Supplementary Material

Figure S1. Overlap of A (thinner lines) and B (thicker lines).

Figure S2. Intermediates on the $OH_2(1)$ pathway. Hydrogen bonds are the

dashed green lines. Energies (in kcal/mol) are given at the B3LYP/6-31G(d,p)

with respect to **A**.

Table S1a. Relative energies (kcal/mol) of the main intermediates (with two unbound waters) at different levels of theory and with different basis sets: HF/6–31G, B3LYP/6–31G.

	Functional/Basis set			
Molecule	B3LYP		HF	
	6-31G(d,p) – G03	6-31G – G98	6-31G(d,p) - G03 (G98)	6-31G – G98
Α	0.00	0.00	0.00 (0.00)	0.00
В	-0.87	-1.11	1.80 (1.83)	1.24
С	28.16	12.14	35.49 (35.30)	13.22
D	5.83	2.21	5.73 (5.73)	6.29
E	4.83	6.00	5.12 (5.11)	1.90
F	10.46 (11.29*)	11.40*	6.81 (9.87)	11.78
G	7.12 (8.39*)	19.80*	6.01 (7.47)	0.17

G03 – Gaussian 03

G98 – Gaussian 98

* no ZPE correction

 Table S1b.
 Relative energies (kcal/mol) of the main intermediates at different

	Malaania	∆E(kcal/mol)	∆E(kcal/mol)
#	Molecule	HF/6–31G	B3LYP/6–31G
1	Α	0.00 (-1.24)	0.00
2	В	1.24 (0.00)	-1.11
3	С	13.22 (11.98)	12.14
			10.35
4	F	0.17 (–1.07)	(–34.7cm ⁻¹)
			/11.40**
5	G	11.78 (10.54)	19.80**
6	D	1.90 (0.66)	2.21
7	E	6.29 (5.05)	6.00
1	A–no		
1	water	0.00 (-1.49)	0.00
2	water B–no water	1.49 (0.00)	0.66
2	water B–no water C–no	1.49 (0.00) 13 90 (12 41)	0.66
2	water B–no water C–no water	1.49 (0.00) 13.90 (12.41)	0.66
23	water B–no water C–no water F–no	1.49 (0.00) 13.90 (12.41) -9.82	0.66
2 3 4	water B–no water C–no water F–no water	0.00 (-1.49) 1.49 (0.00) 13.90 (12.41) -9.82 (-11.21)	0.00 0.66 16.12 -0.33
2 3 4 5	water B–no water C–no water F–no water G–no	0.00 (-1.49) 1.49 (0.00) 13.90 (12.41) -9.82 (-11.21) 7.42 (5.93)	0.00 0.66 16.12 0.33
2 3 4 5	water B–no water C–no water F–no water G–no water	1.49 (0.00) 1.49 (0.00) 13.90 (12.41) -9.82 (-11.21) 7.42 (5.93)	0.00 0.66 16.12 0.33
2 3 4 5	water B–no water C–no water F–no water G–no water D–no	1.49 (0.00) 1.49 (0.00) 13.90 (12.41) -9.82 (-11.21) 7.42 (5.93) 4.95 (4.46)	0.00 0.66 16.12 0.33 *
2 3 4 5 6	water B–no water C–no water F–no water G–no water D–no water	1.49 (0.00) 1.49 (0.00) 13.90 (12.41) -9.82 (-11.21) 7.42 (5.93) 4.95 (4.46)	0.00 0.66 16.12 0.33 * 6.22
2 3 4 5 6 7	water B–no water C–no water F–no water G–no water D–no water E–no	1.49 (0.00) 1.49 (0.00) 13.90 (12.41) -9.82 (-11.21) 7.42 (5.93) 4.95 (4.46) 11.90 (10.41)	0.00 0.66 16.12 -0.33 * 6.22 12.99

levels of theory: HF/6–31G, B3LYP/6–31G.

* not converged. ** no ZPE.

Table S2. Relative energies, at the B3LYP/6-31G(d,p) level, in kcal/mol, along with a brief description of the key structural changes that occur to the complexes with two unbound waters (A, B, C), when the proton is moved from O3´ to O(D256–0), O(D256–90), O(D190) and O(D192) (alternative mechanisms).

