Supporting Information

Construction of Bridged and Fused Ring Systems via Intramolecular Michael Reactions of Vinylnitroso Compounds

Ilia Korboukh, Praveen Kumar and Steven M. Weinreb*

Department of Chemistry, The Pennsylvania State University University Park, Pennsylvania 16802

E-mail: smw@chem.psu.edu

Table of Contents

Title page	S 1
Experimental details of compounds 4-56	S2-S36
Crystal structure data of compound 9	S37-S50
ORTEP Diagram of X-ray Diffraction Structure of 9	S50
NMR spectra of compounds 9, 10, 27, 36, 45, 54, 12, 13, 14	S51-S66

General Methods. All non-aqueous reactions were carried out under an inert atmosphere of argon in flame-dried glassware. Air and moisture sensitive liquid reagents were added via a dry syringe or canula. All solvents and reagents were used as obtained from commercial sources without further purification. Flash column chromatography was performed using EM Science silica gel 60 (230-400 mesh). Analytical and preparative thin layer chromatography (TLC) were performed on EM Science silica gel 60 PF₂₅₄ plates. ¹H and ¹³C NMR spectral data were recorded on Bruker DPX-300, CDPX-300, AMX-360, or DRX 400 MHz spectrometers. Infrared spectral data were obtained using a Perkin-Elmer 1600 FTIR spectrometer.

2-Ally1-5-chlorohex-5-enoic Acid Ethyl Ester (15). To a solution of $C_{0_2}E_1$ 2-ally1-2-(3-chlorobut-3-eny1)-malonic acid diethyl ester (710 mg, 2.46 mmol) in DMSO (10 mL) were added LiCl (228 mg, 5.42 mmol) and water (0.4 mL). The mixture was heated in an oil bath at 190 °C for 12 h, and cooled to rt. Aqueous NH₄OAc (10 mL) was added and the mixture was then extracted with ether (30 mL x 3). The organic layers were combined and dried over Na₂SO₄. The solvent was removed under reduced pressure, and the residue was purified by flash column chromatography on silica gel (5-10% ether/pentane gradient) to afford the title compound **15** as a clear oil (250 mg, 64%, 73% brsm). ¹H NMR (300 MHz, CDCl₃) δ 5.78-5.64 (m, 1H), 5.14-4.99 (m, 4H), 4.12 (dd, *J* = 7.1, 14.2 Hz, 2H), 3.45 (dd, *J* = 7.0, 14.0 Hz, 1H), 2.45-2.20 (m, 5H), 1.84-1.57 (m, 2H), 1.25-1.16 (m, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 175.3, 142.2, 135.4, 117.4, 113.1, 60.7, 44.4, 37.2, 36.8, 29.4, 14.7; HRMS-AP [M + H]⁺ calcd for C₁₁H₁₈O₂Cl, 217.1000; found, 217.0995. **2-Allyl-5-chlorohex-5-en-1-ol (16).** To a suspension of LiAlH₄ (79 mg, 2.07 mmol) in THF (5 mL) at 0 °C was added dropwise ester **15** (250 mg, 1.15 mmol) in THF (5 mL). The mixture was stirred for 12 h at rt, and then diluted with EtOAc (20 mL). The mixture was poured into 1 M HCl solution (10 mL), and saturated aqueous NH₄Cl (10 mL) and EtOAc (10 mL) were added. The organic layer was dried over MgSO₄, and the solvent was removed under reduced pressure. The residue was purified by flash column chromatography (10-20% ether/pentane gradient) to afford the title compound **16** as a clear oil (166 mg, 83%). ¹H NMR (400 MHz, CDCl₃) δ 5.82-5.73 (m, 1H), 5.18-5.06 (m, 4H), 4.18-3.96 (m, 2H), 3.50 (dd, *J* = 7.0, 14.0 Hz, 1H), 2.41 (t, *J* = 7.5 Hz, 2H), 2.17-2.07 (m, 2H), 1.88-1.76 (m, 1H), 1.67-1.59 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 135.9, 117.4, 112.7, 66.6, 36.8, 35.9, 28.8, 21.3, 14.4; HRMS-ES [M + Na]⁺ calcd for C₉H₁₅ClO, 174.0811; found, 174.0815.

Methanesulfonic Acid 2-Allyl-5-chlorohex-5-enyl Ester (17). To a solution of alcohol 16 (166 g, 0.95 mmol) in dichloromethane (3.0 mL) at 0 $^{\circ}$ C was added portionwise triethylamine (0.13 mL, 0.87 mmol) and mesyl chloride (0.042 mL, 0.57 mmol). The mixture was stirred at 0 $^{\circ}$ C for 30 min, and then at rt for 30 min. The organic phase was diluted with dichloromethane (18 mL) and washed consecutively with brine (10 mL), 1 M aqueous KHSO₄ (10 mL), brine (10 mL), 5% aqueous NaHCO₃ (10 mL), brine (10 mL), and dried over Na₂SO₄ overnight. The solvent was removed under reduced pressure and the residue was purified by flash column chromatography (10-20% EtOAc/hexanes gradient) to afford the title compound **17** as a

clear oil (159 mg, 66%). ¹H NMR (300 MHz, CDCl₃) δ 5.81-5.73 (m, 1H), 5.20-5.10 (m, 4H), 4.21-4.15 (m, 2H), 3.03 (s, 3H), 2.43 (t, *J* = 7.5 Hz, 2H), 2.19 (t, *J* = 6.0 Hz, 2H), 1.94-1.86 (m, 1H), 1.73-1.63 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 142.4, 135.2, 118.2, 113.1, 71.6, 37.6, 36.9, 35.2, 30.1, 28.2; HRMS-ES [M+Na]⁺ calcd for C₁₀H₁₇ClO₃SNa, 275.0485; found, 275.0480.

2-Chloro-5-iodomethylocta-1,7-diene (18). To a solution of mesylate 17 (155 mg, 0.62 mmol) in acetone (5 mL) was added sodium iodide (369 mg, 2.96 mmol) and the mixture was stirred at 60 °C for 12 h. The solvent was then removed under reduced pressure and the residue was purified by flash column chromatography (pentane) to afford the title compound **18** as a clear oil (140 mg, 81%). ¹H NMR (300 MHz, CDCl₃) δ 5.79-5.65 (m, 1H), 5.19-4.91 (m, 4H), 3.27 (d, *J* = 3.7 Hz, 2H), 2.41-2.34 (m, 2H), 2.19-2.06 (m, 2H), 1.68-1.61 (m, 1H), 1.35-1.22 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 142.6, 135.5, 117.9, 112.9, 38.7, 37.6, 36.6, 32.0, 15.0; HRMS-EI [M]⁺ calcd for C₉H₁₄ClI, 283.9829; found, 283.9841.

2-(2-Allyl-5-chlorohex-5-enyl)-malonic Acid Diethyl Ester (4). To a solution of iodide 18 (44 mg, 0.15 mmol) and diethyl malonate (26 mg, 0.16 mmol) in acetonitrile (5 mL) was added Verkade's base (37 mg, 0.17 mmol), and the reaction mixture was stirred at rt for 24 h. The solvent was removed under reduced pressure, and the residue was purified by flash column chromatography (5-20% ether/pentane gradient) to afford the title compound **4** as a clear oil (38 mg, 80%). ¹H NMR (400 MHz, CDCl₃) δ 5.81-5.68 (m, 1H), 5.14-5.04 (m, 4H), 4.20 (q, *J* =6.8 Hz, 4H), 3.46 (t, J = 7.5 Hz, 1H), 2.37 (t, J = 6.0 Hz, 2H), 2.10-2.08 (m 3H), 1.89 (t, J = 6.0 Hz, 2H), 1.63-1.39 (m, 3H), 1.27 (t, J = 7.5 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 169.9, 143.0, 135.9, 117.4, 112.5, 61.8, 50.2, 37.7, 36.5, 34.7, 32.7, 31.0, 14.5; HRMS-ES [M + H]⁺ calcd for C₁₆H₂₆ClO₄, 317.1520; found, 317.1512.

2-(4-Chlorocyclohex-3-envlmethyl)-malonic Acid Diethyl Ester 0 _OEt (5). A flame dried 50 mL two necked flask equipped with a condenser) OEt and a magnetic stirring bar was charged with ester 4 (48 mg, 0.15 mmol) and benzene (20 mL). The mixture was deaerated with argon for 1 h. Grubbs 2nd generation catalyst (12 mg, 0.02 mmol) in benzene (2 mL) was added *via* syringe. The combined mixture was deaerated with argon for another 20 min, and then heated at 65 °C for 12 h. The solvent was removed under reduced pressure, and the residue was purified by flash column chromatography (2-5% ether/pentane gradient) to afford the title compound **5** as a yellow oil (42 mg, 95%). ¹H NMR (300 MHz, CDCl₃) δ 5.83-5.66 (m, 1H), 4.20 (dd, J = 7.0, 14.0 Hz, 4H), 3.42 (t, J = 7.5 Hz, 1H), 2.56-2.26 (m, 4H), 1.97-1.84 (m, 4H), 1.51-1.50 (m, 2H), 1.49-1.39 (m, 1H), (t, J = 6.0 Hz, 6H); ¹³C NMR (75) MHz, CDCl₃) δ 169.8, 132.1, 123.6, 61.8, 50.1, 34.7, 32.7, 32.3, 30.8, 29.8, 14.4; HRMS-ES $[M + H]^+$ calcd for C₁₄H₂₂ClO₄, 289.1207; found, 289.1202.

2-(3-Chloro-4-oxocyclohexylmethyl)-malonic Acid Diethyl Ester (6). To a solution of ester 5 (30 mg, 0.10 mmol), acetone (0.40 mL), and glacial acetic acid (0.17 mL) at 0 °C was added dropwise aqueous sodium hypochlorite (68 μ L of 10% solution, 0.10 mmol) *via* syringe. The reaction mixture was stirred at 0 °C for 30 min and quenched by addition of aqueous

saturated Na₂CO₃ solution. The mixture was then extracted with dichloromethane (20 mL x 2). The organic layers were combined, washed with brine (10 mL) and dried over Na₂SO₄. The solvent was removed under reduced pressure and the residue was purified by flash column chromatography (10% ether/pentane) to afford the title compound **6** as a yellow oil containing a 1:1 mixture of diastereomers (16 mg, 50%). ¹H NMR (400 MHz, CDCl₃) δ 4.78 (0.2 H), 4.33-4.06 (m, 4.8H), 3.47-3.7 (m, 1H), 3.03-2.94 (m, 0.6H), 2.99-2.96 (m, 1H), 2.35-2.22 (m, 2H), 2.13-2.07 (m, 2H), 1.97-1.86 (m, 3H), 1.81-1.79 (m, 1H), 1.32-1.27 (m, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 204.6, 169.7, 169.6, 169.5, 168.0, 62.1, 62.0, 59.8, 50.2, 50.0, 41.0, 37.2, 35.8, 34.2, 33.9, 32.6, 30.1, 29.1, 28.9, 22.4, 14.5; HRMS-ES [M + Na]⁺ calcd for C₁₄H₂₁ClO₅Na, 327.0975; found, 327.0984.

2-(3-Chloro-4-tert-butyldimethylsilyloxyimino-

cyclohexylmethyl)-malonic Acid Diethyl Ester (7). To a solution of α chloroketone **6** (11 mg, 0.037 mmol) in dichloromethane (0.5 mL) were added *O*-(*t*-butyldimethylsilyl)-hydroxylamine (11 mg, 0.075 mmol), 4Å molecular sieves (crushed), and a catalytic amount of PPTS. The mixture was stirred at rt for 12 h, and then filtered through a pad of Celite. The solvent was removed under reduced pressure and the residue was purified by flash column chromatography (10-20% ether/pentane gradient) to afford the title compound **7** as a clear oil containing a complex mixture of stereoisomers (12 mg, 75%). ¹H NMR (300 MHz, CDCl₃) δ 5.68 (brs, 0.4H), 5.14 (brs, 0.6H), 4.24 (q, *J* = 7.0 Hz, 4H), 3.45 (t, *J* = 7.7 Hz, 1H), 3.36-3.23 (m, 0.6H), 2.60-2.58 (m, 0.4H), 2.41-1.85 (m, 6H), 1.66-1.53 (m, 1H), 1.31 (t, *J* = 7.0, 6H), 0.91 (s,

O_≫OEt

9H), 0.18 (s, 6H); HRMS-ES [M + H]⁺ calcd for C₂₀H₃₇NClO₅Si, 434.2130; found, 434.2132.

4-Hydroxyiminobicyclo[3.2.1]octane-6,6-dicarboxylic Acid Diethyl EtO₂C EtO₂C Ester (9). To a solution of oxime 7 (8 mg, 0.018 mmol) in THF (0.5 mL) at -78 °C was added dropwise NaHMDS (2 M in THF, 12 µL, 0.025 mmol). After 1 h HO at -78 °C, TBAF (1 M in THF, 24 µL, 0.024 mmol) was added and the reaction mixture was warmed to rt over 2 h. Saturated NH₄Cl was added and the mixture was extracted with EtOAc (10 mL x 2). The combined organic layers were dried over MgSO₄, and the solvent was removed under reduced pressure. The residue was purified by flash column chromatography (20% EtOAc/hexanes) to afford the title compound 9 as a white crystalline solid (5 mg, 99%) which was recrystallized from chloroform to afford colorless crystals suitable for X-ray analysis. ¹H NMR (400 MHz, CDCl₃) δ 7.58 (brs, 1H), 4.23-4.14 (m, 4H), 3.49 (d, J = 4.4 Hz, 1H), 3.03 (q, J = 8.0 Hz, 1H), 2.6 (d, J =14.5 Hz, 1H), 2.44 (brs, 1H), 2.27 (q, J = 7.4 Hz, 1H), 2.15-2.03 (m, 2H), 1.75-1.85 (m, 1H), 1.66-1.61 (m, 2H), 1.27-1.20 (m, 6H); ¹³C NMR (300 MHz, CDCl₃) δ 171.9, 170.2, 160.0, 63.4, 62.0, 61.9, 49.3, 38.3, 36.3, 34.3, 30.4, 18.3, 14.4, 14.3; HRMS-ES [M + H]⁺ calcd for C₁₄H₂₂NO₅, 284.1498; found, 284.1504.

