Supporting Information

Construction of Bridged and Fused Ring Systems via Intramolecular Michael Reactions of Vinylnitroso Compounds

Ilia Korboukh, Praveen Kumar and Steven M. Weinreb*

Department of Chemistry, The Pennsylvania State University
University Park, Pennsylvania 16802

E-mail: smw@chem.psu.edu

Table of Contents

Title page S1
Experimental details of compounds 4-56
S2-S36
Crystal structure data of compound 9
S37-S50
ORTEP Diagram of X-ray Diffraction Structure of 9
S50
NMR spectra of compounds $9,10,27,36,45,54,12,13,14$
S51-S66

General Methods. All non-aqueous reactions were carried out under an inert atmosphere of argon in flame-dried glassware. Air and moisture sensitive liquid reagents were added via a dry syringe or canula. All solvents and reagents were used as obtained from commercial sources without further purification. Flash column chromatography was performed using EM Science silica gel 60 (230-400 mesh). Analytical and preparative thin layer chromatography (TLC) were performed on EM Science silica gel $60 \mathrm{PF}_{254}$ plates. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data were recorded on Bruker DPX-300, CDPX-300, AMX-360, or DRX 400 MHz spectrometers. Infrared spectral data were obtained using a Perkin-Elmer 1600 FTIR spectrometer.

Grubbs $2^{\text {nd }}$

2-Allyl-5-chlorohex-5-enoic Acid Ethyl Ester (15). To a solution of 2-allyl-2-(3-chlorobut-3-enyl)-malonic acid diethyl ester (710 mg, 2.46 mmol)
 in DMSO (10 mL) were added $\mathrm{LiCl}(228 \mathrm{mg}, 5.42 \mathrm{mmol})$ and water $(0.4 \mathrm{~mL})$. The mixture was heated in an oil bath at $190{ }^{\circ} \mathrm{C}$ for 12 h , and cooled to rt . Aqueous $\mathrm{NH}_{4} \mathrm{OAc}$ $(10 \mathrm{~mL})$ was added and the mixture was then extracted with ether ($30 \mathrm{~mL} \times 3$). The organic layers were combined and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure, and the residue was purified by flash column chromatography on silica gel (5-10\% ether/pentane gradient) to afford the title compound 15 as a clear oil (250 mg , $64 \%, 73 \%$ brsm). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.78-5.64(\mathrm{~m}, 1 \mathrm{H}), 5.14-4.99(\mathrm{~m}, 4 \mathrm{H})$, 4.12 (dd, $J=7.1,14.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.45(\mathrm{dd}, J=7.0,14.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.45-2.20(\mathrm{~m}, 5 \mathrm{H}), 1.84-$ $1.57(\mathrm{~m}, 2 \mathrm{H}), 1.25-1.16(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 175.3,142.2,135.4$, 117.4, 113.1, 60.7, 44.4, 37.2, 36.8, 29.4, 14.7; HRMS-AP $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{Cl}, 217.1000$; found, 217.0995.

2-Allyl-5-chlorohex-5-en-1-ol (16). To a suspension of LiAlH_{4} (79
$\mathrm{mg}, 2.07 \mathrm{mmol})$ in THF (5 mL) at $0{ }^{\circ} \mathrm{C}$ was added dropwise ester $15(250 \mathrm{mg}$, 1.15 mmol) in THF (5 mL). The mixture was stirred for 12 h at rt , and then diluted with EtOAc (20 mL). The mixture was poured into 1 M HCl solution $(10 \mathrm{~mL})$, and saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ and $\mathrm{EtOAc}(10 \mathrm{~mL})$ were added. The organic layer was dried over MgSO_{4}, and the solvent was removed under reduced pressure. The residue was purified by flash column chromatography (10-20\% ether/pentane gradient) to afford the title compound 16 as a clear oil $(166 \mathrm{mg}, 83 \%) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 5.82-5.73 (m, 1H), 5.18-5.06 (m, 4H), 4.18-3.96(m, 2H), $3.50(\mathrm{dd}, J=7.0,14.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.41(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.17-2.07(\mathrm{~m}, 2 \mathrm{H}), 1.88-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.67-1.59(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 135.9,117.4,112.7,66.6,36.8,35.9,28.8,21.3,14.4$; HRMS$\mathrm{ES}[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{ClO}, 174.0811$; found, 174.0815.

Methanesulfonic Acid 2-Allyl-5-chlorohex-5-enyl Ester (17). To a

 solution of alcohol $16(166 \mathrm{~g}, 0.95 \mathrm{mmol})$ in dichloromethane $(3.0 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added portionwise triethylamine $(0.13 \mathrm{~mL}, 0.87 \mathrm{mmol})$ and mesyl chloride ($0.042 \mathrm{~mL}, 0.57 \mathrm{mmol}$). The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min , and then at rt for 30 min . The organic phase was diluted with dichloromethane $(18 \mathrm{~mL})$ and washed consecutively with brine (10 mL), 1 M aqueous $\mathrm{KHSO}_{4}(10 \mathrm{~mL})$, brine (10 mL), 5% aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$, brine $(10 \mathrm{~mL})$, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ overnight. The solvent was removed under reduced pressure and the residue was purified by flash column chromatography ($10-20 \% \mathrm{EtOAc} /$ hexanes gradient) to afford the title compound 17 as aclear oil (159 mg, 66\%). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.81-5.73(\mathrm{~m}, 1 \mathrm{H}), 5.20-5.10(\mathrm{~m}$, 4H), 4.21-4.15 (m, 2H), $3.03(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.19(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H})$, 1.94-1.86 (m, 1H), 1.73-1.63 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.4,135.2,118.2$, 113.1, $71.6,37.6,36.9,35.2,30.1,28.2$; HRMS-ES $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{ClO}_{3} \mathrm{SNa}$, 275.0485; found, 275.0480.

2-Chloro-5-iodomethylocta-1,7-diene (18). To a solution of mesylate $17(155 \mathrm{mg}, 0.62 \mathrm{mmol})$ in acetone (5 mL) was added sodium iodide (369 mg , 2.96 mmol) and the mixture was stirred at $60^{\circ} \mathrm{C}$ for 12 h . The solvent was then removed under reduced pressure and the residue was purified by flash column chromatography (pentane) to afford the title compound 18 as a clear oil ($140 \mathrm{mg}, 81 \%$). ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.79-5.65(\mathrm{~m}, 1 \mathrm{H}), 5.19-4.91(\mathrm{~m}, 4 \mathrm{H}), 3.27(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.41-2.34$ $(\mathrm{m}, 2 \mathrm{H}), 2.19-2.06(\mathrm{~m}, 2 \mathrm{H}), 1.68-1.61(\mathrm{~m}, 1 \mathrm{H}), 1.35-1.22(\mathrm{~m}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 142.6,135.5,117.9,112.9,38.7,37.6,36.6,32.0,15.0 ;$ HRMS-EI $[\mathrm{M}]^{+}$calcd for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{ClI}$, 283.9829; found, 283.9841 .

2-(2-Allyl-5-chlorohex-5-enyl)-malonic Acid Diethyl Ester (4).

To a solution of iodide $\mathbf{1 8}(44 \mathrm{mg}, 0.15 \mathrm{mmol})$ and diethyl malonate (26 $\mathrm{mg}, 0.16 \mathrm{mmol})$ in acetonitrile (5 mL) was added Verkade's base (37 mg ,
 0.17 mmol), and the reaction mixture was stirred at rt for 24 h . The solvent was removed under reduced pressure, and the residue was purified by flash column chromatography (5$20 \%$ ether/pentane gradient) to afford the title compound 4 as a clear oil ($38 \mathrm{mg}, 80 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.81-5.68(\mathrm{~m}, 1 \mathrm{H}), 5.14-5.04(\mathrm{~m}, 4 \mathrm{H}), 4.20(\mathrm{q}, \mathrm{J}=6.8 \mathrm{~Hz}$,
$4 \mathrm{H}), 3.46(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.10-2.08(\mathrm{~m} 3 \mathrm{H}), 1.89(\mathrm{t}, J=6.0$ $\mathrm{Hz}, 2 \mathrm{H}), 1.63-1.39(\mathrm{~m}, 3 \mathrm{H}), 1.27(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 6 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $169.9,143.0,135.9,117.4,112.5,61.8,50.2,37.7,36.5,34.7,32.7,31.0,14.5$; HRMSES $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{ClO}_{4}, 317.1520$; found, 317.1512.

2-(4-Chlorocyclohex-3-enylmethyl)-malonic Acid Diethyl Ester

 and benzene $(20 \mathrm{~mL})$. The mixture was deaerated with argon for 1 h . Grubbs $2^{\text {nd }}$ generation catalyst ($12 \mathrm{mg}, 0.02 \mathrm{mmol}$) in benzene (2 mL) was added via syringe. The combined mixture was deaerated with argon for another 20 min , and then heated at $65^{\circ} \mathrm{C}$ for 12 h . The solvent was removed under reduced pressure, and the residue was purified by flash column chromatography ($2-5 \%$ ether/pentane gradient) to afford the title compound 5 as a yellow oil ($42 \mathrm{mg}, 95 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 5.83-5.66 (m, $1 \mathrm{H}), 4.20(\mathrm{dd}, J=7.0,14.0 \mathrm{~Hz}, 4 \mathrm{H}), 3.42(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.56-2.26(\mathrm{~m}, 4 \mathrm{H}), 1.97-$ $1.84(\mathrm{~m}, 4 \mathrm{H}), 1.51-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.49-1.39(\mathrm{~m}, 1 \mathrm{H}),(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(75$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.8,132.1,123.6,61.8,50.1,34.7,32.7,32.3,30.8,29.8,14.4$; HRMSES $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{ClO}_{4}, 289.1207$; found, 289.1202.

2-(3-Chloro-4-oxocyclohexylmethyl)-malonic Acid Diethyl

 aqueous sodium hypochlorite ($68 \mu \mathrm{~L}$ of 10% solution, 0.10 mmol) via syringe. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min and quenched by addition of aqueous
saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution. The mixture was then extracted with dichloromethane (20 $\mathrm{mL} x$ 2). The organic layers were combined, washed with brine (10 mL) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and the residue was purified by flash column chromatography (10% ether/pentane) to afford the title compound $\mathbf{6}$ as a yellow oil containing a $1: 1$ mixture of diastereomers ($16 \mathrm{mg}, 50 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 4.78(0.2 \mathrm{H}), 4.33-4.06(\mathrm{~m}, 4.8 \mathrm{H}), 3.47-3.7(\mathrm{~m}, 1 \mathrm{H}), 3.03-2.94(\mathrm{~m}, 0.6 \mathrm{H}), 2.99-$ $2.96(\mathrm{~m}, 1 \mathrm{H}), 2.35-2.22(\mathrm{~m}, 2 \mathrm{H}), 2.13-2.07(\mathrm{~m}, 2 \mathrm{H}), 1.97-1.86(\mathrm{~m}, 3 \mathrm{H}), 1.81-1.79(\mathrm{~m}$, $1 \mathrm{H}), 1.32-1.27(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 204.6,169.7,169.6,169.5$, $168.0,62.1,62.0,59.8,50.2,50.0,41.0,37.2,35.8,34.2,33.9,32.6,30.1,29.1,28.9$, 22.4, 14.5; HRMS-ES $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{ClO}_{5} \mathrm{Na}, 327.0975$; found, 327.0984.

2-(3-Chloro-4-tert-butyldimethylsilyloxyimino-

 cyclohexylmethyl)-malonic Acid Diethyl Ester (7). To a solution of α chloroketone $6(11 \mathrm{mg}, 0.037 \mathrm{mmol})$ in dichloromethane $(0.5 \mathrm{~mL})$ were added O-(t-butyldimethylsilyl)-hydroxylamine ($11 \mathrm{mg}, 0.075 \mathrm{mmol}$), $4 \AA$ molecular sieves (crushed), and a catalytic amount of PPTS. The mixture was stirred at rt for 12 h , and then filtered through a pad of Celite. The solvent was removed under reduced pressure and the residue was purified by flash column chromatography (10-20\% ether/pentane gradient) to afford the title compound 7 as a clear oil containing a complex mixture of stereoisomers ($12 \mathrm{mg}, 75 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.68$ (brs, 0.4 H), 5.14 (brs, 0.6 H$), 4.24(\mathrm{q}, J=7.0 \mathrm{~Hz}, 4 \mathrm{H}), 3.45(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.36-3.23(\mathrm{~m}, 0.6 \mathrm{H})$, $2.60-2.58(\mathrm{~m}, 0.4 \mathrm{H}), 2.41-1.85(\mathrm{~m}, 6 \mathrm{H}), 1.66-1.53(\mathrm{~m}, 1 \mathrm{H}), 1.31(\mathrm{t}, J=7.0,6 \mathrm{H}), 0.91(\mathrm{~s}$,
$9 \mathrm{H}), 0.18(\mathrm{~s}, 6 \mathrm{H})$; HRMS-ES $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{37} \mathrm{NClO}_{5} \mathrm{Si}$, 434.2130; found, 434.2132.

4-Hydroxyiminobicyclo[3.2.1]octane-6,6-dicarboxylic Acid Diethyl

Ester (9). To a solution of oxime $7(8 \mathrm{mg}, 0.018 \mathrm{mmol})$ in THF $(0.5 \mathrm{~mL})$ at -78 ${ }^{\circ} \mathrm{C}$ was added dropwise NaHMDS (2 M in THF, $12 \mu \mathrm{~L}, 0.025 \mathrm{mmol}$). After 1 h
$\mathrm{EtO}_{2} \mathrm{C}$
$\mathrm{EtO}_{2} \mathrm{C}$ ${ }^{2}$ N at $-78^{\circ} \mathrm{C}$, TBAF (1 M in THF, $24 \mu \mathrm{~L}, 0.024 \mathrm{mmol}$) was added and the reaction mixture was warmed to rt over 2 h . Saturated $\mathrm{NH}_{4} \mathrm{Cl}$ was added and the mixture was extracted with EtOAc (10 mL x 2). The combined organic layers were dried over MgSO_{4}, and the solvent was removed under reduced pressure. The residue was purified by flash column chromatography ($20 \% \mathrm{EtOAc} /$ hexanes) to afford the title compound 9 as a white crystalline solid ($5 \mathrm{mg}, 99 \%$) which was recrystallized from chloroform to afford colorless crystals suitable for X-ray analysis. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.58$ (brs, $1 \mathrm{H}), 4.23-4.14(\mathrm{~m}, 4 \mathrm{H}), 3.49(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{q}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.6(\mathrm{~d}, J=$ $14.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{brs}, 1 \mathrm{H}), 2.27(\mathrm{q}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.15-2.03(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.85(\mathrm{~m}$, 1H), 1.66-1.61 (m, 2H), 1.27-1.20 (m, 6H); ${ }^{13} \mathrm{C}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.9,170.2$, $160.0,63.4,62.0,61.9,49.3,38.3,36.3,34.3,30.4,18.3,14.4,14.3 ;$ HRMS-ES $[\mathrm{M}+\mathrm{H}]^{+}$ calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{NO}_{5}, 284.1498$; found, 284.1504.

