Organocatalytic and Highly Enantioselective Direct α -Amination of Aromatic Ketones

Tian-Yu Liu,[†] Hai-Lei Cui,[†] Yan Zhang,[†] Kun Jiang,[†] Wei Du,[†] Zhao-Quan He,[†] and Ying-Chun Chen* ^{†,‡}

E-mail: ycchenhuaxi@yahoo.com.cn

Supporting Information

1. General methods	S2
2. Asymmetric direct α-amination of aryl ketones	S2-S7
3. NMR and HPLC spectra	S8-S39

[†] Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China, [‡] State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.

1. General Methods:

NMR spectra were recorded with tetramethylsilane as the internal standard. TLC was performed on glass-backed silica plates. Column chromatography was performed using silica gel (200-300 mesh) eluting with ethyl acetate and petroleum ether. 1 H NMR spectra were recorded at 300 MHz, and 13 C NMR spectra were recorded at 75 MHz (Bruker Avance). Chemical shifts (δ) are reported in ppm downfield from CDCl₃ (δ = 7.27 ppm) for 1 H NMR and relative to the central CDCl₃ resonance (δ = 77.0 ppm) for 13 C NMR spectroscopy. Coupling constants (J) are given in Hz. ESI-HRMS spectrometer was measured with a Finnigan LCQ^{DECA} ion trap mass spectrometer. Optical rotations were measured at 589 nm at 20 $^{\circ}$ C. Enantiomeric excess was determined by HPLC analysis on chiral Chiralpak columns. Commercial grade solvents were dried and purified by standard procedures as specified in Purification of Laboratory Chemicals, 4th Ed (Armarego, W. L. F.; Perrin, D. D. Butterworth Heinemann: 1997). Primary aminocatalysts **1d-1e** were prepared according to literature procedures.

2. General procedure for primary amine catalyzed asymmetric Direct α -Amination of Aromatic Ketones

A number of reaction conditions have been investigated in the synthesis of racemic α -amination products of aryl ketones. We could not obtain the desired products when various racemic α -amino acids were used. Moreover, the combination of simple primary amine (benzylamine) and p-TSA also could not give the expected α -amination products. Fortunately, we found that a strong organic base, tetramethylguanidine (TMG), could efficiently deproton aryl ketones and promote the α -amination reaction with azodicarboxylates in quite high yields.

General procedure for TMG catalyzed direct α-amination of aromatic ketones: TMG (tetramethylguanidine) (0.02 mmol, 20 mol %), aromatic ketones 2 (0.2 mmol) and DEAD (diethyl azodicarboxylates) 3a (0.1 mmol) were stirred in dry DCM (0.5 mL) at 40 °C for 48 h. Then the product was purified by flash chromatography on silica gel to give the racemic product 4. General procedure for primary amine catalyzed asymmetric reaction: Catalyst 1e (0.02 mmol, 20 mol %), additive (0.04 mmol, 40 mol %), aromatic ketones 2 (0.2 mmol), azodicarboxylates 3 (0.1 mmol) and 4Å MS (20 mg) were stirred in dry 2-PrOH (0.3 mL) at 40 °C for 72h. Then the product 4 was purified by flash chromatography on silica gel eluting with petroleum ether/EtOAc. The enantiomeric excess was determined by HPLC analysis on chiral column.

 $R_f = 0.1$ (petroleum ether/EtOAc = 9:1); 76% yield; colorless oil; $[\alpha]_D^{20} = -7.9$ (c = 0.35 in EtOH); 98% ee, determined by HPLC analysis [Daicel chiralcel AS, n-hexane/i-PrOH = 70/30, 1.0 mL/min, $\lambda = 254 \text{ nm}, \text{ t (major)} = 6.93 \text{ min}, \text{ t (minor)} = 10.75 \text{ min}]; {}^{1}\text{H NMR}$

 $(300 \text{ MHz}, \text{CDCl}_3)$: $\delta = 7.88 \text{ (d, } J = 8.0 \text{ Hz}, \text{ 2H)}, 7.44 \text{ (d, } J = 8.3 \text{ Hz}, \text{ 2H)}, 6.86 \text{ (s, 1H)}, 5.81-5.74$ (m, 1H), 4.23-4.09 (m, 4H); 1.45 (d, J = 7.1 Hz, 3H), 1.28-1.21 (m, 6H) ppm; 13 C NMR (75 MHz, CDCl₃): $\delta = 199.1, 198.6, 156.9, 156.3, 155.9, 140.1, 132.9, 130.0, 129.7, 129.1, 77.2, 62.9, 61.9,$ 59.0, 57.8, 38.9, 38.7, 29.6, 29.4, 22.9, 22.6, 14.8, 14.3, 14.1, 14.0 ppm; ESI-HRMS: calcd. for C₁₅H₁₉ClN₂O₅+H 343.1055, found 343.1053.

 $R_f = 0.1$ (petroleum ether/EtOAc = 9:1); 65% yield; colorless oil; $[\alpha]_D^{20} = -5.6$ (c = 0.36 in EtOH); $[\alpha]_D^{20} = +38.6$ (c = 0.58 in CHCl₃) [lit.:² $[\alpha]_D^{24} = -31.2$ (c = 2.795 in CHCl₃), 84% ee, *R*-isomer]; 94% ee, determined by HPLC analysis [Daicel chiralcel AS, *n*-hexane/*i*-PrOH = 70/30, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 7.14 min, t (minor) = 10.40 min]; ¹H NMR (300

MHz, CDCl₃): $\delta = 7.93$ (d, J = 7.6 Hz, 2H), 7.60 (t, J = 7.2 Hz, 1H), 7.48 (t, J = 7.5 Hz, 2H), 6.88 (s, 1H), 5.86-5.84 (m, 1H), 4.26-4.17 (m, 4H); 1.48 (d, J = 6.8 Hz, 3H), 1.33-1.20 (m, 6H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ = 200.6, 157.0, 156.5, 156.3, 156.1, 134.5, 133.7, 133.3, 130.0, 129.6, 128.8, 128.5, 128.4, 128.3, 77.2, 68.7, 67.9, 62.8, 62.0, 61.9, 59.1, 58.0, 25.6, 25.3, 14.9, 14.5, 14.4 ppm; ESI-HRMS: calcd. for C₁₅H₂₀N₂O₅+H 309.1445, found 309.1449.

 $R_f = 0.1$ (petroleum ether/EtOAc = 9:1); 52% yield; colorless oil; $[\alpha]_D^{20} = -10.8$ (c = 0.33 in EtOH); 93% ee, determined by HPLC [α]_D²⁰ = -10.8 (c = 0.33 in EtOH); 93% ee, determined by HPLC analysis [Daicel chiralcel AS, n-hexane/i-PrOH = 70/30, 1.0 mL/min, λ = 254 nm, t (major) = 7.02 min, t (minor) = 11.33 min]; ¹H NMR (300 MHz, CDCl₃): $\delta = 7.97$ (d, J = 5.4 Hz, 2H), 7.15 (t, J = 8.5 Hz, 2H),

6.85 (s, 1H), 5.81-5.76 (m, 1H), 4.25-4.10 (m, 4H); 1.47 (d, J = 6.9 Hz, 3H), 1.33-1.23 (m, 6H) ppm; ¹³C NMR (75 MHz, CDCl₃): $\delta = 198.8$, 166.0 (d, ${}^{I}J_{C,F} = 254.4$ Hz), 156.9, 156.4, 132.3, 131.2 (d, ${}^{3}J_{C,F} = 9.2$ Hz), 116.0 (d, ${}^{2}J_{C,F} = 21.8$ Hz), 115.4, 77.2, 68.7, 62.9, 62.0, 58.9, 57.8, 29.7, 27.0, 25.3, 14.9, 14.4, 14.3 ppm; ESI-HRMS: calcd. for C₁₅H₁₉FN₂O₅+H 327.1351, found 327.1353.

 $R_f = 0.1$ (petroleum ether/EtOAc = 10:1); 62% yield; colorless oil; $[\alpha]_D^{20} = 8.9$ (c = 0.29 in EtOH); 97% ee, determined by HPLC analysis [Daicel chiralcel AS, n-hexane/i-PrOH = 70/30, 1.0

mL/min, $\lambda = 254$ nm, t (major) = 7.38 min, t (minor) = 11.20 min]; ¹H NMR (300 MHz, CDCl₃): $\delta = 7.80$ (d, J = 7.3 Hz, 2H), 7.62 (d, J = 8.2 Hz, 2H), 6.83 (s, 1H), 5.78-5.76 (m, 1H), 4.21-4.10 (m, 4H); 1.45 (d, J = 6.9 Hz, 3H), 1.29-1.16 (m, 6H) ppm; ¹³C NMR (75 MHz,

CDCl₃): δ = 199.4, 198.8, 156.9, 156.3, 133.3, 132.1, 131.8, 131.1, 130.0, 129.8, 128.9, 77.2, 62.9, 62.3, 62.0, 59.0, 57.8, 31.5, 29.7, 24.1, 22.6, 14.8, 14.4, 14.3, 14.2 ppm; ESI-HRMS: calcd. for $C_{15}H_{19}BrN_2O_5+H$ 387.0550, found 387.0547.

