Structure, stability and cluster-cage interactions in nitride clusterfullerenes M₃N@C_{2n} (M

= Sc, Y; 2n = 68 - 98): a density functional theory study

Alexey A. Popov, $*^{\dagger}$ and Lothar Dunsch[‡]

Supporting information:

Table S1page S2Table S2page S3Figures S1page S4Figure S2page S5

Table S1. Relative energies (ΔE , kJ/mol), binding energies (BE-1, eV) and averaged M–N and M––C distances (d_{M-N} , d_{M-C} , Å) in selected M₃N@C_{2n} isomers (M = Sc, Y; 2n = 68–98) as computed at the DFT level

	Cage	$Sc_3N@C_{2n}$				$Y_3N(a)C_{2n}$			
C_{2n}	isomer	ΔE	BE-1	$d_{ m Sc-N}$	$d_{\rm Sc-C}$	ΔE	BE-1	$d_{ m Y-N}$	$d_{ m Y-C}$
C ₆₈	<i>D</i> ₃ : 6140	0.0	-12.50	1.993	2.326		-9.01	2.039	2.415
C ₆₈	C_{2v} : 6073	246.0	-9.07	2.025	2.287				
C_{70}	C _{2v} : 7854	0.0	-12.43	2.036	2.331		-9.30	2.058	2.410
C_{70}	D _{5h} : 8149	163.7	-6.91	1.969	2.266				
C ₇₂	<i>C</i> _s : 10528	0.0	-10.56	2.043	2.322	33.4	-7.84	2.062	2.414
C ₇₂	C_1 : 10482	26.7	-11.75	2.057	2.342	0.0	-9.65	2.085	2.443
C ₇₂	C_1 : 10468	48.9	-11.45	2.073	2.347	25.5	-9.32	2.070	2.438
C ₇₂	D ₂ : 10611	54.6	-10.51	1.985	2.265				
C ₇₄	<i>C</i> _{2v} : 14239	0.0	-10.59	2.034	2.311	86.8	-7.77	2.090	2.409
C ₇₄	<i>C</i> ₃ : 13492	9.9	-11.74	2.051	2.352	0.0	-9.93	2.100	2.455
C_{74}	<i>C</i> ₂ : 13295	18.7	-11.31	2.007	2.309				
C ₇₆	<i>T</i> _d : 19151	0.0	-10.10	2.017	2.307	37.7	-7.61	2.092	2.403
C ₇₆	<i>C</i> _s : 17490	20.0	-11.71	2.070	2.323	0.0	-9.81	2.105	2.431
C_{78}	D _{3h} : 24109	0.0	-10.51	2.012	2.307	83.6	-7.53	2.076	2.393
C_{78}	<i>C</i> ₂ : 22010	80.4	-12.10	2.077	2.352	0.0	-10.82	2.100	2.466
C_{80}	<i>I</i> _h : 31924	0.0	-12.48	2.034	2.315	0.0	-10.38	2.060	2.406
C_{80}	D _{5h} : 31923	67.0	-12.38	2.041	2.308	70.2	-10.25	2.065	2.401
C_{80}	<i>C</i> ₁ : 28325	262.8	-11.25	2.085	2.352	90.0	-10.58	2.135	2.492
C ₈₂	<i>C</i> _{2v} : 39718	0.0	-10.78	2.062	2.332	29.6	-9.29	2.099	2.426
C_{82}	<i>C</i> _{2v} : 39705	17.7	-11.99	2.082	2.355	0.0	-10.98	2.119	2.470
C_{82}	C _s : 39663	49.8	-11.36	2.059	2.337	32.6	-10.35	2.131	2.457
C ₈₄	C _s : 51365	0.0	-11.90	2.089	2.335	0.0	-11.32	2.156	2.482
C ₈₄	<i>D</i> ₂ : 51589	13.8	-9.64	2.107	2.360	33.2	-8.85	2.136	2.454
C_{86}	C _s : 63757	0.0	-10.12	2.079	2.329	26.1	-9.52	2.157	2.476
C_{86}	<i>D</i> ₃ : 63761	12.2	-10.04	2.083	2.351	3.7	-9.79	2.173	2.480
C_{86}	<i>C</i> _{2v} : 63751	28.6	-10.44	2.084	2.345	0.0	-10.40	2.196	2.515
C_{88}	<i>D</i> ₂ : 81738	0.0	-10.56	2.083	2.351	0.0	-10.37	2.195	2.507
C_{90}	<i>C</i> ₂ : 44	52.8	-9.52	2.103	2.378	0.0	-9.53	2.230	2.541
C ₉₀	<i>C</i> ₂ : 43	0.0	-10.51	2.043	2.323	8.0	-9.89	2.224	2.530
C ₉₂	D ₃ : 85		-10.90	2.173	2.404		-10.90	2.171	2.492
C ₉₄	<i>C</i> ₂ : 121		-10.14	2.030	2.323		-10.02	2.257	2.541
C_{96}	D ₂ : 186		-10.40	2.061	2.327		-10.06	2.255	2.525
C ₉₈	<i>C</i> ₂ : 166		-9.36	2.056	2.324		-9.24	2.260	2.537

