Synthesis and Cyclodehydration of Hydroxyphenols: A New Stereoselective Approach to 3-Aryl-2,3Dihydrobenzofuranes

Ferruccio Bertolini, Paolo Crotti, Valeria Di Bussolo, Franco Macchia, and Mauro Pineschi*.
Dipartimento di Chimica Bioorganica e Biofarmacia, Università di Pisa, Via Bonanno 33, 56126 Pisa, Italy.pineschi@farm.unipi.it
\section*{List of contents}

- Indication of Material and Methods used (page S2).
- Text giving all experimental procedures and characterization of new hydroxyphenols of type 3 (page S3-S11)
- Text giving all experimental procedures and characterization of new 2,3dihydrobenzofuranes of type 4 (cis) and 5 (trans) reported in the main text (page S11-S16)
- Additional results of cyclodehydratation of hydroxyphenols to 2,3dihydrobenzofuranes (Table 3) (page S17)
- Text giving all experimental procedures and characterization of new compounds of type 4 and 5 not reported in the main text (page S18-S20)

General Methods. Diethylazadicarboxylate, triphenylphosphine, the solution of $\mathrm{BH}_{3} \cdot \mathrm{Me}_{2} \mathrm{~S}$, and all phenols employed in this study were used as received. Anhydrous THF, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (containing molecolar sieves) were purchased and used as such. Analytical TLC were performed on Alugram SIL G/UV254 silica gel sheets with detection by 0.5% Phosphomolybdic acid solution in 95% EtOH. Silica gel 60 was used for flash chromatography. Solvents for extraction and chromatography were HPLC grade.
${ }^{1} \mathrm{H}$ NMR spectra were recorded at 200 or 250 MHz . Chemical shifts are reported in ppm downfield from tetramethylsilane with the solvent resonance as the internal standard (deuterochloroform: δ 7.26, deuteromethanol: $\delta \mathbf{3 . 3 1}$). ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 50 MHz or at 62.5 MHz with complete proton decoupling. Chemical shifts are reported in ppm downfield from tetramethylsilane with the solvent resonance as the internal standard (deuterochloroform: $\delta \mathbf{7 7 . 0}$, deuteromethanol: δ 49.0).

1D NOESY spectrum was performed on a spectrometer operating at 600 MHz for 1 H . The selective 1D NOE spectrum was acquired with 128 scans in 32 K data points with a 15 s relaxation delay and a mixing time of 1.6 s by using selective pulse generated by means of an appropriate software.

Analytical high performance liquid chromatography (HPLC) were performed on a column with 0.5 mL solvent flow and detection at 254 nm .

GC/MS spectra were obtained operating at 70 eV .
Elemental analyses were performed at the Department of Pharmaceutical Sciences of the University of Pisa.

2-((1R*, 2S*)-2-Hydroxy-1-phenylpropyl)-3,5-dimethylphenol (3ab) (Table 1, entry 1).

Using the general procedure, a solution of tris-(3,5-dimethylphenyl) borate (1b) ($560.7 \mathrm{mg}, 1.5 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ was added at $78^{\circ} \mathrm{C}$ under argon to a solution of trans- β-methylstyrene oxide (2a) ($134.1 \mathrm{mg}, 1.0 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$. The mixture was allowed to react for 18 hours at $-40^{\circ} \mathrm{C}$. The crude mixture, containing 35% of O-alkylated product, was purified by column chromatography eluting with hexanes/AcOEt 85:15 to give compound 3ab ($115.2 \mathrm{mg}, 45 \%$), as a white solid. M. $\mathrm{p}=72-75^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.29(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz}$); 2.21 (s, 3H); 2.29 (s, 3H); $4.40(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=4.1 \mathrm{~Hz}) ; 4.59-4.75(\mathrm{~m}, 1 \mathrm{H}) ; 6.60$ (br, s, 1H); 6.70 (br, s, 1H); 7.147.21 (m, 5H).
${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 20.5,20.8,21.1,51.4,70.9,116.6,123.3,126.6,128.2$, 128.7, 137.9, 138.6, 139.1, 140.2, 155.2.

Anal. Calcd. For $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{2}$: C, 79.65%; H, 7.86\%. Found: C, 79.41%; H, 7.53\%.

