Supporting Information for:

"Switched-on" Flexible Chalcogenopyrylium Photosensitizers upon Binding to DNA. Purging of Viral Pathogens through Singlet-oxygen Induced DNA Cleavage

Tymish Y. Ohulchanskyy, Michael K. Gannon, II, Mao Ye, Andrey Skripchenko,

Stephen J. Wagner, Paras N. Prasad,* and Michael R. Detty*

<u>Page</u>	Item
S2	Figure S1, Comparison of Rhodamine 6G and 6-S emission
S 3	Figure S2, Bleaching of ADPA via irradiation of TPPS ₄
S4	Figure S3, Bleaching of ADPA via irradiation of 6-Se/ctDNA complex
S5	Figure S4, Comparison of ADPA bleaching for 6-Se/ctDNA complex and
	TPPS ₄
S6	Figure S5, Spectral shifts of 6-S and 6-Se upon binding to pUC19 DNA.
S7	Figure S6, Sensitivity of pUC19 DNA (8×10^{-5} M bp) to various
	combinations of 8×10^{-6} M 6-S (white bars) or 6-Se (black bars) 500-800-
	nm light (25 mW cm ^{-2} for 60 min), air, and imidazole.

Figure S1. Emission of Rhodamine 6G (**R6G**) in MeOH (magenta) and **6-S**-DNA complex (red) in 0.05M Tris-HCl buffer at pH 7.5. The optical density of the **R6G** solution was matched to the **6-S** (8 x 10^{-6} M)/ctDNA (8 x 10^{-5} M in *bp*) solution at 522 nm for excitation.

Figure S2. Bleaching of ADPA via irradiation of **TPPS**₄ with the 514 nm laser line from an Argon ion laser in 0.05M Tris-HCl buffer at pH 8.0. The optical density at 514 nm was matched in all samples. Each line represents a 1-minute interval between spectral acquisition.

Figure S3. Bleaching of ADPA via irradiation of **6-Se**/ctDNA complex with the 514 nm laser line from an Argon ion laser in 0.05M Tris-HCl buffer at pH 8.0. The optical density at 514 nm was matched in all samples. Each line represents a 1-minute interval between spectral acquisition.

Figure S4. Comparison of ADPA bleaching as a measure of ${}^{1}O_{2}$ generation efficiency: **6-Se** (green triangles), **TPPS**₄ (blue diamonds).

Figure S5. Spectral shifts associated with chalcogenopyrylium dyes **A**) **6-S** and **B**) **6-Se** upon binding to pUC19 DNA. Red lines are dye only (8×10^{-6} M) in 0.05M Tris-HCl, pH 7.5. Blue lines are dye (8×10^{-6} M) plus DNA (8×10^{-5} M *bp*) in 0.05M Tris-HCl, pH 7.5.

Figure S6. Sensitivity of pUC19 DNA (8×10^{-5} M bp) to various combinations of 8×10^{-6} M **6**-S (white bars) or **6-Se** (black bars) 500-800-nm light (25 mW cm⁻² for 60 min), air, and imidazole. Lane 1: DNA (no dye, no light, 60 min); Lane 2, DNA + 60 min light; Lane 3, DNA + **dye** (no light); Lane 4, DNA + **dye** + light; Lane 5, DNA + **dye** + light (degassed and under Ar); Lane 6, DNA + **dye** + light + 0.008 M imidazole; Lane 7, DNA + **dye** + light + 0.08 M imidazole. The fraction of supercoiled DNA and "nicked" (strand-broken) DNA was determined via densities using a phosphoimager following gel electrophoresis. Experiments were run 3-5 times and bars are 1 standard deviation from the mean.