
Screening the Sequence Selectivity of DNA-Binding Molecules using a Gold Nanoparticle-Based Colorimetric Approach

Sarah J. Hurst, † Min Su Han, † Abigail K. R. Lytton-Jean, and Chad A. Mirkin*

Supporting Information

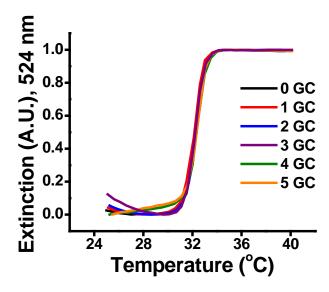

Figure S1. Plot of melting temperature (T_m) vs. DAPI concentration (black triangles) and EB concentration (red triangles).

Figure S2. Normalized melting curves for aggregates of NP-1 and NP-2 with 5 μ M EB and 5 μ M HP DNA (0 GC-5 GC, 1:1 HP:EB). The curve denoted Control contains no HP DNA.

Figure S3. Plot of melting temperature (T_m) (monitored at $\lambda = 524$ nm) vs. Chromomycin A concentration (between 0 and 10 μ m) for aggregates of NP-1 and NP-2 (AT-rich).

Figure S4. Normalized melting curves for aggregates of NP-1 and NP-2 (AT-rich) with 5 μ M Chromomycin A and 5 μ M HP DNA (0 GC-5 GC, 1:1 HP:Chromomycin A).

Table S1

Table S1. Melting temperatures (T_m) as a function of the HP stem sequence for the Au NP samples in the presence of DAPI. The first stem sequence for each number of GC pairs is the original one presented in the main text of this manuscript (listed for comparison); the second stem sequence shown for each possesses the same number of GC pairs arranged in a different order.

	Stem Sequence	NP T _m (°C)		Stem Sequence	NP T _m (°C)
0 GC	ATAAT TATTA	36.1	3 GC	AT <u>CCG</u> TA <u>GGC</u>	48.2
	AATTA TTAAT	35.0		A <u>GC</u> T <u>G</u> T <u>CG</u> A <u>C</u>	51.5
1 GC	A <u>G</u> ATT T <u>C</u> TAA	40.3	4 GC	GCGC CGCGA	50.7
	ATAT <u>G</u> TATA <u>C</u>	39.4		A <u>GCCG</u> T <u>CGGC</u>	51.3
2 GC	<u>C</u> ATT <u>G</u> <u>G</u> TAA <u>C</u>	45.8	5 GC	CGCGC GCGCG	51.1
	AT <u>C</u> T <u>G</u> TA <u>G</u> AC	42.6		GGCGG CCGCC	50.9

Table S2

Table S2. Melting temperatures (T_m) as a function of the HP stem sequence for the Au NP samples and for a control sample (no NPs) for the EB system. The rightmost column shows the difference between the T_m of the HP DNA and its T_m with EB in solution. NA is denoted where the data in that box is not applicable.

	Stem Sequence	NP T _m (°C)	HP T _m (5 μM) (°C)	HP T _m (with EB, 1:1) (°C)	Δ HP T _m (°C)
0 GC	ATAAT TATTA	33.6	51.0	62.0	11.0
1 GC	ATAT <u>G</u> TATA <u>C</u>	38.3	55.5	66.6	11.1
2 GC	<u>C</u> ATT <u>G</u> <u>G</u> TAA <u>C</u>	37.6	64.8	74.5	9.7
3 GC	AT <u>CCG</u> TA <u>GGC</u>	36.1	70.7	80.7	10.0
4 GC	GCGC CGCGA	36.3	78.4	87.3	8.9
5 GC	CGCGC GCGCG	36.4	85.8	89.7	3.9
Control	NA	43.1	NA	NA	NA