4-Oxobicyclo[3.2.1]octane-6,6-dicarboxylic Acid Diethyl Ester

(10). To a solution of oxime 9 ($23 \mathrm{mg}, 0.084 \mathrm{mmol}$) in dichloromethane (0.5 $\mathrm{mL})$ at rt was added DMP $(20 \mathrm{mg}, 0.088 \mathrm{mmol})$. After stirring the mixture for 10 min at rt , dichloromethane $(10 \mathrm{~mL})$ and aqueous $\mathrm{NaHSO}_{4}(10 \mathrm{~mL})$ were added. The mixture was shaken for 5 min and extracted with dichloromethane $(10 \mathrm{~mL} \times 2)$. The
combined organic layers were dried over MgSO_{4} and the solvent was removed under reduced pressure. The residue was purified by flash column chromatography (10% EtOAc/hexanes) to afford the title compound $\mathbf{1 0}$ as a clear oil ($15 \mathrm{mg}, 65 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 4.25-4.41(\mathrm{~m}, 4 \mathrm{H}), 3.31(\mathrm{~d}, \mathrm{~J}=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.75-2.67(\mathrm{~m}, 1 \mathrm{H})$, 2.65-2.55 (m, 1H), 2.49-2.44(m, 1H), 2.43-2.34 (m, 2H), 2.28-2.23(m, 1H), 1.92-1.89 $(\mathrm{m}, 1 \mathrm{H}), 1.80-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.29-1.22(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 209.5$, $171.3,170.5,77.6,62.8,62.49,62.45,58.8,38.3,36.6,35.9,34.3,32.0,30.1,14.39$, 14.31.

2-Allyl-4-chloro-4-enoic Acid Ethyl Ester (19). To a stirred

 THF (5 mL) was added dropwise ethyl 4-pentenoate ($256 \mathrm{mg}, 2 \mathrm{mmol}$) in THF (1 mL) at $-78^{\circ} \mathrm{C}$. The resulting mixture was stirred for 30 min at $-78^{\circ} \mathrm{C}$ and 2-chloro-3iodopropene ($486 \mathrm{mg}, 2.4 \mathrm{mmol}$) was added. The reaction mixture was warmed to rt over 8 h . Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ and ether $(10 \mathrm{~mL})$ were added. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. The residue was purified by flash chromatography (10% ether/pentane) to afford the ester 19 as a colorless oil ($309 \mathrm{mg}, 76 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.73-5.59(\mathrm{~m}, 1 \mathrm{H}), 5.13$ $(\mathrm{d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.05-4.96(\mathrm{~m}, 2 \mathrm{H}), 4.06(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, 2.82-2.70 (m, 1H), $2.62(\mathrm{dd}, J=8.3,14.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{dd}, J=6.3,14.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.31-$ $2.17(\mathrm{~m}, 2 \mathrm{H}), 1.17(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.4,140.1$, 134.8, 117.8, 114.6, 60.8, 43.1, 41.0, 35.8, 14.6; HRMS-AP $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{ClO}_{2}, 203.0839$; found, 203.0835.2-Allyl-4-chloropent-4-en-1-ol (20). To a stirred suspension of $\mathrm{LiAlH}_{4}(84 \mathrm{mg}, 2.21 \mathrm{mmol})$ in THF $(5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added dropwise ester $19(250 \mathrm{mg}, 1.23 \mathrm{mmol})$ in ether $(5 \mathrm{~mL})$. The mixture was stirred for 1 h at rt , and then diluted with ethyl acetate $(10 \mathrm{~mL})$. The mixture was poured into 1 M HCl solution. Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ and $\mathrm{EtOAc}(10 \mathrm{~mL})$ were then added. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. The residue was purified by flash column chromatography (30% ether/pentane) to afford the alcohol 20 as a colorless oil (140 mg, 70\%). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.81-5.67(\mathrm{~m}$, $1 \mathrm{H}), 5.15(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.05-4.97(\mathrm{~m}, 2 \mathrm{H}), 3.53(\mathrm{~d}, J=$ $4.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.36(\mathrm{dd}, J=7.4,14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{dd}, J=6.7,14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.10-2.05$ $(\mathrm{m}, 2 \mathrm{H}), 2.01-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.47(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 140.0,134.9$, 115.6, 112.7, 62.9, 39.3, 36.5, 33.6; HRMS-EI [M] ${ }^{+}$calcd for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{ClO}, 160.0655$; found, 160.0654 .

Methanesulfonic Acid 2-Allyl-4-chloropent-4-enyl Ester (21). To a

 stirred solution of alcohol $20(132 \mathrm{mg}, 0.82 \mathrm{mmol})$ in dichloromethane $(5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added portionwise triethylamine $(0.36 \mathrm{~mL}, 2.46 \mathrm{mmol})$ and mesyl chloride $(0.20 \mathrm{~mL}, 2.46 \mathrm{mmol})$. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min , and then at rt for 3 h . The organic phase was diluted with dichloromethane (10 mL) and washed consecutively with brine $(10 \mathrm{~mL}), 1 \mathrm{M}$ aqueous $\mathrm{KHSO}_{4}(10 \mathrm{~mL})$, brine $(10 \mathrm{~mL}), 5 \%$ aqueous NaHCO_{3} $(10 \mathrm{~mL})$, brine $(10 \mathrm{~mL})$, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and the residue was purified by flash column chromatography (30% ether/pentane) affording the mesylate 21 as a clear oil ($166 \mathrm{mg}, 85 \%$). ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.76-5.62(\mathrm{~m}, 1 \mathrm{H}), 5.20(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H})$,5.07-5.01 (m, 2H), $4.11(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.93(\mathrm{~s}, 3 \mathrm{H}), 2.43-2.29(\mathrm{~m}, 2 \mathrm{H}), 2.23-2.09$ $(\mathrm{m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 140.1,135.0,118.5,115.4,70.8,40.5,37.5$, 35.5, 34.6; LRMS-ES $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{ClNaO}_{3} \mathrm{~S}, 261.0$; found, 261.0.

2-Chloro-4-iodomethylhepta-1,6-diene (22). To a solution of mesylate $21(156 \mathrm{mg}, 0.65 \mathrm{mmol})$ in acetone $(5 \mathrm{~mL})$ was added sodium iodide ($491 \mathrm{mg}, 3.25 \mathrm{mmol}$), and the mixture was stirred at reflux for 12 h . The solvent was removed under reduced pressure and the residue was purified by flash column chromatography (pentane) to produce the iodide 22 as a clear oil ($145 \mathrm{mg}, 82 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.71-5.58(\mathrm{~m}, 1 \mathrm{H}), 5.21(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{~d}, J=1.0$ $\mathrm{Hz}, 1 \mathrm{H}), 5.13-5.02(\mathrm{~m}, 2 \mathrm{H}), 3.21(\mathrm{dq}, J=3.9,7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.29-2.26(\mathrm{~m}, 2 \mathrm{H}), 2.09-1.97$ (m, 2H), 1.57-1.50(m, 1H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.3,135.3,118.2,115.3$, 44.1, 38.3, 35.4, 15.0; HRMS-EI [M] ${ }^{+}$calcd for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{CII}$, 269.9672; found, 269.9669 .

2-(2-Allyl-4-chloropent-4-enyl)-malonic Acid Diethyl Ester (23).

To a stirred solution of diethyl malonate ($90 \mathrm{mg}, 0.56 \mathrm{mmol}$) in acetonitrile (3 mL) was added Verkade's base ($122 \mathrm{mg}, 0.56 \mathrm{mmol}$), and the mixture was stirred for 30 min at rt . Iodide $22(138 \mathrm{mg}, 0.51 \mathrm{mmol})$ was then added and the mixture was stirred for 12 h at rt . The solvent was removed under reduced pressure, and the residue was purified by flash column chromatography (20% ether/hexanes) to afford the diene 23 as a colorless oil ($109 \mathrm{mg}, 71 \%$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.73-5.60$ $(\mathrm{m}, 1 \mathrm{H}), 5.15(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.02-4.95(\mathrm{~m}, 2 \mathrm{H}), 4.12(\mathrm{dq}, J$ $=1.9,7.1 \mathrm{~Hz}, 4 \mathrm{H}), 3.40(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{dd}, J=6.1,14.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.17(\mathrm{dd}, J=$
$5.6,14.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.06-2.01(\mathrm{~m}, 2 \mathrm{H}), 1.88-1.77(\mathrm{~m}, 3 \mathrm{H}), 1.20(\mathrm{dt}, J=1.0,7.1 \mathrm{~Hz}, 6 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.8,169.7,141.2,135.4,117.9,114.6,61.8,50.2,43.7$, 37.1, 33.2, 32.2, 14.4; HRMS-ES $[M+H]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{ClO}_{4}, 303.1363$; found, 303.1360 .

2-(3-Chlorocyclopent-3-enylmethyl)-malonic Acid Diethyl Ester (24). A flame dried 250 mL two necked flask equipped with a magnetic stirring bar and a condenser was charged with diene 23 ($106 \mathrm{mg}, 0.35$
 $\mathrm{mmol})$ and benzene (100 mL). The solution was deaerated by bubbling argon through the mixture for 2 h . The second-generation Grubbs catalyst ($30 \mathrm{mg}, 0.035 \mathrm{mmol}$) in 2 mL of benzene was added and the argon bubbling was continued for an additional 30 min. The mixture was heated and stirred at $65^{\circ} \mathrm{C}$ for $2-3$ days until TLC showed the reaction was complete. The solvent was removed under reduced pressure and the residue was purified by flash column chromatography (20% ether/hexanes) to afford the vinyl chloride $\mathbf{2 4}$ as a pale yellow oil ($77 \mathrm{mg}, 80 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.53-5.50$ $(\mathrm{m}, 1 \mathrm{H}), 4.13(\mathrm{dq}, J=3.7,7.2 \mathrm{~Hz}, 4 \mathrm{H}), 3.27(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.60-2.42(\mathrm{~m}, 2 \mathrm{H}), 2.34-$ $2.30(\mathrm{~m}, 1 \mathrm{H}), 2.21-2.15(\mathrm{~m}, 1 \mathrm{H}), 2.02-1.93(\mathrm{~m}, 3 \mathrm{H}), 1.19(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.6,168.6,130.4,124.7,60.8,50.0,42.5,36.8,34.8,34.2,13.4$; HRMS-ES $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{ClO}_{4}, 275.1050$; found, 275.1052.

2-(3-Chloro-4-oxocyclopentylmethyl)-malonic Acid Diethyl Ester

 (25). To a solution of vinyl chloride $24(60 \mathrm{mg}, 0.22 \mathrm{mmol})$, acetone (2.5 $\mathrm{mL})$ and glacial acetic acid $(1 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added dropwise sodium hypochlorite (0.16 mL of 10% solution, 0.22 mmol) via syringe. The reaction mixture
was stirred at $0^{\circ} \mathrm{C}$ for 1 h and quenched by addition of saturated aqueous NaHCO_{3} solution. The mixture was then extracted with dichloromethane (10 mL x 2). The combined organic layers were washed with brine $(10 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and the residue was purified by flash column chromatography (50% ether/hexanes) affording the α-chloroketone 25 as a clear oil (30 mg, 48\%). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.13(\mathrm{dq}, J=1.1,7.1 \mathrm{~Hz}, 4 \mathrm{H}), 4.10-$ $4.06(\mathrm{~m}, 1 \mathrm{H}), 3.31(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.64-2.43(\mathrm{~m}, 2 \mathrm{H}), 2.33-2.24(\mathrm{~m}, 1 \mathrm{H}), 2.08-1.99$ $(\mathrm{m}, 2 \mathrm{H}), 1.97-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.21(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 209.7, 169.3, 169.3, $62.1,57.5,50.8,42.3,39.9,34.2,32.2,14.4 ;$ HRMS-AP $[M+H]^{+}$ calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{ClO}_{5}$, 291.0999; found, 291.0992.

2-(3-Chloro-4-tert-butyldimethylsilyloxyimino-

 cyclopentylmethyl)-malonic Acid Diethyl Ester (26). To a solution of α chloroketone $25(23 \mathrm{mg}, 0.079 \mathrm{mmol})$ in dichloromethane (3 mL) were added O-(tert-butyldimethylsilyl)-hydroxylamine ($24 \mathrm{mg}, 0.16 \mathrm{mmol}$), $4 \AA$ molecular sieves (crushed), and a catalytic amount of PPTS. The mixture was stirred at rt for 12 h and then filtered through a pad of Celite. The solvent was removed under reduced pressure and the residue was purified by flash column chromatography (20% ether/hexanes) to afford the α-chloroketoxime 26 as a complex mixture of stereoisomers (colorless oil, $31 \mathrm{mg}, 91 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.80(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}$, minor), $4.62(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}$, major $), 4.04(\mathrm{q}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}$, major and minor), 3.21 $(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$, major and minor), 2.75-2.60 ($\mathrm{m}, 1 \mathrm{H}$, major and minor), 2.38-2.25 (m, 1 H , major and minor), 2.10-2.04 ($\mathrm{m}, 1 \mathrm{H}$, major and minor $), 1.90-1.79(\mathrm{~m}, 3 \mathrm{H}$, major and
minor $), 1.60-1.50(\mathrm{~m}, 1 \mathrm{H}$, major and minor), $1.11(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}$, major and minor $)$, $0.76(\mathrm{~s}, 9 \mathrm{H}$, minor $), 0.74(\mathrm{~s}, 9 \mathrm{H}$, major $), 0.00(\mathrm{~s}, 6 \mathrm{H}$, major), $-0.01(\mathrm{~s}, 6 \mathrm{H}$, minor);

HRMS-ES $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{35} \mathrm{ClNO}_{5} \mathrm{Si}$, 420.1973; found, 420.1955 .