4-Oxobicyclo[3.2.1]octane-6,6-dicarboxylic Acid Diethyl Ester

(10). To a solution of oxime 9 (23 mg, 0.084 mmol) in dichloromethane (0.5 $\stackrel{EtO_2C}{\longrightarrow}$ mL) at rt was added DMP (20 mg, 0.088 mmol). After stirring the mixture for 10 min at rt, dichloromethane (10 mL) and aqueous NaHSO₄ (10 mL) were added. The mixture was shaken for 5 min and extracted with dichloromethane (10 mL x 2). The

EtO₂C

combined organic layers were dried over MgSO₄ and the solvent was removed under reduced pressure. The residue was purified by flash column chromatography (10% EtOAc/hexanes) to afford the title compound **10** as a clear oil (15 mg, 65%). ¹H NMR (400 MHz, CDCl₃) δ 4.25-4.41 (m, 4H), 3.31 (d, *J* = 4.6 Hz, 1H), 2.75-2.67 (m, 1H), 2.65-2.55 (m, 1H), 2.49-2.44 (m, 1H), 2.43-2.34 (m, 2H), 2.28-2.23 (m, 1H), 1.92-1.89 (m, 1H), 1.80-1.76 (m, 1H), 1.29-1.22 (m, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 209.5, 171.3, 170.5, 77.6, 62.8, 62.49, 62.45, 58.8, 38.3, 36.6, 35.9, 34.3, 32.0, 30.1, 14.39, 14.31.

2-Allyl-4-chloro-4-enoic Acid Ethyl Ester (19). To a stirred solution of LDA (2 M in THF, 1.2 mL, 2.4 mmol) and DMPU (0.67 mL) in THF (5 mL) was added dropwise ethyl 4-pentenoate (256 mg, 2 mmol) in THF (1 mL) at -78 °C. The resulting mixture was stirred for 30 min at -78 °C and 2-chloro-3iodopropene (486 mg, 2.4 mmol) was added. The reaction mixture was warmed to rt over 8 h. Saturated aqueous NH₄Cl (10 mL) and ether (10 mL) were added. The organic layer was dried over Na₂SO₄ and the solvent was removed under reduced pressure. The residue was purified by flash chromatography (10% ether/pentane) to afford the ester **19** as a colorless oil (309 mg, 76%). ¹H NMR (300 MHz, CDCl₃) δ 5.73-5.59 (m, 1H), 5.13 (d, *J* = 1.2 Hz, 1H), 5.11 (d, *J* = 1.0 Hz, 1H), 5.05-4.96 (m, 2H), 4.06 (q, *J* = 7.1 Hz, 2H), 2.82-2.70 (m, 1H), 2.62 (dd, *J* = 8.3, 14.7 Hz, 1H), 2.38 (dd, *J* = 6.3, 14.5 Hz, 1H), 2.31-2.17 (m, 2H), 1.17 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 174.4, 140.1, 134.8, 117.8, 114.6, 60.8, 43.1, 41.0, 35.8, 14.6; HRMS-AP [M + H]⁺ calcd for C₁₀H₁₆ClO₂, 203.0839; found, 203.0835. **2-Ally1-4-chloropent-4-en-1-ol (20).** To a stirred suspension of LiAlH₄ (84 mg, 2.21 mmol) in THF (5 mL) at 0 °C was added dropwise ester **19** (250 mg, 1.23 mmol) in ether (5 mL). The mixture was stirred for 1 h at rt, and then diluted with ethyl acetate (10 mL). The mixture was poured into 1 M HCl solution. Saturated aqueous NH₄Cl (10 mL) and EtOAc (10 mL) were then added. The organic layer was dried over Na₂SO₄ and the solvent was removed under reduced pressure. The residue was purified by flash column chromatography (30% ether/pentane) to afford the alcohol **20** as a colorless oil (140 mg, 70%). ¹H NMR (300 MHz, CDCl₃) δ 5.81-5.67 (m, 1H), 5.15 (d, *J* = 1.1 Hz, 1H), 5.10 (d, *J* = 1.0 Hz, 1H), 5.05-4.97 (m, 2H), 3.53 (d, *J* = 4.8 Hz, 2H), 2.36 (dd, *J* = 7.4, 14.4 Hz, 1H), 2.25 (dd, *J* = 6.7, 14.4 Hz, 1H), 2.10-2.05 (m, 2H), 2.01-1.90 (m, 1H), 1.47 (br s, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 140.0, 134.9, 115.6, 112.7, 62.9, 39.3, 36.5, 33.6; HRMS-EI [M]⁺ calcd for C₈H₁₃ClO, 160.0655; found, 160.0654.

Methanesulfonic Acid 2-Allyl-4-chloropent-4-enyl Ester (21). To a stirred solution of alcohol 20 (132 mg, 0.82 mmol) in dichloromethane (5 mL) at 0 °C was added portionwise triethylamine (0.36 mL, 2.46 mmol) and mesyl chloride (0.20 mL, 2.46 mmol). The mixture was stirred at 0 °C for 30 min, and then at rt for 3 h. The organic phase was diluted with dichloromethane (10 mL) and washed consecutively with brine (10 mL), 1 M aqueous KHSO₄ (10 mL), brine (10 mL), 5% aqueous NaHCO₃ (10 mL), brine (10 mL), and dried over Na₂SO₄. The solvent was removed under reduced pressure and the residue was purified by flash column chromatography (30% ether/pentane) affording the mesylate 21 as a clear oil (166 mg, 85%). ¹H NMR (300 MHz, CDCl₃) δ 5.76-5.62 (m, 1H), 5.20 (d, *J* = 1.2 Hz, 1H), 5.16 (d, *J* = 1.0 Hz, 1H), 5.07-5.01 (m, 2H), 4.11 (d, J = 4.4 Hz, 2H), 2.93 (s, 3H), 2.43-2.29 (m, 2H), 2.23-2.09 (m, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 140.1, 135.0, 118.5, 115.4, 70.8, 40.5, 37.5, 35.5, 34.6; LRMS-ES [M + Na]⁺ calcd for C₉H₁₅ClNaO₃S, 261.0; found, 261.0.

2-Chloro-4-iodomethylhepta-1,6-diene (22). To a solution of mesylate **21** (156 mg, 0.65 mmol) in acetone (5 mL) was added sodium iodide (491 mg, 3.25 mmol), and the mixture was stirred at reflux for 12 h. The solvent was removed under reduced pressure and the residue was purified by flash column chromatography (pentane) to produce the iodide **22** as a clear oil (145 mg, 82%). ¹H NMR (300 MHz, CDCl₃) δ 5.71-5.58 (m, 1H), 5.21 (d, *J* = 1.2 Hz, 1H), 5.19 (d, *J* = 1.0 Hz, 1H), 5.13-5.02 (m, 2H), 3.21 (dq, *J* = 3.9, 7.6 Hz, 2H), 2.29-2.26 (m, 2H), 2.09-1.97 (m, 2H), 1.57-1.50 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 140.3, 135.3, 118.2, 115.3, 44.1, 38.3, 35.4, 15.0; HRMS-EI [M]⁺ calcd for C₈H₁₂ClI, 269.9672; found, 269.9669.

2-(2-Allyl-4-chloropent-4-enyl)-malonic Acid Diethyl Ester (23). To a stirred solution of diethyl malonate (90 mg, 0.56 mmol) in acetonitrile (3 mL) was added Verkade's base (122 mg, 0.56 mmol), and the mixture was stirred for 30 min at rt. Iodide 22 (138 mg, 0.51 mmol) was then added and the mixture was stirred for 12 h at rt. The solvent was removed under reduced pressure, and the residue was purified by flash column chromatography (20% ether/hexanes) to afford the diene 23 as a colorless oil (109 mg, 71%). ¹H NMR (300 MHz, CDCl₃) δ 5.73-5.60 (m, 1H), 5.15 (d, *J* = 1.2 Hz, 1H), 5.09 (d, *J* = 1.0 Hz, 1H), 5.02-4.95 (m, 2H), 4.12 (dq, *J* = 1.9, 7.1 Hz, 4H), 3.40 (t, *J* = 7.8 Hz, 1H), 2.27 (dd, *J* = 6.1, 14.3 Hz, 1H), 2.17 (dd, *J* = 5.6, 14.3 Hz, 1H), 2.06-2.01 (m, 2H), 1.88-1.77 (m, 3H), 1.20 (dt, *J* = 1.0, 7.1 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 169.8, 169.7, 141.2, 135.4, 117.9, 114.6, 61.8, 50.2, 43.7, 37.1, 33.2, 32.2, 14.4; HRMS-ES [M + H]⁺ calcd for C₁₅H₂₄ClO₄, 303.1363; found, 303.1360.

2-(3-Chlorocyclopent-3-enylmethyl)-malonic Acid Diethyl Ester .OEt 0 (24). A flame dried 250 mL two necked flask equipped with a magnetic όEt stirring bar and a condenser was charged with diene 23 (106 mg, 0.35 mmol) and benzene (100 mL). The solution was deaerated by bubbling argon through the mixture for 2 h. The second-generation Grubbs catalyst (30 mg, 0.035 mmol) in 2 mL of benzene was added and the argon bubbling was continued for an additional 30 min. The mixture was heated and stirred at 65 °C for 2-3 days until TLC showed the reaction was complete. The solvent was removed under reduced pressure and the residue was purified by flash column chromatography (20% ether/hexanes) to afford the vinyl chloride **24** as a pale yellow oil (77 mg, 80%). ¹H NMR (300 MHz, CDCl₃) δ 5.53-5.50 (m, 1H), 4.13 (dg, J = 3.7, 7.2 Hz, 4H), 3.27 (t, J = 7.6 Hz, 1H), 2.60-2.42 (m, 2H), 2.34-2.30 (m, 1H), 2.21-2.15 (m, 1H), 2.02-1.93 (m, 3H), 1.19 (t, J = 7.1 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃) & 168.6, 168.6, 130.4, 124.7, 60.8, 50.0, 42.5, 36.8, 34.8, 34.2, 13.4; HRMS-ES $[M + H]^+$ calcd for C₁₃H₂₀ClO₄, 275.1050; found, 275.1052.

2-(3-Chloro-4-oxocyclopentylmethyl)-malonic Acid Diethyl Ester (25). To a solution of vinyl chloride 24 (60 mg, 0.22 mmol), acetone (2.5 mL) and glacial acetic acid (1 mL) at 0 °C was added dropwise sodium hypochlorite (0.16 mL of 10% solution, 0.22 mmol) via syringe. The reaction mixture was stirred at 0 °C for 1 h and quenched by addition of saturated aqueous NaHCO₃ solution. The mixture was then extracted with dichloromethane (10 mL x 2). The combined organic layers were washed with brine (10 mL) and dried over Na₂SO₄. The solvent was removed under reduced pressure and the residue was purified by flash column chromatography (50% ether/hexanes) affording the α-chloroketone **25** as a clear oil (30 mg, 48%). ¹H NMR (300 MHz, CDCl₃) δ 4.13 (dq, *J* = 1.1, 7.1 Hz, 4H), 4.10-4.06 (m, 1H), 3.31 (t, *J* = 7.6 Hz, 1H), 2.64-2.43 (m, 2H), 2.33-2.24 (m, 1H), 2.08-1.99 (m, 2H), 1.97-1.79 (m, 2H), 1.21 (t, *J* = 7.1 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 209.7, 169.3, 169.3, 62.1, 57.5, 50.8, 42.3, 39.9, 34.2, 32.2, 14.4; HRMS-AP [M + H]⁺ calcd for C₁₃H₂₀ClO₅, 291.0999; found, 291.0992.

2-(3-Chloro-4-tert-butyldimethylsilyloxyimino-

cyclopentylmethyl)-malonic Acid Diethyl Ester (26). To a solution of αchloroketone **25** (23 mg, 0.079 mmol) in dichloromethane (3 mL) were added *O-(tert-*butyldimethylsilyl)-hydroxylamine (24 mg, 0.16 mmol), 4Å molecular sieves (crushed), and a catalytic amount of PPTS. The mixture was stirred at rt for 12 h and then filtered through a pad of Celite. The solvent was removed under reduced pressure and the residue was purified by flash column chromatography (20% ether/hexanes) to afford the α-chloroketoxime **26** as a complex mixture of stereoisomers (colorless oil, 31 mg, 91%). ¹H NMR (300 MHz, CDCl₃) δ 4.80 (d, *J* = 5.7 Hz, 1H, *minor*), 4.62 (d, *J* = 5.1 Hz, 1H, *major*), 4.04 (q, *J* = 7.2 Hz, 4H, *major and minor*), 3.21 (t, *J* = 7.6 Hz, 1H, *major and minor*), 2.75-2.60 (m, 1H, *major and minor*), 2.38-2.25 (m, 1H, *major and minor*), 2.10-2.04 (m, 1H, *major and minor*), 1.90-1.79 (m, 3H, *major and*

O_S ∠OEt

minor), 1.60-1.50 (m, 1H, *major and minor*), 1.11 (t, J = 7.2 Hz, 6H, *major and minor*), 0.76 (s, 9H, *minor*), 0.74 (s, 9H, *major*), 0.00 (s, 6H, *major*), -0.01 (s, 6H, *minor*); HRMS-ES $[M + H]^+$ calcd for C₁₉H₃₅ClNO₅Si, 420.1973; found, 420.1955.

