SUPPORTING INFORMATION

Organocatalytic Conjugate Addition of Formaldehyde N, N Dialkylhydrazones to β, γ-Unsaturated α-Keto Esters

Raquel P. Herrera, David Monge, Eloísa Martín-Zamora, Rosario Fernández, and José M. Lassaletta

General Methods. Purification of reaction products were carried out by flash chromatography on silica-gel ($0.040-0.063 \mathrm{~mm}$ or $0.015-0.040 \mathrm{~mm}$). Analytical tlc was performed on 0.25 mm silica gel 60-F plates. ${ }^{1} \mathrm{H}$ NMR spectra were recorded at $300 \mathrm{MHz}, 400 \mathrm{MHz}$ or $500 \mathrm{MHz} ;{ }^{13} \mathrm{C}$ NMR spectra were recorded at $75 \mathrm{MHz}, 100 \mathrm{MHz}$ and 125 MHz in $\mathrm{CD}_{3} \mathrm{COCD}_{3}$ or CDCl_{3} as the solvent. Chemical shifts were reported in the δ scale relative to residual $\mathrm{CH}_{3} \mathrm{COCH}_{3}(2.05 \mathrm{ppm})$ or CDCl_{3} (7.26 ppm) for ${ }^{1} \mathrm{H}$ NMR and to the central line of $\mathrm{CD}_{3} \mathrm{COCD}_{3}(29.84 \mathrm{ppm})$ or $\mathrm{CDCl}_{3}(77 \mathrm{ppm})$ for ${ }^{13} \mathrm{C}$ NMR. The enantiomeric excess (ee) of the products was determined by HPLC on chiral stationary phases (Daicel Chiralpak AD or AD-H). Racemic samples were obtained using as catalyst bis[3,5-bis(trifluoromethyl)phenyl]thiourea.

Materials. All commercially available solvents and reagents were used as received. The $\beta, \gamma-$ unsaturated α-keto esters $\mathbf{5 a}$-f were obtained following literature procedures. ${ }^{1}{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for compounds $\mathbf{5 a}{ }^{1}, \mathbf{5} \mathbf{b}^{2}$ and $\mathbf{5} \mathbf{f}^{2}$ were consistent with values previously reported in the literature.

(E)-Ethyl 6-methyl-2-oxohept-3-enoate (5c)

Following the general procedure, compound $\mathbf{5 c}$ was obtained as an orange
 oil in 42% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.20-7.10(\mathrm{~m}, 1 \mathrm{H}), 6.62$ $(\mathrm{d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.18(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H})$, $1.86-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.36(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , CDCl_{3}): $\delta 183.8,162.5,160.4,122.5,62.3,31.7,21.2,20.9,14.1 . \mathrm{HRMS}$ (EI) m / z calcd. for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{O}_{3}$: 185.1178; found 185.1187.

(E)-Ethyl 2-oxohex-3-enoate (5d)

$6.62(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.32-2.25(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.23(\mathrm{~m}, 9 \mathrm{H}), 0.88(\mathrm{t}$, $J=6.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 183.7,162.7,154.7,125.1,62.3,33.1,31.0,27.4$, 22.4, 14.0, 13.9. HRMS (EI) m / z calcd. for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{O}_{3}$: 199.1334; found 199.1329.

[^0]
(E)-Ethyl 6,6-dimethyl-2-oxohept-3-enoate (5e).

Following the general procedure, compound $\mathbf{5 e}$ was obtained as orange
 oil in 30% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}$): $\delta 7.19-7.08$ (m, $1 \mathrm{H}), 6.53(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.27(\mathrm{~d}, J=$ 8.1 Hz, 2H), $1.34(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}$) : $\delta 185.4$, 164.2, 153.3, 129.0, 62.9, 48.0, 32.6, 29.7, 14.7. HRMS (EI) m / z calcd. for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{O}_{3}$: 199.1334; found 199.1341

General procedure for the preparation of catalysts $\mathbf{1 4 a - g}$ and 15.

To a stirred solution of 3,5 -bis(trifluoromethyl)phenyl isothiocyanate (5 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 mL), commercially available chiral amine (5 mmol) was added in one portion. After stirring the resulting solution at room temperature overnight, the solvent was evaporated under reduced pressure and the white solid purified by crystallisation (n-hexane/acetone).