6-Hydroxyiminobicyclo[2.2.1]heptane-2,2-dicarboxylic Acid

Diethyl Ester (27). To a stirred solution of oxime 26 ($14.0 \mathrm{mg}, 0.033$

mmol) in THF (2 mL) at $-78^{\circ} \mathrm{C}$ was added dropwise NaHMDS (1 M in THF, 0.033 mL , 0.033 mmol) via syringe, and the reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h . TBAF (1 M in THF, $0.049 \mathrm{~mL}, 0.049 \mathrm{mmol}$) was then added dropwise via syringe, and the mixture was warmed to rt over 2 h . Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ was then added. The mixture was extracted with ether ($10 \mathrm{~mL} \times 3$), and the combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and the residue was purified by flash column chromatography (50% ether/pentane) to afford the bridged bicyclic oxime 27 as a clear oil ($6.3 \mathrm{mg}, 70 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40$ (s, $1 \mathrm{H}), 4.18-3.98(\mathrm{~m}, 4 \mathrm{H}), 3.37(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.37-2.20(\mathrm{~m}$, $2 \mathrm{H}), 2.11(\mathrm{dd}, J=3.4,17.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.87(\mathrm{~m}, 1 \mathrm{H}), 1.73(\mathrm{~m}, 1 \mathrm{H}), 1.58(\mathrm{~m}, 1 \mathrm{H}), 1.19-1.14$ (m, 6H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.4,170.3,163.2,62.2,61.8,60.3,49.7,40.2$, 37.6, 35.3, 33.7, 14.4, 14.3; HRMS-ES $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{NO}_{5}$, 270.1341; found, 270.1354.

2-(2-Chloroallyl)-hept-6-enoic Acid Ethyl Ester (28). To a stirred solution of LDA (2 M in THF, $9 \mathrm{~mL}, 18 \mathrm{mmol}$) and DMPU (4 mL) in THF
$\mathrm{CO}_{2} \mathrm{Et}$
Cl $(50 \mathrm{~mL})$ was added dropwise ethyl 6-heptenoate $(1.87 \mathrm{~g}, 12 \mathrm{mmol})$ in THF (5 mL) at -78
${ }^{\circ} \mathrm{C}$. The resulting mixture was stirred for 45 min at $-78^{\circ} \mathrm{C}$ and 2-chloro-3-iodopropene ($3.17 \mathrm{~g}, 15.6 \mathrm{mmol}$) was added. The reaction mixture was warmed to rt over 8 h . Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$ and ether $(50 \mathrm{~mL})$ were added. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. The residue was purified by flash chromatography ($5 \% \mathrm{EtOAc} /$ hexanes) to afford the ester 28 as a colorless oil ($1.95 \mathrm{~g}, 71 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.77-5.63(\mathrm{~m}, 1 \mathrm{H}), 5.12(\mathrm{~d}, \mathrm{~J}$ $=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.97-4.86(\mathrm{~m}, 2 \mathrm{H}), 4.08(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.71-$ $2.58(\mathrm{~m}, 2 \mathrm{H}), 2.38-2.32(\mathrm{~m}, 1 \mathrm{H}), 1.99(\mathrm{dq}, J=1.4,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.58-1.43(\mathrm{~m}, 2 \mathrm{H}), 1.41-$ $1.27(\mathrm{~m}, 2 \mathrm{H}), 1.18(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 175.3,140.3$, 138.6, 115.2, 114.5, 60.8, 43.5, 42.0, 33.8, 31.4, 26.6, 14.6; HRMS-AP $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{ClO}_{2}$, 231.1152; found, 231.1151 .

2-(2-Chloroallyl)-hept-6-en-1-ol (29). To a stirred suspension of $\mathrm{LiAlH}_{4}(1.05 \mathrm{~g}, 27.9 \mathrm{mmol})$ in THF (50 mL) was added dropwise ester 28

OH
cl $(3.58 \mathrm{~g}, 15.5 \mathrm{mmol})$ in ether $(25 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred for 1 h at rt , and then diluted with ethyl acetate $(15 \mathrm{~mL})$. The mixture was poured into 1 M HCl solution. Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ and EtOAc $(20 \mathrm{~mL})$ were then added. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. The residue was purified by flash column chromatography (25% ether/pentane) to afford the alcohol 29 as a colorless oil ($2.11 \mathrm{~g}, 72 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 5.87-5.73 (m, 1H), $5.20(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.04-4.92(\mathrm{~m}, 2 \mathrm{H})$, 3.57 (br s, 2H), $2.46(\mathrm{dd}, J=0.6,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 1 \mathrm{H}), 2.28(\mathrm{dd}, J=0.6,6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.09-2.02(\mathrm{~m}, 2 \mathrm{H}), 1.92-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.49-1.30(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz ,
$\left.\mathrm{CDCl}_{3}\right) \delta 142.0,139.0,115.0,114.1,64.7,41.5,38.4,34.3,30.1,26.5 ;$ HRMS-EI [M] ${ }^{+}$ calcd for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{ClO}, 188.0968$; found, 188.0959.

Methanesulfonic Acid 2-(2-Chloroallyl)-hept-6-enyl Ester (30). To a solution of alcohol $29(30 \mathrm{mg}, 0.15 \mathrm{mmol})$ in dichloromethane $(3 \mathrm{~mL})$ at 0 ${ }^{\circ} \mathrm{C}$ was added portionwise triethylamine $(0.065 \mathrm{~mL}, 0.45 \mathrm{mmol})$ and mesyl chloride $(0.037 \mathrm{~mL}, 0.45 \mathrm{mmol})$. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min , and then at rt for 3 h. The organic phase was diluted with dichloromethane $(10 \mathrm{~mL})$ and washed consecutively with brine (10 mL), 1 M aqueous $\mathrm{KHSO}_{4}(10 \mathrm{~mL})$, brine $(10 \mathrm{~mL}), 5 \%$ aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$, brine $(10 \mathrm{~mL})$, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and the residue was purified by flash column chromatography (30% ether/pentane) affording the mesylate 30 as a clear oil (37 mg , $88 \%) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.78-5.65(\mathrm{~m}, 1 \mathrm{H}), 5.19(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.15$ $(\mathrm{d}, \mathrm{J}=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.98-4.87(\mathrm{~m}, 2 \mathrm{H}), 4.11(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.93(\mathrm{~s}, 3 \mathrm{H}), 2.42-2.26$ $(\mathrm{m}, 2 \mathrm{H}), 2.09-1.97(\mathrm{~m}, 3 \mathrm{H}), 1.43-1.32(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 140.4$, 138.6, 115.4, 115.3, 71.1, 41.1, 37.6, 35.8, 34.0, 29.9, 26.2; LRMS-ES $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{ClNaO}_{3} \mathrm{~S}$, 289.1; found, 289.1.

2-Chloro-4-iodomethylnona-1,8-diene (31). To a stirred solution of mesylate $30(2.00 \mathrm{~g}, 7.49 \mathrm{mmol})$ in acetone $(20 \mathrm{~mL})$ was added sodium iodide ($5.62 \mathrm{~g}, 37.45 \mathrm{mmol}$) and the mixture was stirred at reflux for 12 h . The solvent was then removed under reduced pressure and the residue was purified by flash column chromatography (pentane) to produce the iodide 31 as a clear oil ($2.12 \mathrm{~g}, 95 \%$). ${ }^{1} \mathrm{H}$ NMR
($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.79-5.66(\mathrm{~m}, 1 \mathrm{H}), 5.19(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{~d}, J=1.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.98-4.87(\mathrm{~m}, 2 \mathrm{H}), 3.21(\mathrm{dq}, J=3.7,10.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.31-2.17(\mathrm{~m}, 2 \mathrm{H}), 2.01(\mathrm{q}, J=$ $6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.43-1.18(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 140.5,138.7,115.3$, 115.2, 44.7, 35.4, 34.0, 33.7, 26.1, 15.8; HRMS-EI $[\mathrm{M}]^{+}$calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{CII}$, 297.9985; found, 297.9987.

2-[2-(2-Chloroallyl)-hept-6-enyl]-malonic Acid Diethyl Ester

(32). To a stirred solution of diethyl malonate $(0.59 \mathrm{~g}, 3.69 \mathrm{mmol})$ in acetonitrile (50 mL) was added Verkade's base ($0.8 \mathrm{~g}, 3.69 \mathrm{mmol}$) and the mixture was stirred for 30 min at rt . Iodide $31(1.00 \mathrm{~g}, 3.35 \mathrm{mmol})$ was then added and the resulting solution was stirred at rt for 12 h . The solvent was removed under reduced pressure, and the residue was purified by flash column chromatography (15% ether/hexanes) to afford the diene 32 as a colorless oil ($0.92 \mathrm{~g}, 83 \%$). ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.78-5.64(\mathrm{~m}, 1 \mathrm{H}), 5.13(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H})$, 4.96-4.84 (m, 2H), $4.12(\mathrm{q}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 3.37(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.27-2.14(\mathrm{~m}, 2 \mathrm{H})$, $1.96(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.82(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.74-1.63(\mathrm{~m}, 1 \mathrm{H}), 1.40-1.24(\mathrm{~m}, 4 \mathrm{H})$, $1.19(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.8,169.7,141.5,138.9$, $115.0,114.3,61.8,50.2,44.1,34.1,33.4,32.6,32.4,25.6,14.4 ;$ HRMS-ES $[\mathrm{M}+\mathrm{H}]^{+}$ calcd for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{ClO}_{4}, 331.1676$; found, 331.1674 .

2-(3-Chlorocyclohept-3-enylmethyl)-malonic Acid Diethyl Ester

(33). A flame dried 250 mL two necked flask equipped with a magnetic stirring bar and a condenser was charged with diene 32 ($250 \mathrm{mg}, 0.76 \mathrm{mmol}$)

and benzene (200 mL). The resulting solution was deaerated by bubbling argon through the mixture for 2 h . The second-generation Grubbs catalyst ($66 \mathrm{mg}, 0.076 \mathrm{mmol}$) in 2 mL of benzene was added and the argon bubbling was continued for an additional 30 min. The mixture was heated and stirred at $65^{\circ} \mathrm{C}$ for $6-7$ days until TLC showed the reaction was complete. The solvent was removed under reduced pressure and the residue was purified by flash column chromatography ($10 \% \mathrm{EtOAc} /$ hexanes) to afford the vinyl chloride 33 as a yellow oil $(180 \mathrm{mg}, 79 \%) .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.89(\mathrm{t}, J=6.5$ $\mathrm{Hz}, 1 \mathrm{H}), 4.12(\mathrm{dq}, J=1.9,7.0 \mathrm{~Hz}, 4 \mathrm{H}), 3.37(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.44-2.42(\mathrm{~m}, 2 \mathrm{H}), 2.04-$ $1.95(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.78(\mathrm{~m}, 3 \mathrm{H}), 1.65-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.45-1.32(\mathrm{~m}, 2 \mathrm{H}), 1.21(\mathrm{dt}, J=0.9$, 7.1 Hz, 6H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.9,169.8,133.9,129.6,61.8,50.2,43.2$, 37.0, 34.9, 34.0, 27.9, 24.8, 14.4; HRMS-ES $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{ClO}_{4}, 303.1363$; found, 303.1358.

2-(4-Chloro-3-oxocycloheptylmethyl)-malonic Acid Diethyl Ester

 hypochlorite (0.23 mL of 10% solution, 0.31 mmol) via syringe. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h and quenched by addition of saturated aqueous NaHCO_{3} solution. The mixture was then extracted with dichloromethane ($10 \mathrm{~mL} x 2$). The combined organic layers were washed with brine $(10 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and the residue was purified by flash column chromatography (50% ether/hexanes) affording the α-chloroketone 34 as a clear oil (56 mg, 56\%). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 2: 1$ diastereomeric mixture) $\delta 4.26(\mathrm{t}, \mathrm{J}=$
$4.8 \mathrm{~Hz}, 1 \mathrm{H}$, minor), 4.06-3.94 (m, 5H major, 4H minor), $3.19(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}$, major and minor), 2.71-2.65 (m, 1H, minor), 2.46-2.38 (m, 1H, major), 2.29-2.05 (m, 3H, major and minor), 1.82-1.51 (m, 5H, major and minor), 1.08-1.02 (m, 8H, major and minor); ${ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}) $\delta 205.7,204.7,169.6,169.5,169.4,65.4,62.4$, $62.0,62.0,50.0,50.0,46.0,44.9,36.1,35.9,35.9,35.4,35.2,35.2,34.2,33.2,25.1,23.2$, 14.4; HRMS-ES $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{ClNaO}_{5}, 341.1132$; found, 341.1141 .

2-(4-Chloro-3-tert-butyldimethylsilyloxyimino-

 cycloheptylmethyl)-malonic Acid Diethyl Ester (35). To a solution of α chloroketone $34(48 \mathrm{mg}, 0.15 \mathrm{mmol})$ in dichloromethane $(3 \mathrm{~mL})$ were added $\mathrm{TBSO}^{\mathrm{N}}$ O-(tert-butyldimethylsilyl)-hydroxylamine ($45 \mathrm{mg}, 0.30 \mathrm{mmol}$), $4 \AA$ molecular sieves (crushed), and a catalytic amount of PPTS. The mixture was stirred at rt for 48 h and then filtered through a pad of Celite. The solvent was removed under reduced pressure and the residue was purified by flash column chromatography (20% ether/hexanes) to afford the α-chloroketoxime 35 (colorless oil) as a complex mixture of stereoisomers (57 $\mathrm{mg}, 83 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, $) \delta 5.47(\mathrm{~s}, 0.02 \mathrm{H}), 5.26(\mathrm{dd}, J=4.4,8.1 \mathrm{~Hz}$, $0.28 \mathrm{H}), 5.09(\mathrm{dd}, J=6.3,10.7 \mathrm{~Hz}, 0.18 \mathrm{H}), 4.75-4.72(\mathrm{~m}, 0.11 \mathrm{H}), 4.57-4.39(\mathrm{~m}, 0.27 \mathrm{H})$, 4.10-3.92 (m, 4H), 3.43-3.28 (m, 1H), 3.22-3.16 (m, 0.25H), $2.86(\mathrm{~d}, J=11.8 \mathrm{~Hz}$, $0.33 \mathrm{H}), 2.60-1.49(\mathrm{~m}, 9 \mathrm{H}), 1.32-1.27(\mathrm{~m}, 1.5 \mathrm{H}), 1.16-1.07(\mathrm{~m}, 6 \mathrm{H}), 0.77(\mathrm{~s}, 9 \mathrm{H}), 0.00(\mathrm{~s}$, $6 \mathrm{H})$; HRMS-ES $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{39} \mathrm{ClNO}_{5} \mathrm{Si}, 448.2286$; found, 448.2274.
9-Hydroxyiminobicyclo[3.2.2]nonane-6,6-dicarboxylic Acid

Diethyl Ester (36). To a stirred solution of oxime 35 ($20.0 \mathrm{mg}, 0.044$

$$
\underset{\mathrm{HO}}{\mathrm{EtO}_{2} \mathrm{C}} \mathrm{CO}_{2} \mathrm{Et}
$$

mmol) in THF (2 mL) at -7 韦 $^{\circ} \mathrm{C}$ was added dropwise NaHMDS (1 M in THF, 0.044 mL , 0.044 mmol) via syringe, and the reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h . TBAF (1 M in THF, $0.067 \mathrm{~mL}, 0.067 \mathrm{mmol}$) was added dropwise via syringe, and the mixture was warmed to rt over 2 h . Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ was then added. The mixture was extracted with ether ($10 \mathrm{~mL} \times 3$), and the combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and the residue was purified by flash column chromatography (50\% ether/hexanes) to afford the bridged bicyclic oxime 36 as a colorless oil ($6.9 \mathrm{mg}, 53 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 5: 1$ geometrical isomer mixture) $\delta 7.62$ (br s, 1 H , major and minor), 4.10-3.88 ($\mathrm{m}, 4 \mathrm{H}$, major and minor), $3.18(\mathrm{t}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}$, major), $2.91(\mathrm{t}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}$, minor $), 2.55-2.45(\mathrm{~m}, 1 \mathrm{H}$, major $)$, 2.32-2.09 (m, 4H, major and minor), 1.98-1.94 (m, 1H, minor), 1.86-1.75 (m, 2H, minor), $1.64(\mathrm{q}, \mathrm{J}=5.9 \mathrm{~Hz}, 2 \mathrm{H}$, major), 1.54-1.48 ($\mathrm{m}, 2 \mathrm{H}$, major and minor), 1.41-1.19 $\left(\mathrm{m}, 2 \mathrm{H}\right.$, major and minor), 1.12-1.02 ($\mathrm{m}, 6 \mathrm{H}$, major and minor) ${ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 172.4,171.6,171.5,171.2,161.5,161.2,62.1,62.0,57.0,55.3,42.5,37.6,34.9$, $33.1,32.9,30.5,30.4,30.1,28.6,27.5,25.7,24.4,21.6,21.0,14.4,14.4,14.3$; HRMS$\mathrm{ES}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{NO}_{5}, 298.1654$; found, 298.1662.