6-Hydroxyiminobicyclo[2.2.1]heptane-2,2-dicarboxylic Acid EtO HO^N OEt Diethyl Ester (27). To a stirred solution of oxime 26 (14.0 mg, 0.033) mmol) in THF (2 mL) at -78 °C was added dropwise NaHMDS (1M in THF, 0.033 mL, 0.033 mmol) via syringe, and the reaction mixture was stirred at -78 °C for 1 h. TBAF (1 M in THF, 0.049 mL, 0.049 mmol) was then added dropwise via syringe, and the mixture was warmed to rt over 2 h. Saturated aqueous NH_4Cl (5 mL) was then added. The mixture was extracted with ether (10 mL x 3), and the combined extracts were dried over Na_2SO_4 . The solvent was removed under reduced pressure and the residue was purified by flash column chromatography (50% ether/pentane) to afford the bridged bicyclic oxime 27 as a clear oil (6.3 mg, 70%). ¹H NMR (300 MHz, CDCl₃) δ 7.40 (s, 1H), 4.18-3.98 (m, 4H), 3.37 (d, J = 0.9 Hz, 1H), 2.49 (d, J = 1.4 Hz, 1H), 2.37-2.20 (m, 2H), 2.11 (dd, J = 3.4, 17.6 Hz, 1H), 1.87 (m, 1H), 1.73 (m, 1H), 1.58 (m, 1H), 1.19-1.14 (m, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 171.4, 170.3, 163.2, 62.2, 61.8, 60.3, 49.7, 40.2, 37.6, 35.3, 33.7, 14.4, 14.3; HRMS-ES $[M + H]^+$ calcd for C₁₃H₂₀NO₅, 270.1341; found, 270.1354.

2-(2-Chloroallyl)-hept-6-enoic Acid Ethyl Ester (28). To a stirred solution of LDA (2 M in THF, 9 mL, 18 mmol) and DMPU (4 mL) in THF (5 mL) at -78 (50 mL) was added dropwise ethyl 6-heptenoate (1.87 g, 12 mmol) in THF (5 mL) at -78

°C. The resulting mixture was stirred for 45 min at -78 °C and 2-chloro-3-iodopropene (3.17 g, 15.6 mmol) was added. The reaction mixture was warmed to rt over 8 h. Saturated aqueous NH₄Cl (50 mL) and ether (50 mL) were added. The organic layer was dried over Na₂SO₄ and the solvent was removed under reduced pressure. The residue was purified by flash chromatography (5% EtOAc/hexanes) to afford the ester **28** as a colorless oil (1.95 g, 71%). ¹H-NMR (300 MHz, CDCl₃) δ 5.77-5.63 (m, 1H), 5.12 (d, *J* = 1.2 Hz, 1H), 5.10 (d, *J* = 1.0 Hz, 1H), 4.97-4.86 (m, 2H), 4.08 (q, *J* = 7.1 Hz, 2H), 2.71-2.58 (m, 2H), 2.38-2.32 (m, 1H), 1.99 (dq, *J* = 1.4, 7.3 Hz, 2H), 1.58-1.43 (m, 2H), 1.41-1.27 (m, 2H), 1.18 (t, *J* = 7.1 Hz, 3H); ¹³C-NMR (75 MHz, CDCl₃) δ 175.3, 140.3, 138.6, 115.2, 114.5, 60.8, 43.5, 42.0, 33.8, 31.4, 26.6, 14.6; HRMS-AP [M + H]⁺ calcd for C₁₂H₂₀ClO₂, 231.1152; found, 231.1151.

2-(2-Chloroallyl)-hept-6-en-1-ol (29). To a stirred suspension of LiAlH₄ (1.05 g, 27.9 mmol) in THF (50 mL) was added dropwise ester **28** (3.58 g, 15.5 mmol) in ether (25 mL) at 0 °C. The mixture was stirred for 1 h at rt, and then diluted with ethyl acetate (15 mL). The mixture was poured into 1 M HCl solution. Saturated aqueous NH₄Cl (20 mL) and EtOAc (20 mL) were then added. The organic layer was dried over Na₂SO₄ and the solvent was removed under reduced pressure. The residue was purified by flash column chromatography (25% ether/pentane) to afford the alcohol **29** as a colorless oil (2.11 g, 72%). ¹H NMR (300 MHz, CDCl₃) δ 5.87-5.73 (m, 1H), 5.20 (d, *J* = 1.1 Hz, 1H), 5.16 (d, *J* = 1.0 Hz, 1H), 5.04-4.92 (m, 2H), 3.57 (br s, 2H), 2.46 (dd, *J* = 0.6, 7.3 Hz, 1H), 2.34 (s, 1H), 2.28 (dd, *J* = 0.6, 6.8 Hz, 1H), 2.09-2.02 (m, 2H), 1.92-1.85 (m, 1H), 1.49-1.30 (m, 4H); ¹³C NMR (75 MHz, CDCl₃) δ 142.0, 139.0, 115.0, 114.1, 64.7, 41.5, 38.4, 34.3, 30.1, 26.5; HRMS-EI [M]⁺ calcd for C₁₀H₁₇ClO, 188.0968; found, 188.0959.

Methanesulfonic Acid 2-(2-Chloroallyl)-hept-6-enyl Ester (30). To a solution of alcohol 29 (30 mg, 0.15 mmol) in dichloromethane (3 mL) at 0 °C was added portionwise triethylamine (0.065 mL, 0.45 mmol) and mesyl chloride (0.037 mL, 0.45 mmol). The mixture was stirred at 0 °C for 30 min, and then at rt for 3 h. The organic phase was diluted with dichloromethane (10 mL) and washed consecutively with brine (10 mL), 1 M aqueous KHSO₄ (10 mL), brine (10 mL), 5% aqueous NaHCO₃ (10 mL), brine (10 mL), and dried over Na₂SO₄. The solvent was removed under reduced pressure and the residue was purified by flash column chromatography (30% ether/pentane) affording the mesylate **30** as a clear oil (37 mg, 88%). ¹H NMR (300 MHz, CDCl₃) δ 5.78-5.65 (m, 1H), 5.19 (d, *J* = 1.2 Hz, 1H), 5.15 (d, *J* = 1.0 Hz, 1H), 4.98-4.87 (m, 2H), 4.11 (d, *J* = 4.5 Hz, 2H), 2.93 (s, 3H), 2.42-2.26 (m, 2H), 2.09-1.97 (m, 3H), 1.43-1.32 (m, 4H); ¹³C NMR (75 MHz, CDCl₃) δ 140.4, 138.6, 115.4, 115.3, 71.1, 41.1, 37.6, 35.8, 34.0, 29.9, 26.2; LRMS-ES [M + Na]⁺ calcd for C₁₁H₁₉ClNaO₃S, 289.1; found, 289.1.

2-Chloro-4-iodomethylnona-1,8-diene (31). To a stirred solution of mesylate **30** (2.00 g, 7.49 mmol) in acetone (20 mL) was added sodium iodide (5.62 g, 37.45 mmol) and the mixture was stirred at reflux for 12 h. The solvent was then removed under reduced pressure and the residue was purified by flash column chromatography (pentane) to produce the iodide **31** as a clear oil (2.12 g, 95%). ¹H NMR

(300 MHz, CDCl₃) δ 5.79-5.66 (m, 1H), 5.19 (d, J = 0.7 Hz, 1H), 5.17 (d, J = 1.0 Hz, 1H), 4.98-4.87 (m, 2H), 3.21 (dq, J = 3.7, 10.1 Hz, 2H), 2.31-2.17 (m, 2H), 2.01 (q, J = 6.8 Hz, 2H), 1.43-1.18 (m, 5H); ¹³C- NMR (75 MHz, CDCl₃) δ 140.5, 138.7, 115.3, 115.2, 44.7, 35.4, 34.0, 33.7, 26.1, 15.8; HRMS-EI [M]⁺ calcd for C₁₀H₁₆CII, 297.9985; found, 297.9987.

2-[2-(2-Chloroallyl)-hept-6-enyl]-malonic Acid Diethyl Ester (32). To a stirred solution of diethyl malonate (0.59 g, 3.69 mmol) in acetonitrile (50 mL) was added Verkade's base (0.8 g, 3.69 mmol) and the mixture was stirred for 30 min at rt. Iodide **31** (1.00 g, 3.35 mmol) was then added and the resulting solution was stirred at rt for 12 h. The solvent was removed under reduced pressure, and the residue was purified by flash column chromatography (15% ether/hexanes) to afford the diene **32** as a colorless oil (0.92 g, 83%). ¹H NMR (300 MHz, CDCl₃) δ 5.78-5.64 (m, 1H), 5.13 (d, *J* = 1.1 Hz, 1H), 5.08 (d, *J* = 0.9 Hz, 1H), 4.96-4.84 (m, 2H), 4.12 (q, *J* = 7.1 Hz, 4H), 3.37 (t, *J* = 7.5 Hz, 1H), 2.27-2.14 (m, 2H), 1.96 (q, *J* = 6.9 Hz, 2H), 1.82 (t, *J* = 7.1 Hz, 2H), 1.74-1.63 (m, 1H), 1.40-1.24 (m, 4H), 1.19 (t, *J* = 7.1 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 169.8, 169.7, 141.5, 138.9, 115.0, 114.3, 61.8, 50.2, 44.1, 34.1, 33.4, 32.6, 32.4, 25.6, 14.4; HRMS-ES [M + H]⁺ calcd for C₁₇H₂₈ClO₄, 331.1676; found, 331.1674.

2-(3-Chlorocyclohept-3-enylmethyl)-malonic Acid Diethyl Ester

(**33**). A flame dried 250 mL two necked flask equipped with a magnetic stirring bar and a condenser was charged with diene **32** (250 mg, 0.76 mmol)

 and benzene (200 mL). The resulting solution was deaerated by bubbling argon through the mixture for 2 h. The second-generation Grubbs catalyst (66 mg, 0.076 mmol) in 2 mL of benzene was added and the argon bubbling was continued for an additional 30 min. The mixture was heated and stirred at 65 °C for 6-7 days until TLC showed the reaction was complete. The solvent was removed under reduced pressure and the residue was purified by flash column chromatography (10% EtOAc/hexanes) to afford the vinyl chloride **33** as a yellow oil (180 mg, 79%). ¹H NMR (300 MHz, CDCl₃) δ 5.89 (t, *J* = 6.5 Hz, 1H), 4.12 (dq, *J* = 1.9, 7.0 Hz, 4H), 3.37 (t, *J* = 7.7 Hz, 1H), 2.44-2.42 (m, 2H), 2.04-1.95 (m, 2H), 1.84-1.78 (m, 3H), 1.65-1.57 (m, 2H), 1.45-1.32 (m, 2H), 1.21 (dt, *J* = 0.9, 7.1 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 169.9, 169.8, 133.9, 129.6, 61.8, 50.2, 43.2, 37.0, 34.9, 34.0, 27.9, 24.8, 14.4; HRMS-ES [M + H]⁺ calcd for C₁₅H₂₄ClO₄, 303.1363; found, 303.1358.

2-(4-Chloro-3-oxocycloheptylmethyl)-malonic Acid Diethyl Ester (34). To a stirred solution of vinyl chloride 33 (94 mg, 0.31 mmol) in acetone (5 mL) and glacial acetic acid (2 mL) at 0 °C was added dropwise sodium hypochlorite (0.23 mL of 10% solution, 0.31 mmol) via syringe. The reaction mixture was stirred at 0 °C for 1 h and quenched by addition of saturated aqueous NaHCO₃ solution. The mixture was then extracted with dichloromethane (10 mL x 2). The combined organic layers were washed with brine (10 mL) and dried over Na₂SO₄. The solvent was removed under reduced pressure and the residue was purified by flash column chromatography (50% ether/hexanes) affording the α -chloroketone **34** as a clear oil (56 mg, 56%). ¹H NMR (300 MHz, CDCl₃, 2:1 diastereomeric mixture) δ 4.26 (t, *J* = 4.8 Hz, 1H, *minor*), 4.06-3.94 (m, 5H *major*, 4H *minor*), 3.19 (t, *J* = 7.7 Hz, 1H, *major and minor*), 2.71-2.65 (m, 1H, *minor*), 2.46-2.38 (m, 1H, *major*), 2.29-2.05 (m, 3H, *major and minor*), 1.82-1.51 (m, 5H, *major and minor*), 1.08-1.02 (m, 8H, *major and minor*); ¹³C NMR (75 MHz, CDCl₃) δ 205.7, 204.7, 169.6, 169.5, 169.4, 65.4, 62.4, 62.0, 62.0, 50.0, 50.0, 46.0, 44.9, 36.1, 35.9, 35.9, 35.4, 35.2, 35.2, 34.2, 33.2, 25.1, 23.2, 14.4; HRMS-ES [M + Na]⁺ calcd for C₁₅H₂₃ClNaO₅, 341.1132; found, 341.1141.