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for catalysts $\mathbf{1 4 a},{ }^{3} \mathbf{1 4} \mathbf{c}^{4}$ and $\mathbf{1 4 d}{ }^{5}$ are consistent with values previously reported in the literature.

1-[3,5-Bis(trifluoromethyl)phenyl]-3-[(S)-1-hydroxy-3-phenylpropan-2-yl]thiourea (14b)

Following the general procedure, compound $\mathbf{1 4 b}$ was obtained as

a white solid in 90% yield. Mp 97-99 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CD}_{3} \mathrm{COCD}_{3}\right): \delta 9.47(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.35(\mathrm{~s}, 2 \mathrm{H}), 7.69(\mathrm{~s}, 1 \mathrm{H}), 7.63(\mathrm{br}$ $\mathrm{s}, 1 \mathrm{H}), 7.40-7-16(\mathrm{~m}, 5 \mathrm{H}), 4.72(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.35-4.02(\mathrm{~m}, 1 \mathrm{H})$, 3.80-3.55 (m, 2H), $3.11(\mathrm{dd}, J=13.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{dd}, J=13.5,8.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $(75$

[^1](4) Munslow, I. J.; Wade, A. R.; Deeth, R. J.; Scott, P. Chem. Commun. 2004, 2596.
(5) Herrera, R. P.; Sgarzani, V.; Bernardi, L.; Ricci, A. Angew. Chem. Int. Ed. 2005, 44, 6576.
$\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}\right): \delta 181.8,144.9,143.0,132.0\left(\mathrm{q}, J=132.0 \mathrm{~Hz}, \mathrm{CCF}_{3}\right), 130.2,129.2$ 127.2, $124.4\left(\mathrm{q}, J=270.0 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 123.2,117.4,62.1,58.2,37.0$. HRMS (EI) m / z calcd. for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{OS}: 423.0966$; found 423.0954. $[\alpha]^{22}{ }_{\mathrm{D}}-54\left(c 0.3, \mathrm{CHCl}_{3}\right)$.

1-[3,5-Bis(trifluoromethyl)phenyl]-3-[(R)-2,3-dihydro-1H-inden-1-yl]thiourea (14e)

 Following the general procedure, compound $\mathbf{1 4 e}$ was obtained as a white solid in 90% yield. Mp 136-138 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 8.50(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.79(\mathrm{~s}, 2 \mathrm{H}), 7.70(\mathrm{~s}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=6.9$ $\mathrm{Hz}, 1 \mathrm{H}), 7.27-7.19(\mathrm{~m}, 3 \mathrm{H}), 6.41(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.94(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.05-2.72(\mathrm{~m}, 3 \mathrm{H}), 1.97-1.85(\mathrm{~m}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 180.3,143.5,141.5,138.7,133.5\left(\mathrm{q}, J=33.8 \mathrm{~Hz}, C \mathrm{CF}_{3}\right), 128.6$, $127.0,125.2,124.0,123.9,122.7\left(\mathrm{q}, J=271.5 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 119.6,60.7,33.4,30.1 . \operatorname{HRMS}$ (EI) m / z calcd. for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{~S}: 404.0782$; found 404.0777. $[\alpha]^{22}{ }_{\mathrm{D}}+34\left(c 2.1, \mathrm{CH}_{3} \mathrm{COCH}_{3}\right)$.

1-[(1S,2R)-2,3-Dihydro-2-hydroxy-1H-inden-1-yl]-3-(phenanthren-9-yl)thiourea (14f)

Following the general procedure, compound $\mathbf{1 4 f}$ was obtained as a
 white solid in 75% yield. Mp 112-116 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CD}_{3} \mathrm{COCD}_{3}\right): \delta 9.27(\mathrm{~s}, 1 \mathrm{H}), 8.88-8.78(\mathrm{~m}, 2 \mathrm{H}), 8.28-8.23(\mathrm{~m}, 1 \mathrm{H})$, $7.97(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.79-7.60(\mathrm{~m}, 4 \mathrm{H}), 7.41-7.38$ $(\mathrm{m}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.09(\mathrm{~m}, 3 \mathrm{H}), 6.04(\mathrm{dd}, J=8.1,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{dt}, J=$ $5.0,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.12(\mathrm{dd}, J=16.5,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz, $\left.\mathrm{CD}_{3} \mathrm{COCD}_{3}\right): \delta 184.2,142.8,141.5,133.4,132.7,132.5,130.8,130.5,129.7$, $128.5,128.4,128.3,128.2,127.3,127.0,126.0,125.6,124.8,124.2,123.8,73.6,63.7,41.0$. HRMS (EI) m / z calcd. for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{OS}$: 385.1375; found 385.1377. [$\left.\alpha\right]^{22}{ }_{\mathrm{D}}-56$ (c 0.5, $\left.\mathrm{CH}_{3} \mathrm{COCH}_{3}\right)$.

