Amide-Silyl Ligand Exchanges and Equilibria among Group 4 Amide and Silyl Complexes

Hu Cai,^a Xianghua Yu,^a Shujian Chen,^a He Qiu,^a Ilia A. Guzei,^b Zi-Ling Xue^a

^a Department of Chemistry, The University of Tennessee, Knoxville, Tennessee 37996-1600

^b Department of Chemistry, The University of Wisconsin, Madison, Wisconsin 53706-1396

Supporting Information

KNMe₂ is expected to be a product in the reaction in Eq. 7. It was prepared in order to obtain its NMR spectra.^{S1} In its preparation, toluene was first treated with a superbasic, 1:1 molar mixture of n-BuLi and KOBu^t to yield KCH₂Ph (Eq. S1).^{S2} This was followed by the addition of 1 equiv of HNMe₂ to give KNMe₂ (Eq. S2). The transmetallation in Eq. S1 is an exothermal reaction due to the formation of the strong Li-O bond. KNMe₂ was found to be pyrophoric and unstable in benzene- d_6 and THF- d_8 , decomposing to unknown species.

 $PhCH_{3} + n-BuLi + KOBu^{t} \longrightarrow PhCH_{2}K + n-BuH + LiOBu^{t}$ (Eq. S1) $PhCH_{2}K + HNMe_{2} \longrightarrow KNMe_{2} + PhCH_{3}$ (Eq. S2)

Experimental

Preparation of KNMe₂. n-BuLi (5.5 mL, 1.6 M in hexane; 8.8 mmol) was added dropwise to a suspension of KOBu^t (1.0 g, 8.9 mmol) in toluene (30 mL) at -30 °C. A red solid was observed as a precipitate. After 2 h, the precipitate was filtered. Then the red solid was washed with pentane (20 mL) twice. At -30 °C, HNMe₂ (5.5 mL, 1.6 M in THF, 8.8 mmol) was added to a suspension of the red solid in toluene (30 mL). The solution was stirred for another 2 h. The red solid disappeared, and a white solid gradually formed during this time. The solid was washed with pentane to give a white solid of KNMe₂ (655 mg, 7.87 mmol, 90% yield). In ¹H NMR in THF-*d*₈ at 23 °C, a peak at 2.40 ppm was observed. In ¹³C{¹H} NMR at 23 °C, a weak, broad peak at 41.0 ppm was observed. During the ¹³C data acquisition, KNMe₂ in THF-*d*₈ decomposed to unknown species.

NMR assignments for Zr(**NMe**₂)₅⁻ (**4a**) **in THF**-*d*₈. In a solution of crystals of **5** in THF-*d*₈ giving the equilibrium in Eq. 1, assignments of ¹H and ¹³C NMR spectra of Zr(NMe₂)₅⁻ (**4a**) in Eq. 1 were made, as discussed earlier. These assignments were supported by the following

additional studies.

In the ¹³C and ¹H spectra of a mixture (**A**) of $Zr(NMe_2)_4$ (**1a**, 31 mg, 0.12 mmol) and LiNMe₂ (2.9 mg, 0.057 mmol) in THF-*d*₈, two peaks of ca. equal intensity (¹H: 2.89 ppm, ¹³C: 44.74 ppm and ¹H: 2.81 ppm, 43.11 ppm, respectively) were observed. The peaks at 2.89 ppm in ¹H and 44.74 ppm in ¹³C NMR were assigned to those of **1a**. When 3.2 mg of LiNMe₂ (0.063 mmol; Total of the two portions: 0.120 mmol) was added to the mixture (**B**), only the peaks at 2.81 ppm and 43.11 ppm in ¹H and ¹³C NMR, respectively, were observed. These were assigned to be those of $Zr(NMe_2)_5^-$ (**4a**).

When another portion of LiNMe₂ (3.7 mg, 0.073 mmol) was added to this mixture (**C**), a new peak (¹H: 2.74 ppm, ¹³C: 46.39 ppm) identified to be that of $Zr(NMe_2)_6^{2-}$ (**10**) was observed along with that of $Zr(NMe_2)_5^{-}$ (**4a**) The results suggest that **A** is a mixture of **1a** and $Zr(NMe_2)_5^{-}$ (**4a**), and that **B** (molar ratio of **1a**/LiNMe₂ = 1) is predominantly **4a**. With the addition of a total of 1.6 equiv of LiNMe₂ to $Zr(NMe_2)_4$ (**1a**) in **C**, it is a mixture of $Zr(NMe_2)_5^{-}$ (**4a**) and $Zr(NMe_2)_6^{2-}$ (**11**).

Formation of $Zr(NMe_2)_4(THF)_2$ in toluene- d_8 . Bradley, Chisholm and co-workers have reported that, in benzene and toluene, $Zr(NMe_2)_4$ (1a) shows a degree of oligomerization.^{7,8a,21} For a mixture of 1a (48.2 mg, 0.180 mmol) and THF (8.9 mg, 0.12 mmol) in toluene- d_8 at 223 K, the resonances of $Zr(NMe_2)_4(THF)_2$ was observed at 3.29 (THF), 2.98 (NMe₂) and 1.11 (THF) ppm in ¹H NMR spectrum, and 68.86 (THF), 43.36 (NMe₂), and 25.64 (THF) ppm in ¹³C NMR spectrum, respectively. In addition, the NMR resonances of the dimer of $1a^{8a}$ [¹H NMR δ 2.88 (terminal $-NMe_2$), 2.34 (bridging $-NMe_2$); ¹³C δ 43.76 (terminal and bridging $-NMe_2$)] were observed as well. At 263 K, the amide peaks in the ¹H NMR spectrum of the mixture of $Zr(NMe_2)_4(THF)_2$ and the dimer of 1a started to coalescence. At 296 K, only one amide resonance was observed in the ¹H NMR spectrum.