 $R_f = 0.1$ (petroleum ether/EtOAc = 9:1); 62% yield; colorless oil; $[\alpha]_D^{20} = 6.7$ (c = 0.32 in EtOH); 94% ee, determined by HPLC analysis [Daicel chiralcel AS, n-hexane/i-PrOH = 70/30, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 6.49 min, t (minor) = 9.37 min]; 1 H NMR (300 MHz, CDCl₃): $\delta = 7.83$ (d, J = 7.1 Hz, 2H), 7.27 (d, J = 8.1 Hz,

2H), 6.91 (s, 1H), 5.83-5.81 (m, 1H), 4.24-4.17 (m, 4H), 2.42 (s, 3H), 1.47 (d, J = 6.7 Hz, 3H), 1.30-1.23 (m, 6H) ppm; ¹³C NMR (75 MHz, CDCl₃): $\delta = 200.2$, 156.5, 144.7, 134.4, 132.0, 129.5, 129.2, 128.6, 62.8, 61.9, 59.0, 57.9, 29.7, 21.7, 15.1, 14.7, 14.4, 14.3 ppm; ESI-HRMS: calcd. for $C_{16}H_{22}N_2O_5+H$ 323.1601, found 323.1605.

 $R_f = 0.1$ (petroleum ether/EtOAc = 7:1); 77% yield; colorless oil; $[\alpha]_D^{20} = 8.1$ (c = 0.37 in EtOH); 94% ee, determined by HPLC analysis [Daicel chiralcel AS, n-hexane/i-PrOH = 70/30, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 8.67 min, t (minor) = 13.95 min]; 1 H NMR (300 MHz, CDCl₃): $\delta = 7.92$ (d, J = 7.6 Hz, 2H), 6.95 (d, J = 7.6 Hz, 2H)

= 8.8 Hz, 2H), 6.43 (s, 1H), 5.81-5.79 (m, 1H), 4.35-4.15 (m, 4H), 3.87 (s, 3H), 1.48 (d, J = 7.0 Hz, 3H), 1.35-1.25 (m, 6H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ = 199.1, 163.9, 156.5, 156.3, 130.9, 130.7, 127.3, 114.0, 113.7, 77.2, 62.8, 62.5, 62.3, 61.8, 58.7, 57.6, 55.5, 29.7, 15.2, 14.8, 14.4, 14.1 ppm; ESI-HRMS: calcd. for $C_{16}H_{22}N_2O_6+H$ 339.1551, found 339.1549.

 $R_f = 0.1$ (petroleum ether/EtOAc = 9:1); 77% yield; colorless oil; $[\alpha]_D^{20} = 4.8$ (c = 0.42 in EtOH); 96% ee, determined by HPLC analysis [Daicel chiralcel AS, n-hexane/i-PrOH = 70/30, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 5.39 min, t (minor) = 9.74 min]; 1 H NMR (300 MHz, CDCl₃): $\delta = 7.95$ (br.s, 2H), 7.14 (t, J = 8.5 Hz, 2H), 6.86 (br.s, 1H),

5.58-5.56 (m, 1H), 4.27-4.07 (m, 4H), 1.86-1.78 (m, 2H), 1.35-1.18 (m, 6H), 1.10 (t, J = 7.3 Hz,

3H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ = 198.8, 165.9 (d, ¹ $J_{C,F}$ = 254.3 Hz), 156.6, 156.0, 131.6, 131.1 (d, ³ $J_{C,F}$ = 9.2 Hz), 116.0 (d, ² $J_{C,F}$ = 21.8 Hz), 77.2, 64.5, 64.0, 63.4, 63.0, 61.9, 31.9, 29.6, 29.3, 22.5, 22.1, 14.3, 14.1, 11.3 ppm; ESI-HRMS: calcd. for C₁₆H₂₁FN₂O₅+H 341.1507, found 341.1503.

 $R_f = 0.1$ (petroleum ether/EtOAc = 12:1); 54% yield; colorless oil; $[\alpha]_D^{20} = -14.0$ (c = 0.37 in EtOH); 99% ee, determined by HPLC analysis [Daicel chiralcel AS, n-hexane/i-PrOH = 70/30, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 6.35 min, t (minor) = 11.02 min]; 1 H NMR (300 MHz, CDCl₃): $\delta = 7.79$ (br.s, 2H), 7.62 (d, J = 8.4 Hz, 2H), 6.80

(br.s, 1H), 5.56 (br.s, 1H), 4.20-4.17 (m, 4H), 1.86-1.82 (m, 2H), 1.29-1.23 (m, 6H), 1.10 (t, J = 7.3 Hz, 3H) ppm; 13 C NMR (75 MHz, CDCl₃): $\delta = 199.3$, 156.9, 156.0, 136.4, 134.0, 132.1, 131.8, 131.3, 130.4, 129.9, 128.9, 77.2, 67.9, 64.6, 64.0, 63.4, 63.0, 61.9, 29.7, 25.6, 22.4, 22.0, 14.4, 11.2 ppm; ESI-HRMS: calcd. for $C_{16}H_{21}BrN_2O_5+Na$ 423.0526, found 423.0530.

 $R_f = 0.1$ (petroleum ether/EtOAc = 12:1); 49% yield; colorless oil; $[\alpha]_D^{20} = 6.0$ (c = 0.30 in EtOH); 98% ee, determined by HPLC analysis [Daicel chiralcel AS, n-hexane/i-PrOH = 70/30, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 6.18 min, t (minor) = 9.78 min]; 1 H NMR (300 MHz, CDCl₃): $\delta = 7.81$ (br.s, 2H), 7.27 (d, J = 7.8 Hz, 2H), 6.92

(s, 1H), 5.60-5.59 (m, 1H), 4.27-4.12 (m, 4H), 2.41 (s, 3H), 1.88-1.82 (m, 2H), 1.29-1.19 (m, 6H), 1.11 (t, J = 7.3 Hz, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃): $\delta = 200.2$, 157.0, 156.7, 156.1, 144.6, 134.4, 132.7, 130.0, 129.5, 129.2, 129.1, 128.5, 77.2, 64.8, 63.8, 62.9, 61.8, 31.6, 29.6, 29.5, 29.3, 22.6, 22.3, 22.0, 21.8, 21.7, 21.3, 14.3, 14.1, 11.4 ppm; ESI-HRMS: calcd. for $C_{17}H_{24}N_2O_5+H$ 337.1758, found 337.1756.

 $R_f = 0.1$ (petroleum ether/EtOAc = 15:1); 52% yield; colorless oil; $[\alpha]_D^{20} = -3.4$ (c = 0.23 in EtOH); 97% ee, determined by HPLC analysis [Daicel chiralcel AS, n-hexane/i-PrOH = 70/30, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 8.28 min, t (minor) = 14.94 min]; 1 H NMR (300 MHz, CDCl₃): $\delta = 7.89$ (br.s, 2H), 7.62 (d, J = 8.6 Hz, 2H), 6.60 (br.s, 1H),

5.36 (br.s, 1H), 4.21-4.15 (m, 4H), 2.40 (br.s, 1H), 1.24 (t, J = 7.1 Hz, 6H), 1.06 (d, J = 6.3 Hz, 3H), 0.87 (d, J = 6.7 Hz, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃): $\delta = 155.6$, 135.7, 132.1, 130.1, 128.8, 77.2, 65.7, 64.5, 63.2, 62.0, 27.3, 19.6, 18.7, 14.4 ppm; ESI-HRMS: calcd. for

 $R_f = 0.1$ (petroleum ether/EtOAc = 10:1); 63% yield; colorless oil; $[\alpha]_D^{20}$ = 3.1 (c = 0.23 in EtOH); 96% ee, determined by HPLC analysis [Daicel chiralcel AS, n-hexane/i-PrOH = 70/30, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 8.24 min, t (minor) = 12.58 min]; 1 H NMR (300 MHz, CDCl₃): $\delta = 7.82$ (br.s, 1H), 7.70 (d, J = 4.9 Hz, 1H), 7.17 (t, J = 4.3 Hz, 1H), 6.85 (s, 1H),

5.68-5.66 (m, 1H), 4.24-4.10 (m, 4H), 1.55 (d, J = 7.0 Hz, 3H), 1.36-1.18 (m, 6H) ppm; ¹³C NMR (75 MHz, CDCl₃): $\delta = 192.9$, 156.3, 134.6, 133.3, 133.0, 132.6, 128.7, 128.4, 77.2, 64.1, 62.9, 62.5, 62.3, 62.0, 59.9, 58.6, 31.6, 29.7, 25.2, 22.6, 15.1, 14.4, 14.3, 14.2, 14.1 ppm; ESI-HRMS: calcd. for $C_{13}H_{18}N_2O_5S+H$ 315.1009, found 315.1012.

 $R_f = 0.1$ (petroleum ether/EtOAc = 9:1); 74% yield; colorless oil; $[\alpha]_D^{20}$ = 4.1 (c = 0.25 in EtOH); 90% ee, determined by HPLC analysis [Daicel chiralcel OD, n-hexane/i-PrOH = 90/10, 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 14.82 min, t (major) = 15.66 min]; 1 H NMR (300 MHz, CDCl₃):

 δ = 8.01 (d, J = 7.4 Hz, 1H), 7.51 (t, J = 7.6 Hz, 1H), 7.34 (d, J = 7.3 Hz, 1H), 7.29 (d, J = 6.7 Hz, 1H), 6.70 (s, 1H), 5.22-5.17 (m, 1H), 4.27-4.17 (m, 4H), 3.26-3.20 (m, 1H), 3.10-3.05 (m, 1H), 2.55-2.52 (m, 1H), 2.38-2.28 (m, 1H), 1.33-1.23 (m, 6H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ = 194.9, 157.0, 156.6, 156.3, 143.8, 134.1, 131.9, 128.8, 127.7, 126.8, 65.4, 64.4, 63.0, 62.9, 62.0, 29.7, 28.8, 27.7, 27.6, 21.9, 14.4 ppm; ESI-HRMS: calcd. for C₁₆H₂₀N₂O₅+H 321.1445, found 321.1439.

