Synthesis of Oxepane Ring Containing Monocyclic, Conformationally Restricted Bicyclic and Spirocyclic Nucleosides from D-Glucose:A Cycloaddition Approach

Subhankar Tripathi, ${ }^{\dagger}$ Biswajit G. Roy, ${ }^{\dagger}$ Michael G. B. Drew, ${ }^{\dagger}$ Basudeb Achari, ${ }^{\dagger}$ and Sukhendu B. Mandal** ${ }^{*}$
${ }^{\dagger}$ Department of Chemistry, Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India, and ${ }^{\dagger}$ Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, U. K.

"Supporting Information Available"

S 1-S 5: Table of contents

S 6: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 2}$ in CDCl_{3}

S 7: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 2}$ in $\mathrm{CDCl}_{3}+\mathrm{D}_{2} \mathrm{O}$

S 8: ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 2}$ in CDCl_{3}

S 9: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 3}$ in CDCl_{3}

S 10: ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 3}$ in CDCl_{3}

S 11: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 4}$ in DMSO- $_{6}$

S 12: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 4}$ in $\mathrm{DMSO}-\mathrm{d}_{6}+\mathrm{D}_{2} \mathrm{O}$

S 13: ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 4}$ in DMSO-d d_{6}

S 14: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 5}$ in CDCl_{3}

S 15: ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 5}$ in CDCl_{3}

S 16: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 7}$ in $\mathrm{D}_{2} \mathrm{O}$

S 17: ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 7}$ in $\mathrm{D}_{2} \mathrm{O}$

S 18: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 8}$ in $\mathrm{D}_{2} \mathrm{O}$

S 19: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 9}$ in $\mathrm{D}_{2} \mathrm{O}$
$\mathrm{S} 20:{ }^{13} \mathrm{C}$ NMR spectrum of 19 in $\mathrm{D}_{2} \mathrm{O}$

S 21: ${ }^{1} \mathrm{H}$ NMR spectrum of 20 in $\mathrm{D}_{2} \mathrm{O}$

S 22: ${ }^{13} \mathrm{C}$ NMR spectrum of 20 in $\mathrm{D}_{2} \mathrm{O}$

S 23: ${ }^{1} \mathrm{H}$ NMR spectrum of 21 in $\mathrm{D}_{2} \mathrm{O}$
$\mathrm{S} 24:{ }^{13} \mathrm{C}$ NMR spectrum of 21 in $\mathrm{D}_{2} \mathrm{O}$

S 25: ${ }^{1} \mathrm{H}$ NMR spectrum of 22 in $\mathrm{D}_{2} \mathrm{O}$ at $70{ }^{\circ} \mathrm{C}$
$\mathrm{S} 26:{ }^{13} \mathrm{C}$ NMR spectrum of 22 in $\mathrm{D}_{2} \mathrm{O}$

S 27: ${ }^{1} \mathrm{H}$ NMR spectrum of 24 in $\mathrm{D}_{2} \mathrm{O}$

S 28: ${ }^{13} \mathrm{C}$ NMR spectrum of 24 in $\mathrm{D}_{2} \mathrm{O}$

S 29: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 5}$ in $\mathrm{D}_{2} \mathrm{O}$

S 30: ${ }^{13} \mathrm{C}$ NMR spectrum of 25 in $\mathrm{D}_{2} \mathrm{O}$

S 31: ${ }^{1} \mathrm{H}$ NMR spectrum of 26 in $\mathrm{D}_{2} \mathrm{O}$

S 32: ${ }^{13} \mathrm{C}$ NMR spectrum of 26 in $\mathrm{D}_{2} \mathrm{O}$

S 33: ${ }^{1} \mathrm{H}$ NMR spectrum of 27 in $\mathrm{D}_{2} \mathrm{O}$

S 34: ${ }^{13} \mathrm{C}$ NMR spectrum (with DEPT 90° and 135°) of 27 in $\mathrm{D}_{2} \mathrm{O}$

S 35: ${ }^{1} \mathrm{H}$ NMR spectrum of 29 in CDCl_{3}

S 36: ${ }^{13} \mathrm{C}$ NMR spectrum of 29 in CDCl_{3}

S 37: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 0}$ in CDCl_{3}

S 38: ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 0}$ in CDCl_{3}

S 39: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 1}$ in CDCl_{3}

S 40: ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of $\mathbf{3 1}$ in $\mathrm{CDCl}_{3}(\delta 2.18-5.90$ vs. $\delta 2.18-5.90)$

S 41: NOESY spectrum of $\mathbf{3 1}$ in $\mathrm{CDCl}_{3}(\delta 2.18-5.90$ vs. $\delta 2.18-5.90)$