1-[3,5-Bis(trifluoromethyl)phenyl]-3-[(1S,2R)-2-hydroxycyclopentyl]thiourea (14g)

 Following the general procedure, compound $\mathbf{1 4 g}$ was obtained as a white solid in 85% yield. Mp 139-142 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 8.60(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.82(\mathrm{~s}, 2 \mathrm{H}), 7.66(\mathrm{~s}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 4.46(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.39-4.35(\mathrm{~m}, 1 \mathrm{H}), 2.26-1.54(\mathrm{~m}, 7 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $179.9,144.8,132.9\left(\mathrm{q}, J=33.8 \mathrm{~Hz}, C \mathrm{CF}_{3}\right), 123.2,122.8\left(\mathrm{q}, J=271.5 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 118.9,73.0,59.2$, 33.3, 29.0, 20.41. HRMS (EI) m / z calcd. for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{OS}$: 372.0731; found 372.0706. $[\alpha]^{22}{ }_{\mathrm{D}}-10$ (c 2, $\mathrm{CH}_{3} \mathrm{COCH}_{3}$).

1-(3,5-bis(trifluoromethyl)phenyl)-3-((1S,2R)-2,3-dihydro-2-hydroxy-1H-inden-1-yl)urea (15) Following the general procedure, compound $\mathbf{1 5}$ was obtained as a
 white solid in 90% yield. Mp 222-225 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CD}_{3} \mathrm{COCD}_{3}\right): \delta 8.90(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.20(\mathrm{~s}, 2 \mathrm{H}), 7.55(\mathrm{~s}, 1 \mathrm{H}), 7.37-7.29$ $(\mathrm{m}, 1 \mathrm{H}), 7.27-7.15(\mathrm{~m}, 3 \mathrm{H}), 6.40(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.29(\mathrm{dd}, J=8.4,5.1 \mathrm{~Hz}$, $1 \mathrm{H}), 4.66-4.61(\mathrm{~m}, 1 \mathrm{H}), 4.38-4.37(\mathrm{~m}, 1 \mathrm{H}), 3.15(\mathrm{dd}, J=16.5,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{~d}, J=16.2,1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}$): $\delta 155.9,143.7,143.4,141.5,133.5\left(\mathrm{q}, J=32.3 \mathrm{~Hz}, \mathrm{CCF}_{3}\right)$, $128.4,127.4,125.8,125.2,124.5\left(\mathrm{q}, J=270.0 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 118.4,114.8,73.6,58.8,40.7$. HRMS (EI) m / z calcd. for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{2}$: 404.0959; found 404.0963. $[\alpha]^{22}{ }_{\mathrm{D}}+36\left(c 2.0, \mathrm{CH}_{3} \mathrm{COCH}_{3}\right)$.

General procedure for the organocatalytic enantioselective formylation of $\boldsymbol{\beta}, \boldsymbol{\gamma}$-unsaturated α-keto esters with hydrazone 4. In a test tube, to a solution of the β, γ-unsaturated α-keto ester 5 $(0.25 \mathrm{mmol})$ and catalyst $\mathbf{1 4 d}(10.5 \mathrm{mg}, 0.025 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.5 \mathrm{~mL})$ cooled to -45 or $-60^{\circ} \mathrm{C}$,
hydrazone $4(0.3 \mathrm{mmol})$ was added in one portion. The test tube was placed in a freezer at -45 or $-60^{\circ} \mathrm{C}$ for 72 h , then the product 8 a was obtained by flash chromathography on silica gel treated with $\mathrm{Et}_{3} \mathrm{~N}$ (n-hexane-AcOEt mixtures).