Additional References

- S1. KNMe₂ has been prepared from the reaction of KNH₂ with HNMe₂. Lambert, I.;
 Ravoire, J. Ger. Offen. 1971, German Patent Application: DE 71-2117970 19710414.
 Chemical Abstracts No. 76:16262.
- S2. Schlosser, M.; Hartmann, J. Angew. Chem. 1973, 85, 544.

Figure S1. EXSY spectrum (THF- d_8 , 400.0 MHz, 32 °C, $t_{mix} = 2$ s) of a mixture of 1a and 2.

Figure S2. EXSY spectrum (THF- d_8 , 400.0 MHz, 32 °C, $t_{mix} = 4$ s) of a mixture of **6a** and **2**. EXSY spectrum (THF- d_8 , 32 °C) with $t_{mix} = 2$ s did not show crosspeaks. Decomposition of the mixture was observed during the acquisition of the EXSY data at 32 °C, making it difficult to conduct EXSY NMR studies at a higher temperature.

Figure S3. The ln K_{eq} *vs* 1000/*T* plots of the equilibria in Eq. 2: (top) Zr complexes; (bottom) Hf complexes.

Figure S4. The $\ln K_{eq} vs 1000/T$ plot of the equilibrium in Eq. 4.

Table S1. Crystal data and structure refinement for 5

$C_{64}H_{118}Li_2N_8O_2Si_2Zr_2$		
1316.18		
173(2) K		
0.71073 Å		
Monoclinic		
<i>C</i> 2/c		
a = 25.145(3) Å	$\alpha = 90^{\circ}$	
b = 17.770(3) Å	$\beta = 97.789(3)^{\circ}$	
c = 16.346(3) Å	$\gamma = 90^{\circ}$	
7236(2) Å ³		
4		
1.208 g/cm^3		
0.368 mm^{-1}		
2816		
$0.40\times0.25\times0.25~mm^3$		
1.41 to 28.28°		
$-32 \le h \le 33, -23 \le k \le 23,$, $-21 \le l \le 21$	
36482		
8684 [<i>R</i> (int) = 0.0543]		
96.5%		
Multi-scan with SADABS	5	
0.9136 and 0.8667		
Full-matrix least-squares of	on F^2	
8684 / 0 / 383		
1.041		
R1 = 0.0396, w $R2 = 0.103$	30	
R1 = 0.0567, wR2 = 0.1169		
0.875 and -0.464 e.Å ⁻³		
	C ₆₄ H ₁₁₈ Li ₂ N ₈ O ₂ Si ₂ Zr ₂ 1316.18 173(2) K 0.71073 Å Monoclinic C2/c a = 25.145(3) Å b = 17.770(3) Å c = 16.346(3) Å 7236(2) Å ³ 4 1.208 g/cm ³ 0.368 mm ⁻¹ 2816 0.40 × 0.25 × 0.25 mm ³ 1.41 to 28.28° -32 ≤ $h \le 33$, -23 ≤ $k \le 23$ 36482 8684 [$R(int) = 0.0543$] 96.5% Multi-scan with SADABS 0.9136 and 0.8667 Full-matrix least-squares of 8684 / 0 / 383 1.041 R1 = 0.0396, w $R2 = 0.103R1 = 0.0567$, w $R2 = 0.1160.875 and -0.464 e.Å-3$	

	Х	У	Z	U(eq)	
Zr(1)	0	1532(1)	2500	21(1)	
Zr(2)	5000	1512(1)	2500	24(1)	
Si(1)	1171(1)	1670(1)	2965(1)	26(1)	
O(1)	3564(1)	2192(1)	1107(1)	49(1)	
O(2)	3540(1)	516(1)	663(1)	49(1)	
N(1)	0	2702(1)	2500	29(1)	
N(2)	50(1)	945(1)	1434(1)	32(1)	
N(3)	5000	2658(2)	2500	34(1)	
N(4)	4821(1)	1430(1)	1121(1)	35(1)	
N(5)	4251(1)	951(1)	2513(1)	34(1)	
Li(1)	4012(2)	1276(2)	1271(3)	37(1)	
C(1)	232(1)	3162(1)	3187(2)	38(1)	
C(2)	98(1)	1342(2)	678(2)	42(1)	
C(3)	5(1)	139(2)	1298(2)	51(1)	
C(4)	1353(1)	1680(1)	4145(1)	32(1)	
C(5)	1322(1)	1013(2)	4602(2)	43(1)	
C(6)	1402(1)	1004(2)	5461(2)	52(1)	
C(7)	1517(1)	1655(2)	5901(2)	56(1)	
C(8)	1545(1)	2321(2)	5473(2)	59(1)	
C(9)	1458(1)	2332(2)	4616(2)	46(1)	
C(10)	1479(1)	2582(1)	2599(1)	29(1)	
C(11)	1947(1)	2938(2)	2975(2)	38(1)	
C(12)	2135(1)	3607(2)	2666(2)	48(1)	
C(13)	1867(1)	3930(2)	1961(2)	47(1)	
C(14)	1413(1)	3587(1)	1564(2)	40(1)	
C(15)	1223(1)	2931(1)	1883(1)	32(1)	
C(16)	1640(1)	910(1)	2561(2)	35(1)	
C(17)	2223(1)	967(2)	2975(2)	55(1)	
C(18)	1629(1)	1039(2)	1634(2)	43(1)	
C(19)	1429(1)	113(2)	2672(2)	58(1)	
C(20)	4554(1)	3120(2)	2656(3)	68(1)	