2-(4-Chloro-3-tert-butyldimethylsilyloxyimino-

cycloheptylmethyl)-malonic Acid Diethyl Ester (35). To a solution of αchloroketone **34** (48 mg, 0.15 mmol) in dichloromethane (3 mL) were added TBSO^N \rightarrow *O-(tert-*butyldimethylsilyl)-hydroxylamine (45 mg, 0.30 mmol), 4Å molecular sieves (crushed), and a catalytic amount of PPTS. The mixture was stirred at rt for 48 h and then filtered through a pad of Celite. The solvent was removed under reduced pressure and the residue was purified by flash column chromatography (20% ether/hexanes) to afford the α-chloroketoxime **35** (colorless oil) as a complex mixture of stereoisomers (57 mg, 83%). ¹H NMR (300 MHz, CDCl₃,) δ 5.47 (s, 0.02H), 5.26 (dd, *J* = 4.4, 8.1 Hz, 0.28H), 5.09 (dd, *J* = 6.3, 10.7 Hz, 0.18H), 4.75-4.72 (m, 0.11H), 4.57-4.39 (m, 0.27H), 4.10-3.92 (m, 4H), 3.43-3.28 (m, 1H), 3.22-3.16 (m, 0.25H), 2.86 (d, *J* = 11.8 Hz, 0.33H), 2.60-1.49 (m, 9H), 1.32-1.27 (m, 1.5H), 1.16-1.07 (m, 6H), 0.77 (s, 9H), 0.00 (s, 6H); HRMS-ES [M + H]⁺ calcd for C₂₁H₃₉ClNO₅Si, 448.2286; found, 448.2274.

9-Hydroxyiminobicyclo[3.2.2]nonane-6,6-dicarboxylic Acid Diethyl Ester (36). To a stirred solution of oxime **35** (20.0 mg, 0.044

O‱OEf

mmol) in THF (2 mL) at -78 °C was added dropwise NaHMDS (1 M in THF, 0.044 mL, 0.044 mmol) via syringe, and the reaction mixture was stirred at -78 °C for 1 h. TBAF (1 M in THF, 0.067 mL, 0.067 mmol) was added dropwise via syringe, and the mixture was warmed to rt over 2 h. Saturated aqueous NH_4Cl (5 mL) was then added. The mixture was extracted with ether (10 mL x 3), and the combined extracts were dried over Na₂SO₄. The solvent was removed under reduced pressure and the residue was purified by flash column chromatography (50% ether/hexanes) to afford the bridged bicyclic oxime **36** as a colorless oil (6.9 mg, 53%). ¹H NMR (300 MHz, CDCl₃, 5:1 geometrical isomer mixture) δ 7.62 (br s, 1H, major and minor), 4.10-3.88 (m, 4H, major and minor), 3.18 (t, J = 4.7 Hz, 1H, major), 2.91 (t, J = 2.8 Hz, 1H, minor), 2.55-2.45 (m, 1H, major), 2.32-2.09 (m, 4H, major and minor), 1.98-1.94 (m, 1H, minor), 1.86-1.75 (m, 2H, minor), 1.64 (q, J = 5.9 Hz, 2H, major), 1.54-1.48 (m, 2H, major and minor), 1.41-1.19 (m, 2H, major and minor), 1.12-1.02 (m, 6H, major and minor); ¹³C NMR (75 MHz, CDCl₃) § 172.4, 171.6, 171.5, 171.2, 161.5, 161.2, 62.1, 62.0, 57.0, 55.3, 42.5, 37.6, 34.9, 33.1, 32.9, 30.5, 30.4, 30.1, 28.6, 27.5, 25.7, 24.4, 21.6, 21.0, 14.4, 14.4, 14.3; HRMS-ES $[M + H]^+$ calcd for C₁₅H₂₄NO₅, 298.1654; found, 298.1662.

2-(2-Chloroallyl)-hex-5-enoic Acid Methyl Ester (37). To a solution of LDA (2 M in THF, 10 mL, 20.0 mmol) and DMPU (2.8 mL, 21.8 mmol) in THF (15 mL) was added 5-hexenoic acid methyl ester (2.00 g, 15.6 mmol) in THF (15 mL) dropwise at -78 °C. The mixture was stirred for 45 min at -78 °C. 2-Chloro-3-iodopropene (4.0 g, 19.8 mmol) was added, and the reaction mixture was allowed to warm to 0 °C over 3 h. Saturated aqueous NH₄Cl (30 mL) and EtOAc (50 mL) were added. The organic layer was dried over MgSO₄. The solvent was removed under reduced pressure and the residue was purified by flash column chromatography on silica gel (10% EtOAc/hexanes) to afford the title compound **37** as a yellow oil (2.52 g, 80%). ¹H NMR (400 MHz, CDCl₃) δ 5.65 (m, 1H), 5.12 (dd, *J* = 1.1, 8.9 Hz, 2H), 4.99-4.93 (m, 0.5H), 4.95-4.93 (m, 1H), 4.91-4.90 (m, 0.5H), 3.61 (s, 3H), 2.63-2.60 (m, 1H), 2.64 (dd, *J* = 8.3, 22.6 Hz, 2H), 2.38 (dd, *J* = 6.2, 14.3 Hz, 1H), 2.01-1.98 (m, 2H), 1.63-1.72 (m 1H), 1.59-1.61 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 175.5, 140.2, 137.7, 115.7, 114.6, 51.9, 43.1, 41.9, 31.6, 31.1.

2-(2-Chloroallyl)-hex-5-en-1-ol (38). To a suspension of LiAlH₄ (1.5 g, 39.8 mmol) in THF (50 mL) at 0 °C was added dropwise ester **37** (4.50 g, 22.3 mmol) in ether (50 mL) over 10 min. The mixture was stirred for 12 h at rt, and diluted with EtOAc (20 mL). The mixture was then poured into 1 M HCl solution (30 mL) and saturated aqueous NH₄Cl (10 mL) and EtOAc (10 mL) were added. The organic layer was dried over MgSO₄. The solvent was removed under reduced pressure, and the residue was purified by flash column chromatography (10-30% EtOAc/hexanes gradient) to afford the title compound **38** as a clear oil (3.09 g, 95%). ¹H NMR (300 MHz, CDCl₃) δ 5.81-5.68 (m, 1H), 5.13 (dd, *J* =0.9, 11.7 Hz, 2H), 5.01-4.88 (m, 2H), 3.55 (t, *J* = 4.3 Hz, 2H), 2.40 (dd, *J* = 7.5, 14.3 Hz, 1H), 2.25 (dd, *J* = 6.7, 14.2 Hz, 1H), 2.12-1.99 (m, 2H), 1.93-1.80 (m, 1H), 1.49-1.30 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 141.9, 138.9, 115.2, 114.3, 64.5, 41.5, 37.9, 31.4, 29.8; HRMS-EI [M]⁺ calcd for C₉H₁₅ClO, 174.0811; found, 175.0815.

Methanesulfonic Acid 2-(2-Chloroallyl)-hex-5-enyl Ester (39).

OMs

To a solution of alcohol **38** (152 mg, 0.87 mmol) in dichloromethane (3 μ_{Cl} mL) at 0 °C was added portionwise triethylamine (117 μ L, 0.79 mmol) and mesyl chloride (40 μ L, 0.54 mmol). The mixture was stirred at 0 °C for 30 min, and then at rt for 30 min. The organic phase was washed consecutively with brine (10 mL), 1 M aqueous KHSO₄ (10 mL), brine (10 mL), 5% aqueous NaHCO₃ (10 mL), brine (10 mL), and dried over Na₂SO₄ overnight. The solvent was removed under reduced pressure to afford the title compound **39** as a clear oil which was used for the next step without further purification (206 mg, 94%). ¹H NMR (75 MHz, CDCl₃) δ 5.81-5.72 (m, 1H), 5.20-5.09 (m, 4H), 4.21-4.19 (m, 2H), 3.03 (s, 3H), 2.45-2.40 (m, 2H), 2.21-2.17 (m, 2H), 1.92-1.86 (m, 1H), 1.73-1.70 (m, 2H); ¹³C NMR (300 MHz, CDCl₃) δ 142,4, 135.2, 118.2, 113.1, 71.6, 37.6, 36.9, 36.6, 35.2, 28.2; HRMS-ES [M + Na]⁺ calcd for C₁₀H₁₇O₃SCINa, 275.0485; found, 275.0487.

2-Chloro-4-iodomethylocta-1,7-diene (40). To a solution of mesylate **39** (3.09 g, 12.30 mmol) in acetone (30 mL) was added sodium iodide (5.51 g, 36.70 mmol), and the mixture was stirred at 60 °C for 5 h. The solvent was then removed under reduced pressure and the residue was purified by flash column chromatography (pentane) to afford the title compound **40** as a clear oil (3.29 g, 94%). ¹H NMR (400 MHz, CDCl₃) δ 5.87-5.78 (m, 1H), 5.29 (dd, J = 0.7, 7.6 Hz, 2H), 5.10-5.00 (m, 2H), 3.50 (ddd, J = 0.9, 7.0, 14.1 Hz, 1H), 3.32 (ddd, J = 3.7, 10.1, 21.6 Hz, 2H), 2.14 (dd, J = 21.8, 25.1, 1H), 2.04 (dd, J = 21.8, 25.1, 1H), 1.46-1.49 (m, 4H), 1.22-1.21 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 140.4, 138.1, 115.7, 115.3,

44.6, 34.7, 33.4, 31.0, 15.6; HRMS-EI [M]⁺ calcd for C₉H₁₄ClI, 283.9822; found, 283.9829.

2-[2-(2-Chloroallyl)-hex-5-enyl]-malonic Acid Diethyl Ester (41). To a solution of iodide 40 (816 mg, 2.90 mmol) and diethyl malonate (486 mg, 3.04 mmol) in acetonitrile (50 mL) was added Verkade's base (656 mg, 3.04 mmol), and the reaction mixture was stirred at rt for 24 h. The solvent was removed under reduced pressure, and the residue was purified by flash column chromatography (5-20% EtOAc/hexanes gradient) to afford the title compound 41 as a clear oil (653 mg, 74%). ¹H NMR (300 MHz, CDCl₃) δ 5.87-5.73 (m, 1H), 5.22 (d, *J* = 16.2 Hz, 2H), 5.08-4.97 (m, 2H), 4.22 (dd, *J* = 7.1, 14.2 Hz, 4H), 3.54-3.45 (m, 1H), 2.39-2.26 (m, 2H), 2.14-2.04 (m, 2H), 1.96-1.91 (m, 2H), 1.84-1.76 (m, 1H), 1.60 (s, 1H), 1.49-1.32 (m, 1H), 1.30 (t, *J* = 5.6 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 138.6, 115.2, 114.5, 61.8, 50.2, 44.0, 33.1, 32.6, 32.0, 30.6, 14.4; HRMS-ES [M + Na]⁺ calcd for C₁₆H₂₅CINaO₄, 339.1339; found, 339.1349.

2-(3-Chlorocyclohex-3-enylmethyl)-malonic Acid Diethyl Ester (42). A flame dried 50 mL two necked flask equipped with a condenser and a magnetic stirring bar was charged with ester 41 (100 mg, 0.32 mmol) and benzene (40 mL). The mixture was deaerated with argon for 1 h. Grubbs 2^{nd} generation catalyst (20 mg, 0.03 mmol) in benzene (10 mL) was added *via* syringe. The mixture was deaerated with argon for another 20 min and then heated at 65 °C for three days. The solvent was removed under reduced pressure, and the residue was purified by flash column chromatography (2 - 5% ether/pentane gradient) to afford the title compound **42** as a yellow oil (67 mg, 74%). ¹H NMR (400 MHz, CDCl₃) δ 5.72-5.70 (m, 1H), 4.18-4.08 (m, 4H), 2.31-2.26 (m, 1H), 2.09-1.80 (m, 5.5H), 1.67-5.58 (m, 2.5H), 1.20 (t, *J* = 8.0 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 167.6, 128.7, 122.5, 59.7, 47.8, 36.9, 32.8, 31.1, 25.4, 23.7, 12.3; HRMS-AP [M + H]⁺ calcd for C₁₄H₂₂O₄Cl, 289.1207; found, 289.1214.

2-(4-Chloro-3-Oxocyclohexylmethyl)-malonic Acid Diethyl .OEt Ester (43). To a solution of ester 42 (280 mg, 0.97 mmol), acetone (3.39 . ÓEt mL), glacial acetic acid (1.60 mL) at 0 °C was added dropwise aqueous sodium hypochlorite (638 µL of 10% solution, 0.97 mmol) via syringe. The reaction mixture was stirred at 0 °C for 30 min, and guenched by addition of aqueous saturated Na₂CO₃ solution. The mixture was then extracted with dichloromethane (20 mL x 2). The combined organic layers were washed with brine (10 mL) and dried over Na₂SO₄. The solvent was removed under reduced pressure and the residue was purified by flash column chromatography (10% EtOAc/hexanes) to afford the title compound 43 (yellow oil) as a 4:6 mixture of diastereomers (139 mg, 47%, 67% brsm). For characterization purposes the two diastereomers were separated by column chromatography. *More polar major diastereomer:* ¹H NMR (400 MHz, CDCl₃) δ 4.75-4.74 (m, 1H), 4.18-4.08 (m, 4H), 3.37-3.31 (m, 1H), 2.65-2.60 (m, 1H), 2.17-1.94 (m, 4H), 1.82-1.77 (m, 2H), 1.52-1.40 (m, 1H), 1.23-1.17 (m, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 203.9, 169.6, 169.4, 62.2, 62.0, 61.9, 60.5, 49.6, 42.7, 37.1, 35.0, 34.8, 33.8, 32.7, 30.6, 25.9, 22.3, 14.4. Less *polar minor diastereomer:* ¹H NMR (400 MHz, CDCl₃) δ (m, 4.40-4.33, 1H), 4.16-4.09

S26

(m, 4H), 3.30 (t, J = 4.0 Hz, 1H), 2.68-2.63 (m, 1H), 2.48-2.44 (m, 1H), 2.06-1.79 (m, 6H), 1.50-1.49 (m, 1H), 1.23-1.17 (m, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 202.5, 170.4, 64.9, 63.2, 50.9, 47.9, 38.7, 37.9, 36.1, 32.3, 15.5; HRMS-ES [M + Na]⁺ calcd for C₁₄H₂₁ClNaO₅, 327.0975; found, 327.0984.

