Novel C_{2}-Symmetric Planar Chiral Diphosphine
 Ligands and Their Application in Pd-Catalyzed Asymmetric Allylic Substitutions

Delong Liu, Fang Xie, Wanbin Zhang ${ }^{*}$

School of Chemistry and Chemical Technology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China

Table of content

Experimental
General experimental conditions S-2
Ruthenocene $\left[\mathrm{Ru}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right](\mathbf{1 4}) \quad \mathrm{S}-2$
1,1'-Dicarboxylic ruthenocene (15) S-3

1, l'-Bis[(S)-4-isopropyloxazolin-2-yl]-ruthenocene (18) S-3
2,2'-Bis[(S)-4-isopropyloxazolin-2-yl]-(S)-(S)-1,1'-bis(diphenylphos S-4
phino)-ruthenocene (5)
Complexation behavior of $\mathbf{4 a}$ with dichlorobis(acetonitrile)palladium.

References S-5
HPLC chromatograms S-6 to S-8
NMR spectra for all new compounds S-9 to S-21
ORTEP view for $\mathbf{7}$ and $\mathbf{8} \quad$ S-22

[^0]General Experimental Conditions. All reactions were performed under a nitrogen atmosphere, and the workup was carried out in air. The reaction solvents were distilled prior to used (Tetrahydrofuran was distilled from sodium-benzophenone ketyl. Methanol and Ethanol were dried with magnesium. Dichloromethane was distilled from CaH_{2}). The commercially available reagents were used without further purification. The substrate of asymmetric allylic substitutions $\mathbf{9}$ was prepared by literature procedure. ${ }^{1}$ Melting points were determined on a XT- 5 microscopic melting point apparatus without uncorrected. ${ }^{1} \mathrm{H}$ NMR (400 MHz) spectra, ${ }^{13} \mathrm{C}$ NMR (100 MHz) spectra and ${ }^{31} \mathrm{P}$ NMR (162 MHz) were recorded on a Varian MERCURY plus-400 spectrometer. The ee values were determined by HPLC using a Daicel Chiralcel OD-H, OJ-H and AD-H column.

Ruthenocene $\left[\mathrm{Ru}\left(\boldsymbol{\eta}^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]$ (14)

To a mixture of ruthenium trichloride $(10.52 \mathrm{~g}, 0.040 \mathrm{~mol})$ and absolute ethanol $(160 \mathrm{~mL})$ was added cyclopentadiene ($50 \mathrm{~mL}, 0.60 \mathrm{~mol}$) following by zinc dust $(26 \mathrm{~g}$, $0.40 \mathrm{~mol})$. The reaction mixture turned rapidly dark blue, and then, more slowly, dark grey. After stirring for 2 hours at room temperature, the mixture was filtered in air. The filtrate was concentrated and followed by another filtration to afford light green
crystalline solid (1.6 g). The metallic grey solid was washed with toluene $(8 \times 50 \mathrm{~mL})$ and the filtrate was evaporated to obtain another 7.0 g . Total yield: 93.0%.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.59$ (s).

1,1'-Dicarboxylic ruthenocene (15)

Ruthenocene ($4.62 \mathrm{~g}, 20 \mathrm{mmol}$) was placed in a 500 mL flask followed by adding n-hexane (150 mL). Another 250 mL flask were charged with n-hexane (100 mL) followed by adding n - butyllithium ($32 \mathrm{~mL}, 2.5 \mathrm{M}, 80 \mathrm{mmol}$) and TMEDA (8.3 mL , $52 \mathrm{mmoL})$. The solution was then transferred into the cloudy ruthenocene solution. This mixture was stirred at room temperature for 19 h to give lithiated compound, which was then poured into a mixture of dry-ice and n-hexane $(100 \mathrm{~mL})$. The mixture was placed for 3 h before concentrated hydrochloric acid was added until $\mathrm{pH}=2$. After filtered and dried in vacuum, 1,1'-dicarboxylic ruthenocene $\mathbf{1 3}$ was obtained as a light brown solid (6.13 g ; 96.0\%) .
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta 4.77$ (t, $\left.J=1.6 \mathrm{~Hz}, 4 \mathrm{H}\right), 5.03(\mathrm{t}, J=1.6 \mathrm{~Hz}, 4 \mathrm{H})$, 12.3 (br, 2H).