(1S*, 2S*)-1-(3,5-Dimethylphenoxy)-1-phenylpropan-2-ol.
The first eluting fractions of the above described column chromatography afforded pure (1S*, 2S*)-1-phenyl-1-(3,5-dimethylphenoxy)-propan-2-ol, as a white solid (yield= 21\%). M. $p=134-136^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.09$ (d, 3H, J=6.4 Hz); 2.19 (s, 6H); 2.85 OH (br, s, $1 \mathrm{H}) ; 4.00-4.10(\mathrm{~m}, 1 \mathrm{H}) ; 4.82$ (d, 1H, $J=7.3 \mathrm{~Hz}$); 6.44-6.53 (m, 3H); 7.20-7.40 (m, 5 H).
${ }^{13} \mathrm{C}_{\mathrm{NMR}}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 18.0,21.3$ (2C), 71.6, 85.4, 113.8, 123.1, 127.1, 128.1, 128.6, 138.3, 139.1, 157.8.

(2R*, 3R*)-Methyl 2-hydroxy-3-(2-hydroxy-4,6-dimethoxyphenyl)-3-phenylpropanoate (3ca) (table 1, entry 3).

Using the general procedure, a solution of tris-(3,5dimethoxyphenyl) borate (1a) ($705 \mathrm{mg}, 1.5 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(1.0 \mathrm{~mL})$ was added at $-78^{\circ} \mathrm{C}$ to a solution of trans-methyl-2,3-epoxy-3-phenylpropanoate (2c) ($178 \mathrm{mg}, 1.0 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$. The mixture was allowed to react for 18 hours at $-78^{\circ} \mathrm{C}$. The crude mixture, containing 28% of O-alkylated product, was purified by column chromatography eluting with hexanes/AcOEt 7:3 to give compound 3ca (containing 40\% of $2 R^{*}, 3 S^{*}$-stereoisomer) ($182.6 \mathrm{mg}, 55 \%$).
${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.63$ (s, 3H); 3.71 (s, 3H); 3.73 (s, 3H); 5.18 (d, 1H, J= $3.3 \mathrm{~Hz}) ; 5.35(\mathrm{~d}, 1 \mathrm{H}, J=3.3 \mathrm{~Hz}) ; 6.06(\mathrm{~d}, 1 \mathrm{H}, J=2.2 \mathrm{~Hz}) ; 6.14(\mathrm{~d}, 1 \mathrm{H}, J=2.2 \mathrm{~Hz})$; 7.13-7.33 (m, 5H).
${ }^{13} \mathrm{C}_{\mathrm{NMR}}\left(62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 41.8,52.6,55.0,55.8,73.2,91.1,95.2,106.0,126.3$, 127.4,128.2,139.6,157.5,158.9,160.6,173.8.

Representative signals of ($2 R^{*}, 3 S^{*}$) -stereoisomer (anti-3ca):
${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.76$ (d, 1H, $J=2.3 \mathrm{~Hz}, C H-\mathrm{Ar}$); 5.28 (d, $1 \mathrm{H}, \mathrm{J}=2.2$ $\mathrm{Hz}, \mathrm{CH}-\mathrm{OH})$.
${ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 43.2(\mathrm{CH}-\mathrm{Ar}), 52.9\left(\mathrm{COOCH}_{3}\right), 73.8(\mathrm{CH}-\mathrm{OH})$.