2-(4-Chloro-3-tert-butyldimethylsilyloxyimino-

cyclohexylmethyl)-malonic Acid Diethyl Ester (44). To a solution of α -chloroketone 43 (131 mg, 0.43 mmol) in dichloromethane (0.7 mL) were added *O*-(*tert*-butyldimethylsilyl)-hydroxylamine (127 mg, 0.86

mmol), 4Å molecular sieves (crushed), and a catalytic amount of PPTS. The mixture was stirred at rt for 12 h and then filtered through a pad of Celite. The solvent was removed under reduced pressure and the residue was purified by flash column chromatography (10% EtOAc/hexanes) to afford the title compound **44** as a clear oil which was an inseparable complex mixture of diastereomers (171 mg, 92%). ¹H NMR (300 MHz, CDCl₃) δ 5.51 (brs, 0.3H), 4.95 (brs, 0.6H), 4.11-3.95 (m, 4H), 3.34-3.06 (m, 1H), 2.12-2.00 (m, 1H), 1.91-1.71 (m, 2H), 1.67-1.48 (m, 3H), 1.43-1.27 (m, 2H), 1.11 (t, *J* = 7.1 Hz, 3H), 0.74 (s, 9H), 0.00 (s, 6H); HRMS-ES [M + H]⁺ calcd for C₂₀H₃₇NO₅SiCl, 434.2130; found, 434.2130.

6-Hydroxyiminobicyclo[2.2.2]octane-2,2-dicarboxylic Acid

Diethyl Ester (45). To a solution of oxime **44** (20 mg, 0.046 mmol) in THF (0.5 mL) at -78 °C was added dropwise NaHMDS (2 M in THF, 31 μ L, 0.062 mmol) *via* syringe, and the reaction mixture was stirred at -78 °C for 1 h. TBAF (1 M in THF, 62 μ L, 0.062 mmol) was added dropwise *via* syringe, and the mixture was warmed to rt over 2 h. Saturated aqueous NH₄Cl (5 mL) was then added. The mixture was extracted with ether (10 mL x 3), and the combined extracts were dried over MgSO₄. The solvent was removed under reduced pressure and the residue was purified by flash column chromatography (50% ether/pentane) to afford the title compound **45** as a clear oil (10 mg, 74%). ¹H NMR (400 MHz, CDCl₃) δ 8.55 (m, 1H), 4.25-4.11 (m, 4H), 3.07 (m, 1H), 2.41 (m, 2H), 2.25 (m, 2H), 2.21-1.97 (m, 1H), 1.96-1.90 (m, 1H), 1.65-1.47 (m, 3H), 1.28-1.19 (m, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 171.5, 171.2, 161.0, 62.1, 62.0, 55.3, 37.6, 32.9, 30.4, 25.7, 24.3, 21.6, 14.4, 14.3; HRMS-ES [M + H]⁺ calcd for C₁₄H₂₂NO₅, 284.1498; found, 284.1496.

2-(2-Chloroallyloxy)-but-3-en-1-ol (47). To a suspension of LiAlH₄ (0.18 g, 4.73 mmol) in THF (20 mL) at 0 °C was added dropwise ester **46** (1.00 g, 4.73 mmol) in ether (20 mL) over 5 min. The mixture was stirred for 2 h at rt, and diluted with EtOAc (10 mL). The mixture was then poured into saturated aqueous NH₄Cl (10 mL) and extracted with EtOAc (10 mL). The organic layer was dried over MgSO₄ and the solvent was removed under reduced pressure. The residue was purified by flash column chromatography (10-30% EtOAc/hexanes gradient) to afford the title compound **47** as a clear oil (0.75 g, 90%). ¹H NMR (300 MHz, CDCl₃) δ 6.18-5.45 (m, 1H), 5.49 (d, *J* = 1.2Hz, 1H), 5.39 (d, *J* = 0.6 Hz, 1H), 5.29 (dd, *J* = 0.6, 0.7 Hz, 1H), 5.26 (dd, *J* = 3.8, 0.8 Hz, 1H), 4.16-4.01 (m, 3H), 3.96-3.79 (m, 2H), 2.35 (m, 1H), 1.90-1.82 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 138.7, 137.8, 118.5, 114.4, 80.2, 70.9, 60.7, 38.2; HRMS-ES [M + Na]⁺ calcd for C₈H₁₃ClO₂Na, 199.0502; found 199.0500.

Methanesulfonic Acid 2-(2-Chloroallyloxy)-but-3-enyl Ester

(48). To a solution of alcohol 47 (1.22 g, 6.90 mmol) in dichloromethane (21 mL) at 0 °C was added triethylamine (928 μ L, 6.27 mmol) and mesyl chloride (562 μ L, 7.59 mmol) portionwise. The mixture was stirred at 0 °C for 30 min, and then at rt for 30 min. The organic phase was washed consecutively with brine (10 mL), 1 M aqueous KHSO₄ (10 mL), brine (10 mL), 5% aqueous NaHCO₃ (10 mL), brine (10 mL), and dried over Na₂SO₄ overnight. The solvent was removed under reduced pressure to afford the title compound **48** as a clear oil used for the next step without further purification (206 mg, 94%). ¹H NMR (300 MHz, CDCl₃) δ 5.70-5.67 (m, 1H), 5.45 (s, 1H), 5.44 (s, 1H), 5.37-5.27 (m, 2H), 4.43-4.33 (m, 2H), 4.13-4.08 (m, 1H), 3.97-3.93 (m, 2H), 3.02 (s, 3H), 2.06-1.97 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 138.6, 137.2, 119.4, 114.4, 77.4, 71.0, 67.1, 37.6, 35.4; HRMS-ES [M + H]⁺ calcd for C₉H₁₆ClO₄S, 254.0458; found 255.0463.

3-(2-Chloroallyloxy)-5-iodopent-1-ene (49). To a solution of mesylate 48 (400 mg, 1.60 mmol) in acetone (10 mL) was added sodium iodide (964 mg, 6.40 mmol), and the mixture was stirred at 60 °C for 5 h. The solvent was then removed under reduced pressure and the residue was purified by flash column chromatography (pentane) to afford the title compound 49 as a clear oil (399 mg, 88%). ¹H NMR (300 MHz, CDCl₃) δ 5.77-5.65 (m, 1H), 5.47 (dd, J = 1.3, 2.6Hz, 1H), 5.39-5.29 (m, 3H), 4.15-3.80 (m, 3H), 3.76-3.22 (m, 2H), 2.23-1.94 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 138.8, 137.2, 119.0, 114.0, 80.8, 71.1, 39.5, 2.3; HRMS-AP [M+H]⁺ calcd for C₈H₁₃ClIO, 286.9700; found, 286.9706.

2-[3-(2-Chloroallyloxy)-pent-4-enyl]-malonic Acid Diethyl Ester (50). To a solution of iodide **49** (881 mg, 3.09 mmol) and diethyl malonate (520 mg, 3.24 mmol) in acetonitrile (40 mL) was added Verkade's base (700 mg, 3.24 mmol), and the reaction mixture was stirred at rt for 24 h. The solvent was removed under reduced pressure, and the residue was purified by flash column chromatography (5-20% EtOAc/hexanes gradient) to afford the title compound **50** as a clear oil (827 mg, 86%). ¹H NMR (300 MHz, CDCl₃) δ 5.73-5.61 (m, 1H), 5.45-5.20 (m, 4H), 4.25-4.17 (m, 4H), 4.00 (dd, *J* = 13.8, 44.4 Hz, 2H), 3.77 (q, *J* = 7.1 Hz, 1H), 3.37 (m, 1H), 2.09-1.89 (m, 2H), 1.80-1.46 (m, 2H), 1.27 (t, *J*=6.9 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 169.7, 138.8, 138.0, 118.5, 113.5, 80.6, 70.7, 61.6, 52.0, 33.1, 25.0, 14.4; HRMS-ES [M+H]⁺ calcd for C₁₅H₂₄ClO₅, 319.1312; found, 319.1310.

2-[2-(4-Chloro-2,5-dihydrofuran-2-yl)-ethyl]-malonic Acid Diethyl Ester (51). A flame dried 50 mL two necked flask equipped with a condenser and a magnetic stirring bar was charged with ester 50 (100 mg, 0.35 mmol) and toluene (60 mL). The mixture was deaerated with argon for 1 h. Grubbs 2^{nd} generation catalyst (30 mg, 0.03 mmol) in toluene (10 mL) was added *via* syringe. The combined mixture was deaerated with argon for another 20 min and then heated at 120 °C for 24 h. The solvent was removed under reduced pressure and the residue was purified by flash column chromatography (2-5% ether/pentane gradient) to

afford the title compound 51 as a vellow oil (63 mg, 62%). ¹H NMR (400 MHz, CDCl₃) δ 5.78-5.74 (m, 1H), 4.92-4.87 (m, 1H), 4.55-4.50 (m, 2H), 4.23-4.17 (m, 4H), 3.36 (t, J =6.0 Hz, 1H), 1.98-1.93 (m, 2H), 1.65-1.60 (m, 2H), 1.27 (t, J = 9.5 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 169.7, 129.0, 124.9, 85.9, 76.1, 61.8, 52.1, 33.6, 24.5, 14.4; HRMS-ES $[M+H]^+$ calcd for C₁₃H₂₀ClO₅, 291.0999; found, 291.0995.

CO₂Et

EtO₂C₂

2-[2-(3-Chloro-4-oxotetrahydrofuran-2-yl)-ethyl]-malonic Acid Diethyl Ester (52). To a solution of ester 51 (125 mg, 0.43 mmol), in acetone (1.86 mL), and glacial acetic acid (0.75 mL) at 0 °C was added dropwise aqueous sodium hypochlorite (300 µL of 10% solution, 0.47 mmol) via syringe. The reaction mixture was stirred for 20 min at 0 °C and guenched by addition of aqueous saturated Na₂CO₃ solution. The mixture was then extracted with dichloromethane (20 mL x 2). The combined organic layers were washed with brine (10 mL) and dried over Na₂SO₄. The solvent was removed under reduced pressure and the residue was purified by flash column chromatography (10% EtOAc/hexanes) to afford the title compound 52 (yellow oil) as an inseparable 1:1 mixture of diastereomers (73 mg, 56%). ¹H NMR (400 MHz, CDCl₃) δ 4.38-3.92 (m, 6H), 3.91-3.82 (m, 1H), 3.42-3.35 (m, 1H), 2.31-1.67 (m, 5H); ¹³C NMR (75 MHz, CDCl₃) δ 207.3, 169.7, 169.4, 124.9, 85.9, 80.6, 77.8, 77.4, 69.6, 61.9, 61.8, 57.7, 52.1, 52.0, 51.9, 51.0, 42.9, 41.7, 38.3, 33.6, 28.1, 24.8, 24.5, 22.8, 17.0, 14.4, 14.3; HRMS-ES $[M+H]^+$ calcd for C₁₃H₂₀ClO₆, 307.0948; found, 307.0943.

2-[2-(3-Chloro-4-tert-butyldimethylsilyloxyimino-EtO₂C₂CO₂Et tetrahydrofuran-2-yl)-ethyl]-malonic Acid Diethyl Ester (53). To TBSO~

a solution of α -chloroketone **52** (10 mg, 0.03 mmol) in dichloromethane (0.5 mL) were added *O*-(*tert*-butyldimethylsilyl)-hydroxylamine (10 mg, 0.07 mmol), 4Å molecular sieves (crushed) and a catalytic amount of PPTS. The mixture was stirred at rt for 24 h and then filtered through a pad of Celite. The solvent was removed under reduced pressure and the residue was purified by flash column chromatography (10% EtOAc/hexanes) to afford the title compound **53** (clear oil) as an inseparable complex mixture of stereoisomers (6 mg, 43%). ¹H NMR (400 MHz, CDCl₃) δ 4.76-4.36 (m, 3H), 4.30-4.18 (m, 4H), 4.21-4.01 (m, 1H), 4.47-4.36 (m, 3H), 4.30-4.19 (m, 4H), 3.43-3.37 (m, 6H), 1.33-1.24 (m, 6H), 0.94 (s, 9H), 0.16 (s, 6H); HRMS-ES [M+H]⁺ calcd for C₁₉H₃₅ClNO₆Si, 436.1922; found, 436.1928.