Table S2. Atomic coordinates (× 10⁴) and equivalent isotropic displacement parameters (Å² × 10³) for **5**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(21)	4906(1)	743(2)	672(2)	54(1)
C(22)	4924(1)	2059(2)	591(2)	53(1)
C(23)	4248(1)	127(2)	2474(2)	57(1)
C(24)	3880(1)	1204(2)	3069(2)	50(1)
C(25)	2982(1)	593(2)	677(3)	86(1)
C(26)	2700(1)	-5(2)	166(2)	63(1)
C(27)	3124(1)	-569(2)	77(3)	70(1)
C(28)	3637(1)	-204(2)	312(3)	83(1)
C(29)	3568(2)	2640(2)	371(3)	82(1)
C(30)	3368(3)	3369(3)	514(3)	113(2)
C(31)	3063(2)	3290(3)	1206(3)	108(2)
C(32)	3160(1)	2513(2)	1548(2)	56(1)

Zr(1)-N(2)	2.0488(19)	N(4)-C(21)	1.454(3)
Zr(1)-N(2)#1	2.0488(19)	N(4)-C(22)	1.459(3)
Zr(1)-N(1)	2.080(2)	N(4)-Li(1)	2.099(4)
Zr(1)-Si(1)#1	2.9507(7)	N(5)-C(24)	1.459(3)
Zr(1)-Si(1)	2.9507(7)	N(5)-C(23)	1.465(3)
Zr(2)-N(3)	2.036(3)	N(5)-Li(1)	2.117(5)
Zr(2)-N(5)	2.1337(19)	C(4)-C(9)	1.397(4)
Zr(2)-N(5)#2	2.1337(19)	C(4)-C(5)	1.408(3)
Zr(2)-N(4)	2.243(2)	C(5)-C(6)	1.392(4)
Zr(2)-N(4)#2	2.243(2)	C(6)-C(7)	1.373(5)
Zr(2)-Li(1)#2	3.005(4)	C(7)-C(8)	1.380(5)
Zr(2)-Li(1)	3.005(4)	C(8)-C(9)	1.389(4)
Si(1)-C(4)	1.920(2)	C(10)-C(15)	1.400(3)
Si(1)-C(10)	1.926(2)	C(10)-C(11)	1.403(3)
Si(1)-C(16)	1.965(2)	C(11)-C(12)	1.399(4)
O(1)-C(32)	1.440(3)	C(12)-C(13)	1.379(4)
O(1)-C(29)	1.442(4)	C(13)-C(14)	1.375(4)
O(1)-Li(1)	1.979(5)	C(14)-C(15)	1.388(3)
O(2)-C(25)	1.413(3)	C(16)-C(18)	1.529(4)
O(2)-C(28)	1.437(3)	C(16)-C(17)	1.531(4)
O(2)-Li(1)	1.975(5)	C(16)-C(19)	1.531(4)
N(1)-C(1)#1	1.447(3)	C(25)-C(26)	1.471(4)
N(1)-C(1)	1.447(3)	C(26)-C(27)	1.485(5)
N(2)-C(2)	1.442(3)	C(27)-C(28)	1.450(5)
N(2)-C(3)	1.452(3)	C(29)-C(30)	1.420(5)
N(3)-C(20)#2	1.440(3)	C(30)-C(31)	1.456(6)
N(3)-C(20)	1.440(3)	C(31)-C(32)	1.497(5)
N(2)-Zr(1)-N(2)#1	118.86(11)	N(2)-Zr(1)-Si(1)	95.01(6)
N(2)-Zr(1)-N(1)	120.57(6)	N(2)#1-Zr(1)-Si(1)	89.83(6)
N(2)#1-Zr(1)-N(1)	120.57(6)	N(1)-Zr(1)-Si(1)	85.235(13)
N(2)-Zr(1)-Si(1)#1	89.83(6)	Si(1)#1-Zr(1)-Si(1)	170.47(3)
N(2)#1-Zr(1)-Si(1)#1	95.01(6)	N(3)-Zr(2)-N(5)	117.85(5)
N(1)-Zr(1)-Si(1)#1	85.235(13)	N(3)-Zr(2)-N(5)#2	117.85(5)