<i>Table S2.</i> Relative energies (Δ	E, kJ/mol), and binding	energies (BE-2, eV) of th	ne most stable $M_3N@C_{2n}$ (2n	= $68-88$; M = Sc, Y) isomers as
---	-------------------------	---------------------------	----------------------------------	-----------------------------------

computed at the DFT level

Cage		$Sc_3N@C_{2n}$	Cage		$Sc_3N@C_{2n}$			$Sc_3N@C_{2n}$	$Y_3N@C_{2n}$	Cage		$Sc_3N@C_{2n}$	$Y_3N@C_{2n}$
C_{2n} isomer	APPs	ΔE BE-2	C_{2n} isomer	APPs	ΔE BE-2	C_{2n} isomer	APPs	ΔE BE-2	ΔE BE-2	C_{2n} isomer	APPs	$\Delta E BE-2$	ΔE BE-2
C ₆₈ D ₃ : 6140	3	0.0 -137.7	C ₇₀ C _{2v} : 7854	3	0.0 -136.7	C ₇₆ C _s : 17490	2	20.0 -134.7	0.0 -125.5	C ₈₀ I _h : 31924	0	0.0 -133.2	0.0 -123.9
$C_{68} C_{2v}$: 6073	2	246.0 -135.3	C ₇₀ C ₂ : 7957	2	140.0 135.4	C ₇₆ C _{2v} : 19138	1	41.7 -134.6	103.2 -124.6	C ₈₀ D _{5h} : 31923	0	67.0 -133.4	70.2 -124.1
$C_{68} C_1: 6102$	3	95.6 -137.2	C ₇₀ C ₁ : 7852	3	21.6 -136.9	C ₇₆ T _d : 19151	0	0.0 -135.1	37.7 -125.3	C ₈₀ C _{2v} : 31922	0	166.5 -133.5	93.9 -124.9
C ₆₈ C ₂ : 6118	3	71.4 -137.6	C ₇₀ D _{5h} : 8149	0	163.7 -135.5	C ₇₆ C ₁ : 17465	2	83.1 -134.6	55.4 -125.5	C ₈₀ C ₁ : 31891	1	185.1 -133.9	149.8 -124.9
C ₆₈ C ₂ : 6146	2	191.7 -136.4	C ₇₀ C _s : 7960	2	179.0 -135.4	C ₇₆ C ₂ : 17765	2	116.4 -134.2	80.2 -125.3	C ₈₀ C ₁ : 28325	2	227.4 -133.6	90.0 -125.7
$C_{68} C_s: 6072$	3	205.9 -136.4	C ₇₀ C ₁ : 7886	3	39.2 -136.9	C ₇₆ C ₂ : 17512	2	176.6 -133.7	71.1 -125.4	C ₈₀ C ₁ : 28319	1	239.7 -133.7	145.2 -125.3
$C_{68} C_s: 6089$	3	256.9 -135.8	C ₇₀ C _s : 7922	3	68.0 -136.6	C ₇₆ C ₂ : 18161	2	70.0 -134.8	26.1 -125.9	C ₈₀ C ₂ : 29591	2	255.4 -133.6	110.6 -125.7
C ₆₈ C ₁ : 6138	3	87.9 -137.6	C ₇₀ C ₁ : 7887	3	43.6 -136.9	C ₇₆ C ₁ : 17588	2	81.1 -134.8	85.7 -125.4	C ₈₀ C ₁ : 28324	1	261.4 -133.6	168.5 -125.2
$C_{68} C_1: 6116$	3	123.9 -137.4	C ₇₀ C ₁ : 7851	3	28.6 -137.1	C ₇₆ C ₁ : 17760	2	95.7 -134.7	83.7 -125.5	C ₈₀ C _{2v} : 31920	0	290.5 -133.3	124.5 -125.7
C ₆₈ C ₁ : 6039	3	200.9 -136.6	C ₇₀ C ₁ : 7849	3	35.6 -137.1	C ₇₆ C ₁ : 17459	1	106.2 -134.6	149.7 -124.8	C ₈₀ C ₁ :31876	1	232.1 -133.9	144.2 -125.5