2-(2-Chloroallyl)-hex-5-enoic Acid Methyl Ester (37). To a

 solution of LDA (2 M in THF, $10 \mathrm{~mL}, 20.0 \mathrm{mmol}$) and DMPU (2.8 mL , $21.8 \mathrm{mmol})$ in THF $(15 \mathrm{~mL})$ was added 5 -hexenoic acid methyl ester $(2.00 \mathrm{~g}, 15.6$ $\mathrm{mmol})$ in THF $(15 \mathrm{~mL})$ dropwise at $-78^{\circ} \mathrm{C}$. The mixture was stirred for 45 min at $-78^{\circ} \mathrm{C}$. 2-Chloro-3-iodopropene ($4.0 \mathrm{~g}, 19.8 \mathrm{mmol}$) was added, and the reaction mixture was allowed to warm to $0{ }^{\circ} \mathrm{C}$ over 3 h . Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(30 \mathrm{~mL})$ and $\mathrm{EtOAc}(50$mL) were added. The organic layer was dried over MgSO_{4}. The solvent was removed under reduced pressure and the residue was purified by flash column chromatography on silica gel ($10 \% \mathrm{EtOAc} /$ hexanes) to afford the title compound 37 as a yellow oil (2.52 g , $80 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.65(\mathrm{~m}, 1 \mathrm{H}), 5.12(\mathrm{dd}, J=1.1,8.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.99$ $4.93(\mathrm{~m}, 0.5 \mathrm{H}), 4.95-4.93(\mathrm{~m}, 1 \mathrm{H}), 4.91-4.90(\mathrm{~m}, 0.5 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 2.63-2.60(\mathrm{~m}, 1 \mathrm{H})$, $2.64(\mathrm{dd}, J=8.3,22.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.38(\mathrm{dd}, J=6.2,14.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.01-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.63-$ $1.72(\mathrm{~m} \mathrm{1H}), 1.59-1.61(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 175.5,140.2,137.7$, $115.7,114.6,51.9,43.1,41.9,31.6,31.1$.

2-(2-Chloroallyl)-hex-5-en-1-ol (38). To a suspension of LiAlH_{4} (1.5 $\mathrm{g}, 39.8 \mathrm{mmol})$ in THF $(50 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added dropwise ester $37(4.50 \mathrm{~g}$, $22.3 \mathrm{mmol})$ in ether (50 mL) over 10 min . The mixture was stirred for 12 h at rt , and diluted with EtOAc (20 mL). The mixture was then poured into 1 M HCl solution (30 $\mathrm{mL})$ and saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ and $\operatorname{EtOAc}(10 \mathrm{~mL})$ were added. The organic layer was dried over MgSO_{4}. The solvent was removed under reduced pressure, and the residue was purified by flash column chromatography (10-30\% EtOAc/hexanes gradient) to afford the title compound 38 as a clear oil $(3.09 \mathrm{~g}, 95 \%) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.81-5.68(\mathrm{~m}, 1 \mathrm{H}), 5.13(\mathrm{dd}, J=0.9,11.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.01-4.88(\mathrm{~m}, 2 \mathrm{H}), 3.55(\mathrm{t}, J=4.3$ $\mathrm{Hz}, 2 \mathrm{H}), 2.40(\mathrm{dd}, J=7.5,14.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{dd}, J=6.7,14.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.12-1.99(\mathrm{~m}$, 2H), 1.93-1.80(m, 1H), 1.49-1.30(m, 2H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.9,138.9$, 115.2, 114.3, 64.5, 41.5, 37.9, 31.4, 29.8; HRMS-EI [M] ${ }^{+}$calcd for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{ClO}, 174.0811$; found, 175.0815.

Methanesulfonic Acid 2-(2-Chloroallyl)-hex-5-enyl Ester (39).

To a solution of alcohol $\mathbf{3 8}(152 \mathrm{mg}, 0.87 \mathrm{mmol})$ in dichloromethane (3 $\mathrm{mL})$ at $0{ }^{\circ} \mathrm{C}$ was added portionwise triethylamine $(117 \mu \mathrm{~L}, 0.79 \mathrm{mmol})$ and mesyl chloride ($40 \mu \mathrm{~L}, 0.54 \mathrm{mmol}$). The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min , and then at rt for 30 min . The organic phase was washed consecutively with brine (10 mL), 1 M aqueous $\mathrm{KHSO}_{4}(10 \mathrm{~mL})$, brine (10 mL), 5% aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$, brine $(10 \mathrm{~mL})$, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ overnight. The solvent was removed under reduced pressure to afford the title compound 39 as a clear oil which was used for the next step without further purification (206 mg, 94\%). ${ }^{1} \mathrm{H}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.81-5.72(\mathrm{~m}, 1 \mathrm{H})$, 5.20-5.09 (m, 4H), 4.21-4.19 (m, 2H), 3.03 (s, 3H), 2.45-2.40 (m, 2H), 2.21-2.17 (m, 2H), 1.92-1.86 (m, 1H), 1.73-1.70 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142,4$, $135.2,118.2,113.1,71.6,37.6,36.9,36.6,35.2,28.2 ;$ HRMS-ES $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{O}_{3} \mathrm{SClNa}$, 275.0485; found, 275.0487.

2-Chloro-4-iodomethylocta-1,7-diene (40). To a solution of mesylate $39(3.09 \mathrm{~g}, 12.30 \mathrm{mmol})$ in acetone $(30 \mathrm{~mL})$ was added sodium iodide ($5.51 \mathrm{~g}, 36.70 \mathrm{mmol}$), and the mixture was stirred at $60^{\circ} \mathrm{C}$ for 5 h .
 The solvent was then removed under reduced pressure and the residue was purified by flash column chromatography (pentane) to afford the title compound $\mathbf{4 0}$ as a clear oil (3.29 g, 94\%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.87-5.78(\mathrm{~m}, 1 \mathrm{H}), 5.29(\mathrm{dd}, J=0.7,7.6$ $\mathrm{Hz}, 2 \mathrm{H}), 5.10-5.00(\mathrm{~m}, 2 \mathrm{H}), 3.50(\mathrm{ddd}, J=0.9,7.0,14.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{ddd}, J=3.7$, $10.1,21.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.14(\mathrm{dd}, J=21.8,25.1,1 \mathrm{H}), 2.04(\mathrm{dd}, J=21.8,25.1,1 \mathrm{H}), 1.46-1.49$ (m, 4H), 1.22-1.21 (m, 1H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.4,138.1,115.7,115.3$,
44.6, 34.7, 33.4, 31.0, 15.6; HRMS-EI [M] ${ }^{+}$calcd for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{ClI}$, 283.9822; found, 283.9829.

2-[2-(2-Chloroallyl)-hex-5-enyl]-malonic Acid Diethyl Ester

 malonate ($486 \mathrm{mg}, 3.04 \mathrm{mmol}$) in acetonitrile $(50 \mathrm{~mL})$ was added Verkade's base ($656 \mathrm{mg}, 3.04 \mathrm{mmol}$), and the reaction mixture was stirred at rt for 24 h . The solvent was removed under reduced pressure, and the residue was purified by flash column chromatography ($5-20 \% \mathrm{EtOAc} /$ hexanes gradient) to afford the title compound 41 as a clear oil ($653 \mathrm{mg}, 74 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.87-5.73(\mathrm{~m}, 1 \mathrm{H}), 5.22$ (d, $J=16.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.08-4.97(\mathrm{~m}, 2 \mathrm{H}), 4.22(\mathrm{dd}, J=7.1,14.2 \mathrm{~Hz}, 4 \mathrm{H}), 3.54-3.45(\mathrm{~m}$, $1 \mathrm{H}), 2.39-2.26(\mathrm{~m}, 2 \mathrm{H}), 2.14-2.04(\mathrm{~m}, 2 \mathrm{H}), 1.96-1.91(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.60$ $(\mathrm{s}, 1 \mathrm{H}), 1.49-1.32(\mathrm{~m}, 1 \mathrm{H}), 1.30(\mathrm{t}, \mathrm{J}=5.6 \mathrm{~Hz}, 6 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 138.6, $115.2,114.5,61.8,50.2,44.0,33.1,32.6,32.0,30.6,14.4 ;$ HRMS-ES $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{ClNaO}_{4}, 339.1339$; found, 339.1349.

2-(3-Chlorocyclohex-3-enylmethyl)-malonic Acid Diethyl Ester

(42). A flame dried 50 mL two necked flask equipped with a condenser and a magnetic stirring bar was charged with ester $41(100 \mathrm{mg}, 0.32 \mathrm{mmol})$ and
 benzene (40 mL). The mixture was deaerated with argon for 1 h . Grubbs $2^{\text {nd }}$ generation catalyst ($20 \mathrm{mg}, 0.03 \mathrm{mmol}$) in benzene $(10 \mathrm{~mL})$ was added via syringe. The mixture was deaerated with argon for another 20 min and then heated at $65^{\circ} \mathrm{C}$ for three days. The solvent was removed under reduced pressure, and the residue was purified by flash
column chromatography ($2-5 \%$ ether/pentane gradient) to afford the title compound 42 as a yellow oil ($67 \mathrm{mg}, 74 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.72-5.70(\mathrm{~m}, 1 \mathrm{H}), 4.18-$ $4.08(\mathrm{~m}, 4 \mathrm{H}), 2.31-2.26(\mathrm{~m}, 1 \mathrm{H}), 2.09-1.80(\mathrm{~m}, 5.5 \mathrm{H}), 1.67-5.58(\mathrm{~m}, 2.5 \mathrm{H}), 1.20(\mathrm{t}, \mathrm{J}=$ 8.0 Hz, 6H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.6,128.7,122.5,59.7,47.8,36.9,32.8$, 31.1, 25.4, 23.7, 12.3; HRMS-AP $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{Cl}, 289.1207$; found, 289.1214.

2-(4-Chloro-3-Oxocyclohexylmethyl)-malonic Acid Diethyl

Ester (43). To a solution of ester $42(280 \mathrm{mg}, 0.97 \mathrm{mmol})$, acetone (3.39 $\mathrm{mL})$, glacial acetic acid $(1.60 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added dropwise aqueous
 sodium hypochlorite ($638 \mu \mathrm{~L}$ of 10% solution, 0.97 mmol) via syringe. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min , and quenched by addition of aqueous saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution. The mixture was then extracted with dichloromethane ($20 \mathrm{~mL} \times 2$). The combined organic layers were washed with brine $(10 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and the residue was purified by flash column chromatography (10% EtOAc/hexanes) to afford the title compound 43 (yellow oil) as a 4:6 mixture of diastereomers ($139 \mathrm{mg}, 47 \%, 67 \% \mathrm{brsm}$). For characterization purposes the two diastereomers were separated by column chromatography. More polar major diastereomer: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.75-4.74(\mathrm{~m}, 1 \mathrm{H}), 4.18-4.08(\mathrm{~m}$, $4 H), 3.37-3.31(\mathrm{~m}, 1 \mathrm{H}), 2.65-2.60(\mathrm{~m}, 1 \mathrm{H}), 2.17-1.94(\mathrm{~m}, 4 \mathrm{H}), 1.82-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.52-$ $1.40(\mathrm{~m}, 1 \mathrm{H}), 1.23-1.17(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 203.9,169.6,169.4$, $62.2,62.0,61.9,60.5,49.6,42.7,37.1,35.0,34.8,33.8,32.7,30.6,25.9,22.3,14.4$ Less polar minor diastereomer: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{m}, 4.40-4.33,1 \mathrm{H}), 4.16-4.09$
$(\mathrm{m}, 4 \mathrm{H}), 3.30(\mathrm{t}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.68-2.63(\mathrm{~m}, 1 \mathrm{H}), 2.48-2.44(\mathrm{~m}, 1 \mathrm{H}), 2.06-1.79(\mathrm{~m}$, $6 \mathrm{H}), 1.50-1.49(\mathrm{~m}, 1 \mathrm{H}), 1.23-1.17(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 202.5,170.4$, 64.9, 63.2, 50.9, 47.9, 38.7, 37.9, 36.1, 32.3, 15.5; HRMS-ES $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{ClNaO}_{5}, 327.0975$; found, 327.0984.

2-(4-Chloro-3-tert-butyldimethylsilyloxyimino-

cyclohexylmethyl)-malonic Acid Diethyl Ester (44). To a solution of α-chloroketone $43(131 \mathrm{mg}, 0.43 \mathrm{mmol})$ in dichloromethane $(0.7 \mathrm{~mL})$ were added O-(tert-butyldimethylsilyl)-hydroxylamine ($127 \mathrm{mg}, 0.86$ mmol), $4 \AA$ molecular sieves (crushed), and a catalytic amount of PPTS. The mixture was stirred at rt for 12 h and then filtered through a pad of Celite. The solvent was removed under reduced pressure and the residue was purified by flash column chromatography ($10 \% \mathrm{EtOAc} /$ hexanes) to afford the title compound 44 as a clear oil which was an inseparable complex mixture of diastereomers ($171 \mathrm{mg}, 92 \%$). ${ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 5.51($ brs, 0.3 H$), 4.95($ brs, 0.6 H$), 4.11-3.95(\mathrm{~m}, 4 \mathrm{H}), 3.34-3.06(\mathrm{~m}, 1 \mathrm{H}), 2.12-$ $2.00(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.67-1.48(\mathrm{~m}, 3 \mathrm{H}), 1.43-1.27(\mathrm{~m}, 2 \mathrm{H}), 1.11(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 3 \mathrm{H}), 1.10(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.74(\mathrm{~s}, 9 \mathrm{H}), 0.00(\mathrm{~s}, 6 \mathrm{H}) ;$ HRMS-ES $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{37} \mathrm{NO}_{5} \mathrm{SiCl}, 434.2130$; found, 434.2130 .