Table S3. Bond lengths (Å) and angles (°) for 5

N(5)-Zr(2)-N(5)#2	124.30(11)	C(2)-N(2)-Zr(1)	120.17(16)
N(3)-Zr(2)-N(4)	93.73(5)	C(3)-N(2)-Zr(1)	128.32(17)
N(5)-Zr(2)-N(4)	85.54(8)	C(20)#2-N(3)-C(20)	110.4(3)
N(5)#2-Zr(2)-N(4)	90.97(8)	C(20)#2-N(3)-Zr(2)	124.79(16)
N(3)-Zr(2)-N(4)#2	93.73(5)	C(20)-N(3)-Zr(2)	124.79(16)
N(5)-Zr(2)-N(4)#2	90.97(8)	C(21)-N(4)-C(22)	107.0(2)
N(5)#2-Zr(2)-N(4)#2	85.54(8)	C(21)-N(4)-Li(1)	99.3(2)
N(4)-Zr(2)-N(4)#2	172.54(11)	C(22)-N(4)-Li(1)	115.0(2)
N(3)-Zr(2)-Li(1)#2	98.03(8)	C(21)-N(4)-Zr(2)	122.56(18)
N(5)-Zr(2)-Li(1)#2	125.38(10)	C(22)-N(4)-Zr(2)	121.29(17)
N(5)#2-Zr(2)-Li(1)#2	44.80(10)	Li(1)-N(4)-Zr(2)	87.51(14)
N(4)-Zr(2)-Li(1)#2	134.27(10)	C(24)-N(5)-C(23)	109.6(2)
N(4)#2-Zr(2)-Li(1)#2	44.26(9)	C(24)-N(5)-Li(1)	113.0(2)
N(3)-Zr(2)-Li(1)	98.03(8)	C(23)-N(5)-Li(1)	103.4(2)
N(5)-Zr(2)-Li(1)	44.80(10)	C(24)-N(5)-Zr(2)	120.11(18)
N(5)#2-Zr(2)-Li(1)	125.38(10)	C(23)-N(5)-Zr(2)	117.76(17)
N(4)-Zr(2)-Li(1)	44.26(9)	Li(1)-N(5)-Zr(2)	89.96(13)
N(4)#2-Zr(2)-Li(1)	134.27(10)	O(2)-Li(1)-O(1)	101.6(2)
Li(1)#2-Zr(2)-Li(1)	163.93(16)	O(2)-Li(1)-N(4)	123.8(2)
C(4)-Si(1)-C(10)	104.70(10)	O(1)-Li(1)-N(4)	114.8(2)
C(4)-Si(1)-C(16)	105.79(10)	O(2)-Li(1)-N(5)	111.7(2)
C(10)-Si(1)-C(16)	100.95(10)	O(1)-Li(1)-N(5)	115.9(2)
C(4)-Si(1)-Zr(1)	110.65(7)	N(4)-Li(1)-N(5)	89.68(18)
C(10)-Si(1)-Zr(1)	114.71(7)	O(2)-Li(1)-Zr(2)	144.9(2)
C(16)-Si(1)-Zr(1)	118.66(8)	O(1)-Li(1)-Zr(2)	112.35(18)
C(32)-O(1)-C(29)	106.5(2)	N(4)-Li(1)-Zr(2)	48.23(10)
C(32)-O(1)-Li(1)	133.2(2)	N(5)-Li(1)-Zr(2)	45.24(10)
C(29)-O(1)-Li(1)	119.9(2)	C(9)-C(4)-C(5)	115.1(2)
C(25)-O(2)-C(28)	108.4(2)	C(9)-C(4)-Si(1)	124.25(19)
C(25)-O(2)-Li(1)	117.2(2)	C(5)-C(4)-Si(1)	120.18(19)
C(28)-O(2)-Li(1)	133.3(2)	C(6)-C(5)-C(4)	122.4(3)
C(1)#1-N(1)-C(1)	111.2(3)	C(7)-C(6)-C(5)	120.6(3)
C(1)#1-N(1)-Zr(1)	124.40(13)	C(6)-C(7)-C(8)	118.6(3)
C(1)-N(1)-Zr(1)	124.40(13)	C(7)-C(8)-C(9)	120.8(3)
C(2)-N(2)-C(3)	111.4(2)	C(8)-C(9)-C(4)	122.5(3)

C(15)-C(10)-C(11)	115.4(2)	C(18)-C(16)-Si(1)	107.36(16)
C(15)-C(10)-Si(1)	118.34(17)	C(17)-C(16)-Si(1)	112.81(18)
C(11)-C(10)-Si(1)	126.25(18)	C(19)-C(16)-Si(1)	111.21(18)
C(12)-C(11)-C(10)	122.0(3)	O(2)-C(25)-C(26)	108.9(3)
C(13)-C(12)-C(11)	120.2(3)	C(25)-C(26)-C(27)	104.2(3)
C(14)-C(13)-C(12)	119.4(2)	C(28)-C(27)-C(26)	107.3(3)
C(13)-C(14)-C(15)	120.1(3)	O(2)-C(28)-C(27)	108.0(3)
C(14)-C(15)-C(10)	122.9(2)	C(30)-C(29)-O(1)	108.9(3)
C(18)-C(16)-C(17)	108.4(2)	C(29)-C(30)-C(31)	105.9(4)
C(18)-C(16)-C(19)	107.2(2)	C(30)-C(31)-C(32)	107.7(3)
C(17)-C(16)-C(19)	109.6(2)	O(1)-C(32)-C(31)	105.5(3)

Symmetry transformations used to generate equivalent atoms:

