLC data for **8c:** Daicel Chiralpak AD-H column (*n*-hexane/*i*-PrOH = 99:1, flow rate 1 mL/min) # Processed Channel: PDA 215.1 nm | | Processed Channel | Retention
Time (min) | Area | % Area | Height | |---|-------------------|-------------------------|----------|--------|---------| | 1 | PDA 215.1 nm | 10.797 | 5861229 | 11.03 | 328235 | | 2 | PDA 215.1 nm | 15.538 | 47268004 | 88.97 | 1454151 | HPLC data for **8d:** Daicel Chiralpak AD column (n-hexane/i-PrOH = 99:1, flow rate 1 mL/min) ## Processed Channel: PDA 244.2 nm | | Processed Channel | Retention
Time (min) | Area | % Area | Height | |---|-------------------|-------------------------|-----------|--------|---------| | 1 | PDA 244.2 nm | 19.039 | 23454238 | 15.02 | 456658 | | 2 | PDA 244.2 nm | 32.179 | 132706055 | 84.98 | 1120009 | HPLC data for **8e:** Daicel Chiralpak AD-H column (*n*-hexane/*i*-PrOH = 99:1, Flow rate 1 mL/min) # Processed Channel: PDA 229.2 nm | | Processed Channel | Retention
Time (min) | Area | % Area | Height | |---|-------------------|-------------------------|----------|--------|--------| | 1 | PDA 229.2 nm | 17.367 | 7914598 | 21.44 | 200453 | | 2 | PDA 229.2 nm | 32.466 | 29003373 | 78.56 | 352211 | HPLC data for **8e:** Daicel Chiralpak AD-H column (*n*-hexane/*i*-PrOH = 99:1, flow rate 1 mL/min) ## Processed Channel: PDA 229.3 nm | | Processed Channel | Retention
Time (min) | Area | % Area | Height | |---|-------------------|-------------------------|----------|--------|--------| | 1 | PDA 229.3 nm | 23.704 | 4458919 | 13.69 | 140138 | | 2 | PDA 229.3 nm | 25.899 | 28108825 | 86.31 | 637815 |