Molecule	O 3′	O(256–0)	O(256–90)	O(190)	O(192)
A	0.00	33.37* D256–H ⁺ •••H(CH ₃)–O3´ Clash of hydrogen atoms. D256-H leaves Mg ²⁺ _{cat}	27.97* D256-H ⁺ leaves Mg ²⁺ _{cat} , and has no significant interactions with other residues	33.43* D256–H ⁺ •••D190. D256-H ⁺ leaves Mg ²⁺ _{cat}	<i>14.36</i> * D256–H ⁺ •••D192. D256-H ⁺ leaves Mg ²⁺ _{cat}
В	-0.87	−3.92 D256–H ⁺ •••O3´ Hydrogen bond. D256- H leaves Mg ²⁺ _{cat}	25.90 D256 and H ₂ O leave Mg ²⁺ _{cat}	6.87 D256–H ⁺ •••D190. D256-H ⁺ leaves Mg ²⁺ _{cat}	15.05 D256–H ⁺ •••D192. D256-H ⁺ leaves Mg ²⁺ _{cat}
С	27.97	$\begin{array}{c} 35.71^{*} \\ \text{D256-H}^{\bullet} \bullet \bullet \text{OH2(1).} \\ \text{Both leave Mg}^{2^{+}}_{\text{cat.}} \\ \text{O3}^{'}-\text{P}_{\alpha} \text{ bond breaks} \end{array}$	-4.14 D256•••H ⁺ -O3´. D256 leaves Mg ²⁺ _{cat} . O3´-P _α bond breaks	8.21 D190–H ⁺ •••D256. D190-H ⁺ leaves Mg^{2+}_{cat} . O3'–P _a bond breaks	6.58 D192–H ⁺ •••D256. D190-H ⁺ leaves Mg ²⁺ _{cat} . O3′–P _α bond breaks

* Not fully converged, thus no ZPE included.

Table S3a. Relative energies (kcal/mol) of the protonated complexes with two unbound water molecules (example: $D-H^d$ is the protonated complex of D, where the proton is place on the ^d site described in Figure 1), at the HF/6–31G level.

#	Eilo namo	ΔE
#	File Italile	(kcal)
1	D–H ^d	0.00
2	E–H ^d	0.00
3	C´–H⁴	0.05
4	F–H [⊳] –0	6.29
5	B–H [⊳] –0	9.63
6	A–H ^b –0	9.96
7	F–H ^d	10.09
8	D–H°	10.82
9	B–H⁵–90	11.16
10	C″–H ^b –0	11.19
11	C–H ^d	11.86
12	A–H ^b –90	11.92
13	D–H ^b –90	12.30
14	D–H ^b –0	12.31
15	F–H ^c	13.67
16	B–H ^d	15.13
17	B–H ^a	15.91
18	B–H ^c	16.21
19	A–H ^d	16.79
20	A–H ^a	16.82
21	C–H ^b –0	17.20
22	C´–H⁵–90	17.20
23	D–H ^a	18.54
24	A–H ^c	18.67
25	G–H [⊳] –90	20.27

26	C´–H°	20.43
27	G–H⁵–0	21.02
28	C″–Hª	22.03
29	F–H [⊳] –90	23.43
30	E–H [⊳] –0	24.80
31	C–H ^b –90	24.86
32	C´–H [⊳] –0	24.86
33	E–H ^b –90	25.02
34	C″–H ^d	25.29
35	F–H ^a	26.94
36	C″–H°	27.87
37	C–H ^a	28.89
38	E–H ^a	29.00
39	C´–Hª	29.43
40	G–H ^a	32.92
41	С <i>″–</i> Н ^ь –90	34.29
42	G–H°	35.89
43	C–H°	100.85
44	E–H°	*
45	G–H ^d	*
46	A–H ^g	-15.00
		-12.90
47	B–H [⊳]	(-33.0
		cm ⁻¹)
48	C–H [⊳]	-8.84
49	C–H ^g	-6.06

* no convergence

Table S3b. Relative energies (kcal/mol) of the protonated complexes without unbound water molecules (example: B(no water)- H^c is the protonated complex of B(no water), where the proton is place on the ^c site described in Figure 1), at the HF/6–31G level.

#	Filo nomo	ΔE
#	File liaille	(kcal)
1	B(no water)–H ^c	0.00
2	E(no water)–H ^c	1.07
3	C(no water)–H ^d	2.28
4	C"(no water)–H ^c	2.45
5	C(no water)–H ^c	3.71
6	C"(no water)–H ^d	4.55
7	C'(no water)–H ^d	5.88
8	C'(no water)–H ^c	7.89
9	B(no water)–H ^b –0	8.26
10	A(no water)–H ^c	8.50
11	B(no water)–H ^b –90	9.32
12	F(no water)–H ^c	10.26
13	F(no water)–H ^d	12.14
14	G(no water)–H ^d	14.15
15	C(no water)–H ^b –0	15.69
16	B(no water)–H ^d	16.84
17	F(no water)–H ^b –90	18.35
18	G(no water)–H ^b –90	18.80
19	B(no water)–H ^a	19.36
20	F(no water)–H ^b –0	19.61
21	G(no water)–H ^b –0	19.70
22	C'(no water)–H ^b –90	20.38
23	C´(no water)–H ^b –0	20.38
24	C(no water)–H ^b –90	20.38