C ₇₂ D ₂ : 10611	2	54.6 -134.9	C ₇₄ C ₂ : 13295	2	18.7 -134.7	C ₈₂ C _{2v} : 39718	0	0.0 -133.1	29.6 -124.3	C ₈₄ D ₂ : 51589	0	13.8 -132.4	33.2 -124.4
$C_{72} C_1$: 10610	2	34.6 -135.9	C ₇₄ C ₂ : 13333	2	51.3 -134.6	C ₈₂ C _{2v} : 39705	1	17.7 -133.2	0.0 -124.9	C ₈₄ C _s :51365	1	0.0 -132.6	0.0 -124.8
C ₇₂ C _s : 10616	2	49.9 -135.7	C ₇₄ D _{3h} : 14246	5 0	21.3 -135.0	C ₈₂ C _{3v} : 39717	0	58.1 -133.0	119.1 -123.9	C ₈₄ D _{2d} : 51591	0	18.0 -132.7	48.8 -124.5
$C_{72} C_1: 10482$	3	26.7 -136.0	C ₇₄ C ₁ : 13408	2	58.5 -134.7	C ₈₂ C _s : 39715	0	41.2 -133.2	51.0 -124.7	C ₈₄ C _s : 51578	0	43.4 -132.5	49.3 -124.6
C ₇₂ C _s : 10528	2	0.0 -136.3	C ₇₄ C ₂ : 13290	2	51.9 -134.8	C ₈₂ C _s : 39663	1	49.8 -133.2	32.6 -124.9	C ₈₄ C _s : 51583	0	43.5 -132.5	60.7 -124.5
$C_{72} C_{2v}$: 11188	1	21.2 -136.1	C ₇₄ C ₂ : 13291	2	63.1 -134.8	C ₈₂ C ₂ : 39714	0	89.5 -133.1	54.4 -125.0	C ₈₄ D ₂ : 51590	0	39.0 -132.6	77.3 -124.3
C ₇₂ C ₁ : 10518	3	40.5 -136.1	C ₇₄ C ₂ : 13292	2	70.7 -134.9	C ₈₂ C _s : 39704	1	94.2 -133.2	103.2 -124.7	C ₈₄ C _{2v} : 51575	0	31.8 -132.8	73.4 -124.5
$C_{72} C_1$: 10468	3	48.9 -136.0	C ₇₄ C ₁ : 13391	2	98.5 -134.6	$C_{82} C_s: 36652$	2	146.7 -132.8	65.1 -125.2	C ₈₄ C ₂ : 50322	1	83.1 -132.3	68.1 -124.6
C ₇₂ C ₁ : 10557	2	107.7 -135.4	C ₇₄ C ₃ : 13492	3	9.9 -135.6	C ₈₂ C ₁ : 39656	1	147.8 -133.0	104.2 -125.0	C ₈₄ C ₁ : 51350	1	70.8 -132.5	63.0 -124.7
C ₇₂ C ₂ : 10612	1	36.9 -136.2	C ₇₄ C _{2v} : 14239	2	0.0 -135.8	C ₈₂ C _s : 39713	0	118.8 -133.2	104.0 -124.9	C ₈₄ C _s : 51425	1	57.0 -132.6	58.9 -124.8
C ₇₂ C ₂ : 10626	2	116.6 -135.4	C ₇₄ C ₁ : 13384	2	104.4 -134.8								
C ₇₂ C ₁ : 10526	3	55.6 -136.1	C ₇₄ C _s : 13336	2	50.4 -135.4	C ₈₆ D ₃ : 63761	0	12.2 -131.4	3.7 -123.9	C ₈₈ D ₂ : 81738	0	0.0 -131.2	0.0 -123.8
C ₇₂ C ₂ : 10693	2	53.5 -136.2	C ₇₄ C ₁ : 13479	3	38.4 -135.6	C ₈₆ C _{2v} : 63751	0	28.6 -131.6	0.0 -124.3	C ₈₈ C _s : 81735	0	64.5 -131.3	55.5 -123.9