6-Hydroxyiminobicyclo[2.2.2]octane-2,2-dicarboxylic Acid

Diethyl Ester (45). To a solution of oxime $44(20 \mathrm{mg}, 0.046 \mathrm{mmol})$ in
 THF (0.5 mL) at $-78{ }^{\circ} \mathrm{C}$ was added dropwise NaHMDS (2 M in THF, $31 \mu \mathrm{~L}, 0.062$ mmol) via syringe, and the reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 h . TBAF (1 M in

THF, $62 \mu \mathrm{~L}, 0.062 \mathrm{mmol}$) was added dropwise via syringe, and the mixture was warmed to rt over 2 h . Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ was then added. The mixture was extracted with ether $(10 \mathrm{~mL} x 3)$, and the combined extracts were dried over MgSO_{4}. The solvent was removed under reduced pressure and the residue was purified by flash column chromatography (50% ether/pentane) to afford the title compound 45 as a clear oil (10 mg, 74\%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.55(\mathrm{~m}, 1 \mathrm{H}), 4.25-4.11(\mathrm{~m}, 4 \mathrm{H}), 3.07$ $(\mathrm{m}, 1 \mathrm{H}), 2.41(\mathrm{~m}, 2 \mathrm{H}), 2.25(\mathrm{~m}, 2 \mathrm{H}), 2.21-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.96-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.47(\mathrm{~m}$, 3H), 1.28-1.19 (m, 6H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.5,171.2,161.0,62.1,62.0$, 55.3, 37.6, 32.9, 30.4, 25.7, 24.3, 21.6, 14.4, 14.3; HRMS-ES $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{NO}_{5}, 284.1498$; found, 284.1496.

2-(2-Chloroallyloxy)-but-3-en-1-ol (47). To a suspension of LiAlH_{4} $(0.18 \mathrm{~g}, 4.73 \mathrm{mmol})$ in THF $(20 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added dropwise ester $46(1.00$ $\mathrm{g}, 4.73 \mathrm{mmol})$ in ether $(20 \mathrm{~mL})$ over 5 min . The mixture was stirred for 2 h at rt , and diluted with $\mathrm{EtOAc}(10 \mathrm{~mL})$. The mixture was then poured into saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ $(10 \mathrm{~mL})$ and extracted with EtOAc $(10 \mathrm{~mL})$. The organic layer was dried over MgSO_{4} and the solvent was removed under reduced pressure. The residue was purified by flash column chromatography ($10-30 \% \mathrm{EtOAc} /$ hexanes gradient) to afford the title compound 47 as a clear oil ($0.75 \mathrm{~g}, 90 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.18-5.45(\mathrm{~m}, 1 \mathrm{H}), 5.49$ $(\mathrm{d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.39(\mathrm{~d}, J=0.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{dd}, J=0.6,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{dd}, J=$ $3.8,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.16-4.01(\mathrm{~m}, 3 \mathrm{H}), 3.96-3.79(\mathrm{~m}, 2 \mathrm{H}), 2.35(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.82(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.7,137.8,118.5,114.4,80.2,70.9,60.7,38.2$; HRMS$\mathrm{ES}[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{ClO}_{2} \mathrm{Na}, 199.0502$; found 199.0500 .

Methanesulfonic Acid 2-(2-Chloroallyloxy)-but-3-enyl Ester

(48). To a solution of alcohol $47(1.22 \mathrm{~g}, 6.90 \mathrm{mmol})$ in dichloromethane $(21 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added triethylamine $(928 \mu \mathrm{~L}, 6.27 \mathrm{mmol})$ and mesyl chloride ($562 \mu \mathrm{~L}, 7.59 \mathrm{mmol}$) portionwise. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min , and then at rt for 30 min . The organic phase was washed consecutively with brine (10 $\mathrm{mL}), 1 \mathrm{M}$ aqueous $\mathrm{KHSO}_{4}(10 \mathrm{~mL})$, brine $(10 \mathrm{~mL}), 5 \%$ aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$, brine $(10 \mathrm{~mL})$, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ overnight. The solvent was removed under reduced pressure to afford the title compound 48 as a clear oil used for the next step without further purification ($206 \mathrm{mg}, 94 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.70-5.67(\mathrm{~m}, 1 \mathrm{H})$, $5.45(\mathrm{~s}, 1 \mathrm{H}), 5.44(\mathrm{~s}, 1 \mathrm{H}), 5.37-5.27(\mathrm{~m}, 2 \mathrm{H}), 4.43-4.33(\mathrm{~m}, 2 \mathrm{H}), 4.13-4.08(\mathrm{~m}, 1 \mathrm{H}), 3.97-$ $3.93(\mathrm{~m}, 2 \mathrm{H}), 3.02(\mathrm{~s}, 3 \mathrm{H}), 2.06-1.97(\mathrm{~m}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.6$, 137.2, 119.4, 114.4, 77.4, 71.0, 67.1, 37.6, 35.4; HRMS-ES [M + H ${ }^{+}$calcd for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{ClO}_{4} \mathrm{~S}, 254.0458$; found 255.0463.

3-(2-Chloroallyloxy)-5-iodopent-1-ene (49). To a solution of mesylate $48(400 \mathrm{mg}, 1.60 \mathrm{mmol})$ in acetone $(10 \mathrm{~mL})$ was added sodium
 iodide ($964 \mathrm{mg}, 6.40 \mathrm{mmol}$), and the mixture was stirred at $60^{\circ} \mathrm{C}$ for 5 h .

The solvent was then removed under reduced pressure and the residue was purified by flash column chromatography (pentane) to afford the title compound 49 as a clear oil ($399 \mathrm{mg}, 88 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.77-5.65(\mathrm{~m}, 1 \mathrm{H}), 5.47(\mathrm{dd}, J=1.3,2.6$ $\mathrm{Hz}, 1 \mathrm{H}), 5.39-5.29(\mathrm{~m}, 3 \mathrm{H}), 4.15-3.80(\mathrm{~m}, 3 \mathrm{H}), 3.76-3.22(\mathrm{~m}, 2 \mathrm{H}), 2.23-1.94(\mathrm{~m}, 2 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 138.8,137.2,119.0,114.0,80.8,71.1,39.5,2.3$; HRMSAP $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{ClIO}, 286.9700$; found, 286.9706.

2-[3-(2-Chloroallyloxy)-pent-4-enyl]-malonic Acid Diethyl

$\mathrm{EtO}_{2} \mathrm{C} \quad \mathrm{CO}_{2} \mathrm{Et}$
Ester (50). To a solution of iodide $49(881 \mathrm{mg}, 3.09 \mathrm{mmol})$ and diethyl malonate ($520 \mathrm{mg}, 3.24 \mathrm{mmol}$) in acetonitrile (40 mL) was added Verkade's base ($700 \mathrm{mg}, 3.24 \mathrm{mmol}$), and the reaction mixture was stirred at rt for 24 h . The solvent was removed under reduced pressure, and the residue was purified by flash column chromatography ($5-20 \% \mathrm{EtOAc} /$ hexanes gradient) to afford the title compound 50 as a clear oil ($827 \mathrm{mg}, 86 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.73-5.61(\mathrm{~m}, 1 \mathrm{H}), 5.45-$ $5.20(\mathrm{~m}, 4 \mathrm{H}), 4.25-4.17(\mathrm{~m}, 4 \mathrm{H}), 4.00(\mathrm{dd}, J=13.8,44.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.77(\mathrm{q}, J=7.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.37(\mathrm{~m}, 1 \mathrm{H}), 2.09-1.89(\mathrm{~m}, 2 \mathrm{H}), 1.80-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.27(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.7,138.8,138.0,118.5,113.5,80.6,70.7,61.6,52.0,33.1$, 25.0, 14.4; HRMS-ES $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{ClO}_{5}, 319.1312$; found, 319.1310.

2-[2-(4-Chloro-2,5-dihydrofuran-2-yl)-ethyl]-malonic Acid

$\mathrm{EtO}_{2} \mathrm{C} \quad \mathrm{CO}_{2} \mathrm{Et}$
Diethyl Ester (51). A flame dried 50 mL two necked flask equipped with a condenser and a magnetic stirring bar was charged with ester $50(100 \mathrm{mg}$, $0.35 \mathrm{mmol})$ and toluene $(60 \mathrm{~mL})$. The mixture was deaerated with argon for 1 h . Grubbs $2^{\text {nd }}$ generation catalyst ($30 \mathrm{mg}, 0.03 \mathrm{mmol}$) in toluene $(10 \mathrm{~mL})$ was added via syringe. The combined mixture was deaerated with argon for another 20 min and then heated at $120^{\circ} \mathrm{C}$ for 24 h . The solvent was removed under reduced pressure and the residue was purified by flash column chromatography ($2-5 \%$ ether/pentane gradient) to
afford the title compound 51 as a yellow oil ($63 \mathrm{mg}, 62 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 5.78-5.74 (m, 1H), 4.92-4.87 (m, 1H), 4.55-4.50 (m, 2H), 4.23-4.17 (m, 4H), 3.36 (t, J= 6.0 Hz, 1H), 1.98-1.93(m, 2H), 1.65-1.60(m, 2H), $1.27(\mathrm{t}, J=9.5 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.7,129.0,124.9,85.9,76.1,61.8,52.1,33.6,24.5,14.4$; HRMSES $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{ClO}_{5}$, 291.0999; found, 291.0995.

2-[2-(3-Chloro-4-oxotetrahydrofuran-2-yl)-ethyl]-malonic Acid
Diethyl Ester (52). To a solution of ester 51 ($125 \mathrm{mg}, 0.43 \mathrm{mmol}$), in acetone $(1.86 \mathrm{~mL})$, and glacial acetic acid $(0.75 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added
 dropwise aqueous sodium hypochlorite ($300 \mu \mathrm{~L}$ of 10% solution, 0.47 mmol) via syringe. The reaction mixture was stirred for 20 min at $0{ }^{\circ} \mathrm{C}$ and quenched by addition of aqueous saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution. The mixture was then extracted with dichloromethane (20 $\mathrm{mL} x$ 2). The combined organic layers were washed with brine $(10 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and the residue was purified by flash column chromatography ($10 \% \mathrm{EtOAc} /$ hexanes) to afford the title compound 52 (yellow oil) as an inseparable 1:1 mixture of diastereomers (73 mg, 56\%). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.38-3.92(\mathrm{~m}, 6 \mathrm{H}), 3.91-3.82(\mathrm{~m}, 1 \mathrm{H}), 3.42-3.35(\mathrm{~m}, 1 \mathrm{H}), 2.31-1.67(\mathrm{~m}$, $5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 207.3,169.7,169.4,124.9,85.9,80.6,77.8,77.4$, $69.6,61.9,61.8,57.7,52.1,52.0,51.9,51.0,42.9,41.7,38.3,33.6,28.1,24.8,24.5,22.8$, 17.0, 14.4, 14.3; HRMS-ES $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{ClO}_{6}, 307.0948$; found, 307.0943.

2-[2-(3-Chloro-4-tert-butyldimethylsilyloxyimino-

tetrahydrofuran-2-yl)-ethyl]-malonic Acid Diethyl Ester (53). To

a solution of α-chloroketone $52(10 \mathrm{mg}, 0.03 \mathrm{mmol})$ in dichloromethane $(0.5 \mathrm{~mL})$ were added O-(tert-butyldimethylsilyl)-hydroxylamine ($10 \mathrm{mg}, 0.07 \mathrm{mmol}$), $4 \AA$ molecular sieves (crushed) and a catalytic amount of PPTS. The mixture was stirred at rt for 24 h and then filtered through a pad of Celite. The solvent was removed under reduced pressure and the residue was purified by flash column chromatography (10% EtOAc/hexanes) to afford the title compound 53 (clear oil) as an inseparable complex mixture of stereoisomers ($6 \mathrm{mg}, 43 \%) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.76-4.36(\mathrm{~m}, 3 \mathrm{H})$, 4.30-4.18 (m, 4H), 4.21-4.01 (m, 1H), 4.47-4.36 (m, 3H), 4.30-4.19 (m, 4H), 3.43-3.37 $(\mathrm{m}, 6 \mathrm{H}), 1.33-1.24(\mathrm{~m}, 6 \mathrm{H}), 0.94(\mathrm{~s}, 9 \mathrm{H}), 0.16(\mathrm{~s}, 6 \mathrm{H})$; HRMS-ES $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{35} \mathrm{ClNO}_{6} \mathrm{Si}, 436.1922$; found, 436.1928 .

3-Hydroxyiminohexahydrocyclopenta[b]furan-4,4-

dicarboxylic Acid Diethyl Ester (54). To a solution of oxime 53 (8
 $\mathrm{mg}, 0.018 \mathrm{mmol})$ in THF (0.5 mL) at $-78^{\circ} \mathrm{C}$ was added dropwise NaHMDS (2 M in THF, $24 \mu \mathrm{~L}, 0.024 \mathrm{mmol}$) via syringe, and the reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h . TBAF (1 M in THF, $48 \mu \mathrm{~L}, 0.048 \mathrm{mmol}$) was then added dropwise via syringe, and the mixture was warmed to $0{ }^{\circ} \mathrm{C}$ over 2 h . Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ was then added. The mixture was extracted with ether ($10 \mathrm{~mL} \times 3$), and the combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and the residue was purified by flash column chromatography (50% ether/pentane) to afford the title compound 54 as a clear oil ($6 \mathrm{mg}, 95 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.77(\mathrm{t}, J=$ $5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{dd}, J=15.2,41.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.45-4.02(\mathrm{~m}, 5 \mathrm{H}), 2.64(\mathrm{td}, J=6.7,13.3$ $\mathrm{Hz}, 2 \mathrm{H}), 2,26(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.04(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.72-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.29(\mathrm{~m}$,
$6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.5,169.4,164.2,85.5,77.6,67.7,65.5,62.4$, 62.0, 50.9, 33.0, 32.2, 30.1, 14.3; HRMS-ES $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{NO}_{6}, 286.1291$; found, 286.1290 .