25	D(no water)–H ^d	21.70
26	F(no water)–H ^a	23.28
27	C(no water)–H ^a 23.5	
28	G(no water)–H ^a	24.10
29	C´(no water)–H ^a	24.46
30	A(no water)–H ^b –0	25.28
31	G(no water)–H ^c	25.50
32	A(no water)–H ^b –90	25.56
33	D(no water)–H ^b –90	28.98
34	D(no water)–H ^b –0	28.98
35	A(no water)–H ^d	30.21
36	A(no water)–H ^a	31.52
37	D(no water)–H ^a	35.22
38	C"(no water)–H ^b –90	37.16
39	C"(no water)–H ^b –0	37.16
40	D(no water)–H ^c	38.53
41	C"(no water)–H ^a	45.21
42	E(no water)–H ^b –0	45.85
43	E(no water)–H ^b –90	46.40
44	E(no water)–H ^d	46.59
45	E(no water)–H ^a	52.38
46	A(no water)–H ⁹	-9.35
47	B(no water)–H ^b	-3.80
48	C(no water)–H ^g 3.83	
49	C(no water)–H ^b	17.95

Table S4a. Relative energies (kcal/mol) of the doubly protonated complexes with two unbound water molecules (example: $A-H^aH^c$ is the doubly protonated complex of A, in which protons are placed on the ^a and ^c sites described in Figure 1), at the HF/6–31G level.

#	File Name	∆E (kcal)
1	A–H ^a H ^c	27.49
2	A–H ^{b(0)} H ^c	24.26
3	B–H ^a H ^c	20.51
4	B–H ^{b(0)} H ^c	58.19
5	C´–HªH ^c	15.58
6	C´–H ^{b(0)} H ^c	36.37
7	D–H ^a H ^c	8.64
8	D–H ^{b(0)} H ^c	0.00
9	E–H ^a H ^c	8.65

10	E–H ^{b(0)} H ^c	13.88
11	C–H ^a H ^c	*
12	C–H ^{b(0)} H ^c	36.36
13	F–H ^a H ^c	33.58
14	F–H ^{b(0)} H ^c	27.17
15	G–H ^a H ^c	30.33
16	G–H ^{b(0)} H ^c	26.99
17	C″–H ^a H ^c	*
18	C″–H ^{b(0)} H ^c	8.60
1	* no convergence	

Table S4b. Relative energies (kcal/mol) of the doubly protonated complexes with two unbound water molecules (example: $A(no water)-H^aH^c$ is the doubly protonated complex of A(no water), in which protons are placed on the ^a and ^c sites described in Figure 1), at the HF/6–31G level.

#	File Name	∆E (keel)
		(kcal)
1	A(no water)–H ^a H ^c	14.18
2	A(no water)–H ^{b(0)} H ^c	16.75
3	F(no water)–H ^a H ^c	44.40
4	F(no water)–H ^{b(0)} H ^c	29.09
5	G(no water)–H ^a H ^c	*
6	G(no water)–H ^{b(0)} H ^c	*
7	B(no water)–H ^a H ^c	20.54
8	B(no water)–H ^{b(0)} H ^c	25.65
9	E(no water)–H ^a H ^c	25.22
10	E(no water)–H ^{b(0)} H ^c	0.00
11	D(no water)–H ^a H ^c	25.01

12	D(no water)–H ^{b(0)} H ^c	36.12
13	C´(no water)–H ^a H ^c	8.02
14	C'(no water)–H ^{b(0)} H ^c	15.70
15	C"(no water)–H ^a H ^c	23.71
16	C"(no water)–H ^{b(0)} H ^c	46.63
17	C(no water)–H ^a H ^c	24.06
18	C(no water)–H ^{b(0)} H ^c	17.71
	* no convergence	

Table S5a. Relative energies on the B–A pathway. The dihedral angle P_{α} –O1_{α}–Mg_{cat}–O3' was varied in 24 steps, to capture the B–A transformation, using the B3LYP/6-31G(d,p) method.

Point	E(kcal/mol)	
В	-0.93	
1	-0.96	
2	-0.88	
3	-0.81	
4	-0.73	
5	-0.63	
6	-0.50	
7	-0.37	

8	-0.21
9	-0.04
10	0.15
11	0.36
12	0.58
13	0.82
14	1.08
15	1.35
16	1.64

17	1.95
18	2.28
19	2.62
20	2.13
21	1.67
22	1.13
23	0.55
Α	0.00

Graph G1a. A–B reaction coordinate, computed using the B3LYP/6-31G(d,p) method. The dihedral angle P_{α} –O1_{α}–Mg_{cat}–O3['] has been varied.