(R, E)-Ethyl 4-methyl-2-oxo-5-(pyrrolidin-1-ylimino)pentanoate (8a)

Following the general procedure, compound 8a was obtained as an orange oil
 in 60% yield. The ee of the product was determined by HPLC using a Daicel Chiralpak AD column (n-hexane $/ i-\mathrm{PrOH}=99: 1$, flow rate $1 \mathrm{~mL} / \mathrm{min}, \tau_{\text {major }}=$ $\left.25.0 \mathrm{~min}, \tau_{\text {minor }}=14.0 \mathrm{~min}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.44(\mathrm{~d}, J=3.5$ $\mathrm{Hz}, 1 \mathrm{H}), 4.25(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.10(\mathrm{dd}, J=15.5,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.02-2.85(\mathrm{~m}, 5 \mathrm{H}), 2.56(\mathrm{dd}, J=$ $15.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.82-1.77(\mathrm{~m}, 4 \mathrm{H}), 1.30(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.10(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 193.6,161.5,138.6,62.1,51.4,51.2,42.7,34.3,23.0,22.9,18.9,14.0$. HRMS (EI) m / z calcd. for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{3}: 239.1396$; found 239.1393. $[\alpha]^{25}{ }_{\mathrm{D}}-5.4$ (c 0.7, $\mathrm{CH}_{3} \mathrm{COCH}_{3}$), 80% ee.

(S,E)-Ethyl 5-methyl-2-oxo-4-[(pyrrolidin-1-ylimino)methyl]hexanoate (8b)

Following the general procedure, compound $\mathbf{8 b}$ was obtained as an orange oil
 in 80% yield. The ee of the product was determined by HPLC using a Daicel Chiralpak AD-H column (n-hexane $/ i-\mathrm{PrOH}=99: 1$, flow rate $1 \mathrm{~mL} / \mathrm{min}, \tau_{\text {major }}$ $\left.=29.8 \mathrm{~min}, \tau_{\text {minor }}=15.3 \mathrm{~min}\right) .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}\right): \delta 6.48(\mathrm{~d}, J$ $=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.22(\mathrm{dd}, J=15.3,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.06-2.97(\mathrm{~m}, 4 \mathrm{H}), 2.85-$ $2.78(\mathrm{~m}, 1 \mathrm{H}), 2.48(\mathrm{dd}, J=15.3,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.94-1.76(\mathrm{~m}, 5 \mathrm{H}), 1.31(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~d}$, $J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}\right): \delta 194.4,162.8,137.0$,
$62.4,52.1,46.5,38.2,31.7,23.8,20.1,20.0,14.5$. HRMS (EI) m / z calcd. for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3}$: 267.1709; found 267.1695. $[\alpha]^{25}{ }_{\mathrm{D}}-13.8\left(c 1.9, \mathrm{CH}_{3} \mathrm{COCH}_{3}\right), 78 \%$ ee.

(R, E)-Ethyl 6-methyl-2-oxo-4-[(pyrrolidin-1-ylimino)methyl]heptanoate (8c)

Following the general procedure, compound $\mathbf{8 c}$ was obtained as an orange oil in 75% yield. The ee of the product was determined by HPLC using a Daicel Chiralpak AD-H column (n-hexane $/ i-\mathrm{PrOH}=99: 1$, flow rate 1 $\left.\mathrm{mL} / \mathrm{min}, \tau_{\text {major }}=15.5 \mathrm{~min}, \tau_{\text {minor }}=10.8 \mathrm{~min}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CD}_{3} \mathrm{COCD}_{3}\right): \delta 6.42(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{q}, J=14.0,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.02(\mathrm{dd}, J=15.5,9.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.98-2.88(\mathrm{~m}, 5 \mathrm{H}), 2.61(\mathrm{dd}, J=15.3,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.81-1.77(\mathrm{~m}, 4 \mathrm{H}), 1.74-1.66(\mathrm{~m}, 1 \mathrm{H})$, $1.43-1.37(\mathrm{~m}, 1 \mathrm{H}), 1.35-1.22(\mathrm{~m}, 4 \mathrm{H}), 1.11(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.06(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}$): $\delta 194.1,162.5,138.2,62.4,51.9,43.9,42.2,38.3,26.3,23.7,23.2,23.0$, 22.7, 14.3. HRMS (EI) m / z calcd. for $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{3}$: 281.1865; found 281.1854. [$\left.\alpha\right]^{20}{ }_{\mathrm{D}}-4.5$ (c 1.0, $\mathrm{CH}_{3} \mathrm{COCH}_{3}$), 78% ee.