 $R_f = 0.1$ (petroleum ether/EtOAc = 7:1); 51% yield; colorless oil; $[\alpha]_D^{20}$ = -8.4 (c = 0.36 in EtOH); 88% ee, determined by HPLC analysis [Daicel chiralcel AS, n-hexane/i-PrOH = 70/30, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 10.54 min, t (minor) = 13.90 min]; 1 H NMR (300 MHz, CDCl₃): $\delta = 7.95$ (d, J = 7.4 Hz, 4H), 7.61-7.53 (m, 2H), 7.47-7.43 (m,

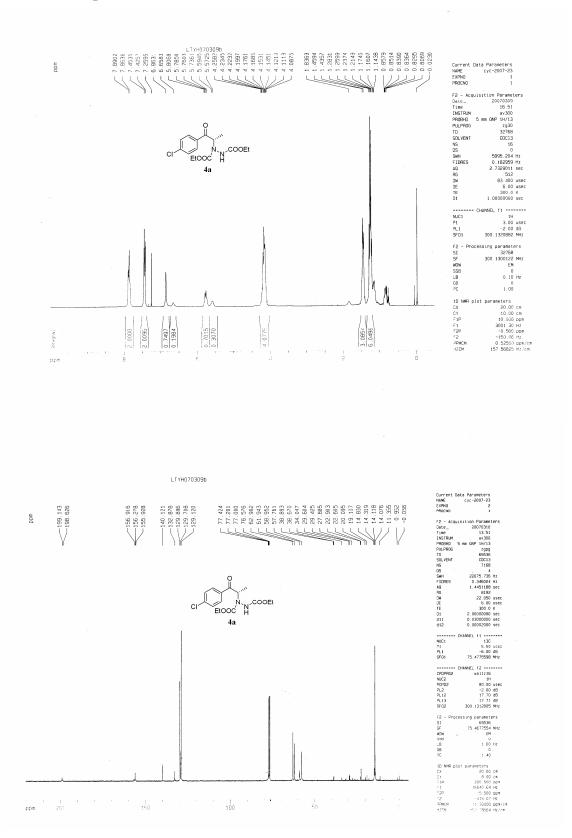
4H), 6.98 (s, 1H), 5.79-5.76 (m, 1H), 4.21-4.09 (m, 4H), 3.12-3.04 (m, 2H), 2.17-1.82 (m, 4H), 1.28-1.25 (m, 6H) ppm; 13 C NMR (75 MHz, CDCl₃): δ = 199.9, 156.6, 156.0, 136.8, 134.9, 133.7, 133.0, 129.3, 128.8, 128.6, 128.0, 77.2, 68.7, 63.4, 63.0, 61.9, 37.7, 31.9, 29.7, 29.3, 27.8, 22.7, 21.2, 14.4, 14.1 ppm; ESI-HRMS: calcd. for $C_{24}H_{28}N_2O_6+H$ 441.2020, found 441.2022.

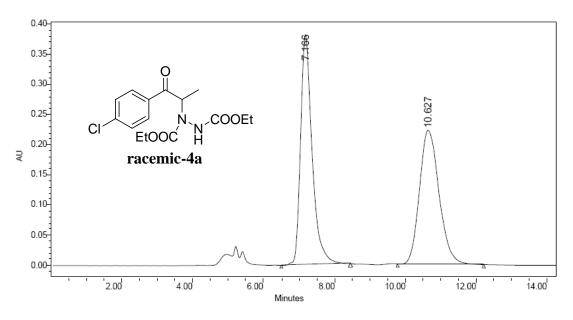
 $R_f = 0.1$ (petroleum ether/EtOAc = 7:1); 39% yield; colorless oil; $[\alpha]_D^{20} = -7.0$ (c = 0.24 in EtOH); 96% ee, determined by HPLC analysis [Daicel chiralcel AS, n-hexane/i-PrOH = 70/30, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 8.70 min, t (minor) = 10.22 min]; 1 H NMR (300 MHz, CDCl₃): $\delta = 7.91$ (br.s, 2H), 7.59 (t, J = 7.1 Hz, 1H),

7.48 (t, J = 7.4 Hz, 2H), 6.90 (br.s, 1H), 5.71 (br.s, 1H), 4.35-4.16 (m, 4H), 3.64 (s, 3H), 2.38-2.36 (m, 2H), 2.02 (br.s, 1H), 1.86 (br.s, 3H), 1.35-1.25 (m, 6H) ppm; 13 C NMR (75 MHz, CDCl₃): δ = 199.7, 173.6, 156.9, 156.0, 135.0, 133.7, 128.8, 128.5, 77.2, 64.1, 63.0, 62.5, 61.9, 51.5, 33.4, 32.7, 31.9, 30.0, 29.7, 29.3, 27.7, 27.1, 22.7, 21.8, 14.4, 14.1 ppm; ESI-HRMS: calcd. for $C_{19}H_{26}N_2O_7$ +H 395.1813, found 395.1818.

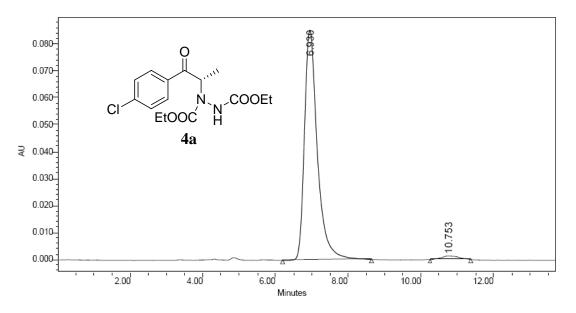
 $R_f = 0.1$ (petroleum ether/EtOAc = 7:1); 65% yield; colorless oil; $[\alpha]_D^{20} = -5.8$ (c = 0.36 in EtOH); 91% ee, determined by HPLC analysis [Daicel chiralcel AS, n-hexane/i-PrOH = 70/30, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 7.47 min, t (minor) = 11.84 min]; 1 H NMR (300 MHz, CDCl₃): $\delta = 7.89$ -7.80 (m, 2H), 7.62 (d, J = 8.5 Hz, 2H),

6.48 (s, 1H), 6.10 (br.s, 1H), 4.29-4.10 (m, 4H), 3.67 (s, 3H), 2.96-2.92 (m, 2H), 1.33-1.16 (m, 6H) ppm; 13 C NMR (75 MHz, CDCl₃): δ = 195.0, 171.1, 156.0, 155.4, 133.6, 132.1, 130.2, 130.0, 128.9, 77.2, 63.3, 62.3, 59.7, 57.8, 52.1, 33.3, 32.7, 31.9, 29.7, 29.5, 29.3, 14.3, 14.1 ppm; ESI-HRMS: calcd. for $C_{17}H_{21}BrN_2O_7+H$ 445.0610, found 445.0613.

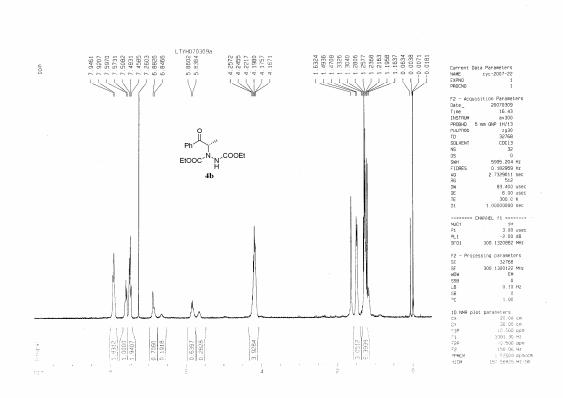

 $R_f = 0.1$ (petroleum ether/EtOAc = 9:1); 63% yield; colorless oil; $[\alpha]_D^{20} = -20.0$ (c = 0.31 in EtOH); 91% ee, determined by HPLC analysis [Daicel chiralcel AS, n-hexane/i-PrOH = 70/30, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 7.30 min, t (minor) = 10.93 min]; ¹H NMR (300 MHz, CDCl₃): $\delta = 7.98$ -7.91 (m, 2H), 7.45 (d, J = 8.4 Hz, 2H),

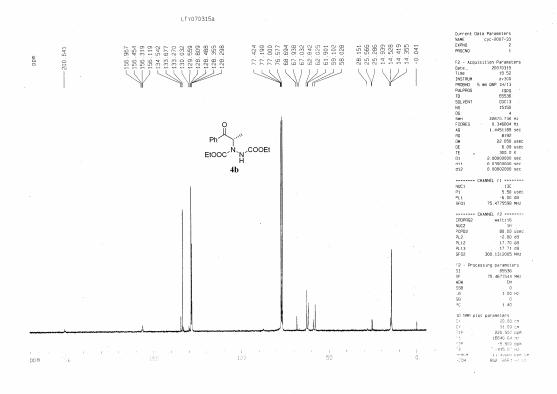

6.49 (s, 1H), 6.11 (br.s, 1H), 4.15-4.09 (m, 6H), 2.95-2.93 (m, 2H), 1.22 (t, J = 6.9 Hz, 9H) ppm; ¹³C NMR (75 MHz, CDCl₃): $\delta = 194.8$, 170.6, 156.0, 155.5, 140.1, 133.3, 130.1, 129.9, 129.1, 77.2, 63.5, 63.3, 62.2, 61.0, 59.6, 57.6, 33.6, 33.0, 29.7, 22.6, 14.3, 14.0 ppm; ESI-HRMS: calcd. for $C_{18}H_{23}CIN_2O_7+H$ 415.1267, found 415.1271.