Table S5b. Relative energies on the C–B pathway, computed using the B3LYP/6-31G(d,p) method, performed in two steps. In series 1 (rotation above), the dihedral angle $O5'-P_{\alpha}-O2_{\alpha}-H$ was varied from -90° to $+90^{\circ}$, so that the proton passes on the same side with O5', to capture the proton's rotation around the $O2_{\alpha}-P_{\alpha}$ bond, and the O3'-H distance was varied, to capture the proton shift from O3' to $O2_{\alpha}$. In the second series (rotation below), the dihedral angle $O5'-P_{\alpha}-O2_{\alpha}-H$ was varied from -90° to $+90^{\circ}$, so that the proton passes on the same side with O4'-H distance was varied, to capture the proton shift from O3' to $O2_{\alpha}$. In the second series (rotation below), the dihedral angle $O5'-P_{\alpha}-O2_{\alpha}-H$ was varied from -90° to $+90^{\circ}$, so that the proton passes on the same side with $OH_2(2)$, to capture the proton's rotation around the $O2_{\alpha}-P_{\alpha}$ bond, and the O3'-H distance was varied, to capture the proton shift from O3' to $O2_{\alpha}$.

Rotation above,	
from C to B	
С	27.84
1	27.94
2	28.27
3	28.80
4	29.50
5	30.36
6	31.36
7	32.46
8	33.64
9	34.85
10	36.08
11	37.28
12	38.40
13	39.43
14	40.34
15	41.13
16	41.77
17	42.26
18	42.83
19	42.81
20	42.85
21	42.76
22	42.56
23	42.24
24	41.82
25	41.32
26	40.75
27	40.14
28	39.49
29	38.83

30	38.15
31	10.20
32	8.43
33	6.83
34	5.36
35	4.08
36	3.01
37	2.09
38	2.20
39	1.48
40	0.93
41	0.57
42	0.37
43	0.42
В	-0.93

Rotation below, from C to B	
С	27.84
1	28.45
2	27.62
3	26.90
4	26.26
5	25.71
6	25.26
7	24.95
8	24.75
9	24.66
10	24.65
11	24.68
12	35.12
13	35.15
14	35.23
15	35.34
16	35.50
17	35.70
18	35.93
19	36.19
20	36.48
21	35.12
22	35.65
23	37.07

23 24

25

26

27

28

29

39.06

40.34

42.17

16.33

10.20

8.43

30	6.83
31	5.36
32	4.08
33	3.01
34	2.09
35	2.20
36	1.48
37	0.93
38	0.57
39	0.37
40	0.42
В	-0.93

Graph G1b. C–B potential energy surfaces, computed using the B3LYP/6-31G(d,p) method, performed in two steps. In series 1 (rotation above), the dihedral angle $O5'-P_{\alpha}-O2_{\alpha}$ –H was varied from –90° to +90°, so that the proton passes on the same side with O5', to capture the proton's rotation around the $O2_{\alpha}-P_{\alpha}$ bond, and the O3'–H distance was varied, to capture the proton shift from O3' to $O2_{\alpha}$. In the second series (rotation below), the dihedral angle $O5'-P_{\alpha}-O2_{\alpha}$ –H was varied from -90° to +90°, so that the proton passes on the same side with $OH_2(2)$, to capture the proton's rotation around the $O2_{\alpha}-P_{\alpha}$ bond, and the O3'–H distance was varied, to capture the proton shift from O3' to $O2_{\alpha}$.

Table S5c. Relative energies, computed using the B3LYP/6-31G(d,p) method, on the D–C (β –) and F–C (γ –) pathways. In both series the O2_{β}–H...O2_{α}, and O2_{γ}–H...O2_{α} distance, respectively, were varied, to capture the proton shift from O2_{β} to O2_{α} (blue curve), and from O2_{γ} to O2_{α} (green curve), respectively.

-		D (1
н	ota	Path
		i aui

D	6.53
1	7.21
2	9.14
3	12.56
4	16.28
5	22.75
6	25.45
7	27.18
8	29.65
9	31.28
10	29.03
С	27.84

Gamma Path	
F	11.08
1	12.36
2	15.40
3	19.41
5	23.11
6	26.58
7	29.52
8	31.92
9	33.86
10	37.14
11	35.56
С	27.84

Graph G1c. Relative energies, computed using the B3LYP/6-31G(d,p) method, on the D–C (β –) and F–C (γ –) pathways. In both series the O2_{β}–H...O2_{α}, and O2_{γ}–H...O2_{α} distance, respectively, were varied, to capture the proton shift from O2_{β} to O2_{α} (blue curve), and from O2_{γ} to O2_{α} (green curve), respectively.