S 42: ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 1}$ in CDCl_{3}

S 43: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 3}$ in CDCl_{3}

S 44: ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 3}$ in CDCl_{3}

S 45: ${ }^{1} \mathrm{H}$ NMR spectrum of 34 in CDCl_{3}

S 46: ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 4}$ in CDCl_{3}

S 47: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 5}$ in CDCl_{3}
$\mathrm{S} 48:{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of 35 in $\mathrm{CDCl}_{3}(\delta 2.74-5.80$ vs. $\delta 2.74-5.80)$

S 49: NOESY spectrum of $\mathbf{3 5}$ in $\mathrm{CDCl}_{3}(\delta 2.74-4.66$ vs. $\delta 2.74-4.66$)

S 50: ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 5}$ in CDCl_{3}

S 51: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 6}$ in CDCl_{3}

S 52: ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 6}$ in CDCl_{3}

S 53: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 7}$ in CDCl_{3}

S 54: ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 7}$ in CDCl_{3}

S 55: ${ }^{1} \mathrm{H}$ NMR spectrum of 40 in CDCl_{3}

S 56: ${ }^{13} \mathrm{C}$ NMR spectrum of 40 in CDCl_{3}

S 57: ${ }^{1} \mathrm{H}$ NMR spectrum of 41 in CDCl_{3}

S 58: ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 1}$ in CDCl_{3}

S 59: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 2}$ in CDCl_{3}

S 60: ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 2}$ in CDCl_{3}

S 61: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 3}$ in CDCl_{3}

S 62: Expanded ${ }^{1} \mathrm{H}$ NMR spectrum of $(\delta 3.58-4.72)$ in CDCl_{3}
$\mathrm{S} 63:{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of $\mathbf{4 3}$ in CDCl_{3}

S 64: ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMQC spectrum of 43 in CDCl_{3}

S 65: ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 3}$ in CDCl_{3}

S 66: ${ }^{1} \mathrm{H}$ NMR spectrum of 44 in CDCl_{3}

S 67: ${ }^{13} \mathrm{C}$ NMR spectrum of 44 in CDCl_{3}

S 68: ${ }^{1} \mathrm{H}$ NMR spectrum of 45 in CDCl_{3}

S 69: ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 5}$ in CDCl_{3}

ppm	180	160	140	120	100	80	60	40	20

${ }^{1} \mathrm{H}$ NMR spectrum of 14 in DMSO-d6 $+\mathrm{D}_{2} \mathrm{O}$

宛安曻

15

$\left\|\begin{array}{c\|c} & \|c\| \\ \frac{m}{5} & 0 \\ 0 & 0 \\ - & 0 \\ -2 \end{array}\right\|$	

\square
7

$\left.\begin{array}{llll}m & \Omega & \sigma & \sigma\end{array}\right)$ $\bigcirc \circ \infty \infty$ $\dot{\overrightarrow{1}} \overrightarrow{\boldsymbol{H}} \dot{\boldsymbol{H}}$

$4.5 \cdots 2.0$
${ }^{13} \mathrm{C}$ NMR spectrum of 17 in $\mathrm{D}_{2} \mathrm{O}$

	0 0 8 0 0 0	$\stackrel{\square}{1}$

$\xrightarrow{\text { lis }}$

22

$\stackrel{10}{0}$ ㄲNㅇ	\%
$\stackrel{\text { ¢ }}{\text { ® }}$	$\underset{\sim}{z}$

\square
${ }^{13} \mathrm{C}$ NMR spectrum of 25 in $\mathrm{D}_{2} \mathrm{O}$

$\left\lvert\, \begin{array}{rr} \\ \\ 140.5 & 123.0\end{array}\right.$
wdd

26

N

$\stackrel{9}{7}$ N
1

9
:---

1

${ }^{13} \mathrm{C}$ NMR spectrum of 34 in CDCl_{3}S 46

$\stackrel{\sim}{7}$	N	$\stackrel{7}{m}$
$\stackrel{(9)}{9}$	$\stackrel{\square}{\square}$	$\stackrel{m}{\square}$

心俞 ํㅜํ ํㅜํV

${ }^{1} \mathrm{H}$ NMR spectrum of 35 in CDCl_{3}

${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of 35 in $\mathrm{CDCl}_{3}(\delta 2.74-5.80$ vs $\delta 2.74-5.80$)
\square
\qquad

NOESY spectrum of 35 in $\mathrm{CDCl}_{3}(\delta 2.74-5.80$ vs $\delta 2.74-5.80)$

${ }^{13} \mathrm{C}$ NMR spectrum of 41 in CDCl_{3}

$\Gamma_{\text {ppm }}$

(

～～쑹ㅇㅇㅇㅇㅇㅇ へへ ํ ํ

мザ

 $\therefore \dot{r a r}$

 மம

43

Expanded ${ }^{1} \mathrm{H}$ NMR of $43(\delta 3.58-4.72)$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of 43 in CDCl_{3}
S 65

$\xrightarrow{8}$

44

ppm	8	7	6	$\frac{1}{5}$	1	3	2	1	0	

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 5}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of 45 in CDCl_{3}