(R, E)-Ethyl 2-oxo-4-[(pyrrolidin-1-ylimino)methyl]nonanoate (8d)

Following the general procedure, compound 8d was obtained as an
 orange oil in 61% yield. The ee of the product was determined by HPLC using a Daicel Chiralpak AD column (n-hexane $/ i-\mathrm{PrOH}=99: 1$, flow rate $\left.1 \mathrm{~mL} / \mathrm{min}, \tau_{\text {major }}=32.2 \mathrm{~min}, \tau_{\text {minor }}=19.0 \mathrm{~min}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CD}_{3} \mathrm{COCD}_{3}\right): \delta 6.47(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.10(\mathrm{dd}, J=15.6,9.3 \mathrm{~Hz}, 1 \mathrm{H})$, 3.01-2.97 (m, 4H), 2.88-2.85 (m, 1H), $2.62(\mathrm{dd}, J=15.3,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.85-1.78(\mathrm{~m}, 4 \mathrm{H}), 1.60-$ $1.22(\mathrm{~m}, 11 \mathrm{H}), 0.89(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}\right): \delta 194.0,162.0,138.0$,
$62.3,51.8,41.5,40.2,34.3,32.6,31.4,28.7 .28 .2,27.8,27.3,23.6,23.0,14.3$. HRMS (EI) m / z calcd. for $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{3}$: 295.2022; found 295.2034. $[\alpha]^{20}{ }_{\mathrm{D}}-0.7$ (c 0.9, $\left.\mathrm{CH}_{3} \mathrm{COCH}_{3}\right), 70 \%$ ee.

(R, E)-Ethyl 6,6-dimethyl-2-oxo-4-[(pyrrolidin-1-ylimino)methyl]heptanoate (8e)

Following the general procedure, compound $\mathbf{8 e}$ was obtained as an orange oil in 64% yield. The ee of the product was determined by HPLC using a Daicel Chiralpak AD-H column (n-hexane $/ i$ - $\mathrm{PrOH}=99: 1,1 \mathrm{~mL} / \mathrm{min}, \tau_{\text {major }}$ $\left.=25.4 \mathrm{~min}, \tau_{\text {minor }}=14.3 \mathrm{~min}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}\right): \delta 6.46$ (d, $J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.09-2.96(\mathrm{~m}, 6 \mathrm{H}), 2.68(\mathrm{dd}, J=14.7,4.5 \mathrm{~Hz}, 1 \mathrm{H})$, $1.83-1.78(\mathrm{~m}, 4 \mathrm{H}), 1.54(\mathrm{dd}, J=14.1,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.36-1.28(\mathrm{~m}, 1 \mathrm{H}), 1.31(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 3 \mathrm{H})$, $0.95(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}$) : $\delta 193.7,162.4,139.9,62.3,51.8,48.0,44.6,36.9$, 31.7, 29.3, 23.6, 14.3. HRMN calcd. for $\mathrm{C}_{16} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{3}$: 297.2178, found: 297.2175. $[\alpha]^{20}{ }_{\mathrm{D}}-2.1(c$ $0.5, \mathrm{CH}_{3} \mathrm{COCH}_{3}$), 58% ee.

(S,E)-Ethyl 4-cyclohexyl-2-oxo-5-(pyrrolidin-1-ylimino)pentanoate (8f)

Following the general procedure, compound $\mathbf{8 f}$ was obtained as an orange oil in 82% yield. The ee of the product was determined by HPLC using a Daicel Chiralpak AD-H column (n-hexane $/ i-\mathrm{PrOH}=99: 1$, flow rate 1 $\left.\mathrm{mL} / \mathrm{min}, \tau_{\text {major }}=25.9 \mathrm{~min}, \tau_{\text {minor }}=23.7 \mathrm{~min}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CD}_{3} \mathrm{COCD}_{3}\right): \delta 6.49(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.22(\mathrm{dd}, J=15.3,10.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.01-2.97(\mathrm{~m}, 4 \mathrm{H}), 2.84-2.76(\mathrm{~m}, 1 \mathrm{H}), 2.51(\mathrm{dd}, J=15.3,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.85-1.50(\mathrm{~m}, 9 \mathrm{H}), 1.31(\mathrm{t}, J$ $=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.26-1.03(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}$): $\delta 194.2,162.5,137.1,62.2$, 51.9, 41.9, 38.2, 31.0, 30.8, 27.3, 27.3, 27.2, 26.1, 23.6, 14.3. HRMS (EI) m / z calcd. for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{3}$: 307.2021; found 307.2014. $[\alpha]^{20}{ }_{\mathrm{D}}-3.6$ (c 1.3, $\mathrm{CH}_{3} \mathrm{COCH}_{3}$), 72% ee.