1, l'-Bis[(S)-4-isopropyloxazolin-2-yl]-ruthenocene (18)

1,1'-Dicarboxylic ruthenocene $(4.25 \mathrm{~g}, 13.3 \mathrm{mmol})$ was suspended in dichloromethane (70 mL) followed by adding oxalyl chloride ($11.0 \mathrm{~mL}, 106 \mathrm{mmol}$) and pyridine $(0.1 \mathrm{~mL})$. This mixture was refluxed for 2 h and then evaporated to dryness. The residue was washed with ethyl ether and the organic phase was evaporated to offer $1,1^{\prime}$-dichlorocarbonylruthenocene as a yellow-green solid. The product was directly used in the next step without any purification.

To a solution of $(\mathrm{S})-(+)$-valinol $(3.20 \mathrm{~g}, 26.6 \mathrm{mmol})$ and triethylamine $(11.2 \mathrm{ml}$, 58.5 mmol) in 30 ml of dichloromethane was added dropwise the above 1,1'-dichlorocarbonylruthenocence in 40 ml of dichloromethane under nitrogen atmosphere in ice-water bath. The reaction mixture was stirred at room temperature for 24 h . To this solution was added dropwise methanesulfonyl chloride $(2.80 \mathrm{~mL}$, 34.6 mmol) for a period of 30 min at $0^{\circ} \mathrm{C}$, and then the solution was stirred at room
temperature for 2 h . The resulting solution was washed with chilled water $\left(5^{\circ} \mathrm{C}\right)$ and then brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and then the solvent was evaporated in vacuum. The residue was purified on silica gel column chromatography with petrol ether-ethyl acetate (2:1) to afford pure product $\mathbf{1 8}(3.5 \mathrm{~g}, 58 \%)$ as a light yellow solid.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.87(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 6 \mathrm{H}), 0.95(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 6 \mathrm{H})$, 1.84-1.79 (m, 2H), 3.95-3.91 (m, 2H), $3.99(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.22(\mathrm{t}, J=9.2 \mathrm{~Hz}, 4 \mathrm{H})$, 5.09 (brs, 2H), 5.14 (brs, 2H).

2,2'-Bis[(S)-4-isopropyloxazolin-2-yl]-(S)-(S)-1,1'-bis(diphenylphosphino)-ruthen ocene (5)

To a solution of $\mathbf{1 8}(1.0 \mathrm{~g}, 2.2 \mathrm{mmol})$ in 40 ml of THF was added dropwise a solution of sec-butyllithium in cyclohexane ($7.0 \mathrm{~mL}, 0.98 \mathrm{M}, 6.6 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$ under nitrogen atmosphere. The reaction solution was stirred at the temperature for 3 h and then at $0^{\circ} \mathrm{C}$ for 10 min . Chlorodiphenylphosphine ($1.23 \mathrm{~mL}, 6.6 \mathrm{mmol}$) was dropped at $0^{\circ} \mathrm{C}$ to the solution containing dilithiated species generated from $\mathbf{1 6}$, and then the solution was stirred at room temperature for 3 h . After the solvent was evaporated in vacuum, the residue was isolated directly by silica gel column chromatography eluted with degassed petrol ether-ethyl acetate (8:1) to give $5(0.93 \mathrm{~g}$, 51.4%); mp 178-180 ${ }^{\circ} \mathrm{C} ;[\alpha]^{\mathrm{D}}{ }_{27}=-263.6\left(\mathrm{c} 0.61, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{~Hz}\right): \delta$ $0.60(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}), 0.86(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}), 1.65-1.71(\mathrm{~m}, 2 \mathrm{H}), 3.67(\mathrm{t}, J=8 \mathrm{~Hz}$, 2 H), 3.82 (brs, 2 H), $3.89-3.91$ (m, 2H), 4.23-4.27 (dd, $J=8,9.6 \mathrm{~Hz}, 2 \mathrm{H}$), 4.67 (brs, $2 \mathrm{H}), 5.41$ (brs, 2 H$), 7.17-7.32(\mathrm{~m}, 20 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{~Hz}\right): \delta 17.4,19.1$, $32.1,69.6,72.2,75.8,77.4,78.0,78.1,81.9,82.1,84.5,84.8,128.21,128.28,128.30$, $128.33,128.4,128.9,132.8,133.0,134.4,134.6,137.9,138.0,139.2,139.3,163.37$, 163.39. ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}, 162 \mathrm{~Hz}, 85 \% \mathrm{H}_{3} \mathrm{PO}_{4}\right): \delta-16.85$; MS (MALDI): $m / z 823$ $\left[\mathrm{M}+1^{+}\right]$(100); HRMS calcd for $\mathrm{C}_{46} \mathrm{H}_{47} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{Ru}$ 823.2151, found 823.2154.