3-(3-Chlorocyclopent-3-enyl)-propionic Acid Ethyl Ester (55). $\mathrm{CO}_{2} \mathrm{Et}$

To a stirred solution of diester $24(100 \mathrm{mg}, 0.36 \mathrm{mmol})$ and water $(0.05 \mathrm{~mL})$ in DMSO (3 mL) was added $\mathrm{LiCl}(35 \mathrm{mg}, 0.79 \mathrm{mmol})$. The reaction mixture was heated at reflux for 5 h , and then cooled to rt . Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10$ mL) was added and the aqueous phase was extracted with ether ($10 \mathrm{~mL} \times 3$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure, and the residue was purified by flash column chromatography (15\% ether/hexanes) to afford the monoester 55 as a clear oil ($68 \mathrm{mg}, 93 \%$). ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.53-5.50(\mathrm{~m}, 1 \mathrm{H}), 4.05(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.57-2.41(\mathrm{~m}, 2 \mathrm{H}), 2.35-2.30$ $(\mathrm{m}, 1 \mathrm{H}), 2.23(\mathrm{t}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.20-2.12(\mathrm{~m}, 1 \mathrm{H}), 1.99-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.70(\mathrm{q}, J=7.3$ $\mathrm{Hz}, 2 \mathrm{H}), 1.18(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 172.3, 130.1, 124.4, $59.3,42.1,36.3,35.7,31.6,30.2,13.1$; HRMS-AP $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{ClO}_{2}$, 203.0839; found, 203.0838.

3-(3-Chloro-4-Oxocyclopentyl)-propionic Acid Ethyl Ester (56).

To a solution of vinyl chloride $55(121 \mathrm{mg}, 0.59 \mathrm{mmol})$, acetone $(2.5 \mathrm{~mL})$ and glacial acetic acid $(1 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added dropwise sodium hypochlorite (0.48 mL of 10% solution, 0.59 mmol) via syringe. The reaction mixture was stirred at 0 ${ }^{\circ} \mathrm{C}$ for 1 h and quenched by addition of saturated aqueous NaHCO_{3} solution. The
mixture was then extracted with dichloromethane (10 mL x 2). The combined organic layers were washed with brine $(10 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and the residue was purified by flash column chromatography (50% ether/hexanes) affording the α-chloroketone 56 as a clear oil (60 $\mathrm{mg}, 46 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.07(\mathrm{q}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.63-2.43(\mathrm{~m}, 2 \mathrm{H})$, $2.30(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.28-2.23(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.69(\mathrm{~m}, 4 \mathrm{H}), 1.20(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 210.2,173.3,61.0,57.7,42.4,39.9,33.5,32.9,30.514 .6 ;$ HRMS-ES $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{ClNaO}_{3}, 241.0607$; found, 241.0604.

3-(3-Chloro-4-tert-butyldimethylsilyloxyiminocyclopentyl)-

 butyldimethylsilyl)-hydroxylamine ($50 \mathrm{mg}, 0.34 \mathrm{mmol}$), $4 \AA \AA$ molecular sieves (crushed), and a catalytic amount of PPTS. The mixture was stirred at rt for 12 h and then filtered through a pad of Celite. The solvent was removed under reduced pressure and the residue was purified by flash column chromatography (20% ether/hexanes) to afford the α-chloroketoxime 11 as a colorless oil (76 mg, 93%). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 2: 1$ geometrical isomer mixture) $\delta 4.84(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}$, minor), $4.62(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}$, major), $3.97(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}$, major and minor), 2.75-2.60 ($\mathrm{m}, 1 \mathrm{H}$, major and minor), 2.35-2.30 ($\mathrm{m}, 1 \mathrm{H}$, major and minor), 2.22-2.15 ($\mathrm{m}, 2 \mathrm{H}$, major and minor $), 2.10-2.03(\mathrm{~m}$, 1 H , major and minor), 1.88-1.78 ($\mathrm{m}, 1 \mathrm{H}$, major and minor), 1.63-1.48 $(\mathrm{m}, 3 \mathrm{H}$, major and minor), $1.09(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}$, major and minor), $0.77(\mathrm{~s}, 9 \mathrm{H}$, minor), $0.75(\mathrm{~s}, 9 \mathrm{H}$,
major), $0.00\left(\mathrm{~s}, 6 \mathrm{H}\right.$, major), $-0.01\left(\mathrm{~s}, 6 \mathrm{H}\right.$, minor); HRMS-ES $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{31} \mathrm{ClNO}_{3} \mathrm{Si}, 348.1762$; found, 348.1760 .

6-Hydroxyiminobicyclo[2.2.1]heptane-2-carboxylic Acid Ethyl

Ester (12, 13, 14). To a stirred solution of oxime 11 ($20.0 \mathrm{mg}, 0.057$
 $\mathrm{mmol})$ in THF $(3 \mathrm{~mL})$ at -7 $^{\circ} \mathrm{C}$ was added dropwise KHMDS (0.5 M in toluene, 0.15 $\mathrm{mL}, 0.068 \mathrm{mmol}$) via syringe, and the reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was diluted with 9 mL of THF. TBAF (1 M in THF, $0.057 \mathrm{~mL}, 0.057$ mmol) was added dropwise via syringe, and the mixture was warmed to rt over 2 h and stirred at rt for 12 h . Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ was then added. The mixture was extracted with ether ($10 \mathrm{~mL} x \mathrm{3}$), and the combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and the residue was purified by flash chromatography (50% ether/hexanes) to afford the bridged bicyclic oxime $\mathbf{1 2}, \mathbf{1 3}, 14$ (8:7:10 by NMR integration) as a clear oil ($10.9 \mathrm{mg}, 99 \%$). One oxime geometric isomer of the anti ester $\mathbf{1 2}$ or $\mathbf{1 3}$ was isolated in pure form, while 14 and the other anti isomer 12 or 13 were obtained as an inseparable mixture. More polar isomer (inseparable 2:1 mixture of $\mathbf{1 4}$ and 12 or 13): ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.80(\mathrm{~s}, 1 \mathrm{H}$, major), 7.69 (s, 1 H, minor $)$, 4.04-3.93 (m, 2H, major and minor), $3.65(\mathrm{~s}, 1 \mathrm{H}$, major $), 2.98-2.96(\mathrm{~m}, 1 \mathrm{H}$, minor), 2.83-2.76 (m, 1H, minor), 2.44-2.40 (m, 2H major, 1 H minor), 2.24-2.01 (m, 2H, major), 1.91-1.83 (m, 2H, major), 1.71-1.65 (m, 2H, minor), 1.56-1.44 (m, 2 H , major and minor $)$, 1.30-1.26 (m, 2H, minor), 1.14-1.07 ($\mathrm{m}, 3 \mathrm{H}$, major and minor); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.7,173.8,165.1,164.4,61.2,61.1,46.7,45.2,42.7,42.2,40.7$, 37.0, 36.5, $35.9,35.6,34.6,32.6,31.0,14.6$; HRMS-ES $[M+H]^{+}$calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{NO}_{3}$, 198.1130; found, 198.1132. Less polar isomer $\mathbf{1 2}$ or $\mathbf{1 3}$ (single geometrical isomer): ${ }^{1} \mathrm{H}$

NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40(\mathrm{~s}, 1 \mathrm{H}), 3.98(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.99(\mathrm{~s}, 1 \mathrm{H}), 2.48-2.44$ $(\mathrm{m}, 2 \mathrm{H}), 2.21-2.13(\mathrm{~m}, 1 \mathrm{H}), 1.97(\mathrm{dd}, J=3.4,17.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.90-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.56-1.45$ $(\mathrm{m}, 2 \mathrm{H}), 1.34-1.27(\mathrm{~m}, 1 \mathrm{H}), 1.10(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $174.8,166.4,61.2,46.5,44.0,37.4,35.6,34.5,33.0,14.6$; HRMS-ES $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{NO}_{3}, 198.1130$; found, 198.1134.

Crystal Structure Information for compound 9

A colorless brick shaped crystal of $\mathbf{9}$ ($\mathrm{C} 14 \mathrm{H} 22 \mathrm{~N} \mathrm{O5}$) with approximate dimensions 0.07 x $0.10 \times 0.15 \mathrm{~mm}$, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured at 103(2) K, cooled by Rigaku-MSC X-Stream 2000, on a Bruker SMART APEX CCD area detector system equipped with a graphite monochromator and a MoK α fine-focus sealed tube $(\lambda=0.71073 \AA)$ operated at 1600 watts power $(50 \mathrm{kV}, 32$ $\mathrm{mA})$. The detector was placed at a distance of 5.8 cm from the crystal.

A total of 1850 frames were collected with a scan width of 0.3° in ω and an exposure time of 40 seconds/frame. The total data collection time was about 24 hours. The frames were integrated with the Bruker SAINT software package using a narrow-frame integration algorithm. The integration of the data using a Monoclinic unit cell yielded a total of 21513 reflections to a maximum θ angle of $28.34^{\circ}(0.90 \AA$ resolution), of which 6959 were independent, completeness $=98.1 \%, \mathrm{R}_{\text {int }}=0.0582, \mathrm{R}_{\text {sig }}=0.0754$ and 4723 were greater than $2 \sigma(\mathrm{I})$. The final cell constants: $\mathrm{a}=12.467(3) \AA, \mathrm{b}=15.301(4) \AA, \mathrm{c}=$ $14.892(4) \AA, \alpha=90^{\circ}, \beta=90.615(5)^{\circ}, \gamma=90^{\circ}$, volume $=2840.6(12) \AA^{3}$, are based upon the refinement of the XYZ-centroids of 7040 reflections above $20 \sigma(\mathrm{I})$ with $2.501^{\circ}<\theta$ $<28.324^{\circ}$. Analysis of the data showed negligible decay during data collection. Data were corrected for absorption effects using the multiscan technique (SADABS). The ratio of minimum to maximum apparent transmission was 0.7006 .

The structure was solved and refined using the Bruker SHELXTL (Version 6.1) Software Package, using the space group $\mathrm{P} 2(1) / \mathrm{n}$, with $\mathrm{Z}=8$ for the formula unit, C14 H22 N O5 . The final anisotropic full-matrix least-squares refinement on F^{2} with 367 variables converged at R1 $=10.72 \%$, for the observed data and $w R 2=24.00 \%$ for all data. The goodness-of-fit was 1.193. The largest peak on the final difference map was $0.569 \mathrm{e}^{-} / \AA^{3}$ and the largest hole was $-0.580 \mathrm{e}^{-} / \AA^{3}$. Based on the final model, the calculated density of the crystal is $1.330 \mathrm{~g} / \mathrm{cm}^{3}$ and $\mathrm{F}(000)$ amounts to 1224 electrons.
Note to users: The small molecule crystallographic facility was establish using funds from an NSF Chemistry Research Instrumentation and Facilities grant CHE-0131112.

Table 1. Sample and crystal data for 9.

Identification code	9	
Compound number	IK3-186	
X-ray lab-book	IK3	
Crystallization lab-book	IK3	
Crystallization solvents	CDCl3	
Crystallization method	slow evaporation	
Empirical formula	C14 H22 N O5	
Formula weight	284.33	
Temperature	$103(2) \mathrm{K}$	
Wavelength	$0.71073 \AA$	
Crystal size	0.15 x 0.10 x 0.07 mm	
Crystal habit	colorless brick	
Crystal system	Monoclinic	
Space group	$\mathrm{P} 2(1) / \mathrm{n}$	
Unit cell dimensions	$\mathrm{a}=12.467(3) \AA$	
	$\mathrm{b}=15.301(4) \AA$	$\beta=90.615(5)^{\circ}$
	$\mathrm{c}=14.892(4) \AA$	$\gamma=90^{\circ}$
Volume	$2840.6(12) \AA^{3}$	
Z	8	
Density (calculated)	$1.330 \mathrm{~g} / \mathrm{cm}{ }^{3}$	
Absorption coefficient	$0.100 \mathrm{~mm}{ }^{-1}$	
F(000)	1224	

Table 2. Data collection and structure refinement for 9.

Diffractometer	CCD area detector
Radiation source	fine-focus sealed tube, MoK α
Generator power	1600 watts $(50 \mathrm{kV}, 32 \mathrm{~mA})$
Detector distance	5.8 cm
Data collection method	phi and omega scans
Theta range for data collection	1.91 to 28.34°
Index ranges	$-16 \leq h \leq 12,-20 \leq k \leq 20,-19 \leq l \leq 18$

Table 3. Atomic coordinates and equivalent isotropic atomic displacement parameters $\left(\AA^{2}\right)$ for 9.
$\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
C1	$0.7571(3)$	$0.2316(2)$	$0.4429(2)$	$0.0207(8)$
C2	$0.8689(3)$	$0.2068(2)$	$0.4775(2)$	$0.0193(8)$
C3	$0.8872(3)$	$0.1098(3)$	$0.4606(3)$	$0.0239(8)$
C4	$0.8040(3)$	$0.0520(2)$	$0.5075(3)$	$0.0212(8)$
C5	$0.6936(3)$	$0.0917(2)$	$0.5067(2)$	$0.0160(7)$
C6	$0.6858(3)$	$0.1894(2)$	$0.5148(2)$	$0.0137(7)$
C7	$0.8629(3)$	$0.2288(2)$	$0.5784(2)$	$0.0162(7)$
C8	$0.7415(3)$	$0.2222(2)$	$0.6019(2)$	$0.0123(7)$
C9	$0.6965(3)$	$0.3118(2)$	$0.6274(2)$	$0.0147(7)$
C10	$0.6987(3)$	$0.4168(2)$	$0.7458(3)$	$0.0276(9)$
C11	$0.5983(3)$	$0.3975(3)$	$0.7972(3)$	$0.0317(10)$
C12	$0.7184(3)$	$0.1640(2)$	$0.6823(2)$	$0.0143(7)$
C13	$0.5777(3)$	$0.1178(3)$	$0.7773(3)$	$0.0271(9)$
C14	$0.4586(3)$	$0.1241(3)$	$0.7804(3)$	$0.0293(9)$
C15	$0.7762(3)$	$0.2222(3)$	$-0.0484(2)$	$0.0230(8)$
C16	$0.8778(3)$	$0.1943(2)$	$0.0011(2)$	$0.0218(8)$
C17	$0.8957(3)$	$0.0969(3)$	$-0.0131(3)$	$0.0251(9)$
C18	$0.8018(3)$	$0.0411(2)$	$0.0213(3)$	$0.0218(8)$
C19	$0.6950(3)$	$0.0843(2)$	$0.0077(2)$	$0.0157(7)$
C20	$0.6903(3)$	$0.1829(2)$	$0.0125(2)$	$0.0168(7)$
C21	$0.8532(3)$	$0.2174(2)$	$0.0994(2)$	$0.0178(7)$
C22	$0.7285(3)$	$0.2156(2)$	$0.1059(2)$	$0.0150(7)$
C23	$0.6837(3)$	$0.3073(2)$	$0.1232(3)$	$0.0188(7)$
C24	$0.6782(3)$	$0.4194(2)$	$0.2347(3)$	$0.0309(10)$
C25	$0.5747(3)$	$0.4127(3)$	$0.2837(3)$	$0.0323(10)$
C26	$0.6855(3)$	$0.1580(2)$	$0.1810(2)$	$0.0164(7)$
C27	$0.5186(4)$	$0.1147(3)$	$0.2463(3)$	$0.0322(10)$

C28	$0.4774(3)$	$0.1740(3)$	$0.3166(3)$	$0.0281(9)$
N1	$0.6063(2)$	$0.04967(19)$	$0.5012(2)$	$0.0194(7)$
N2	$0.6066(2)$	$0.04498(18)$	$-0.00337(19)$	$0.0159(6)$
O1	$0.6196(2)$	$-0.04165(17)$	$0.4923(2)$	$0.0300(7)$
O2	$0.61353(19)$	$0.16676(16)$	$0.69987(16)$	$0.0177(5)$
O3	$0.7821(2)$	$0.12183(16)$	$0.72455(17)$	$0.0222(6)$
O4	$0.7407(2)$	$0.33676(16)$	$0.70567(17)$	$0.0207(6)$
O5	$0.6313(2)$	$0.35278(16)$	$0.58618(18)$	$0.0227(6)$
O6	$0.6172(2)$	$-0.04694(16)$	$-0.00743(19)$	$0.0242(6)$
O7	$0.7375(2)$	$0.11439(18)$	$0.23114(18)$	$0.0279(6)$
O8	$0.5786(2)$	$0.16400(17)$	$0.18027(18)$	$0.0241(6)$
O9	$0.6297(2)$	$0.34882(17)$	$0.0724(2)$	$0.0281(6)$
O10	$0.7140(2)$	$0.33312(16)$	$0.20516(18)$	$0.0248(6)$

Table 4. Bond lengths (\AA) for 9.