General procedure for the synthesis of nitrile derivatives $16 a$ and 16 b .

In a test tube, to a solution of product $\mathbf{8 a}, \mathbf{b}(0.25 \mathrm{mmol})$ in $\mathrm{MeOH}(2 \mathrm{~mL})$, cooled to $-25^{\circ} \mathrm{C}$, a suspension of MMPP $(0.18 \mathrm{mmol})$ in MeOH $(1 \mathrm{~mL})$ was added dropwise. The mixture was stirred for 18 h and then poured into a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and water $(10 \mathrm{~mL})$. The organic layer was separated, washed with brine $(10 \mathrm{~mL})$ and water $(10 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed and the residue purified by column chromatography to afford pure compounds $\mathbf{1 6 a}$ and 16b.

(R)-Ethyl 4-cyano-2-oxopentanoate (16a)

Following the general procedure, compound 16a was obtained as an orange oil
 in 74% yield. The ee of the product was determined by chiral GC using a γ-TA column $\left(150{ }^{\circ} \mathrm{C}, t_{\mathrm{r}}(S)=15.4 \mathrm{~min}, t_{\mathrm{r}}(R)=18.5 \mathrm{~min}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CD}_{3} \mathrm{COCD}_{3}\right): \delta 4.29(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.42-3.11(\mathrm{~m}, 3 \mathrm{H}), 1.36(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.31(\mathrm{t}, J=$ $7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}$): $\delta 190.1,159.4,121.5,63.1,42.9,19.9,17.6,13.9$. HRMS (EI) m / z calcd. for $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{NO}_{3}: 169.0739$; found 169.0735. $[\alpha]^{20}{ }_{\mathrm{D}}-8.5\left(c 0.5, \mathrm{CHCl}_{3}\right), 76 \%$ ee.

(S)-Ethyl 4-cyano-5-methyl-2-oxohexanoate (16b)

Following the general procedure, compound $1 \mathbf{6 b}$ was obtained as orange oil in 88% yield. The ee of the product was determined by chiral GC using a γ-TA column $\left(130^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{r}}(R)=55.2 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}(S)=57.4 \mathrm{~min}\right) .{ }^{1} \mathrm{H}$ NMR
($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}$): $\delta 4.37(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.35-3.25(\mathrm{~m}, 1 \mathrm{H}), 3.12-3.01(\mathrm{~m}, 2 \mathrm{H}), 1.94-$
$1.89(\mathrm{~m}, 1 \mathrm{H}), 1.40(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.12(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.07(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta 190.2,160.1,119.7,63.2,39.7,32.7,29.8,20.8,18.4,14.0$. HRMS (EI) m / z calcd. for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{NO}_{3}$: 198.1130; found 198.1126. $[\alpha]^{20}{ }_{\mathrm{D}}-11.3$ (c 0.8, CHCl_{3}), 68% ee

(R)-Dimethyl 2-methylsuccinate (17) ${ }^{6}$

Dry ozone was bubbled through a solution of hydrazone 8a (0.4 mmol)
 in $\mathrm{MeOH}(3 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ until permanent blue colour. The solution was allowed to warm until room temperature. The solvent was removed under reduced pressure and the crude was treated with a mixture of aqueous solution of HCOOH $(90 \%, 0.6 \mathrm{~mL}, 15 \mathrm{mmol})$ and $\mathrm{H}_{2} \mathrm{O}_{2}(30 \%, 0.6 \mathrm{~mL}, 6.9 \mathrm{mmol})$. The mixture was stirred for 14 h at room temperature and then the solvent was removed under reduced pressure. The remaining crude in $\mathrm{MeOH}(2 \mathrm{~mL})$ was treated with $\mathrm{SOCl}_{2}(0.09 \mathrm{~mL}, 1.2 \mathrm{mmol})$ and stirred at $70^{\circ} \mathrm{C}$ for 20 h . The solvent was removed under reduced pressure, and the residue was purified by column chromatography to give pure 17 in 56% yield. The ee of the product was determined by chiral GC using a γ-TA column $\left(100{ }^{\circ} \mathrm{C}\right.$, $\left.\tau_{\text {major }}(R)=13.4 \mathrm{~min}, \tau_{\text {minor }}(S)=13.1 \mathrm{~min}\right) .{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.01-2.88(\mathrm{~m}, 1 \mathrm{H}), 2.76(\mathrm{dd}, J=16.5,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{dd}, J$ $=16.4,10.0 \mathrm{~Hz}, 1 \mathrm{H}) 1.24(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 175.7,172.3,51.9$, 51.7, 37.4, 35.7, 17.0. HRMS (EI) m / z calcd. for $\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{O}_{3}: 129.0552$; found 129.0548. $[\alpha]^{20}{ }_{\mathrm{D}}+3.1$ (c 0.7, CHCl_{3}), 73% ee.