The diastereomeric compound 19 was also obtained as by-product with the yield of 12%. mp $87-88^{\circ} \mathrm{C} ;[\alpha]^{\mathrm{D}}{ }_{27}=-62.9$ (c $0.44, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{~Hz}\right): \delta$ $0.49-0.54(\mathrm{~m}, 9 \mathrm{H}), 0.71(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.36-1.43(\mathrm{~m}, 1 \mathrm{H}), 1.48-1.56(\mathrm{~m}, 1 \mathrm{H}), 3.38$
(t, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.70-3.72(\mathrm{~m}, 1 \mathrm{H}), 3.76-3.80(\mathrm{~m}, 1 \mathrm{H}), 3.85-3.94(\mathrm{~m}, 2 \mathrm{H}), 3.96-4.02$ $(\mathrm{m}, 1 \mathrm{H}), 4.16$ (brs, 2 H), 4.78-4.80 (q, $J=2.8 \mathrm{~Hz}, 2 \mathrm{H}$), 5.26 (brs, 1H), 5.29 (brs, 1 H), 7.59-7.43 (m, 20H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{~Hz}\right): \delta 17.4,18.0,18.0,18.9,31.9,32.7$, $69.5,69.6,72.1,72.3,76.4,76.7,77.3,77.8,78.6,78.7,78.8,78.9,128.1,128.21$, $128.25,128.27,128.32,128.38,128.42,128.49,128.5,128.8,128.9,132.6,132.84$, 132.87, 133.0, 134.6, 134.8, 134.9, 135.1, 162.92, 162.95; ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}, 162 \mathrm{~Hz}\right.$, $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$): δ-16.77, -15.72; MS (MALDI): $m / z 823\left[\mathrm{M}+1^{+}\right]$(100); HRMS calcd for $\mathrm{C}_{46} \mathrm{H}_{47} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{Ru}$ 823.2151, found 823.2159.

Complexation Behavior of 4a with Dichlorobis(acetonitrile)palladium.

Compound $\mathbf{4 a}(6.9 \mathrm{mg}, 0.01 \mathrm{mmol})$ was dissolved in acetonitrile $-d_{3}(0.40 \mathrm{~mL})$ to give solution A, and dichlorobis(acetonitrile)palladium ($8.0 \mathrm{mg}, 0.03 \mathrm{mmol}$) was dissolved in acetonitrile- $d_{3}(1.50 \mathrm{~mL})$ to give solution B. Addition of 0.25 mL of solution $\mathrm{B}(0.005 \mathrm{mmol})$ to solution A gave a solution containing $\mathbf{4 a}$ and a C_{2}-symmetric $1: 1$ complex, $\mathbf{7 a}\left([\mathbf{4 a}] \mathrm{PdCl}_{2}\right.$), judging from the ${ }^{1} \mathrm{H}$ NMR analysis. When 0.50 mL of solution $\mathrm{B}(0.01 \mathrm{mmol})$ was added, compound $4 \mathbf{a}$ disappeared, and only complex 7a was formed as determined by ${ }^{1} \mathrm{H}$ NMR analysis. The addition of more than 0.5 mL of solution B gave the same result as above and did not produce a new complex.

Ref.

1. Watson, L. D. G.; Styler, S. A.; Yudin, A. K. J. Am. Chem. Soc. 2004, 126, 5086. 2. Zhang, W.; Shimanuki, T.; Kida, T,; Nakatsuji, Y.; Ikeda, I., J. Org. Chem. 1999, 64, 6247.

Figure S1. HPLC chromatograms showing the separation 10 using a Daicel Chiralcel OD-H column (hexane: 2-propanol $=98: 2$, flow $=0.5 \mathrm{~mL} / \mathrm{min}$). Product from asymmetric allylic alkylation using PPh_{3} at $25^{\circ} \mathrm{C}$, racemic isomer.