C ₇₂ C ₁ : 10688	3	56.6 -136.2	C ₇₄ C ₂ : 13961	2	132.1 -134.6	C ₈₆ C _s : 63757	0	0.0 -132.1	26.1 -124.3	C ₈₈ C _s : 81734	0	60.9 -131.4	77.4 -123.8
C ₇₂ C ₁ : 10469	3	70.9 -136.0	C ₇₄ C ₁ : 13771	2	57.1 -135.4	C ₈₆ C ₁ : 58832	1	45.8 -131.8	40.8 -124.3	C ₈₈ C ₁ : 81733	0	58.0 -131.5	91.3 -123.7
C ₇₂ C ₁ : 10774	3	40.9 -136.4	C ₇₄ C ₁ : 13549	2	49.6 -135.5	C ₈₆ C ₁ : 63755	0	33.5 -132.0	34.6 -124.4	C ₈₈ C ₁ : 81729	0	63.3 -131.5	86.9 -123.8
C ₇₂ C ₁ : 10615	2	66.5 -136.1	C ₇₄ C ₁ : 13410	2	74.9 -135.3	C ₈₆ C ₁ : 63291	1	51.3 -131.9	54.9 -124.2	C ₈₈ C ₁ : 80982	1	57.2 -131.6	78.3 -124.0
C ₇₂ C ₂ : 10554	2	148.1 -135.3	C ₇₄ C ₁ : 13393	1	65.7 -135.5	C ₈₆ C ₂ : 63339	1	48.0 -132.0	56.2 -124.4	C ₈₈ C ₂ : 81731	0	86.1 -131.3	86.9 -123.9
C ₇₂ C ₁ : 10849	2	132.1 -135.5	C ₇₄ C ₁ : 13334	2	72.7 -135.4	C ₈₆ C ₂ : 63229	1	87.9 -131.7	69.5 -124.3	C ₈₈ C ₁ : 69747	1	80.1 -131.4	75.5 -124.0
C ₇₂ C ₁ : 10538	2	51.2 -136.4	C ₇₄ C ₁ : 14049	1	47.1 -135.7	C ₈₆ C ₂ : 63756	0	44.9 -132.2	84.5 -124.2	C ₈₈ C _s : 81712	0	43.2 -131.8	76.1 -124.0
						C ₈₆ C _s : 63750	0	80.6 -131.8	87.7 -124.2	C ₈₈ C ₁ : 70333	1	105.0 -131.2	79.3 -124.0

Figure S1. Structural correlation between C_{70} (C_{2v} : 7854, left), C_{72} (C_s : 10528, middle), and C_{74} (C_{2v} : 14239, right) cages, all corresponding to the most stable Sc₃N@ C_{2n} isomers. Red dots show approximate positions of carbon atoms to be added to C_{70} to form C_{72} and to C_{72} to form C_{74} . Grey lines show the bonds in the predecessors, which are broken after addition of two carbon atoms. Gray and black dots and gray arrows show the atoms involved in Stones-Wales rearrangements.

Figure S2a. Correlation between C_{82} (C_s : 39663, left) and C_{84} (C_s : 51365, right). Red dots show where carbon atoms should be added to C_{82} to form C_{84} . Two Stone-Wales rearrangements are also required to complete transformation.

Figure S2b. Correlation between C_{78} (D_{3h} : 24109, left) and C_{82} (C_s : 39663, right). Red dots show where carbon atoms should be added to C_{78} to form C_{82} .