C1-C2	$1.529(5)$	C1-C6	$1.541(5)$
C1-H1B	0.9900	C1-H1C	0.9900
C2-C3	$1.523(5)$	C2-C7	$1.541(5)$
C2-H2	1.0000	C3-C4	$1.536(5)$
C3-H3A	0.9900	C3-H3B	0.9900
C4-C5	$1.505(5)$	C4-H4A	0.9900
C4-H4B	0.9900	C5-N1	$1.266(4)$
C5-C6	$1.503(5)$	C6-C8	$1.548(4)$
C6-H6	1.0000	C7-C8	$1.561(5)$
C7-H7A	0.9900	C7-H7B	0.9900
C8-C12	$1.521(5)$	C8-C9	$1.531(4)$
C9-O5	$1.192(4)$	C9-O4	$1.339(4)$
C10-O4	$1.462(4)$	C10-C11	$1.504(6)$
C10-H10A	0.9900	C10-H10B	0.9900
C11-H11A	0.9800	C11-H11B	0.9800
C11-H11C	0.9800	C12-O3	$1.197(4)$
C12-O2	$1.337(4)$	C13-O2	$1.449(4)$
C13-C14	$1.490(5)$	C13-H13A	0.9900
C13-H13B	0.9900	C14-H14A	0.9800
C14-H14B	0.9800	C14-H14C	0.9800
C15-C16	$1.520(5)$	C15-C20	$1.533(5)$
C15-H15A	0.9900	C15-H15B	0.9900
C16-C17	$1.522(5)$	C16-C21	$1.541(5)$
C16-H16	1.0000	C17-C18	$1.541(5)$
C17-H17A	0.9900	C17-H17B	0.9900
C18-C19	$1.499(5)$	C18-H18A	0.9900
C18-H18B	0.9900	C19-N2	$1.266(4)$
C19-C20	$1.511(5)$	C20-C22	$1.549(5)$
C20-H20	1.0000	C21-C22	$1.559(5)$
C21-H21A	0.9900	C21-H21B	0.9900
C22-C26	$1.525(5)$	C22-C23	$1.533(5)$
C23-O9	$1.191(4)$	C23-O10	$1.333(5)$
C24-O10	$1.462(4)$	C24-C25	$1.493(6)$
C24-H24A	0.9900	C24-H24B	0.9900
C25-H25A	0.9800	C25-H25B	0.9800
C25-H25C	0.9800	C26-O7	$1.188(4)$
C26-O8	$1.336(4)$	C27-O8	$1.454(4)$
C27-C28	$1.481(6)$	C27-H27A	0.9900
C27-H27B	0.9900	C28-H28A	0.9800
C28-H28B	0.9800	C28-H28C	0.9800
N1-O1	$1.414(4)$	N1-H1A	0.8800
N2-O6	N2-H2A	0.8800	
O1-H1	O6-H6A	0.8400	

Symmetry transformations used to generate equivalent atoms (if any):

Table 5. Bond angles (${ }^{\circ}$) for 9.

C2-C1-C6	101.1(3)	C2-C1-H1B	111.6
C6-C1-H1B	111.6	C2-C1-H1C	111.6
C6-C1-H1C	111.6	H1B-C1-H1C	109.4
C3-C2-C1	108.9(3)	C3-C2-C7	112.5(3)
C1-C2-C7	102.8(3)	C3-C2-H2	110.8
C1-C2-H2	110.8	C7-C2-H2	110.8
C2-C3-C4	112.4(3)	C2-C3-H3A	109.1
C4-C3-H3A	109.1	C2-C3-H3B	109.1
C4-C3-H3B	109.1	H3A-C3-H3B	107.8
C5-C4-C3	112.7(3)	C5-C4-H4A	109.0
C3-C4-H4A	109.0	C5-C4-H4B	109.0
C3-C4-H4B	109.0	H4A-C4-H4B	107.8
N1-C5-C6	117.0(3)	N1-C5-C4	125.6(3)
C6-C5-C4	117.4(3)	C5-C6-C1	108.8(3)
C5-C6-C8	111.1(3)	C1-C6-C8	100.9(3)
C5-C6-H6	111.8	C1-C6-H6	111.8
C8-C6-H6	111.8	C2-C7-C8	105.2(3)
C2-C7-H7A	110.7	C8-C7-H7A	110.7
C2-C7-H7B	110.7	C8-C7-H7B	110.7
H7A-C7-H7B	108.8	C12-C8-C9	104.8(3)
C12-C8-C6	112.5(3)	C9-C8-C6	109.6(3)
C12-C8-C7	114.0(3)	C9-C8-C7	110.9(3)
C6-C8-C7	105.1(3)	O5-C9-O4	124.8(3)
O5-C9-C8	126.4(3)	O4-C9-C8	108.9(3)
O4-C10-C11	110.3(3)	O4-C10-H10A	109.6
C11-C10-H10A	109.6	O4-C10-H10B	109.6
C11-C10-H10B	109.6	H10A-C10-H10B	108.1
C10-C11-H11A	109.5	C10-C11-H11B	109.5
H11A-C11-H11B	109.5	C10-C11-H11C	109.5
H11A-C11-H11C	109.5	H11B-C11-H11C	109.5
O3-C12-O2	124.0(3)	O3-C12-C8	126.8(3)
O2-C12-C8	109.2(3)	O2-C13-C14	107.9(3)
O2-C13-H13A	110.1	C14-C13-H13A	110.1
O2-C13-H13B	110.1	C14-C13-H13B	110.1
H13A-C13-H13B	108.4	C13-C14-H14A	109.5
C13-C14-H14B	109.5	H14A-C14-H14B	109.5
C13-C14-H14C	109.5	H14A-C14-H14C	109.5
H14B-C14-H14C	109.5	C16-C15-C20	100.8(3)
C16-C15-H15A	111.6	C20-C15-H15A	111.6
C16-C15-H15B	111.6	C20-C15-H15B	111.6
H15A-C15-H15B	109.4	C15-C16-C17	109.2(3)
C15-C16-C21	102.9(3)	C17-C16-C21	112.8(3)
C15-C16-H16	110.5	C17-C16-H16	110.5
C21-C16-H16	110.5	C16-C17-C18	112.6(3)

C16-C17-H17A	109.1	C18-C17-H17A	109.1
C16-C17-H17B	109.1	C18-C17-H17B	109.1
H17A-C17-H17B	107.8	C19-C18-C17	$112.7(3)$
C19-C18-H18A	109.0	C17-C18-H18A	109.0
C19-C18-H18B	109.0	C17-C18-H18B	109.0
H18A-C18-H18B	107.8	N2-C19-C18	$125.4(3)$
N2-C19-C20	$116.6(3)$	C18-C19-C20	$118.0(3)$
C19-C20-C15	$109.6(3)$	C19-C20-C22	$110.7(3)$
C15-C20-C22	$101.3(3)$	C19-C20-H20	111.6
C15-C20-H20	111.6	C22-C20-H20	111.6
C16-C21-C22	$105.3(3)$	C16-C21-H21A	110.7
C22-C21-H21A	110.7	C16-C21-H21B	110.7
C22-C21-H21B	110.7	H21A-C21-H21B	108.8
C26-C22-C23	$105.9(3)$	C26-C22-C20	$111.4(3)$
C23-C22-C20	$109.7(3)$	C26-C22-C21	$114.5(3)$
C23-C22-C21	$111.1(3)$	C20-C22-C21	$104.3(3)$
O9-C23-O10	$125.2(3)$	O9-C23-C22	$125.9(3)$
O10-C23-C22	$108.9(3)$	O10-C24-C25	$110.7(3)$
O10-C24-H24A	109.5	C25-C24-H24A	109.5
O10-C24-H24B	109.5	C25-C24-H24B	109.5
H24A-C24-H24B	108.1	C24-C25-H25A	109.5
C24-C25-H25B	109.5	H25A-C25-H25B	109.5
C24-C25-H25C	109.5	H25A-C25-H25C	109.5
H25B-C25-H25C	109.5	O7-C26-O8	$125.5(3)$
O7-C26-C22	$126.2(3)$	O8-C26-C22	$108.2(3)$
O8-C27-C28	$110.2(3)$	O8-C27-H27A	109.6
C28-C27-H27A	109.6	O8-C27-H27B	109.6
C28-C27-H27B	109.6	H27A-C27-H27B	108.1
C27-C28-H28A	109.5	C27-C28-H28B	109.5
H28A-C28-H28B	109.5	C27-C28-H28C	109.5
H28A-C28-H28C	109.5	H28B-C28-H28C	109.5
C5-N1-O1	C5-N1-H1A	123.0	
O1-N1-H1A	$114.0(3)$	C19-N2-O6	$113.4(3)$
C19-N2-H2A	123.0	O6-N2-H2A	123.3
N1-O1-H1	123.3	N2-O2-C13	$116.7(3)$
C9-O4-C10	109.5	C23-O10-C24	109.5
C26-O8-C27	$116.7(3)$	$117.3(3)$	
	$118.7(3)$		

Symmetry transformations used to generate equivalent atoms (if any):

Table 6. Torsion angles $\left({ }^{\circ}\right)$ for 9.

C6-C1-C2-C3	$73.3(3)$	C6-C1-C2-C7	$-46.2(3)$
C1-C2-C3-C4	$-59.5(4)$	C7-C2-C3-C4	$53.8(4)$
C2-C3-C4-C5	$37.3(4)$	C3-C4-C5-N1	$146.0(4)$
C3-C4-C5-C6	$-35.3(4)$	N1-C5-C6-C1	$-128.4(3)$
C4-C5-C6-C1	$52.8(4)$	N1-C5-C6-C8	$121.3(3)$
C4-C5-C6-C8	$-57.5(4)$	C2-C1-C6-C5	$-68.5(3)$
C2-C1-C6-C8	$48.5(3)$	C3-C2-C7-C8	$-91.4(3)$
C1-C2-C7-C8	$25.6(3)$	C5-C6-C8-C12	$-41.7(4)$
C1-C6-C8-C12	$-157.0(3)$	C5-C6-C8-C9	$-157.9(3)$
C1-C6-C8-C9	$86.9(3)$	C5-C6-C8-C7	$82.9(3)$
C1-C6-C8-C7	$-32.4(3)$	C2-C7-C8-C12	$128.1(3)$
C2-C7-C8-C9	$-113.9(3)$	C2-C7-C8-C6	$4.4(3)$
C12-C8-C9-O5	$-123.4(4)$	C6-C8-C9-O5	$-2.4(5)$
C7-C8-C9-O5	$113.2(4)$	C12-C8-C9-O4	$55.3(3)$
C6-C8-C9-O4	$176.3(3)$	C7-C8-C9-O4	$-68.2(3)$
C9-C8-C12-O3	$-124.8(4)$	C6-C8-C12-O3	$116.2(4)$
C7-C8-C12-O3	$-3.4(5)$	C9-C8-C12-O2	$55.0(3)$
C6-C8-C12-O2	$-64.0(3)$	C7-C8-C12-O2	$176.5(3)$
C20-C15-C16-C17	$73.8(4)$	C20-C15-C16-C21	$-46.3(3)$
C15-C16-C17-C18	$-59.5(4)$	C21-C16-C17-C18	$54.3(4)$
C16-C17-C18-C19	$35.5(4)$	C17-C18-C19-N2	$151.5(3)$
C17-C18-C19-C20	$-32.2(4)$	N2-C19-C20-C15	$-132.8(3)$
C18-C19-C20-C15	$50.5(4)$	N2-C19-C20-C22	$116.3(3)$
C18-C19-C20-C22	$-60.3(4)$	C16-C15-C20-C19	$-67.7(3)$
C16-C15-C20-C22	$49.3(3)$	C15-C16-C21-C22	$25.3(4)$
C17-C16-C21-C22	$-92.3(3)$	C19-C20-C22-C26	$-41.1(4)$
C15-C20-C22-C26	$-157.2(3)$	C19-C20-C22-C23	$-158.0(3)$
C15-C20-C22-C23	$85.9(3)$	C19-C20-C22-C21	$82.9(3)$
C15-C20-C22-C21	$-33.2(3)$	C16-C21-C22-C26	$127.1(3)$
C16-C21-C22-C23	$-113.0(3)$	C16-C21-C22-C20	$5.1(4)$
C26-C22-C23-O9	$-122.0(4)$	C20-C22-C23-O9	$-1.7(5)$
C21-C22-C23-O9	$113.2(4)$	C26-C22-C23-O10	$57.4(3)$
C20-C22-C23-O10	$177.7(3)$	C21-C22-C23-O10	$-67.5(4)$
C23-C22-C26-O7	$-124.9(4)$	C20-C22-C26-O7	$116.0(4)$
C21-C22-C26-O7	$-2.1(5)$	C23-C22-C26-O8	$55.8(3)$
C20-C22-C26-O8	$-63.4(3)$	C21-C22-C26-O8	$178.5(3)$
C6-C5-N1-O1	$179.0(3)$	C4-C5-N1-O1	$-2.2(5)$
C18-C19-N2-O6	$-3.7(5)$	C20-C19-N2-O6	$179.9(3)$
O3-C12-O2-C13	$2.5(5)$	C8-C12-O2-C13	$-177.4(3)$
C14-C13-O2-C12	$-175.7(3)$	O5-C9-O4-C10	$5.1(5)$
C8-C9-O4-C10	$-173.6(3)$	C11-C10-O4-C9	$82.7(4)$
O7-C26-O8-C27	$0.8(5)$	C22-C26-O8-C27	$-179.9(3)$
C28-C27-O8-C26	$105.8(4)$	$-0.2(5)$	
C22-C23-O10-C24	$-179.6(3)$	$91.9(4)$	