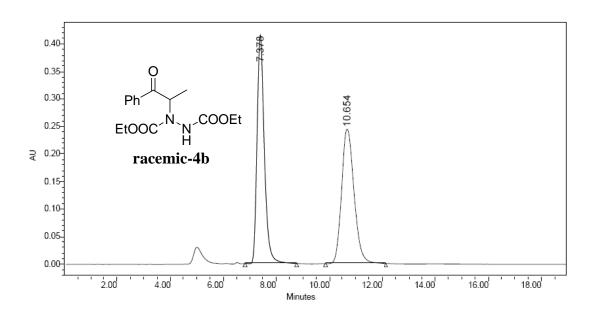
References

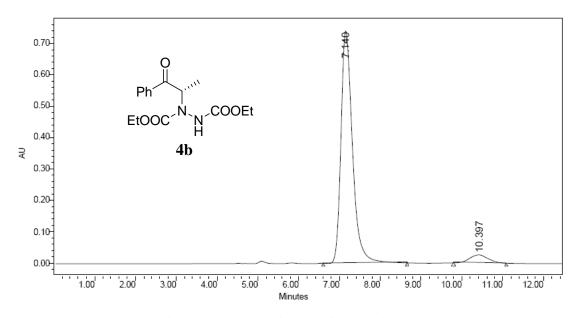

- (1) Brunner, H.; Bügler, J.; Nuber, B. Tetrahedron: Asymmetry 1995, 6, 1699.
- (2) Matsubara, R.; Kobayashi, S. Angew. Chem., Int. Ed. 2006, 45, 7993.

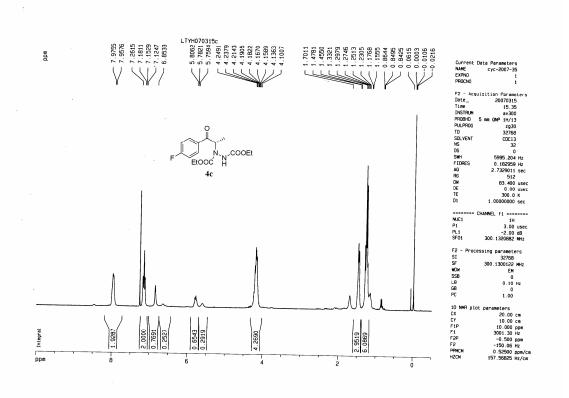
NMR and HPLC spectra

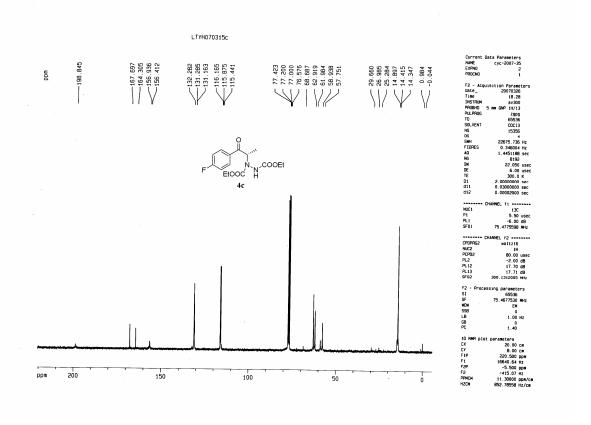


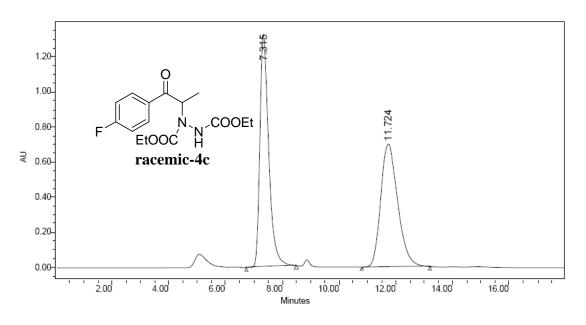


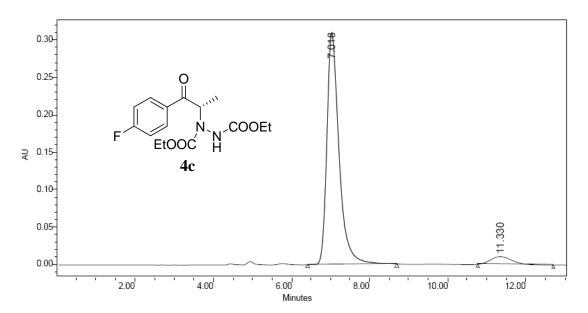

Ī		RT (min)	Area (V *sec)	% Area	Height (V)	% Height
Ī	1	7.166	8654159	50.36	382131	63.22
	2	10.627	8531213	49.64	222326	36.78

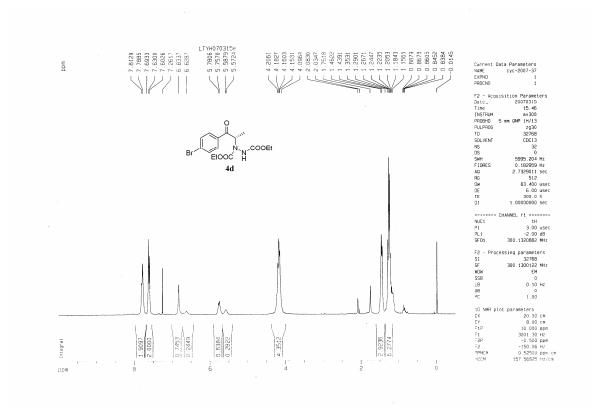

	RT (min)	Area (V *sec)	% Area	Height (V)	% Height
1	6.930	2111884	98.83	85372	98.85
2	10.753	25093	1.17	992	1.15

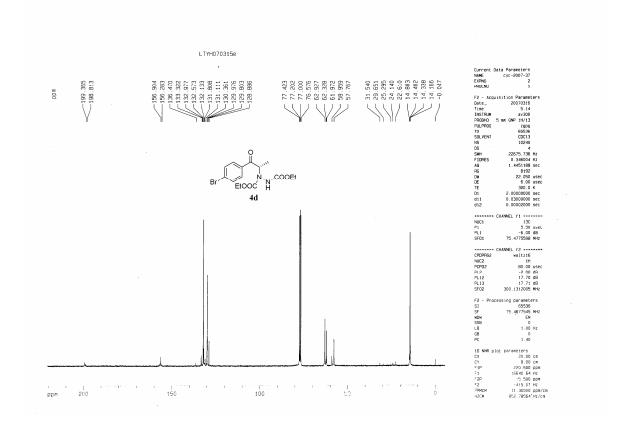


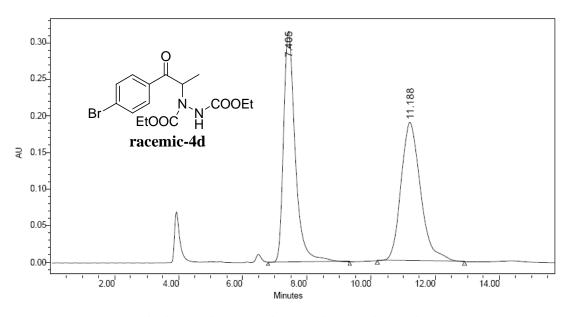


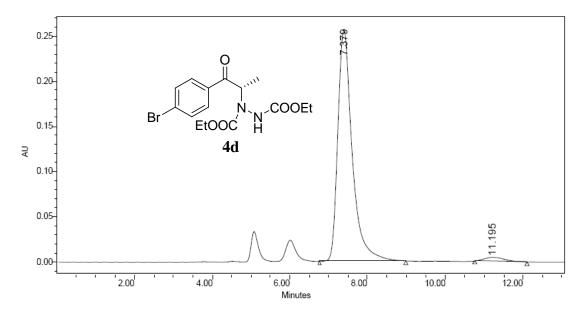

	RT (min)	Area (V *sec)	% Area	Height (V)	% Height
1	7.378	7940211	49.81	415922	62.98
2	10.654	7999902	50.19	244515	37.02

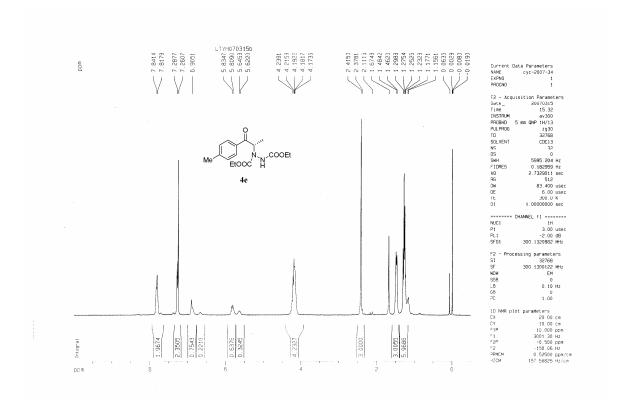

	RT (min)	Area (V *sec)	% Area	Height (V)	% Height
1	7.140	14464017	96.79	739069	97.39
2	10.397	480203	3.21	19783	2.61