#1 -x,y,-z+1/2 #2 -x+1,y,-z+1/2

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²	
Zr(1)	26(1)	17(1)	21(1)	0	5(1)	0	
Zr(2)	27(1)	19(1)	27(1)	0	8(1)	0	
Si(1)	26(1)	26(1)	25(1)	1(1)	4(1)	3(1)	
O(1)	56(1)	40(1)	55(1)	-2(1)	16(1)	15(1)	
O(2)	35(1)	47(1)	64(1)	-23(1)	1(1)	1(1)	
N(1)	32(1)	17(1)	39(2)	0	6(1)	0	
N(2)	37(1)	32(1)	28(1)	-6(1)	5(1)	2(1)	
N(3)	41(2)	22(1)	41(2)	0	8(1)	0	
N(4)	36(1)	40(1)	30(1)	-2(1)	10(1)	1(1)	
N(5)	34(1)	31(1)	39(1)	0(1)	11(1)	-6(1)	
Li(1)	32(2)	34(2)	44(2)	-6(2)	6(2)	0(2)	
C(1)	38(1)	29(1)	47(2)	-7(1)	8(1)	0(1)	
C(2)	45(2)	48(2)	34(1)	0(1)	8(1)	-5(1)	
C(3)	72(2)	32(1)	50(2)	-8(1)	12(1)	3(1)	
C(4)	27(1)	40(1)	27(1)	2(1)	4(1)	6(1)	
C(5)	50(2)	46(2)	34(1)	6(1)	6(1)	7(1)	
C(6)	56(2)	67(2)	35(2)	18(1)	11(1)	22(1)	
C(7)	51(2)	92(2)	26(1)	1(2)	6(1)	23(2)	
C(8)	72(2)	70(2)	36(2)	-15(1)	11(1)	-1(2)	
C(9)	59(2)	47(2)	34(1)	-4(1)	14(1)	1(1)	
C(10)	28(1)	31(1)	28(1)	-3(1)	9(1)	2(1)	
C(11)	30(1)	45(1)	37(1)	-3(1)	5(1)	-2(1)	
C(12)	38(1)	50(2)	57(2)	-11(1)	14(1)	-16(1)	
C(13)	51(2)	34(1)	59(2)	2(1)	23(1)	-6(1)	
C(14)	44(1)	36(1)	42(1)	8(1)	15(1)	5(1)	
C(15)	32(1)	33(1)	32(1)	2(1)	6(1)	0(1)	
C(16)	36(1)	35(1)	34(1)	-1(1)	5(1)	10(1)	
C(17)	39(2)	73(2)	52(2)	-5(2)	0(1)	27(1)	
C(18)	49(2)	45(2)	35(1)	-6(1)	10(1)	12(1)	
C(19)	82(2)	33(1)	64(2)	2(1)	28(2)	15(1)	
				S15			

Table S4. Anisotropic displacement parameters $(\text{\AA}^2 \times 10^3)$ for **5**. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U^{11} + ... + 2hka^*b^*U^{12}]$

S15

C(20)	54(2)	38(2)	114(3)	-10(2)	25(2)	5(1)
C(21)	52(2)	66(2)	44(2)	-21(2)	7(1)	9(2)
C(22)	57(2)	70(2)	33(1)	12(1)	10(1)	-11(2)
C(23)	58(2)	34(2)	76(2)	6(1)	3(2)	-13(1)
C(24)	37(1)	69(2)	48(2)	12(1)	17(1)	4(1)
C(25)	35(2)	86(3)	136(4)	-63(3)	9(2)	-4(2)
C(26)	45(2)	63(2)	79(2)	-23(2)	4(2)	-8(1)
C(27)	58(2)	43(2)	106(3)	-17(2)	-4(2)	-3(2)
C(28)	56(2)	68(2)	120(3)	-58(2)	-11(2)	12(2)
C(29)	108(3)	76(3)	72(2)	17(2)	47(2)	37(2)
C(30)	188(6)	87(3)	76(3)	32(2)	61(3)	70(3)
C(31)	148(5)	89(3)	102(3)	29(3)	72(3)	66(3)
C(32)	59(2)	55(2)	58(2)	-3(1)	23(2)	13(2)

	Х	У	Z	U(eq)	
H(1A)	524	3467	3019	57	
H(1B)	375	2837	3650	57	
H(1C)	-44	3494	3358	57	
H(2A)	415	1161	449	63	
H(2B)	134	1882	791	63	
H(2C)	-224	1252	279	63	
H(3A)	-294	35	863	76	
H(3B)	-59	-110	1810	76	
H(3C)	339	-52	1128	76	
H(5)	1244	554	4314	52	
H(6)	1377	542	5746	63	
H(7)	1576	1648	6487	67	
H(8)	1624	2776	5768	71	
H(9)	1471	2800	4339	55	
H(11)	2142	2718	3454	45	
H(12)	2450	3839	2942	57	
H(13)	1993	4385	1752	56	
H(14)	1230	3799	1072	48	
H(15)	906	2708	1603	39	
H(17A)	2441	590	2737	83	
H(17B)	2238	877	3569	83	
H(17C)	2362	1471	2883	83	
H(18A)	1844	651	1407	64	
H(18B)	1778	1537	1542	64	
H(18C)	1258	1013	1361	64	
H(19A)	1054	81	2416	87	
H(19B)	1452	-1	3262	87	
H(19C)	1645	-249	2409	87	
H(20A)	4663	3439	3139	101	
H(20B)	4255	2798	2762	101	
H(20C)	4442	3438	2174	101	

Table S5. Hydrogen coordinates (× 10⁴) and isotropic displacement parameters ($\mathring{A}^2 \times 10^3$) for **5**