3-Hydroxyiminohexahydrocyclopenta[b]furan-4,4-

dicarboxylic Acid Diethyl Ester (54). To a solution of oxime 53 (8 $_{EtO_2C}$ $_{CO_2Et}$ mg, 0.018 mmol) in THF (0.5 mL) at -78 °C was added dropwise NaHMDS (2 M in THF, 24 µL, 0.024 mmol) *via* syringe, and the reaction mixture was stirred at -78 °C for 1 h. TBAF (1 M in THF, 48 µL, 0.048 mmol) was then added dropwise *via* syringe, and the mixture was warmed to 0 °C over 2 h. Saturated aqueous NH₄Cl (5 mL) was then added. The mixture was extracted with ether (10 mL x 3), and the combined extracts were dried over Na₂SO₄. The solvent was removed under reduced pressure and the residue was purified by flash column chromatography (50% ether/pentane) to afford the title compound **54** as a clear oil (6 mg, 95%). ¹H NMR (400 MHz, CDCl₃) δ 4.77 (t, *J* = 5.2Hz, 1H), 4.52 (dd, *J* = 15.2, 41.1 Hz, 2H), 4.45-4.02 (m, 5H), 2.64 (td, *J* = 6.7, 13.3 Hz, 2H), 2.26 (q, *J* = 6.8 Hz, 1H), 2.04 (q, *J* = 7.2 Hz, 1H), 1.72-1.62 (m, 1H), 1.29 (m,

6H); ¹³C NMR (75 MHz, CDCl₃) δ 171.5, 169.4, 164.2, 85.5, 77.6, 67.7, 65.5, 62.4, 62.0, 50.9, 33.0, 32.2, 30.1, 14.3; HRMS-ES [M+H]⁺ calcd for C₁₃H₂₀NO₆, 286.1291; found, 286.1290.

3-(3-Chlorocyclopent-3-enyl)-propionic Acid Ethyl Ester (55). To a stirred solution of diester 24 (100 mg, 0.36 mmol) and water (0.05 mL) in DMSO (3 mL) was added LiCl (35 mg, 0.79 mmol). The reaction mixture was heated at reflux for 5 h, and then cooled to rt. Saturated aqueous NH₄Cl (10 mL) was added and the aqueous phase was extracted with ether (10 mL x 3). The combined organic layers were dried over Na₂SO₄. The solvent was removed under reduced pressure, and the residue was purified by flash column chromatography (15% ether/hexanes) to afford the monoester 55 as a clear oil (68 mg, 93%). ¹H NMR (300 MHz, CDCl₃) δ 5.53-5.50 (m, 1H), 4.05 (q, *J* = 7.1 Hz, 2H), 2.57-2.41 (m, 2H), 2.35-2.30 (m, 1H), 2.23 (t, *J* = 5.2 Hz, 2H), 2.20-2.12 (m, 1H), 1.99-1.90 (m, 1H), 1.70 (q, *J* = 7.3 Hz, 2H), 1.18 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 172.3, 130.1, 124.4, 59.3, 42.1, 36.3, 35.7, 31.6, 30.2, 13.1; HRMS-AP [M+H]⁺ calcd for C₁₀H₁₆ClO₂, 203.0839; found, 203.0838.

3-(3-Chloro-4-Oxocyclopentyl)-propionic Acid Ethyl Ester (56). To a solution of vinyl chloride **55** (121 mg, 0.59 mmol), acetone (2.5 mL) and glacial acetic acid (1 mL) at 0 °C was added dropwise sodium hypochlorite (0.48 mL of 10% solution, 0.59 mmol) via syringe. The reaction mixture was stirred at 0 °C for 1 h and quenched by addition of saturated aqueous NaHCO₃ solution. The

mixture was then extracted with dichloromethane (10 mL x 2). The combined organic layers were washed with brine (10 mL) and dried over Na₂SO₄. The solvent was removed under reduced pressure and the residue was purified by flash column chromatography (50% ether/hexanes) affording the α -chloroketone **56** as a clear oil (60 mg, 46%). ¹H NMR (300 MHz, CDCl₃) δ 4.07 (q, *J* = 7.1 Hz, 3H), 2.63-2.43 (m, 2H), 2.30 (t, *J* = 7.2 Hz, 2H), 2.28-2.23 (m, 1H), 1.94-1.69 (m, 4H), 1.20 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 210.2, 173.3, 61.0, 57.7, 42.4, 39.9, 33.5, 32.9, 30.5 14.6; HRMS-ES [M + Na]⁺ calcd for C₁₀H₁₅ClNaO₃, 241.0607; found, 241.0604.

3-(3-Chloro-4-tert-butyldimethylsilyloxyiminocyclopentyl)-0 .OEt propionic Acid Ethyl Ester (11). To a solution of α -chloroketone 56 (52) mg, 0.23 mmol) in dichloromethane (3 mL) were added O-(tert-CI N~OTBS butyldimethylsilyl)-hydroxylamine (50 mg, 0.34 mmol), 4Å molecular sieves (crushed), and a catalytic amount of PPTS. The mixture was stirred at rt for 12 h and then filtered through a pad of Celite. The solvent was removed under reduced pressure and the residue was purified by flash column chromatography (20% ether/hexanes) to afford the α-chloroketoxime **11** as a colorless oil (76 mg, 93%). ¹H NMR (300 MHz, CDCl₃, 2:1 geometrical isomer mixture) δ 4.84 (d, J = 5.6 Hz, 1H, minor), 4.62 (d, J = 5.1 Hz, 1H, major), 3.97 (q, J = 7.1 Hz, 2H, major and minor), 2.75-2.60 (m, 1H, major and minor), 2.35-2.30 (m, 1H, major and minor), 2.22-2.15 (m, 2H, major and minor), 2.10-2.03 (m, 1H, major and minor), 1.88-1.78 (m, 1H, major and minor), 1.63-1.48 (m, 3H, major and *minor*), 1.09 (t, J = 7.1 Hz, 3H, *major and minor*), 0.77 (s, 9H, *minor*), 0.75 (s, 9H,

major), 0.00 (s, 6H, *major*), -0.01 (s, 6H, *minor*); HRMS-ES $[M + H]^+$ calcd for C₁₆H₃₁ClNO₃Si, 348.1762; found, 348.1760.

6-Hydroxyiminobicyclo[2.2.1]heptane-2-carboxylic Acid Ethyl Ester (12, 13, 14). To a stirred solution of oxime 11 (20.0 mg, 0.057 mmol) in THF (3 mL) at -78 °C was added dropwise KHMDS (0.5 M in toluene, 0.15 mL, 0.068 mmol) via syringe, and the reaction mixture was stirred at -78 °C for 1 h. The reaction mixture was diluted with 9 mL of THF. TBAF (1 M in THF, 0.057 mL, 0.057 mmol) was added dropwise via syringe, and the mixture was warmed to rt over 2 h and stirred at rt for 12 h. Saturated aqueous NH₄Cl (5 mL) was then added. The mixture was extracted with ether (10 mL x 3), and the combined extracts were dried over Na₂SO₄. The solvent was removed under reduced pressure and the residue was purified by flash chromatography (50% ether/hexanes) to afford the bridged bicyclic oxime 12, 13, 14 (8:7:10 by NMR integration) as a clear oil (10.9 mg, 99%). One oxime geometric isomer of the *anti* ester 12 or 13 was isolated in pure form, while 14 and the other *anti* isomer 12 or 13 were obtained as an inseparable mixture. More polar isomer (inseparable 2:1 mixture of **14** and **12** or **13**): ¹H NMR (300 MHz, CDCl₃) δ 7.80 (s, 1H, *major*), 7.69 (s, 1H, minor), 4.04-3.93 (m, 2H, major and minor), 3.65 (s, 1H, major), 2.98-2.96 (m, 1H, minor), 2.83-2.76 (m, 1H, minor), 2.44-2.40 (m, 2H major, 1H minor), 2.24-2.01 (m, 2H, major), 1.91-1.83 (m, 2H, major), 1.71-1.65 (m, 2H, minor), 1.56-1.44 (m, 2H, major and minor), 1.30-1.26 (m, 2H, minor), 1.14-1.07 (m, 3H, major and minor); ¹³C NMR (75 MHz, CDCl₃) δ 174.7, 173.8, 165.1, 164.4, 61.2, 61.1, 46.7, 45.2, 42.7, 42.2, 40.7, 37.0, 36.5, 35.9, 35.6, 34.6, 32.6, 31.0, 14.6; HRMS-ES $[M + H]^+$ calcd for $C_{10}H_{16}NO_{3}$, 198.1130; found, 198.1132. Less polar isomer **12** or **13** (single geometrical isomer): ¹H

NMR (300 MHz, CDCl₃) δ 7.40 (s, 1H), 3.98 (q, *J* = 7.1 Hz, 2H), 2.99 (s, 1H), 2.48-2.44 (m, 2H), 2.21-2.13 (m, 1H), 1.97 (dd, *J* = 3.4, 17.6 Hz, 1H), 1.90-1.82 (m, 1H), 1.56-1.45 (m, 2H), 1.34-1.27(m, 1H), 1.10 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 174.8, 166.4, 61.2, 46.5, 44.0, 37.4, 35.6, 34.5, 33.0, 14.6; HRMS-ES [M + H]⁺ calcd for C₁₀H₁₆NO₃, 198.1130; found, 198.1134.

Crystal Structure Information for compound 9

A colorless brick shaped crystal of **9** (C14 H22 N O5) with approximate dimensions 0.07 x 0.10 x 0.15 mm, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured at 103(2) K, cooled by Rigaku-MSC X-Stream 2000, on a Bruker SMART APEX CCD area detector system equipped with a graphite monochromator and a MoK α fine-focus sealed tube ($\lambda = 0.71073$ Å) operated at 1600 watts power (50 kV, 32 mA). The detector was placed at a distance of 5.8 cm from the crystal.

A total of 1850 frames were collected with a scan width of 0.3° in ω and an exposure time of 40 seconds/frame. The total data collection time was about 24 hours. The frames were integrated with the Bruker SAINT software package using a narrow-frame integration algorithm. The integration of the data using a Monoclinic unit cell yielded a total of 21513 reflections to a maximum θ angle of 28.34° (0.90 Å resolution), of which 6959 were independent, completeness = 98.1%, R_{int} = 0.0582, R_{sig} = 0.0754 and 4723 were greater than $2\sigma(I)$. The final cell constants: a = 12.467(3)Å, b = 15.301(4)Å, c = 14.892(4)Å, $\alpha = 90^\circ$, $\beta = 90.615(5)^\circ$, $\gamma = 90^\circ$, volume = 2840.6(12)Å³, are based upon the refinement of the XYZ-centroids of 7040 reflections above $20\sigma(I)$ with 2.501° < θ <28.324°. Analysis of the data showed negligible decay during data collection. Data were corrected for absorption effects using the multiscan technique (SADABS). The ratio of minimum to maximum apparent transmission was 0.7006.

The structure was solved and refined using the Bruker SHELXTL (Version 6.1) Software Package, using the space group P2(1)/n, with Z = 8 for the formula unit, C14 H22 N O5. The final anisotropic full-matrix least-squares refinement on F² with 367 variables converged at R1 = 10.72%, for the observed data and wR2 = 24.00% for all data. The goodness-of-fit was 1.193. The largest peak on the final difference map was 0.569 e⁻/Å³ and the largest hole was -0.580 e⁻/Å³. Based on the final model, the calculated density of the crystal is 1.330 g/cm³ and F(000) amounts to 1224 electrons.

Note to users: The small molecule crystallographic facility was establish using funds from an NSF Chemistry Research Instrumentation and Facilities grant CHE-0131112.

Identification code	9			
Compound number	IK3-186			
X-ray lab-book	IK3			
Crystallization lab-book	IK3			
Crystallization solvents	CDC13			
Crystallization method	slow evaporation			
Empirical formula	C14 H22 N O5			
Formula weight	284.33			
Temperature	103(2) K			
Wavelength	0.71073 Å			
Crystal size	0.15 x 0.10 x 0.07 mm			
Crystal habit	colorless brick	colorless brick		
Crystal system	Monoclinic			
Space group	P2(1)/n			
Unit cell dimensions	a = 12.467(3) Å	$\alpha = 90^{\circ}$		
	b = 15.301(4) Å	$\beta = 90.615(5)^{\circ}$		
	c = 14.892(4) Å	$\gamma = 90^{\circ}$		
Volume	2840.6(12) Å ³			
Ζ	8			
Density (calculated)	1.330 g/cm ³			
Absorption coefficient	0.100 mm ⁻¹			
F(000)	1224			

Table 1. Sample and crystal data for 9.

Diffractometer	CCD area detector
Radiation source	fine-focus sealed tube, $MoK\alpha$
Generator power	1600 watts (50 kV, 32mA)
Detector distance	5.8 cm
Data collection method	phi and omega scans
Theta range for data collection	1.91 to 28.34°
Index ranges	$-16 \le h \le 12, -20 \le k \le 20, -19 \le l \le 18$

Table 2. Data collection and structure refinement for 9.

Table 3. Atomic coordinates and equivalent isotropic atomic displacement

parameters (Å²) for 9.