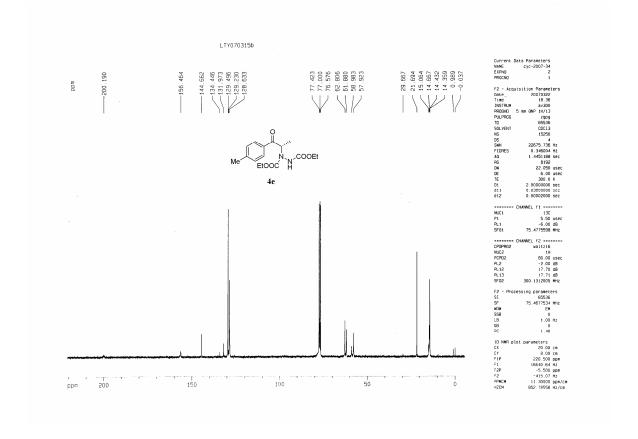


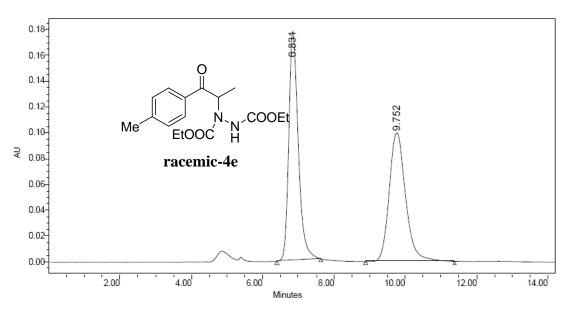


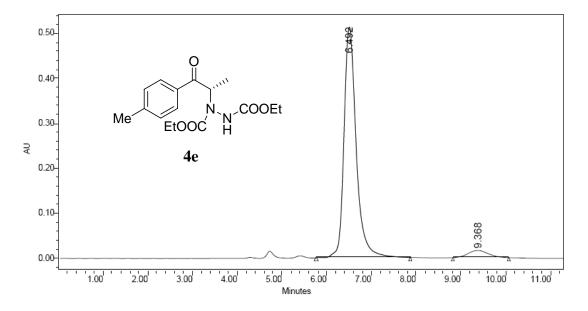

	RT (min)	Area (V *sec)	% Area	Height (V)	% Height
1	7.315	28654220	49.55	1324830	65.39
2	11.724	29175232	50.45	701252	34.61

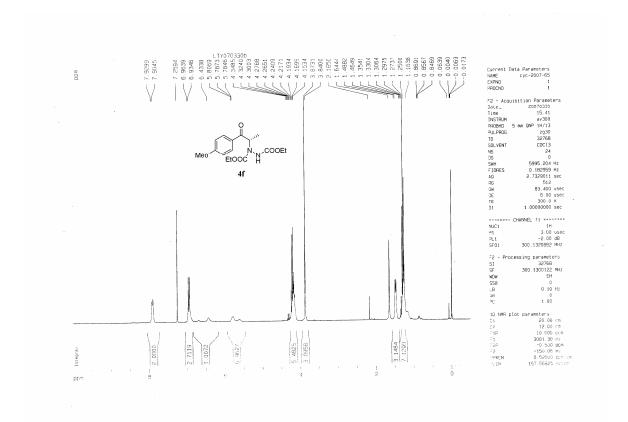

	RT (min)	Area (V *sec)	% Area	Height (V)	% Height
1	7.018	6713016	96.69	309568	97.56
2	11.330	229753	3.31	7746	2.44

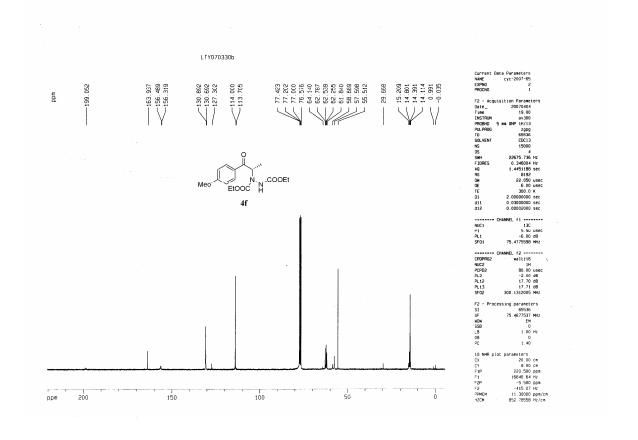


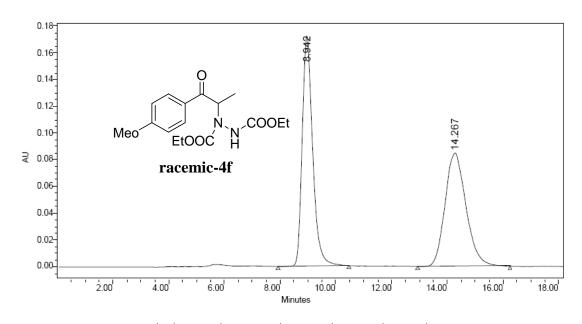


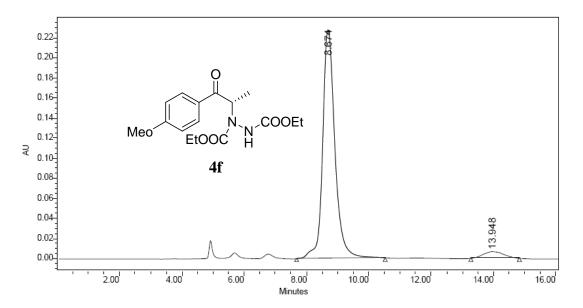

	RT (min)	Area (V *sec)	% Area	Height (V)	% Height
1	7.405	7982213	49.81	314917	62.44
2	11.188	8041975	50.19	189435	37.56

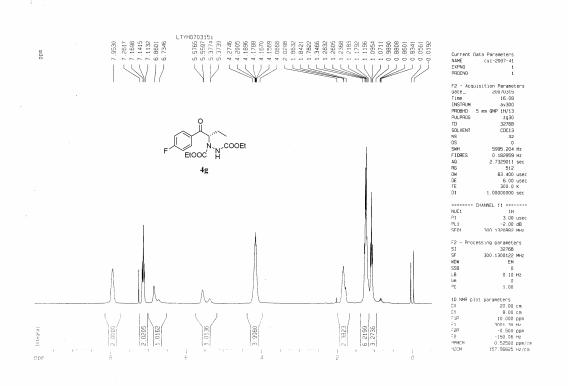

	RT (min)	Area (V *sec)	% Area	Height (V)	% Height
1	7.379	6552626	98.45	256851	98.71
2	11.195	103077	1.55	3344	1.29

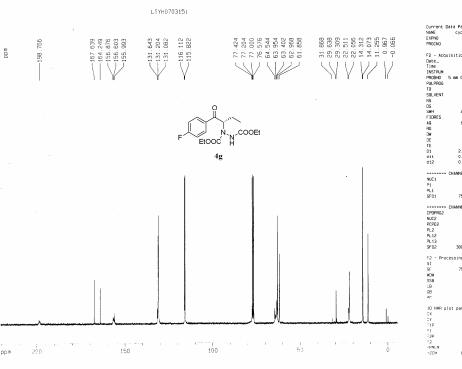


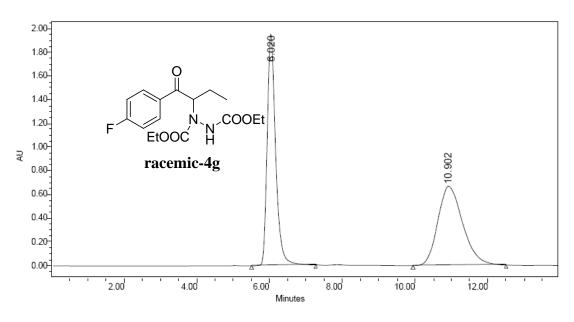


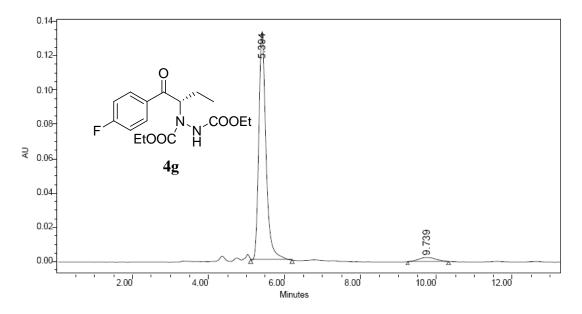

	RT (min)	Area (V *sec)	% Area	Height (V)	% Height
1	6.831	3279332	50.73	177451	64.05
2	9.752	3184408	49.27	99606	35.95

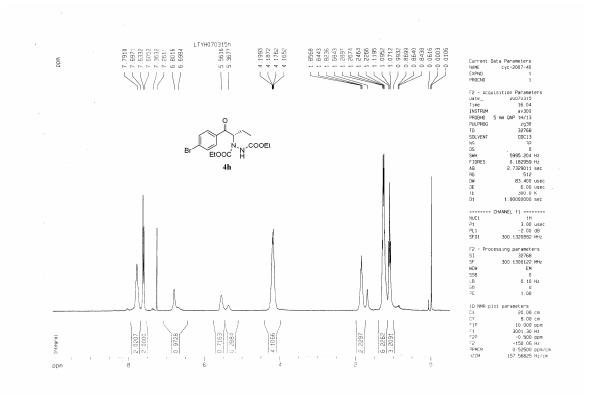

		RT (min)	Area (V *sec)	% Area	Height (V)	% Height
	1	6.492	9758208	96.88	514515	97.64
1	2	9.368	314368	3.12	12454	2.36