H(21A)	4655	728	158	81	
H(21B)	4846	306	1013	81	
H(21C)	5275	733	542	81	
H(22A)	5303	2057	510	79	
H(22B)	4840	2533	851	79	
H(22C)	4699	2009	55	79	
H(23A)	4328	-79	3034	85	
H(23B)	4520	-44	2141	85	
H(23C)	3893	-47	2223	85	
H(24A)	3513	1061	2843	75	
H(24B)	3903	1752	3127	75	
H(24C)	3976	969	3612	75	
H(25A)	2860	1092	458	103	
H(25B)	2901	552	1251	103	
H(26A)	2543	194	-379	75	
H(26B)	2410	-227	442	75	
H(27A)	3086	-1008	439	84	
H(27B)	3093	-747	-501	84	
H(28A)	3866	-516	721	100	
H(28B)	3825	-139	-178	100	
H(29A)	3938	2677	233	99	
H(29B)	3340	2400	-99	99	
H(30A)	3134	3553	18	136	
H(30B)	3667	3729	650	136	
H(31A)	2676	3366	1019	130	
H(31B)	3183	3669	1636	130	
H(32A)	3289	2533	2148	67	
H(32B)	2826	2212	1459	67	

Empirical formula	C15 H45 Hf N3 Si4	
Formula weight	558.38	
Temperature	173(2) K	
Wavelength	0.71073 Å	
Crystal system	Rhombohedral	
Space group	R3c	
Unit cell dimensions	a = 15.483(5) Å	$\alpha = 90^{\circ}$
	b = 15.483(5) Å	$\beta = 90^{\circ}$
	c = 19.378(8) Å	$\gamma = 120^{\circ}$
Volume	4023(2) Å ³	
Z	6	
Density (calculated)	1.383 g/cm^3	
Absorption coefficient	4.072 mm ⁻¹	
F(000)	1704	
Crystal size	$0.45\times0.40\times0.15~mm^3$	
Theta range for data collection	2.59 to 28.35°	
Index ranges	$-20 \le h \le 19, -19 \le k \le 20,$	$-25 \le l \le 25$
Reflections collected	11001	
Independent reflections	2027 [<i>R</i> (int) = 0.0348]	
Completeness to theta = 28.35°	94.5%	
Absorption correction	Semi-empirical from equiv	valents
Max. and min. transmission	0.5803 and 0.2616	
Refinement method	Full-matrix least-squares of	on F^2
Data / restraints / parameters	2027 / 1 / 75	
Goodness-of-fit on F^2	1.178	
Final R indices $[I > 2 \text{sigma}(I)]$	R1 = 0.0490, wR2 = 0.135	0
R indices (all data)	R1 = 0.0567, wR2 = 0.165	5
Absolute structure parameter	0.89(4)	
Largest diff. peak and hole	2.792 and -1.690 e.Å ⁻³	

Table S6. Crystal data and structure refinement for $(Me_2N)_3Hf$ -Si(SiMe₃)₃ (9b)

	Х	У	Z	U(eq)	
C(1)	2183(9)	2277(8)	3890(6)	55(3)	
C(2)	1567(9)	1341(9)	5257(5)	47(3)	
C(3)	2301(11)	453(9)	4241(8)	68(4)	
C(4)	1884(8)	1964(8)	1822(7)	52(3)	
C(5)	494(10)	2020(9)	2292(7)	48(3)	
Hf(1)	0	0	2454(1)	20(1)	
N(1)	926(7)	1415(6)	2147(4)	28(1)	
Si(1)	0	0	3870(3)	18(1)	
Si(2)	1582(2)	1034(2)	4331(2)	33(1)	

Table S7. Atomic coordinates (× 10⁴) and equivalent isotropic displacement parameters (Å² × 10³) for **9b**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(1)-Si(2)	1.874(12)	Hf(1)-N(1)#1	2.017(8)
C(2)-Si(2)	1.859(11)	Hf(1)-N(1)#2	2.017(8)
C(3)-Si(2)	1.754(15)	Hf(1)-Si(1)	2.743(6)
C(4)-N(1)	1.435(14)	Si(1)-Si(2)	2.332(4)
C(5)-N(1)	1.425(14)	Si(1)-Si(2)#2	2.332(4)
Hf(1)-N(1)	2.017(8)	Si(1)-Si(2)#1	2.332(4)
N(1)-Hf(1)-N(1)#1	111.7(2)	Si(2)#2-Si(1)-Si(2)#1	106.22(18)
N(1)-Hf(1)-N(1)#2	111.7(2)	Si(2)-Si(1)-Hf(1)	112.55(16)
N(1)#1-Hf(1)-N(1)#2	111.7(2)	Si(2)#2-Si(1)-Hf(1)	112.55(16)
N(1)-Hf(1)-Si(1)	107.1(3)	Si(2)#1-Si(1)-Hf(1)	112.55(16)
N(1)#1-Hf(1)-Si(1)	107.1(3)	C(3)-Si(2)-C(2)	108.6(7)
N(1)#2-Hf(1)-Si(1)	107.1(3)	C(3)-Si(2)-C(1)	111.4(8)
C(5)-N(1)-C(4)	112.5(9)	C(2)-Si(2)-C(1)	103.9(6)
C(5)-N(1)-Hf(1)	110.1(7)	C(3)-Si(2)-Si(1)	109.1(4)
C(4)-N(1)-Hf(1)	137.4(8)	C(2)-Si(2)-Si(1)	113.8(4)
Si(2)-Si(1)-Si(2)#2	106.22(18)	C(1)-Si(2)-Si(1)	110.0(4)
Si(2)-Si(1)-Si(2)#1	106.22(18)		

Table S8. Bond lengths (Å) and angles (°) for 9b.