Symmetry transformations used to generate equivalent atoms (if any):

Table 7. Anisotropic atomic displacement parameters (\AA^{2}) for 9.
The anisotropic atomic displacement factor exponent takes the form: $-2 \pi^{2}\left[\mathrm{~h}^{2} \mathrm{a}^{* 2} \mathrm{U}_{11}+\ldots+2 \mathrm{hka}^{*} \mathrm{~b}^{*}\right.$ U_{12}]

	$\begin{aligned} & \mathrm{U}_{11} \\ & \mathrm{U}_{12} \end{aligned}$	U_{22}	U_{33}	U_{23}	U_{13}
C1	0.0219(19)	0.0230(19)	0.0173(18)	0.0035(14)	-0.0020(14)
	-0.0067(15)				
C2	0.0192(18)	0.0242(19)	0.0145(17)	-0.0001(14)	0.0036(14)
	-0.0097(14)				
C3	0.0198(19)	0.029(2)	0.023(2)	-0.0083(16)	0.0036(15)
	-0.0024(16)				
C4	0.0217(19)	0.0140(17)	0.028(2)	-0.0057(15)	-0.0011(15)
	-0.0003(14)				
C5	0.0181(17)	0.0165(17)	0.0133(17)	-0.0025(13)	-0.0014(13)
	-0.0010(14)				
C6	0.0120(16)	0.0147(16)	0.0145(17)	-0.0008(13)	-0.0018(13)
	-0.0015(12)				
C7	0.0154(17)	0.0160(17)	0.0171(18)	-0.0011(13)	$0.0025(13)$
	-0.0033(13)				
C8	0.0108(15)	0.0107(15)	0.0154(17)	-0.0008(12)	0.0000(12)
	0.0010(12)				
C9	$0.0159(16)$	0.0077(15)	0.0206(18)	0.0037(13)	0.0061(14)
	-0.0053(12)				
C10	0.030(2)	0.0162(18)	0.037(2)	-0.0125(17)	0.0026(17)
	0.0026(16)				
C11	0.028(2)	0.031(2)	0.036(2)	-0.0117(19)	0.0026(18)
	0.0050(17)				
C12	$0.0172(16)$	0.0094(15)	0.0162(17)	-0.0044(13)	0.0006(13)
	-0.0021(13)				
C13	0.028(2)	0.029(2)	0.025(2)	0.0155(17)	-0.0014(16)
	-0.0093(17)				
C14	0.028(2)	0.032(2)	0.028(2)	0.0120(18)	0.0098(17)
	$0.0009(17)$				
C15	0.0206(19)	0.031(2)	0.0171(18)	0.0029(15)	0.0016(14)
	-0.0101(16)				
C16	$0.0156(17)$	0.027(2)	0.023(2)	-0.0056(15)	0.0053(15)
	-0.0099(15)				
C17	0.0189(18)	0.028(2)	0.028(2)	-0.0166(17)	0.0077(15)
	-0.0018(15)				
C18	0.0186(18)	0.0206(19)	0.026(2)	-0.0099(15)	0.0029(15)
	-0.0012(14)				
C19	$0.0178(17)$	0.0197(17)	0.0096(16)	-0.0028(13)	0.0020(13)
	-0.0016(14)				
C20	0.0142(16)	0.0194(18)	0.0166(18)	0.0025(14)	0.0006(13)

$\left.\begin{array}{llllll} & \begin{array}{l}-0.0030(13) \\ \text { C21 }\end{array} & \begin{array}{l}0.0129(16) \\ -0.0018(13)\end{array} & 0.0177(17) & 0.0226(19) & -0.0057(14)\end{array}\right)-0.0004(14)$

Table 8. Hydrogen atom coordinates and isotropic atomic displacement parameters (\AA^{2}) for 9.

	x / a	y/b	z/c	U
H1B	0.7425	0.2067	0.3827	0.025
H1C	0.7474	0.2958	0.4407	0.025
H2	0.9251	0.2427	0.4477	0.023
H3A	0.9598	0.0936	0.4823	0.029
H3B	0.8839	0.0986	0.3951	0.029
H4A	0.8011	-0.0056	0.4773	0.025
H4B	0.8272	0.0423	0.5705	0.025
H6	0.6099	0.2101	0.5102	0.016
H7A	0.8903	0.2885	0.5901	0.019
H7B	0.9057	0.1867	0.6143	0.019
H10A	0.6827	0.4600	0.6980	0.033
H10B	0.7533	0.4424	0.7868	0.033
H11A	0.5437	0.3733	0.7563	0.048
H11B	0.5713	0.4515	0.8241	0.048
H11C	0.6143	0.3550	0.8447	0.048
H13A	0.6098	0.1424	0.8329	0.032
H13B	0.6000	0.0560	0.7722	0.032
H14A	0.4375	0.1853	0.7882	0.044
H14B	0.4321	0.0894	0.8308	0.044
H14C	0.4277	0.1017	0.7241	0.044
H15A	0.7725	0.1972	-0.1097	0.028
H15B	0.7701	0.2866	-0.0520	0.028
H16	0.9409	0.2285	-0.0205	0.026
H17A	0.9624	0.0791	0.0185	0.030
H17B	0.9053	0.0856	-0.0780	0.030
H18A	0.8017	-0.0158	-0.0105	0.026
H18B	0.8129	0.0293	0.0861	0.026
H20	0.6172	0.2054	-0.0031	0.020
H21A	0.8814	0.2761	0.1147	0.021
H21B	0.8859	0.1741	0.1408	0.021
H24A	0.6687	0.4580	0.1818	0.037
H24B	0.7334	0.4456	0.2745	0.037
H25A	0.5185	0.3914	0.2427	0.048
H25B	0.5547	0.4704	0.3066	0.048
H25C	0.5829	0.3719	0.3341	0.048
H27A	0.5656	0.0699	0.2742	0.039
H27B	0.4578	0.0844	0.2164	0.039
H28A	0.5378	0.2000	0.3497	0.042
H28B	0.4326	0.1408	0.3582	0.042
H28C	0.4345	0.2204	0.2885	0.042
H1A	0.5430	0.0750	0.5029	0.023

H2A	0.5445	0.0721	-0.0080	0.019
H1	0.5592	-0.0656	0.4874	0.045
H6A	0.5561	-0.0701	-0.0067	0.036

Figure 1: Ortep Diagram of X-ray Diffraction Structure of 9.

NUC1	1 H
P1	6.45 usec
PL1	0.00 dB
SF01	400.1324710 MHz

2 - Processing parame

SI	32768
SF	400.1300000 MHz
WDW	no
SSB	0
LB	0.00 Hz
GB	0
PC	1.00
NMR plot parameters	
1D	20.00 cm
CX	13.000 ppm
F1P	5201.69 Hz
F1	-1.000 ppm
F2P	-400.13 Hz
F2	$0.70000 \mathrm{ppm} / \mathrm{cm}$
PPMCM	$280.09100 \mathrm{~Hz} / \mathrm{cm}$
HZCM	

Current Data	a Parameters
Name	ik3-166
EXPNO	2
PROCNO	1
F2 - Acquisition Parameters	
Date_	20070329
Time	10.48
INSTRUM	spect
PROBHD 5	5 mm BBI $1 \mathrm{H}-\mathrm{B}$
PULPROG	2gpg30
T0	65536
SOLVENT	COC13
NS	1024
DS	4
SWH	25125.629 Hz
FIDRES	0.383387 Hz
A ${ }^{\text {a }}$	1.3042164 sec
RG	5160.6
DW	19.900 usec
DE	5.00 usec
TE	300.0 k
01	2.00000000 sec
011	0.03000000 sec
d12	0.00002000 sec
============ CHANNEL $f 1$	
NUC1	13C
P1	16.35 usec
PL1	-6.00 dB
SF01	100.6237959 MHz
=========== CHANNEL f2	
CPDPRG2	waltz 16
NUC2	1 H
PCPD2	114.00 usec
PL2	0.00 dB
PL12	24.00 dB
PL13	24.00 dB
SFO2	400.1316005 MHz
F2 - Processing parameters	
SI	32768
SF .	100.6127290 MHz
WOW	EM
SSB	0
LB	1.00 Hz
GB	0
PC	1.40
10 NMR plot parameters	
cX	20.00 cm
F1P	215.000 ppm
F1	21631.74 Hz
F2P	$-5.000 \mathrm{ppm}$
F2	$-503.06 \mathrm{~Hz}$
PPMCM	$11.00000 \mathrm{ppm} / \mathrm{cm}$
HZCM	$1106.73999 \mathrm{~Hz} / \mathrm{cm}$

틈

Current Data Parameters	
NAME	ik 4-15
EXPNO	1
PROCNO	1
F2 - Acquisition Parameters	
Date_	20070510
Time	14. 15
INSTRUM	spect
PROBHD	5 mm GNP 1 $\mathrm{H} / 1$
PULPROG	2930
T0	65536
SOLVENT	CDC13
NS	15
DS	2
SWH	6172.839 Hz
FIDRES	0.094190 Hz
AG	5. 3084660 sec
RG	912.3
DW	81.000 usec
DE	6.00 usec
TE	300.0 K
D1	1.00000000 sec
=========== CHANNEL f 1 ======	
NUC1	1 H
P1	11.70 usec
PL1	0.00 dB
SFO1	299.8718518 MHz
F2 - Processing parameters	
SI	32768
SF	299.8700000 MHz
WDW	no
SSB	0
LB	0.00 Hz
GB	0
PC	1.00
10 NMR plot parameters	
CX	20.00 cm
F1P	13.000 ppm
F1	3898.31 Hz
F2P	-1.000 ppm
F2	-299.87 Hz
PPMCM	$0.70000 \mathrm{ppm} / \mathrm{cm}$
HZCM	$209.90900 \mathrm{~Hz} / \mathrm{cm}$

10

$\begin{array}{lr}\text { Current Data Parameters } \\ \text { NAME } & 1 \mathrm{k} 4-15 \\ \text { EXPNO } & 3\end{array}$ EXPNO

F2-Acquisition Parameters	
Time	17.10
INSTRUM	spect
PROBHD	5 mm QNP 1H/1
PULPROG	29pg30
TD	65536
SOLVENT	CDC13
NS	1621
DS	4
SWH	18796.992 Hz
FIDRES	0.286819 Hz
A A	1.7433076 sec
RG	1024
DW	26.600 usec
DE	5.00 usec
TE	300.0 K
D1	2.00000000 sec
D11	0.03000000 sec
012	0.00002000 sec
======	== CHANNEL $\mathrm{f}^{1}=\mathrm{=z=}$
NUC1	13 C
P1	5.40 usec
PL1	$-6.00 \mathrm{~dB}$
SF01	75.4106357 MHz
=====-	= CHANNEL f2 ==-
CPDPRG2	waltz16
NUC2	1 H
PCPD2	115.00 usec
PL2	0.00 dB
PL12	20.00 dB
PL13	20.00 dB
SFO2	299.8711995 MHz
F2-Pro	cessing parameters
SI	32768
SF	75.4023410 MHz
WDW	EM
5SB	0
LB	1.00 Hz
GB	0
PC	1.40

10 NMR plot parameters

CX	20.00 cm
F1P	234.651 ppm
F1	17693.24 Hz
F2P	-14.638 ppm
F2	-1103.75 Hz
PPMCM	$12.46446 \mathrm{ppm} / \mathrm{c}$
HZCM	939.84967 Hz

Current	Data Parameters
NAME.	Dx: _: 63
Expeno	1
בROCNO	1
F2- Acquisition Parameters	
Date_	20051219
Time	21.00
InSTRUM	spect
PROBHO	5 mm GNP 1H/1
PULPROG	29pg30
10	65536
SOLVENT	COC13
NS	12270
OS	4
SWH	18796.992 Hz
FIORES	0.286819 Hz
${ }^{\text {A }}$	1.7433076 sec
RG	2048
DW	26.600 usec
DE	6.00 usec
TE	300.0 K
01	200000000 sec
011	0.03000000 sec
012	0.00002000 sec
===-s=***- CHANNEL H1	
NUC1	13 C
P1	5. 10 usec
Pl1	-6.00 d8
5 F 01	75. 4105357 MHz
============ CHANNEL f2	
CPDPRGZ	waltz16
NUC2	$1{ }^{\text {H }}$
${ }^{\text {PCPO2 }}$	115.00 usec
PL2	0.00 dB
P. 12	20.00 dB
PL13	20.00 dB
SF02	299.8711995 MHz
	essing par-ameters
51	32768
SF	75. 4023410 MHz
WDW	no
S5B	0
LB	0.00 Hz
6B	0
PC	1.40
10 NMP plot parameters	
cx	20.00 cm
$F 1 p$	215.000 ppm
F1	16211.50 Hz
F2p	$-5.000 \mathrm{pmm}$
F?	$-377.01 \mathrm{~Hz}$
دPMCM	$11.00000 \mathrm{pum} / \mathrm{cm}$
12 cm	R239. $425.78 \mathrm{~Hz} / \mathrm{cm}$

45

Current Data Parameters NAME Nov13-2006-We 1 n EXPNO PROCNO

言

$\stackrel{o}{\nabla}$

 17

45

12/13

NAME EXPNO PROCNO
F2 - Acquisition Parameters
$\begin{array}{ll}\text { Oate } \\ \text { Time } & 20070529\end{array}$
$\begin{array}{ll}\text { Time } & 20.49 \\ \text { INSIRUM } & \text { spect }\end{array}$ PAOBHO
5 mm aNP $1 \mathrm{H} / 1$
 SDLVENT
NS
OS SWH
FIOR
AQ

AQ
AG

OW 20
26.600 use 5.00 use
300.0 K 2.00000000 sec 2.00000000 sec
0.03000000 sec 0.00002000 sec

P1
========== CHANNEL 12 ==es=n=e==
$\mathrm{F2}$ - Processing paramete
32768
. 4023440 MHZ
EM
0
1.00 Hz
1.40
i0 NKR plot parametars
cx
fip
F1
F2p
FL
PPMCM

20.00 cm
215.000 pp
16211.50 Hz -5.000 ppm
-377.01 Hz $-377.01 \mathrm{~Hz}$ $829.42578 \mathrm{~Hz} / \mathrm{cm}$

2/13
14