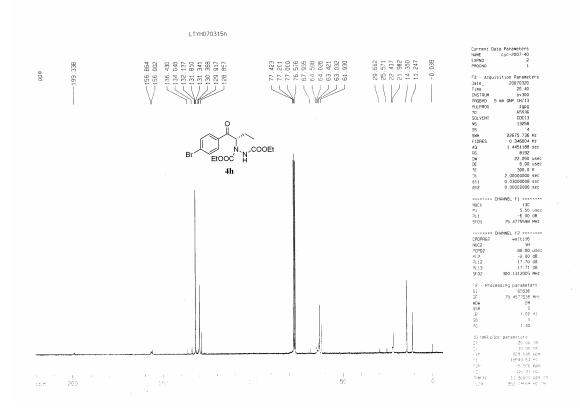


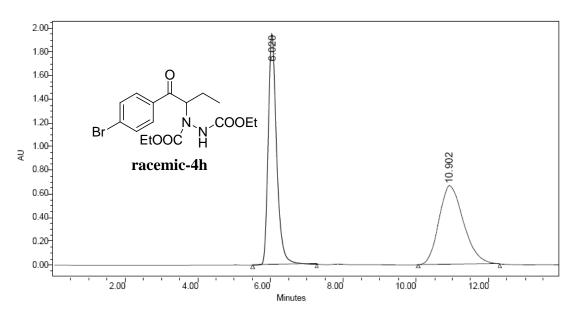


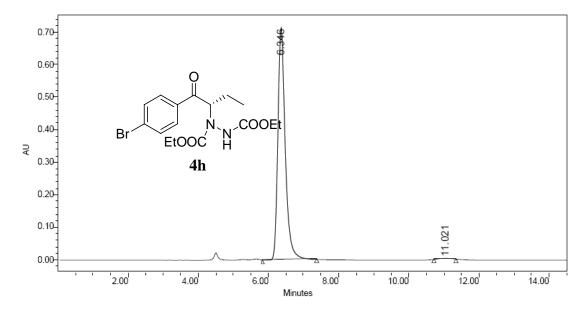

	RT (min)	Area (V *sec)	% Area	Height (V)	% Height
1	8.942	4495742	50.31	172420	67.01
2	14.267	4440619	49.69	84880	32.99

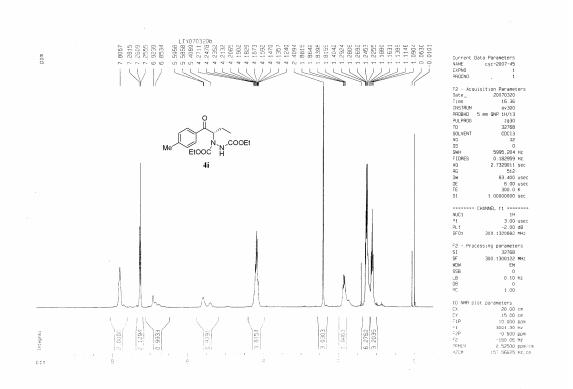

	RT (min)	Area (V *sec)	% Area	Height (V)	% Height
1	8.674	6281791	96.88	228123	97.69
2	13.948	202047	3.12	5398	2.31

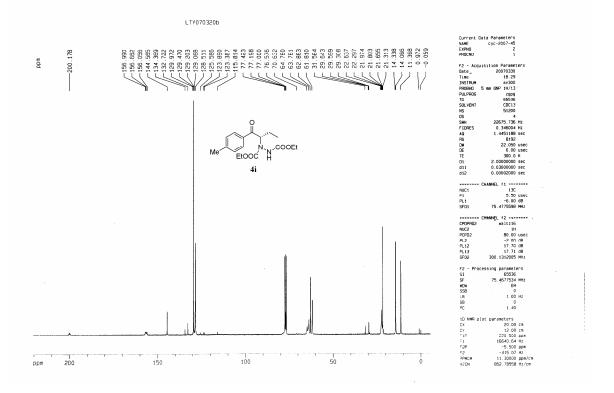


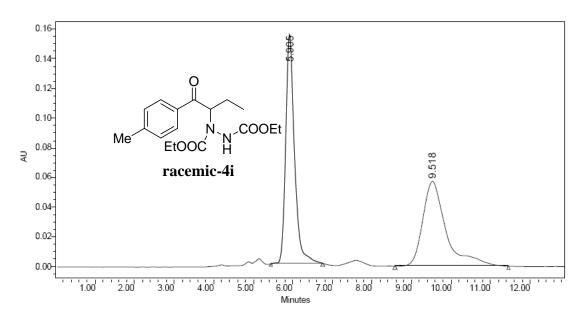


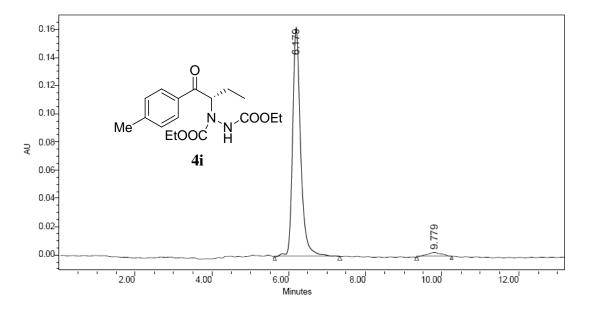

	RT (min)	Area (V*sec)	% Area	Height (V)	% Height
1	6.020	31467918	49.72	1953225	74.47
2	10.902	31826290	50.28	669546	25.53

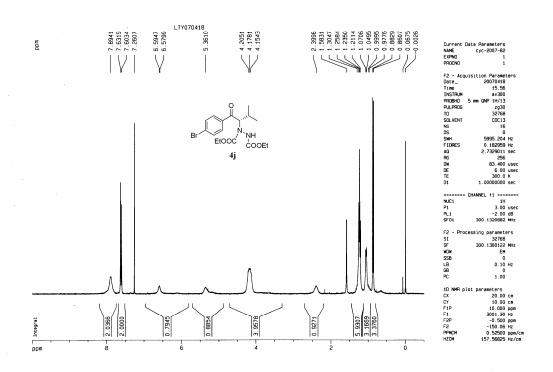

	RT (min)	Area (V *sec)	% Area	Height (V)	% Height
1	5.394	1757264	98.05	133179	98.91
2	9.739	34960	1.95	1465	1.09

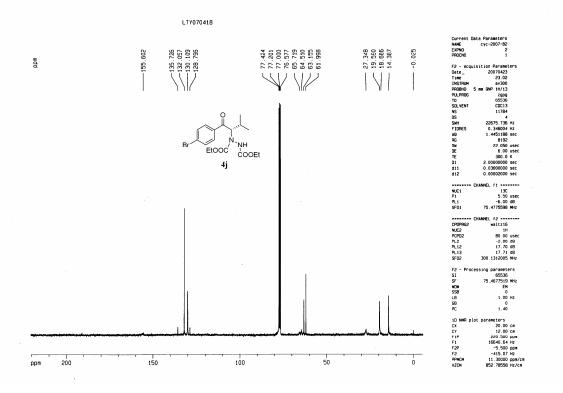


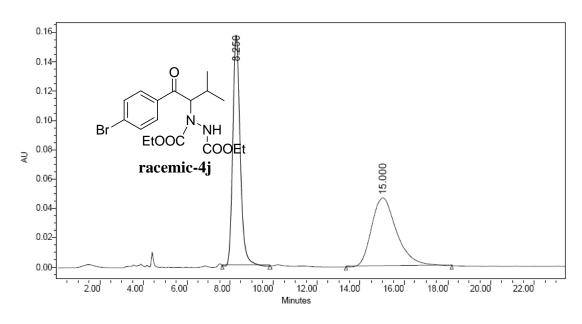


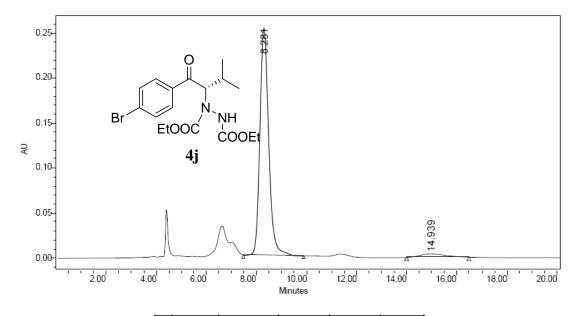

	RT (min)	Area (V*sec)	% Area	Height (V)	% Height
1	6.020	31467918	50.07	1953225	74.55
2	10.902	31373957	49.93	666670	25.45

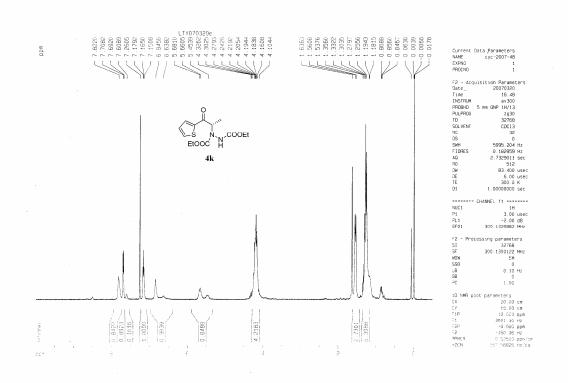

	RT (min)	Area (V *sec)	% Area	Height (V)	% Height
1	6.346	10408808	99.39	714110	99.62
2	11.021	63632	0.61	2742	0.38