	\mathbf{U}^{11}	U^{22}	U ³³	U ²³	U ¹³	U ¹²
C(1)	49(7)	33(5)	56(7)	5(5)	-8(5)	1(5)
C(2)	46(6)	51(6)	28(5)	-7(4)	-8(4)	11(5)
C(3)	74(10)	36(6)	82(10)	-30(6)	-44(8)	19(6)
C(4)	33(5)	32(5)	73(8)	4(5)	1(5)	3(4)
C(5)	60(7)	35(5)	59(7)	7(5)	19(6)	30(5)
Hf(1)	20(1)	20(1)	21(1)	0	0	10(1)
N(1)	33(4)	21(4)	27(4)	4(3)	1(3)	11(3)
Si(1)	18(1)	18(1)	20(2)	0	0	9(1)
Si(2)	22(1)	38(1)	28(1)	-1(1)	-5(1)	8(1)

Table S9. Anisotropic displacement parameters $(\text{\AA}^2 \times 10^3)$ for **9b**. The anisotropic displacement factor exponent takes the form: $-2\pi^2[\text{h}^2a^{*2}U^{11} + ... + 2\text{hka}^*b^*U^{12}]$

	X	у	Z	U(eq)
H(1A)	2806	2718	4111	82
H(1B)	1751	2554	3919	82
H(1C)	2299	2197	3414	82
H(2A)	1236	736	5521	71
H(2B)	1219	1704	5309	71
H(2C)	2240	1741	5419	71
H(3A)	2973	904	4384	101
H(3B)	2299	274	3766	101
H(3C)	2023	-136	4522	101
H(4A)	1800	2109	1353	78
H(4B)	2209	1574	1827	78
H(4C)	2285	2577	2067	78
H(5A)	878	2498	2642	72
H(5B)	-178	1606	2451	72
H(5C)	491	2363	1880	72

Table S10. Hydrogen coordinates (× 10^4) and isotropic displacement parameters (Å² × 10^3) for **9b**.

Empirical formula	$C_{16}H_{48}Hf_2N_8$		
Formula weight	709.60		
Temperature	173(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	<i>C</i> 2/c		
Unit cell dimensions	a = 20.429(13) Å	$\alpha = 90^{\circ}$	
	b = 8.454(5) Å	$\beta = 112.425(10)^{\circ}$	
	c = 15.971(10) Å	$\gamma = 90^{\circ}$	
Volume	2550(3) Å ³		
Ζ	4		
Density (calculated)	1.849 g/cm^3		
Absorption coefficient	8.153 mm ⁻¹		
<i>F</i> (000)	1376		
Crystal size	$0.55\times0.45\times0.07~mm^3$		
Theta range for data collection	2.16 to 22.50°		
Index ranges	$-21 \le h \le 21, -9 \le k \le 9, -17$	$\leq l \leq 17$	
Reflections collected	6107		
Independent reflections	1628 [<i>R</i> (int) = 0.0352]		
Completeness to theta = 22.50°	97.7%		
Absorption correction	Semi-empirical from equival	lents	
Max. and min. transmission	0.5991 and 0.0940		
Refinement method	Full-matrix least-squares on	F^2	
Data / restraints / parameters	1628 / 0 / 126		
Goodness-of-fit on F^2	1.014		
Final <i>R</i> indices $[I > 2 \operatorname{sigma}(I)]$	R1 = 0.0358, wR2 = 0.0967		
R indices (all data)	R1 = 0.0369, wR2 = 0.1000		
Largest diff. peak and hole	2.154 and -2.286 e.Å ⁻³		

Table S11. Crystal data and structure refinement for $[Hf(NMe_2)_4]_2$

	х	У	Z	U(eq)
C(1)	1440(4)	5810(12)	1231(6)	39(2)
C(2)	1062(5)	8282(14)	584(6)	43(2)
C(3)	2400(5)	7385(10)	3291(7)	31(2)
C(4)	1960(4)	5527(10)	4048(6)	36(2)
C(5)	569(4)	11207(10)	1869(6)	35(2)
C(6)	1458(4)	10959(10)	3356(5)	33(2)
C(7)	-645(5)	7788(9)	704(6)	23(2)
C(8)	-122(4)	5362(9)	1461(5)	26(2)
Hf(1)	842(1)	7734(1)	2431(1)	14(1)
N(1)	938(3)	10114(9)	2592(4)	22(1)
N(2)	1121(4)	7266(7)	1336(5)	24(2)
N(3)	1760(3)	6787(9)	3369(4)	22(1)
N(4)	-286(4)	7015(8)	1599(5)	18(2)