U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

		У	Z	U(eq)
C1	0.7571(3)	0.2316(2)	0.4429(2)	0.0207(8)
C2	0.8689(3)	0.2068(2)	0.4775(2)	0.0193(8)
C3	0.8872(3)	0.1098(3)	0.4606(3)	0.0239(8)
C4	0.8040(3)	0.0520(2)	0.5075(3)	0.0212(8)
C5	0.6936(3)	0.0917(2)	0.5067(2)	0.0160(7)
C6	0.6858(3)	0.1894(2)	0.5148(2)	0.0137(7)
C7	0.8629(3)	0.2288(2)	0.5784(2)	0.0162(7)
C8	0.7415(3)	0.2222(2)	0.6019(2)	0.0123(7)
C9	0.6965(3)	0.3118(2)	0.6274(2)	0.0147(7)
C10	0.6987(3)	0.4168(2)	0.7458(3)	0.0276(9)
C11	0.5983(3)	0.3975(3)	0.7972(3)	0.0317(10)
C12	0.7184(3)	0.1640(2)	0.6823(2)	0.0143(7)
C13	0.5777(3)	0.1178(3)	0.7773(3)	0.0271(9)
C14	0.4586(3)	0.1241(3)	0.7804(3)	0.0293(9)
C15	0.7762(3)	0.2222(3)	-0.0484(2)	0.0230(8)
C16	0.8778(3)	0.1943(2)	0.0011(2)	0.0218(8)
C17	0.8957(3)	0.0969(3)	-0.0131(3)	0.0251(9)
C18	0.8018(3)	0.0411(2)	0.0213(3)	0.0218(8)
C19	0.6950(3)	0.0843(2)	0.0077(2)	0.0157(7)
C20	0.6903(3)	0.1829(2)	0.0125(2)	0.0168(7)
C21	0.8532(3)	0.2174(2)	0.0994(2)	0.0178(7)
C22	0.7285(3)	0.2156(2)	0.1059(2)	0.0150(7)
C23	0.6837(3)	0.3073(2)	0.1232(3)	0.0188(7)
C24	0.6782(3)	0.4194(2)	0.2347(3)	0.0309(10)
C25	0.5747(3)	0.4127(3)	0.2837(3)	0.0323(10)
C26	0.6855(3)	0.1580(2)	0.1810(2)	0.0164(7)
C27	0.5186(4)	0.1147(3)	0.2463(3)	0.0322(10)

C28	0.4774(3)	0.1740(3)	0.3166(3)	0.0281(9)
N1	0.6063(2)	0.04967(19)	0.5012(2)	0.0194(7)
N2	0.6066(2)	0.04498(18)	-0.00337(19)	0.0159(6)
01	0.6196(2)	-0.04165(17)	0.4923(2)	0.0300(7)
O2	0.61353(19)	0.16676(16)	0.69987(16)	0.0177(5)
O3	0.7821(2)	0.12183(16)	0.72455(17)	0.0222(6)
O4	0.7407(2)	0.33676(16)	0.70567(17)	0.0207(6)
05	0.6313(2)	0.35278(16)	0.58618(18)	0.0227(6)
06	0.6172(2)	-0.04694(16)	-0.00743(19)	0.0242(6)
07	0.7375(2)	0.11439(18)	0.23114(18)	0.0279(6)
08	0.5786(2)	0.16400(17)	0.18027(18)	0.0241(6)
09	0.6297(2)	0.34882(17)	0.0724(2)	0.0281(6)
O10	0.7140(2)	0.33312(16)	0.20516(18)	0.0248(6)

C1-C21.529(5)C1-C61.541C1-H1B0.9900C1-H1C0.99C2-C31.523(5)C2-C71.541C2-H21.0000C3-C41.536	00 (5) (5)
C2-C31.523(5)C2-C71.541C2-H21.0000C3-C41.536	(5) (5)
C2-H2 1.0000 C3-C4 1.536	5)
	· ·
	00
C3-H3A 0.9900 C3-H3B 0.99	
C4-C5 1.505(5) C4-H4A 0.99	
C4-H4B 0.9900 C5-N1 1.266	· ·
C5-C6 1.503(5) C6-C8 1.548	
С6-Н6 1.0000 С7-С8 1.561	· ·
C7-H7A 0.9900 C7-H7B 0.99	
C8-C12 1.521(5) C8-C9 1.531	
C9-O5 1.192(4) C9-O4 1.339	(4)
C10-O4 1.462(4) C10-C11 1.504	6)
C10-H10A 0.9900 C10-H10B 0.99	00
C11-H11A 0.9800 C11-H11B 0.98	00
C11-H11C 0.9800 C12-O3 1.197	(4)
C12-O2 1.337(4) C13-O2 1.449	4)
C13-C14 1.490(5) C13-H13A 0.99	00
C13-H13B 0.9900 C14-H14A 0.98	00
C14-H14B 0.9800 C14-H14C 0.98	00
C15-C16 1.520(5) C15-C20 1.533	(5)
C15-H15A 0.9900 C15-H15B 0.99	· ·
C16-C17 1.522(5) C16-C21 1.541	(5)
C16-H16 1.0000 C17-C18 1.541	· ·
C17-H17A 0.9900 C17-H17B 0.99	· ·
C18-C19 1.499(5) C18-H18A 0.99	00
C18-H18B 0.9900 C19-N2 1.266	(4)
C19-C20 1.511(5) C20-C22 1.549	
C20-H20 1.0000 C21-C22 1.559	
C21-H21A 0.9900 C21-H21B 0.99	· ·
C22-C26 1.525(5) C22-C23 1.533	
C23-O9 1.191(4) C23-O10 1.333	
C24-O10 1.462(4) C24-C25 1.493	
C24-H24A 0.9900 C24-H24B 0.99	
C25-H25A 0.9800 C25-H25B 0.98	
C25-H25C 0.9800 C26-O7 1.188	
C26-O8 1.336(4) C27-O8 1.454	· /
C27-C28 1.481(6) C27-H27A 0.99	
C27-H27B 0.9900 C28-H28A 0.98	
C28-H28B 0.9800 C28-H28C 0.98	
N1-O1 1.414(4) N1-H1A 0.88	
N2-O6 1.414(4) N2-H2A 0.88	
O1-H1 0.8400 O6-H6A 0.84	

Table 4. Bond lengths (Å) for 9.

Symmetry transformations used to generate equivalent atoms (if any):

C2-C1-C6	101.1(3)	C2-C1-H1B	111.6
C6-C1-H1B	111.6	C2-C1-H1C	111.6
C6-C1-H1C	111.6	H1B-C1-H1C	109.4
C3-C2-C1	108.9(3)	C3-C2-C7	112.5(3)
C1-C2-C7	102.8(3)	С3-С2-Н2	110.8
С1-С2-Н2	110.8	С7-С2-Н2	110.8
C2-C3-C4	112.4(3)	С2-С3-НЗА	109.1
С4-С3-НЗА	109.1	С2-С3-Н3В	109.1
С4-С3-Н3В	109.1	НЗА-СЗ-НЗВ	107.8
C5-C4-C3	112.7(3)	C5-C4-H4A	109.0
C3-C4-H4A	109.0	C5-C4-H4B	109.0
C3-C4-H4B	109.0	H4A-C4-H4B	107.8
N1-C5-C6	117.0(3)	N1-C5-C4	125.6(3)
C6-C5-C4	117.4(3)	C5-C6-C1	108.8(3)
C5-C6-C8	111.1(3)	C1-C6-C8	100.9(3)
С5-С6-Н6	111.8	С1-С6-Н6	111.8
С8-С6-Н6	111.8	C2-C7-C8	105.2(3)
С2-С7-Н7А	110.7	С8-С7-Н7А	110.7
С2-С7-Н7В	110.7	С8-С7-Н7В	110.7
H7A-C7-H7B	108.8	C12-C8-C9	104.8(3)
C12-C8-C6	112.5(3)	C9-C8-C6	109.6(3)
C12-C8-C7	114.0(3)	C9-C8-C7	110.9(3)
C6-C8-C7	105.1(3)	05-C9-O4	124.8(3)
O5-C9-C8	126.4(3)	O4-C9-C8	108.9(3)
O4-C10-C11	110.3(3)	O4-C10-H10A	109.6
C11-C10-H10A	109.6	O4-C10-H10B	109.6
C11-C10-H10B	109.6	H10A-C10-H10B	108.1
C10-C11-H11A	109.5	C10-C11-H11B	109.5
H11A-C11-H11B	109.5	C10-C11-H11C	109.5
H11A-C11-H11C	109.5	H11B-C11-H11C	109.5
O3-C12-O2	124.0(3)	O3-C12-C8	126.8(3)
O2-C12-C8	109.2(3)	O2-C13-C14	107.9(3)
O2-C13-H13A	110.1	C14-C13-H13A	110.1
O2-C13-H13B	110.1	C14-C13-H13B	110.1
H13A-C13-H13B	108.4	C13-C14-H14A	109.5
C13-C14-H14B	109.5	H14A-C14-H14B	109.5
C13-C14-H14C	109.5	H14A-C14-H14C	109.5
H14B-C14-H14C	109.5	C16-C15-C20	100.8(3)
C16-C15-H15A	111.6	C20-C15-H15A	111.6
C16-C15-H15B	111.6	C20-C15-H15B	111.6
H15A-C15-H15B	109.4	C15-C16-C17	109.2(3)
C15-C16-C21	102.9(3)	C17-C16-C21	112.8(3)
C15-C16-H16	110.5	C17-C16-H16	110.5
C21-C16-H16	110.5	C16-C17-C18	112.6(3)
			. /

Table 5. Bond angles $(^{\circ})$ for 9.

С16-С17-Н17А	109.1	С18-С17-Н17А	109.1
C16-C17-H17B	109.1	C18-C17-H17B	109.1
H17A-C17-H17B	107.8	C19-C18-C17	112.7(3)
C19-C18-H18A	109.0	C17-C18-H18A	109.0
C19-C18-H18B	109.0	C17-C18-H18B	109.0
H18A-C18-H18B	107.8	N2-C19-C18	125.4(3)
N2-C19-C20	116.6(3)	C18-C19-C20	118.0(3)
C19-C20-C15	109.6(3)	C19-C20-C22	110.7(3)
C15-C20-C22	101.3(3)	С19-С20-Н20	111.6
С15-С20-Н20	111.6	C22-C20-H20	111.6
C16-C21-C22	105.3(3)	C16-C21-H21A	110.7
C22-C21-H21A	110.7	C16-C21-H21B	110.7
C22-C21-H21B	110.7	H21A-C21-H21B	108.8
C26-C22-C23	105.9(3)	C26-C22-C20	111.4(3)
C23-C22-C20	109.7(3)	C26-C22-C21	114.5(3)
C23-C22-C21	111.1(3)	C20-C22-C21	104.3(3)
O9-C23-O10	125.2(3)	O9-C23-C22	125.9(3)
O10-C23-C22	108.9(3)	O10-C24-C25	110.7(3)
O10-C24-H24A	109.5	C25-C24-H24A	109.5
O10-C24-H24B	109.5	C25-C24-H24B	109.5
H24A-C24-H24B	108.1	С24-С25-Н25А	109.5
С24-С25-Н25В	109.5	H25A-C25-H25B	109.5
С24-С25-Н25С	109.5	H25A-C25-H25C	109.5
H25B-C25-H25C	109.5	07-C26-O8	125.5(3)
O7-C26-C22	126.2(3)	O8-C26-C22	108.2(3)
O8-C27-C28	110.2(3)	O8-C27-H27A	109.6
С28-С27-Н27А	109.6	О8-С27-Н27В	109.6
С28-С27-Н27В	109.6	H27A-C27-H27B	108.1
C27-C28-H28A	109.5	С27-С28-Н28В	109.5
H28A-C28-H28B	109.5	С27-С28-Н28С	109.5
H28A-C28-H28C	109.5	H28B-C28-H28C	109.5
C5-N1-O1	114.0(3)	C5-N1-H1A	123.0
O1-N1-H1A	123.0	C19-N2-O6	113.4(3)
C19-N2-H2A	123.3	O6-N2-H2A	123.3
N1-O1-H1	109.5	C12-O2-C13	116.7(3)
C9-O4-C10	116.7(3)	N2-O6-H6A	109.5
C26-O8-C27	118.7(3)	C23-O10-C24	117.3(3)

Symmetry transformations used to generate equivalent atoms (if any):

Table 6. Torsion angles (°) for 9.

C6-C1-C2-C3	73.3(3)	C6-C1-C2-C7	-46.2(3)
C1-C2-C3-C4	-59.5(4)	C7-C2-C3-C4	53.8(4)
C2-C3-C4-C5	37.3(4)	C3-C4-C5-N1	146.0(4)
C3-C4-C5-C6	-35.3(4)	N1-C5-C6-C1	-128.4(3)
C4-C5-C6-C1	52.8(4)	N1-C5-C6-C8	121.3(3)
C4-C5-C6-C8	-57.5(4)	C2-C1-C6-C5	-68.5(3)
C2-C1-C6-C8	48.5(3)	C3-C2-C7-C8	-91.4(3)
C1-C2-C7-C8	25.6(3)	C5-C6-C8-C12	-41.7(4)
C1-C6-C8-C12	-157.0(3)	C5-C6-C8-C9	-157.9(3)
C1-C6-C8-C9	86.9(3)	C5-C6-C8-C7	82.9(3)
C1-C6-C8-C7	-32.4(3)	C2-C7-C8-C12	128.1(3)
C2-C7-C8-C9	-113.9(3)	C2-C7-C8-C6	4.4(3)
C12-C8-C9-O5	-123.4(4)	C6-C8-C9-O5	-2.4(5)
C7-C8-C9-O5	113.2(4)	C12-C8-C9-O4	55.3(3)
C6-C8-C9-O4	176.3(3)	C7-C8-C9-O4	-68.2(3)
C9-C8-C12-O3	-124.8(4)	C6-C8-C12-O3	116.2(4)
C7-C8-C12-O3	-3.4(5)	C9-C8-C12-O2	55.0(3)
C6-C8-C12-O2	-64.0(3)	C7-C8-C12-O2	176.5(3)
C20-C15-C16-C17	73.8(4)	C20-C15-C16-C21	-46.3(3)
C15-C16-C17-C18	-59.5(4)	C21-C16-C17-C18	54.3(4)
C16-C17-C18-C19	35.5(4)	C17-C18-C19-N2	151.5(3)
C17-C18-C19-C20	-32.2(4)	N2-C19-C20-C15	-132.8(3)
C18-C19-C20-C15	50.5(4)	N2-C19-C20-C22	116.3(3)
C18-C19-C20-C22	-60.3(4)	C16-C15-C20-C19	-67.7(3)
C16-C15-C20-C22	49.3(3)	C15-C16-C21-C22	25.3(4)
C17-C16-C21-C22	-92.3(3)	C19-C20-C22-C26	-41.1(4)
C15-C20-C22-C26	-157.2(3)	C19-C20-C22-C23	-158.0(3)
C15-C20-C22-C23	85.9(3)	C19-C20-C22-C21	82.9(3)
C15-C20-C22-C21	-33.2(3)	C16-C21-C22-C26	127.1(3)
C16-C21-C22-C23	-113.0(3)	C16-C21-C22-C20	5.1(4)
C26-C22-C23-O9	-122.0(4)	C20-C22-C23-O9	-1.7(5)
C21-C22-C23-O9	113.2(4)	C26-C22-C23-O10	57.4(3)
C20-C22-C23-O10	177.7(3)	C21-C22-C23-O10	-67.5(4)
C23-C22-C26-O7	-124.9(4)	C20-C22-C26-O7	116.0(4)
C21-C22-C26-O7	-2.1(5)	C23-C22-C26-O8	55.8(3)
C20-C22-C26-O8	-63.4(3)	C21-C22-C26-O8	178.5(3)
C6-C5-N1-O1	179.0(3)	C4-C5-N1-O1	-2.2(5)
C18-C19-N2-O6	-3.7(5)	C20-C19-N2-O6	179.9(3)
O3-C12-O2-C13	2.5(5)	C8-C12-O2-C13	-177.4(3)
C14-C13-O2-C12	-175.7(3)	O5-C9-O4-C10	5.1(5)
C8-C9-O4-C10	-173.6(3)	C11-C10-O4-C9	82.7(4)
07-C26-O8-C27	0.8(5)	C22-C26-O8-C27	-179.9(3)
C28-C27-O8-C26	105.8(4)	O9-C23-O10-C24	-0.2(5)
C22-C23-O10-C24	-179.6(3)	C25-C24-O10-C23	91.9(4)
022 023 - 010 - 024	177.0(3)	025-027-010-025	J1.J(1)