Figure S2. HPLC chromatograms showing the separation 10 using a Daicel Chiralcel OD-H column (hexane: 2-propanol $=98: 2$, flow $=0.5 \mathrm{~mL} / \mathrm{min}$). Product from asymmetric allylic alkylation using $\mathbf{4 a}$ as ligand at $-25^{\circ} \mathrm{C}$ (Table 1, entry 8), 95.7% ee.

Figure S3. HPLC chromatograms showing the separation 10 using a Daicel Chiralcel OD-H column (hexane: 2-propanol $=98: 2$, flow $=0.5 \mathrm{~mL} / \mathrm{min}$). Product from asymmetric allylic alkylation using $\mathbf{4 b}$ as ligand at $-25^{\circ} \mathrm{C}$ (Table 1, entry 10), 92.9% ee.

Figure S4. HPLC chromatograms showing the separation 10 using a Daicel Chiralcel OD-H column (hexane: 2-propanol $=98: 2$, flow $=0.5 \mathrm{~mL} / \mathrm{min}$). Product from asymmetric allylic alkylation using $\mathbf{4 a}$ as ligand at $-78^{\circ} \mathrm{C}$ (Table 1, entry 9), $94.1 \% e e$.

Figure S5. HPLC chromatograms showing the separation 11 using a Daicel Chiralcel OJ-H column (hexane: 2-propanol $=87: 13$, flow $=0.5 \mathrm{~mL} / \mathrm{min}$). Product from asymmetric allylic amination using PPh_{3} at $25^{\circ} \mathrm{C}$, racemic isomer.

Figure S6. HPLC chromatograms showing the separation 11 using a Daicel Chiralcel OJ-H column (hexane: 2-propanol 9=87: 13, flow $=0.5 \mathrm{~mL} / \mathrm{min}$). Product from asymmetric allylic amination using 1a at $0^{\circ} \mathrm{C}$ (Table 2, entry 7), 98.7% ee

Figure S7. HPLC chromatograms showing the separation 11 using a Daicel Chiralcel OJ-H column (hexane: 2-propanol $9=87: 13$, flow $=0.5 \mathrm{~mL} / \mathrm{min}$). Product from asymmetric allylic amination using $\mathbf{1 b}$ at $0^{\circ} \mathrm{C}$ (Table 2, entry 10), 99.1% ee

Figure S8. HPLC chromatograms showing the separation 11 using a Daicel Chiralcel OJ-H column (hexane: 2-propanol 9=87: 13, flow $=0.5 \mathrm{~mL} / \mathrm{min}$). Product from asymmetric allylic amination using $4 \mathbf{a}$ at $-25^{\circ} \mathrm{C}$ (Table 3, entry 10), 99.2% ee

Figure S9. HPLC chromatograms showing the separation 11 using a Daicel Chiralcel OJ-H column (hexane: 2-propanol 9=87: 13, flow $=0.5 \mathrm{~mL} / \mathrm{min}$). Product from asymmetric allylic amination using $\mathbf{4 b}$ at $-25^{\circ} \mathrm{C}$ (Table 3, entry 12), 99.0% ee

```
घா\square
```


159% \qquad

DSYS

$$
\text { (} \mathrm{H} \text { NMR }\left(\mathrm{CD}_{3} \mathrm{Cl}, 400 \mathrm{MHz} \text { for } 6\right.
$$

ELSEB

Abstract

${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CD}_{3} \mathrm{Cl}, 162 \mathrm{MHz}\right)$ for $\mathbf{4 b}$

5

EIS！

nes 1 —

SHZ゙

1 $\mathbf{L l}^{\prime \prime}$
$+$
$90 \mathrm{~S}=$

ORTEP view for twist
angle of 7a (twist angle: 23.63°)

ORTEP view for twist angle of 7b (twist angle: 16.05°)

ORTEP view for twist
angle of 8a (twist angle:

[^1]

ORTEP view for twist
angle of $\mathbf{8 b} \mathbf{- A}$ (twist angle:
10.28°)
angle of $\mathbf{8 b} \mathbf{b}$ (twist angle:
16.20°)

[^0]: * Corresponding author. Tel.: +86-21-54743265; fax: +86-21-54743265; e-mail: wanbin@sjtu.edu.cn.

[^1]: 8.15°)