[^2]

8b

HPLC data for 8a: Daicel Chiralpak AD column (n-hexane $/ i-\operatorname{PrOH}=99: 1$, flow rate 1 $\mathrm{mL} / \mathrm{min}$)

8a

Processed Channel: PDA 243.8 nm

	Processed Channel	Retention Time (min)	Area	\% Area	Height
1	PDA 243.8 nm	13.987	11794168	9.76	282285
2	PDA 243.8 nm	25.003	109031499	90.24	1530035

HPLC data for 8b: Daicel Chiralpak AD-H column (n-hexane $/ i-\mathrm{PrOH}=99$: 1 , flow rate 1 $\mathrm{mL} / \mathrm{min}$)

Processed Channel: PDA 235.6 nm

	Processed Channel	Retention Time (min)	Area	\% Area	Height
1	PDA 235.6 nm	15.308	17628472	11.35	913453
2	PDA 235.6 nm	29.838	137720913	88.65	1810067

HPLC data for $\mathbf{8 c}$: Daicel Chiralpak AD-H column (n-hexane $/ i-\mathrm{PrOH}=99$: 1 , flow rate 1 $\mathrm{mL} / \mathrm{min}$)

8c

Processed Channel: PDA 215.1 nm

	Processed Channel	Retention Time (min)	Area	\% Area	Height
1	PDA 215.1 nm	10.797	5861229	11.03	328235
2	PDA 215.1 nm	15.538	47268004	88.97	1454151

HPLC data for 8d: Daicel Chiralpak AD column (n-hexane $/ i-\mathrm{PrOH}=99$: 1 , flow rate 1 $\mathrm{mL} / \mathrm{min}$)

8d

Processed Channel: PDA 244.2 nm

	Processed Channel	Retention Time (min)	Area	\% Area	Height
1	PDA 244.2 nm	19.039	23454238	15.02	456658
2	PDA 244.2 nm	32.179	132706055	84.98	1120009

HPLC data for 8e: Daicel Chiralpak AD-H column (n-hexane $/ i-\mathrm{PrOH}=99: 1$, Flow rate 1 $\mathrm{mL} / \mathrm{min}$)

Processed Channel: PDA 229.2 nm

	Processed Channel	Retention Time (min)	Area	\% Area	Height
1	PDA 229.2 nm	17.367	7914598	21.44	200453
2	PDA 229.2 nm	32.466	29003373	78.56	352211

HPLC data for 8e: Daicel Chiralpak AD-H column (n-hexane $/ i-\operatorname{PrOH}=99: 1$, flow rate 1 $\mathrm{mL} / \mathrm{min}$)

$8 f$

Processed Channel: PDA 229.3 nm

	Processed Channel	Retention Time (min)	Area	\% Area	Height
1	PDA 229.3 nm	23.704	4458919	13.69	140138
2	PDA 229.3 nm	25.899	28108825	86.31	637815

[^0]: (1) Jensen, K. B.; Thourhaunge, J., Hazell, R. G., Jørgensen, K. A. Angew. Chem. Int. Ed. 2001, 40, 160.
 (2) Sugimura, H.; Miura, M.; Yamada, N. Tetrahedron: Asymmetry 1997, 8, 4089.

[^1]: (3) Sohtome, Y.; Tanatani, A.; Hashimoto, Y.; Nagasawa, K. Tetrahedron Lett. 2004, 45, 5589.

[^2]: (6) Guibé-Jampel, E.; Rousseau, G.; Salaün, J. J. Chem. Soc., Chem. Commun. 1987, 1080.