Symmetry transformations used to generate equivalent atoms (if any):

12 -					
	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃
	U ₁₂				
C1	0.0219(19)	0.0230(19)	0.0173(18)	0.0035(14)	-0.0020(14)
	-0.0067(15)				
C2	0.0192(18)	0.0242(19)	0.0145(17)	-0.0001(14)	0.0036(14)
C3	-0.0097(14) 0.0198(19)	0.029(2)	0.023(2)	-0.0083(16)	0.0036(15)
CS	-0.0024(16)	0.029(2)	0.023(2)	-0.0083(10)	0.0030(13)
C4	0.0217(19)	0.0140(17)	0.028(2)	-0.0057(15)	-0.0011(15)
	-0.0003(14)	()		()	
C5	0.0181(17)	0.0165(17)	0.0133(17)	-0.0025(13)	-0.0014(13)
	-0.0010(14)				
C6	0.0120(16)	0.0147(16)	0.0145(17)	-0.0008(13)	-0.0018(13)
C7	-0.0015(12) 0.0154(17)	0.0160(17)	0.0171(18)	0.0011(12)	0.0025(12)
C/	-0.0033(13)	0.0100(17)	0.0171(18)	-0.0011(13)	0.0025(13)
C8	0.0108(15)	0.0107(15)	0.0154(17)	-0.0008(12)	0.0000(12)
	0.0010(12))	,
C9	0.0159(16)	0.0077(15)	0.0206(18)	0.0037(13)	0.0061(14)
	-0.0053(12)		/ - \		
C10	0.030(2)	0.0162(18)	0.037(2)	-0.0125(17)	0.0026(17)
C11	0.0026(16) 0.028(2)	0.021(2)	0.036(2)	0.0117(10)	0.0076(19)
CII	0.028(2) 0.0050(17)	0.031(2)	0.036(2)	-0.0117(19)	0.0026(18)
C12	0.0172(16)	0.0094(15)	0.0162(17)	-0.0044(13)	0.0006(13)
•	-0.0021(13)		()		
C13	0.028(2)	0.029(2)	0.025(2)	0.0155(17)	-0.0014(16)
~	-0.0093(17)				
C14	0.028(2)	0.032(2)	0.028(2)	0.0120(18)	0.0098(17)
C15	0.0009(17) 0.0206(19)	0.031(2)	0.0171(18)	0.0029(15)	0.0016(14)
CIS	-0.0101(16)	0.031(2)	0.0171(18)	0.0029(13)	0.0010(14)
C16	0.0156(17)	0.027(2)	0.023(2)	-0.0056(15)	0.0053(15)
	-0.0099(15)				
C17	0.0189(18)	0.028(2)	0.028(2)	-0.0166(17)	0.0077(15)
	-0.0018(15)				
C18	0.0186(18)	0.0206(19)	0.026(2)	-0.0099(15)	0.0029(15)
C10	-0.0012(14)	0.0107(17)	0.0006(16)	0.0029(12)	0.0020(12)
C19	0.0178(17) -0.0016(14)	0.0197(17)	0.0096(16)	-0.0028(13)	0.0020(13)
C20	0.0142(16)	0.0194(18)	0.0166(18)	0.0025(14)	0.0006(13)
220	(10)	0.017 ((10)	0.0100(10)	5.0025(11)	0.0000(15)

Table 7. Anisotropic atomic displacement parameters (Å2) for 9.The anisotropic atomic displacement factor exponent takes the form: $-2\pi^2$ [h^2a^{*2} U₁₁ + ... + 2hka* b* U₁₂]

)018(13) 162(17)			-0.0057(14)	-0.0004(14)
	0.0138(16)	0.0150(17)	-0.0018(13)	0.0011(13)
143(16)	0.0146(17)	0.028(2)	0.0006(15)	0.0065(14)
37(2)	0.0113(18)	0.045(3)	-0.0102(17)	0.0109(19)
29(2)	0.023(2)	0.045(3)	-0.0140(19)	0.0018(19)
270(19)	0.0078(15)	0.0144(17)	-0.0049(13)	0.0048(14)
39(2)	0.0173(19)	0.041(3)	0.0084(17)	0.016(2)
27(2)	0.036(2)	0.021(2)	0.0050(17)	0.0044(16)
184(15)	0.0133(14)	0.0267(17)	-0.0038(12)	0.0008(13)
	0.0148(14)	0.0173(15)	0.0007(11)	0.0008(11)
· · ·	0.0150(13)	0.0492(19)	-0.0048(12)	0.0005(13)
0014(10)		0.0165(13)	0.0089(10)	0.0010(10)
	0.0181(13)	0.0254(14)	0.0052(11)	-0.0012(11)
004(10)		0.0243(14)	-0.0074(10)	-0.0002(11)
021(10)			× /	-0.0010(11)
0054(10)				0.0046(12)
066(12)				-0.0027(12)
022(11)				0.0129(11)
014(11)				-0.0027(13)
	0.0140(13)	0.0294(15)	-0.0067(11)	0.0044(12)
	006(13) 143(16) 0029(13) 37(2) 021(16) 29(2) 048(17) 270(19) 017(13) 39(2) 0060(17) 27(2) 0019(17) 184(15) 013(12) 157(14) 0010(11) 257(15) 0056(11) 185(12) 0014(10) 231(13) 033(11) 248(13) 004(10) 228(13) 021(10) 214(13) 0054(10) 384(16) 066(12) 242(14) 022(11) 268(15) 014(11)	$\begin{array}{cccccccc} 006(13) \\ 143(16) & 0.0146(17) \\ 0029(13) \\ 37(2) & 0.0113(18) \\ 021(16) \\ 29(2) & 0.023(2) \\ 048(17) \\ 270(19) & 0.0078(15) \\ 017(13) \\ 39(2) & 0.0173(19) \\ 0060(17) \\ 27(2) & 0.036(2) \\ 0019(17) \\ 184(15) & 0.0133(14) \\ 013(12) \\ 157(14) & 0.0148(14) \\ 0010(11) \\ 257(15) & 0.0150(13) \\ 0056(11) \\ 185(12) & 0.0181(12) \\ 0014(10) \\ 231(13) & 0.0181(13) \\ 033(11) \\ 248(13) & 0.0129(12) \\ 004(10) \\ 228(13) & 0.0146(13) \\ 0054(10) \\ 384(16) & 0.0238(14) \\ 066(12) \\ 242(14) & 0.0185(13) \\ 022(11) \\ 268(15) & 0.0140(13) \\ \end{array}$	$\begin{array}{ccccccc} 006(13) \\ 143(16) \\ 0.0146(17) \\ 0.028(2) \\ 0.029(13) \\ 37(2) \\ 0.0113(18) \\ 0.045(3) \\ 021(16) \\ 29(2) \\ 0.023(2) \\ 0.045(3) \\ 0.045(3) \\ 0.0173(19) \\ 0.045(3) \\ 0.0173(19) \\ 0.0144(17) \\ 0.017(13) \\ 0.017(13) \\ 0.0173(19) \\ 0.041(3) \\ 0.060(17) \\ 27(2) \\ 0.036(2) \\ 0.021(2) \\ 0.0173(19) \\ 0.041(3) \\ 0.0267(17) \\ 0.013(12) \\ 157(14) \\ 0.0148(14) \\ 0.0173(15) \\ 0.010(11) \\ 257(15) \\ 0.0150(13) \\ 0.0492(19) \\ 0.056(11) \\ 185(12) \\ 0.0181(12) \\ 0.0145(13) \\ 0.0254(14) \\ 0.033(11) \\ 248(13) \\ 0.0129(12) \\ 0.0243(14) \\ 0.0306(15) \\ 0.0146(13) \\ 0.0306(15) \\ 0.0146(13) \\ 0.0306(15) \\ 0.0146(13) \\ 0.0300(15) \\ 0.0140(13) \\ 0.0294(17) \\ 0.0142(17) \\ 0.0140(13) \\ 0.0294(15) \\ 0.0294(15) \\ 0.0294(15) \\ 0.0294(15) \\ 0.0294(15) \\ 0.0294(15) \\ 0.0294(15) \\ 0.0140(13) \\ 0.0294(15) \\ 0.0294(15) \\ 0.0140(13) \\ 0.0294(15) \\ 0.0294(15) \\ 0.0140(13) \\ 0.0294(15) \\ 0.0140(15) \\ 0.0140(13) \\ 0.0294(15) \\ 0.0140(15) \\ 0.0140(13) \\ 0.0294(15) \\ 0.0140(15) \\ 0.0140(13) \\ 0.0294(15) \\ 0.0140(15) \\ 0.0140(13) \\ 0.0294(15) \\ 0.0140(15) \\ 0.0140(13) \\ 0.0294(15) \\ 0.0140(15) \\ 0.0140(13) \\ 0.0294(15) \\ 0.0140(15) \\ 0.0140(15) \\ 0.0140(13) \\ 0.0294(15) \\ 0.0140(15) \\ 0.0140(13) \\ 0.0294(15) \\ 0.0140(15) \\ 0.01$	$\begin{array}{llllllllllllllllllllllllllllllllllll$

	x/a	y/b	z/c	U
H1B	0.7425	0.2067	0.3827	0.025
H1C	0.7474	0.2958	0.4407	0.025
H2	0.9251	0.2427	0.4477	0.023
H3A	0.9598	0.0936	0.4823	0.029
H3B	0.8839	0.0986	0.3951	0.029
H4A	0.8011	-0.0056	0.4773	0.025
H4B	0.8272	0.0423	0.5705	0.025
H6	0.6099	0.2101	0.5102	0.016
H7A	0.8903	0.2885	0.5901	0.019
H7B	0.9057	0.1867	0.6143	0.019
H10A	0.6827	0.4600	0.6980	0.033
H10B	0.7533	0.4424	0.7868	0.033
H11A	0.5437	0.3733	0.7563	0.048
H11B	0.5713	0.4515	0.8241	0.048
H11C	0.6143	0.3550	0.8447	0.048
H13A	0.6098	0.1424	0.8329	0.032
H13B	0.6000	0.0560	0.7722	0.032
H14A	0.4375	0.1853	0.7882	0.044
H14B	0.4321	0.0894	0.8308	0.044
H14C	0.4277	0.1017	0.7241	0.044
H15A	0.7725	0.1972	-0.1097	0.028
H15B	0.7701	0.2866	-0.0520	0.028
H16	0.9409	0.2285	-0.0205	0.026
H17A	0.9624	0.0791	0.0185	0.030
H17B	0.9053	0.0856	-0.0780	0.030
H18A	0.8017	-0.0158	-0.0105	0.026
H18B	0.8129	0.0293	0.0861	0.026
H20	0.6172	0.2054	-0.0031	0.020
H21A	0.8814	0.2761	0.1147	0.021
H21B	0.8859	0.1741	0.1408	0.021
H24A	0.6687	0.4580	0.1818	0.037
H24B	0.7334	0.4456	0.2745	0.037
H25A	0.5185	0.3914	0.2427	0.048
H25B	0.5547	0.4704	0.3066	0.048
H25C	0.5829	0.3719	0.3341	0.048
H27A	0.5656	0.0699	0.2742	0.039
H27B	0.4578	0.0844	0.2164	0.039
H28A	0.5378	0.2000	0.3497	0.042
H28B	0.4326	0.1408	0.3582	0.042
H28C	0.4345	0.2204	0.2885	0.042
H1A	0.5430	0.0750	0.5029	0.023

Table 8. Hydrogen atom coordinates and isotropic atomic displacement parameters $(Å^2)$ for 9.

H2A	0.5445	0.0721	-0.0080	0.019
H1	0.5592	-0.0656	0.4874	0.045
H6A	0.5561	-0.0701	-0.0067	0.036

Figure 1: Ortep Diagram of X-ray Diffraction Structure of 9.

 \cap