Clevage of epoxide 2c with borate 1 b and directly cyclization of compound 3cb to the corrisponding 2,3-dihydrobenzofuranes $\mathbf{4 c b}$ and 5cb (table 1, entry 4).
Using the general procedure, a solution of tris-(3,5-dimethylphenyl) borate (1b) ($560.7 \mathrm{mg}, 1.5 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ was added at rt under argon to a solution of trans-methyl-2,3-epoxy-3-phenyl-propanoate (2c) (178 mg, 1.0 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (0.5 mL). The mixture was allowed to react for 18 hours at rt. The reaction was then quenched and the solvent was evaporated under a vacuum. To the crude mixture, containing 50% of O-alkylated product and a 89/11 mixture of syn-3cb and anti-3cb was not isolated but, dissolved in THF (2.0 mL) and additioned with triphenylphosphine ($262.3 \mathrm{mg}, 1.0 \mathrm{mmol}$) and diethylazodicarboxylate (130.7 mg , $0.118 \mathrm{~mL}, 0.75 \mathrm{mmol}$). The mixture was allowed to react for 2 hours at rt . The purification by flash column chromatography eluting with hexanes/Et $\mathrm{I}_{2} \mathrm{O}$ 9:1 afforded
($2 S^{*}, 3 R^{*}$)-2-carbomethoxy-3-phenyl-4,6-dimethyl-2,3-dihydrobenzofuran (contaminated with 11% of $\left(2 R^{*}, 3 R^{*}\right)$ steroisomer $5 \mathbf{c b}$), as a solid ($107.2 \mathrm{mg}, 38 \%$).
${ }^{1} \mathrm{H}$ NMR (250 MHz, CDCl_{3}) $\delta 1.88$ (s, 3H); $2.30(\mathrm{~s}, 3 \mathrm{H}) ; 3.28(\mathrm{~s}, 3 \mathrm{H}) ; 4.75$ (d, 1H, J= $9.5 \mathrm{~Hz}) ; 5.43(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.5 \mathrm{~Hz}) ; 6.53(\mathrm{~s}, 1 \mathrm{H}) ; 6.67(\mathrm{~s}, 1 \mathrm{H}) ; 7.00(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz})$; $7.10-7.33(\mathrm{~m}, 2 \mathrm{H}) ; 7.73(\mathrm{~d}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 18.3$, 21.5, 50.7, 51.6, 84.9, 108.3, 124.0, 127.5,128.2, 128.5,129.0, 138.2, 139.4,168.8.

Representative signals of compound 5cb: ${ }^{1} \mathrm{H}$ NMR (250 MHz, CDCl_{3}) $\delta 4.66(\mathrm{~d}, 1 \mathrm{H}$, $J=4.6 \mathrm{~Hz}), 4.97(\mathrm{~d}, 1 \mathrm{H}, J=4.6 \mathrm{~Hz})$.

(2R*, 3R*)-Methyl 2-hydroxy-3-(2-hydroxy-4,6-dimethoxyphenyl)-3-(2-methylphenyl)propanoate (3da) (table 1, entry 5).

Using the general procedure, a solution of tris-(3,5dimethoxyphenyl) borate (1a) ($705 \mathrm{mg}, 1.5 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(1.0 \mathrm{~mL})$ was added at $-78^{\circ} \mathrm{C}$ to a solution of trans-methyl-3-(2-methylphenyl)-2,3epoxypropanoate (192 $\mathrm{mg}, 1.0 \mathrm{mmol}$) (2d) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$. The mixture was allowed to react for 18 hours at $-78^{\circ} \mathrm{C}$. The crude mixture, containing 30% of $O-$ alkylated product, was purified by column chromatography eluting with hexanes/AcOEt 7:3 to give compound 3da (179.9 mg, 52\%) as a white solid. M.p= $153-155^{\circ} \mathrm{C} . \mathrm{R}_{\mathrm{F}}=0.16$ (hexanes/AcOEt 7:3).
${ }^{1} \mathrm{H}$ NMR (250 MHz, CDCl_{3}) $\delta 2.02$ (s, 3H); 3.67 (s, 3H); 3.73 (s, 3H); 3.74 (s, 3H) 4.97-5.04 (m, 1H); $5.15(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.0 \mathrm{~Hz}) ; 5.99(\mathrm{~s}, 2 \mathrm{H}) ; 7.05-7.24(\mathrm{~m}, 3 \mathrm{H}) ; 7.69-7.72$ ($\mathrm{m}, 1 \mathrm{H}$).
${ }^{13} \mathrm{C} \operatorname{NMR}\left(62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 19.2,41.0,52.6,55.0,55.6,73.2,90.9,95.2,104.9$, 125.9, 126.7, 127.2, 130.9, 136.6, 139.3, 157.6, 158.7, 160.4, 173.8.

Anal. Calcd. For $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{6}$: C, 65.88\%; H, 6.40\%. Found: C, 65.51\%; H, 6.32\%.