Table S12. Atomic coordinates (× 10⁴) and equivalent isotropic displacement parameters (Å² × 10³) for [Hf(NMe₂)₄]₂. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(1)-N(2)	1.432(11)	Hf(1)-N(1)	2.028(7)
C(2)-N(2)	1.443(12)	Hf(1)-N(3)	2.064(6)
C(3)-N(3)	1.450(11)	Hf(1)-N(2)	2.074(8)
C(4)-N(3)	1.462(10)	Hf(1)-N(4)	2.262(7)
C(5)-N(1)	1.447(11)	Hf(1)-N(4)#1	2.324(7)
C(6)-N(1)	1.463(10)	Hf(1)-Hf(1)#1	3.532(2)
C(7)-N(4)	1.486(11)	N(4)-Hf(1)#1	2.324(7)
C(8)-N(4)	1.474(10)		
N(1)-Hf(1)-N(3)	106.1(3)	C(5)-N(1)-C(6)	110.2(7)
N(1)-Hf(1)-N(2)	104.6(2)	C(5)-N(1)-Hf(1)	122.5(5)
N(3)-Hf(1)-N(2)	94.1(3)	C(6)-N(1)-Hf(1)	126.5(5)
N(1)-Hf(1)-N(4)	111.6(2)	C(1)-N(2)-C(2)	108.1(8)
N(3)-Hf(1)-N(4)	139.7(3)	C(1)-N(2)-Hf(1)	123.1(6)
N(2)-Hf(1)-N(4)	90.0(3)	C(2)-N(2)-Hf(1)	128.7(6)
N(1)-Hf(1)-N(4)#1	102.9(2)	C(4)-N(3)-C(3)	108.2(6)
N(3)-Hf(1)-N(4)#1	87.4(3)	C(4)-N(3)-Hf(1)	137.8(5)
N(2)-Hf(1)-N(4)#1	150.9(3)	C(3)-N(3)-Hf(1)	113.7(5)
N(4)-Hf(1)-N(4)#1	71.0(3)	C(7)-N(4)-C(8)	109.3(6)
N(1)-Hf(1)-Hf(1)#1	92.36(14)	C(7)-N(4)-Hf(1)	117.7(5)
N(3)-Hf(1)-Hf(1)#1	126.32(18)	C(8)-N(4)-Hf(1)	95.9(4)
N(2)-Hf(1)-Hf(1)#1	129.8(2)	C(7)-N(4)-Hf(1)#1	109.8(5)
N(4)-Hf(1)-Hf(1)#1	40.29(18)	C(8)-N(4)-Hf(1)#1	123.0(5)
N(4)#1-Hf(1)-Hf(1)#1	39.00(17)	Hf(1)-N(4)-Hf(1)#1	100.7(3)

Table S13. Bond lengths (\AA) and angles $(^{\circ})$ for $[Hf(NMe_2)_4]_2$.

Symmetry transformations used to generate equivalent atoms:

#1 -x,y,-z+1/2

	U^{11}	U ²²	U ³³	U ²³	U ¹³	U^{12}
C(1)	43(4)	43(6)	32(5)	-11(4)	16(4)	13(4)
C(2)	46(5)	55(6)	36(5)	8(5)	23(4)	-1(5)
C(3)	21(5)	43(5)	24(5)	9(4)	2(4)	-1(3)
C(4)	28(4)	32(5)	42(5)	18(4)	5(3)	10(4)
C(5)	43(4)	19(4)	42(5)	10(4)	16(4)	6(4)
C(6)	46(5)	24(5)	31(4)	-9(4)	17(4)	-6(4)
C(7)	34(5)	30(5)	8(4)	1(3)	9(4)	2(3)
C(8)	29(4)	17(4)	30(4)	-9(4)	8(3)	-4(3)
Hf(1)	21(1)	9(1)	12(1)	0(1)	6(1)	0(1)
N(1)	26(3)	18(4)	23(3)	-4(3)	10(2)	-3(3)
N(2)	28(4)	29(4)	14(4)	3(3)	8(3)	-2(3)
N(3)	19(3)	25(3)	18(3)	1(3)	5(2)	1(3)
N(4)	26(4)	9(3)	17(4)	-2(3)	8(3)	5(3)

Table S14. Anisotropic displacement parameters $(\text{\AA}^2 \times 10^3)$ for $[\text{Hf}(\text{NMe}_2)_4]_2$. The anisotropic displacement factor exponent takes the form: $-2\pi^2[\text{h}^2a^{*2}U^{11} + ... + 2\text{hka}^*b^*U^{12}]$

	Х	У	Z	U(eq)	
H(1A)	1141	5305	661	59	
H(1B)	1489	5105	1739	59	
H(1C)	1908	6025	1222	59	
H(2A)	1523	8354	530	65	
H(2B)	912	9339	689	65	
H(2C)	712	7843	25	65	
H(3A)	2725	7769	3883	47	
H(3B)	2279	8256	2853	47	
H(3C)	2628	6535	3085	47	
H(4A)	2173	4650	3838	54	
H(4B)	1539	5151	4138	54	
H(4C)	2304	5936	4621	54	
H(5A)	345	12035	2098	52	
H(5B)	204	10637	1375	52	
H(5C)	906	11689	1643	52	
H(6A)	1819	11430	3167	50	
H(6B)	1685	10218	3855	50	
H(6C)	1220	11796	3558	50	
H(7A)	-333	7756	365	35	
H(7B)	-751	8891	793	35	
H(7C)	-1086	7227	363	35	
H(8A)	-527	4687	1403	40	
H(8B)	295	5012	1980	40	
H(8C)	-24	5286	907	40	

Table S15. Hydrogen coordinates (× 10⁴) and isotropic displacement parameters (Å² × 10³) for $[Hf(NMe_2)_4]_2$.