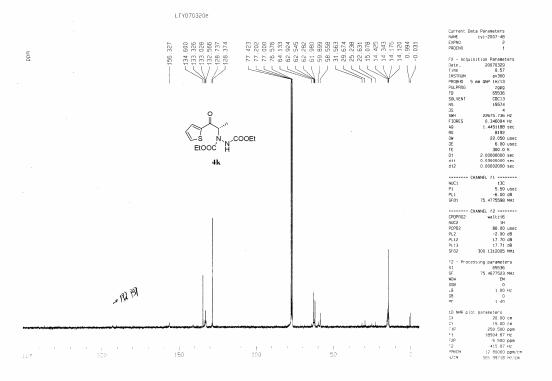


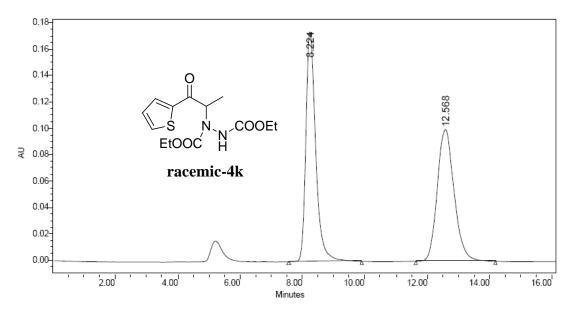


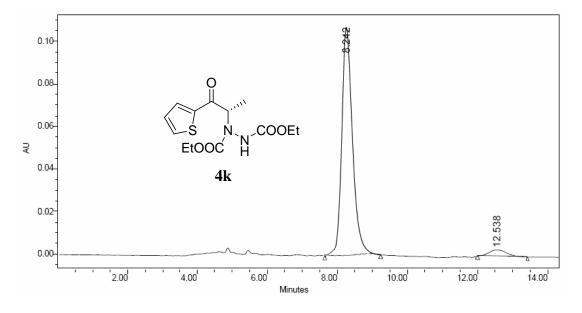

		RT (min)	Area (V *sec)	% Area	Height (V)	% Height
Г	1	5.905	2385442	50.44	154666	73.01
	2	9.518	2343500	49.56	57184	26.99

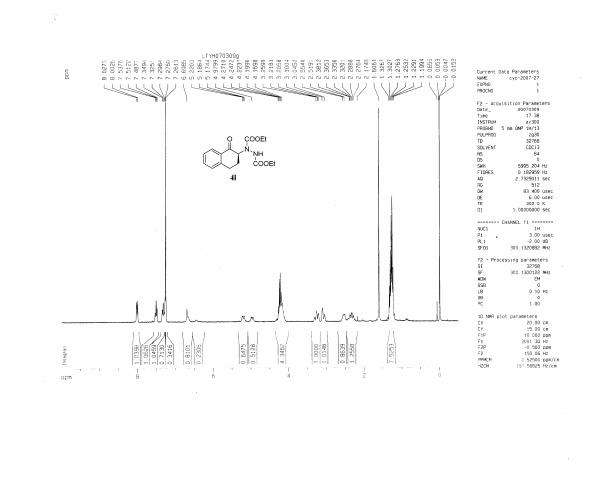

	RT (min)	Area (V*sec)	% Area	Height (V)	% Height
1	6.179	2363984	98.85	162528	99.01
2	9.779	27474	1.15	1626	0.99

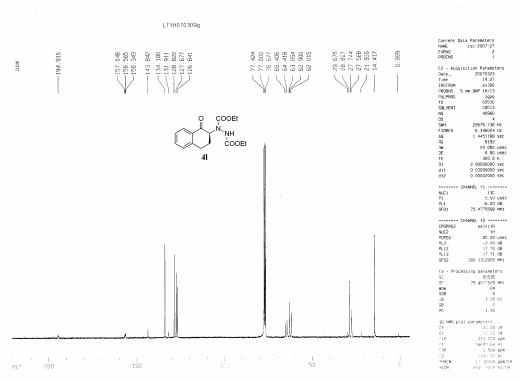


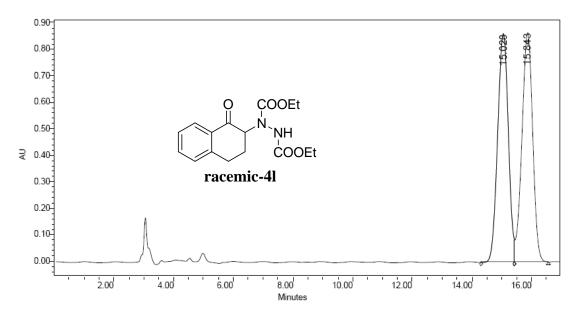


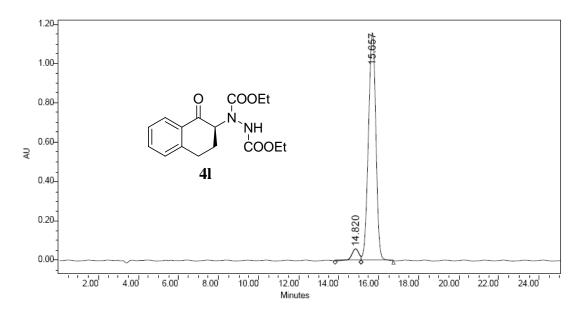

	RT (min)	Area (V *sec)	% Area	Height (V)	% Height
1	8.250	3726191	49.53	156802	77.00
2	15.000	3797236	50.47	46833	23.00

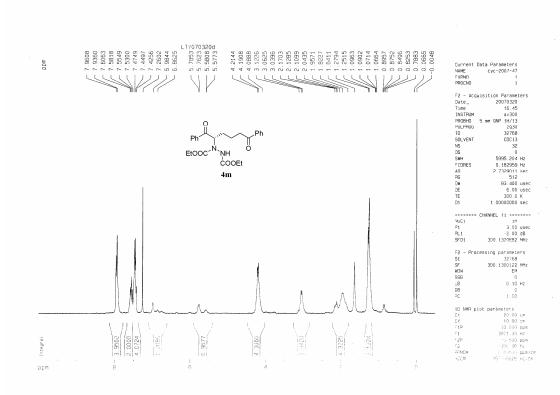

	RT (min)	Area (V*sec)	% Area	Height (V)	% Height
1	8.281	6193192	98.40	252512	99.12
2	14.939	100970	1.60	2241	0.88

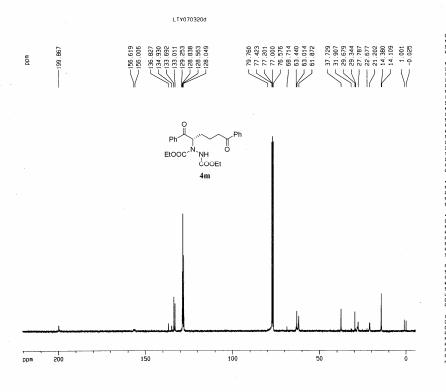




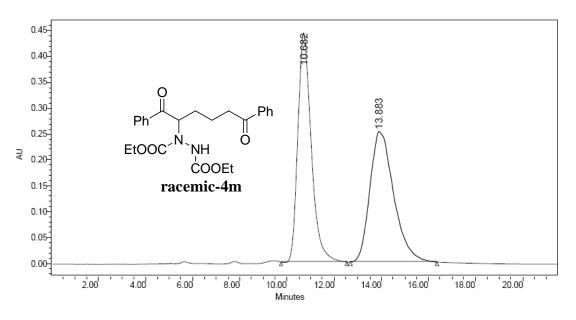

	RT (min)	Area (V *sec)	% Area	Height (V)	% Height
1	8.224	3812947	50.35	174296	63.58
2	12.568	3759901	49.65	99845	36.42


	RT (min)	Area (V *sec)	% Area	Height (V)	% Height
1	8.242	2173054	97.84	105343	98.17
2	12.538	48030	2.16	1960	1.83

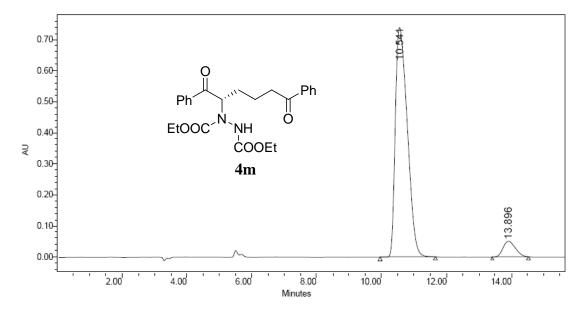


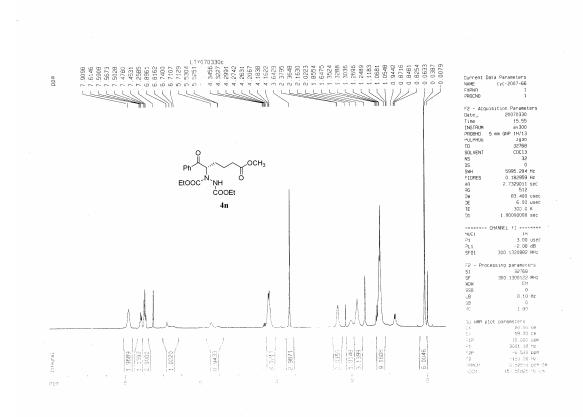


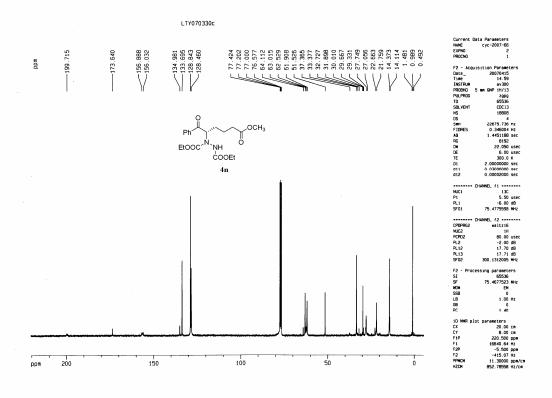

	RT (min)	Area (V*sec)	% Area	Height (V)	% Height
1	15.028	21519177	49.84	863374	49.92
2	15.843	21661043	50.16	866244	50.08

