Detailed analysis of electron transfer properties of azurin adsorbed on graphite electrodes using dc and large amplitude Fourier transformed ac voltammetry

Barry D. Fleming[†], Jie Zhang^{n}, Darrell Elton[‡] and Alan M. Bond^{†*}

[†] School of Chemistry, Monash University, Victoria 3800, Australia, ^{**} Level 8, Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, #04-01, Singapore 138669, and ^{‡*} Department of Electronic Engineering, La Trobe University, Bundoora, Victoria 3086, Australia.

Supporting Information: Experimental 2^{nd} and 3^{rd} harmonic voltammograms, a table of $E^{0'}$ values derived from harmonic data, experimental and simulated FT dc data, and simulated and experimental power spectra are included here.

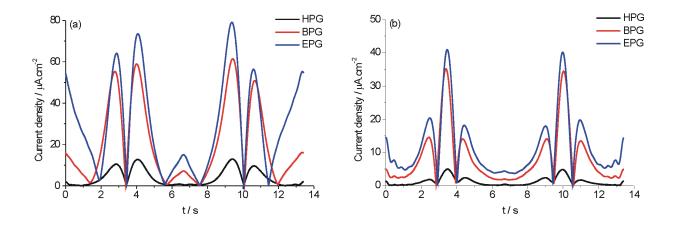


Figure S-1 – The (a) 2^{nd} and (b) 3^{rd} harmonic voltammograms for azurin adsorbed onto HPG (black), BPG (red) and EPG (blue) electrodes. Experimental conditions: f = 22 Hz, $\Delta E = 80$ mV, v = 0.09686 V.s⁻¹, $E_i = 0.450$ V, $E_s = -0.200$ V.

Table S-1 - $E^{0'}$ values (V vs. SHE) calculated^a from the 1^{st} , 2^{nd} , 3^{rd} and 4^{th} harmonic voltammograms for azurin-modified HPG, BPG & EPG electrodes.

	HPG				BPG				EPG			
f/Hz	1 st	2 nd	3 rd	4 th	1 st	2 nd	3 rd	4 th	1 st	2 nd	3 rd	4 th
10	0.325	0.322	0.317	0.316	0.328	0.327	0.324	0.324	0.325	0.323	0.319	0.318
22	0.326	0.324	0.317	0.316	0.329	0.327	0.324	0.324	0.325	0.323	0.318	0.318
36	-	-	-	-	0.328	0.327	0.324	0.324	0.324	0.323	0.318	0.318
61	-	-	-	-	0.328	0.327	0.323	0.324	0.324	0.323	0.318	0.317
84	-	-	-	-	0.328	0.326	0.323	0.324	0.324	0.322	0.317	0.317
107	-	-	-	-	0.328	0.327	0.324	0.324	0.324	0.322	0.317	0.317
135	-	-	-	-	0.328	0.327	0.324	0.324	0.323	0.322	0.317	0.317

^a As for the dc case, the $E^{0'}$ values were calculated using $(E_p^{\text{ ox}} + E_p^{\text{ red}})/2$, however $E_p^{\text{ ox}}$ and $E_p^{\text{ red}}$ were measured at the positions of the highest peaks for the 1^{st} and 3^{rd} harmonics, and the position of the minimum between the two largest peaks for the 2^{nd} and 4^{th} harmonics.

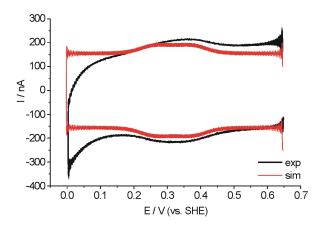


Figure S-2 – Comparison of experimental (black line) and simulated (red line) dc cyclic voltammograms obtained from an ac sine wave experiment for azurin adsorbed onto a BPG electrode. Experimental conditions as per Figure 8, except: f = 22 Hz. Simulation parameters: $C_{dl} = 46 \mu F.cm^{-2}$, $\Gamma_{dc} = 24 \text{ pmoles.cm}^{-2}$, $E^{0'} = 0.318 \text{ V}$, $R_u = 170 \Omega$; $k^{0'} = 1000 \text{ s}^{-1}$, $\alpha = 0.5$.

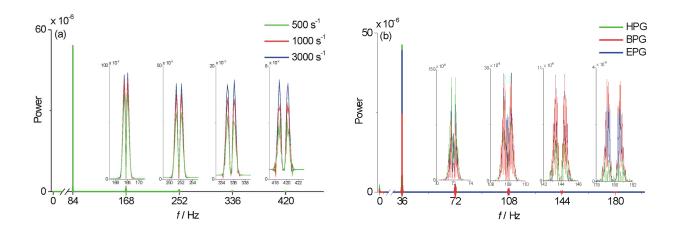


Figure S-3 – Power spectra obtained from (a) simulated total current sine-wave voltammograms having $k^{0'}$ values of 500 (green), 1000 (red) and 3000 s⁻¹ (blue), and (b) experimental total current sine-wave voltammograms of azurin adsorbed onto HPG (green), BPG (red) and EPG (blue) electrodes. Simulation parameters: $C_{dl} = 36 \ \mu F.cm^{-2}$, $\Gamma = 11 \ pmoles.cm^{-2}$, $E^{0'} = 0.318 \ V$, $R_u = 170 \ \Omega$, $\alpha = 0.5$. Experimental conditions as per Figure 8.