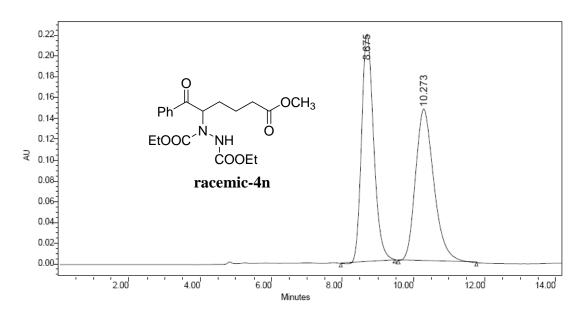


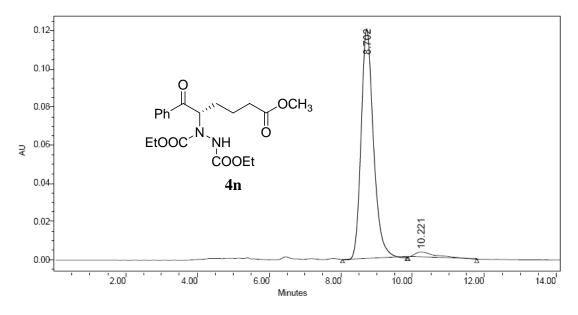
		RT (min)	Area (V*sec)	% Area	Height (V)	% Height
•	1	14.820	1539657	4.88	60559	4.96
	2	15.657	30027615	95.12	1161141	95.04

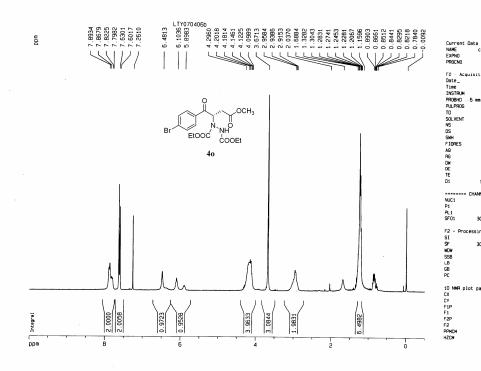


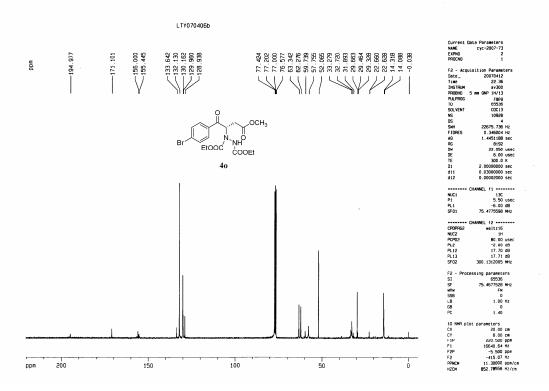


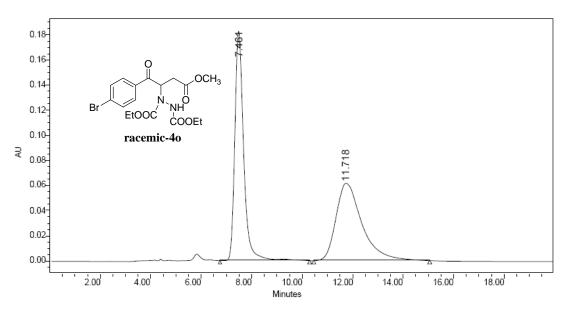


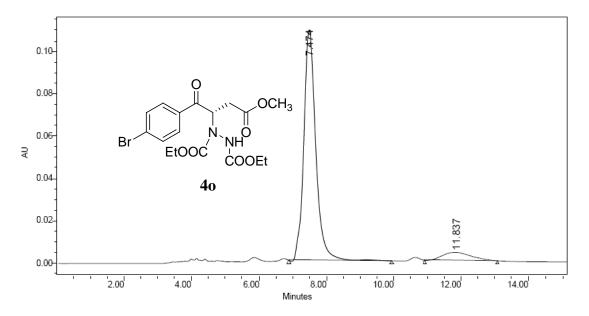

	RT (min)	Area (V *sec)	% Area	Height (V)	% Height
1	10.682	17460261	49.69	442360	63.75
2	13.883	17680757	50.31	251514	36.25

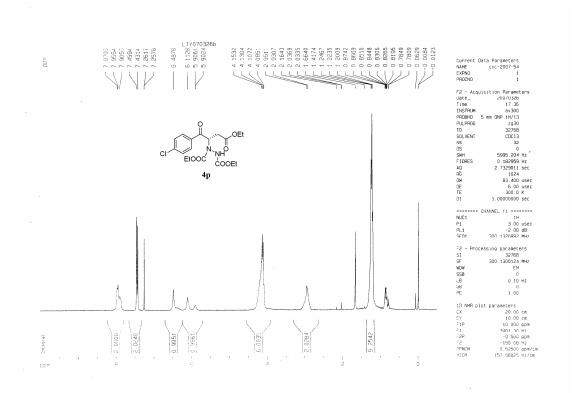

	RT (min)	Area (V*sec)	% Area	Height (V)	% Height
1	10.541	18963758	93.80	739957	93.78
2	13.896	1252773	6.20	49104	6.22

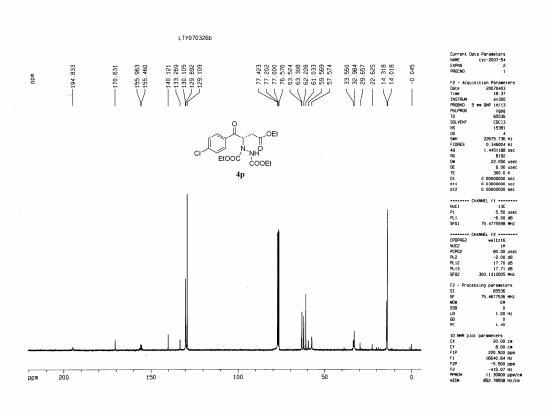


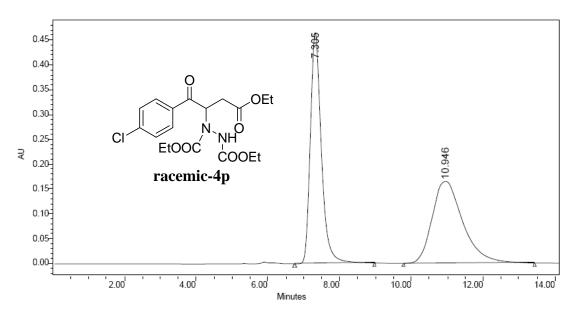


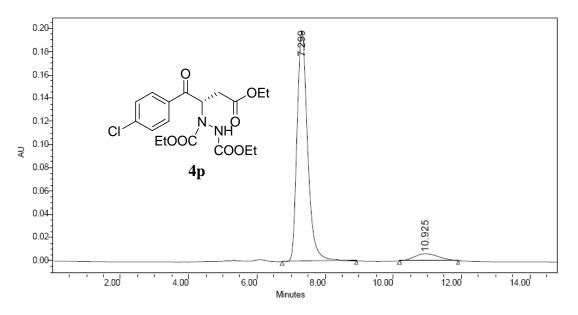

	RT (min)	Area (V *sec)	% Area	Height (V)	% Height
1	8.675	5196785	49.67	218775	59.93
2	10.273	5265730	50.33	146257	40.07


	RT (min)	Area (V *sec)	% Area	Height (V)	% Height
1	8.702	2884352	97.84	120541	98.33
2	10.221	63605	2.16	2047	1.67






	RT (min)	Area (V *sec)	% Area	Height (V)	% Height
1	7.461	4473622	50.24	182745	74.75
2	11.718	4431529	49.76	61720	25.25


	RT (min)	Area (V *sec)	% Area	Height (V)	% Height
1	7.474	2701703	95.25	109157	97.49
2	11.837	134644	4.75	2815	2.51

	RT (min)	Area (V *sec)	% Area	Height (V)	% Height
1	7.305	9931671	50.22	465514	73.85
2	10.946	9845115	49.78	164820	26.15

	RT (min)	Area (V *sec)	% Area	Height (V)	% Height
1	7.299	4294486	95.60	198801	97.68
2	10.925	197481	4.40	4732	2.32