($2 R^{*}, 3 R^{*}$)-Methyl 3-(4-fluorophenyl)-2-hydroxy-3-(2-
hydroxy-4,6-dimethoxyphenyl)propanoate (3ea) (table 1, entry 6).
Using the general procedure, a solution of tris-(3,5dimethoxyphenyl) borate (1a) ($705 \mathrm{mg}, 1.5 \mathrm{mmol}$) in
$\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ was added at $-40^{\circ} \mathrm{C}$ to a solution of trans-methyl-2,3-epoxy-3-(4fluorophenyl)propanoate (2e) (196 mg, 1.0 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$. The mixture was allowed to react for 18 hours at $-40^{\circ} \mathrm{C}$. Column chromatography eluting with hexanes/AcOEt 7:3 afforded compound 3ea (217 mg , 54% yield of 3 ea), as a solid, contaminated by an unseparable by-product (ca 15% of the mixture).
${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.68$ ($\mathrm{s}, 3 \mathrm{H}$); 3.72, ($\mathrm{s}, 3 \mathrm{H}$); 3.75 (s, 3H); 4.21-4.34 OH (br, 1H); 5.08-5.18 (m, 1H); 5.25-5.35 (m, 1H); 6.05 (s, 2H); 7.94-7.40 (m, 4H); 8.30 OH (br, s, 1H).
${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 41.2,52.7,55.1,55.8,73.3,91.2,95.2,114.8,115.3$, 127.0, 129.1, 157.4, 159.8, 160.7, 163.8, 173.7.

(2R*,3S*)-3-(2-Hydroxy-4,6-dimethoxy)-3-phenylpropane-1,2-diol (3fa) (table 1, entry 7).

Using the general procedure, a solution of tris (3,5dimethoxyphenyl) borate (1a) ($705 \mathrm{mg}, 1.5 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1.0 mL) was added at $-78^{\circ} \mathrm{C}$ to a solution of trans-2,3-epoxy-3phenylpropanol (2f) ($150 \mathrm{mg}, 1.0 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$. The mixture was allowed to react for 18 hours at $-78^{\circ} \mathrm{C}$. Column chromatography eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ AcOEt 7:3 afforded pure $\mathbf{3 f a}$ (258.4 mg , 85%), as a white solid. M.p= $107-$ $109^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{MeOD}$) $\delta 3.37$ (d, 1H, $J=7.7 \mathrm{~Hz}$); 3.51-3.58 (m, 1H); 3.62 (s, 3H); 3.64 (s, 3H); 4.53 (d, 1H, J= 9.5 Hz); 4.81-4.97 (m, 1H); 5.97 (s,1H); 6.02 (s,1H); 7.01-7.08 (m, 1H); 7.16 (t, 2H, J= 7..5 Hz); 7.47 (d, 2H, $J=7.5 \mathrm{~Hz}$).
${ }^{13} \mathrm{C}$ NMR (62.5 MHz, MeOD) $\delta 45.3,55.5,55.6,66.6,73.7,91.5,95.0,111.4,126.4$, 128.5, 130.1, 144.4, 157.4, 160.3, 161.0.

Anal. Calcd. For $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{5}$: C, 67.09\%; H, 6.62\%. Found: C, 67.32\%; H, 6.50\%.

2-((1R*,2R*)-2-Hydroxy-3-methoxy-1-phenylpropyl)-3,5dimethoxyphenol (Syn-3ga) (table 1, entry 8).
Using the general procedure, a solution of tris (3,5dimethoxyphenyl) borate (1a) ($705 \mathrm{mg}, 1.5 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(1.0 \mathrm{~mL})$ was added at $-78^{\circ} \mathrm{C}$ to a solution of trans-2-(methoxymethyl)-3-phenyloxirane (2g) ($164 \mathrm{mg}, 1.0 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$. The
mixture was allowed to react for 18 hours at $-78^{\circ} \mathrm{C}$. The crude mixture, containing 23% of O-alkylated product, was purified by column chromatography eluting with hexanes/AcOEt 7:3 to give compound syn-3ga (contaminated with 5\% of O-alkylated product, see below) ($165.4 \mathrm{mg}, 52 \%$), as a white solid.
${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.15-3.27(\mathrm{~m}, 4 \mathrm{H}) ; 3.46\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=9.7 \mathrm{~Hz}, J_{2}=2.5\right.$ Hz); 3.70 (s, 3H); 3.77 (s, 3H); 4.24 CHOH (br, s, 1H); 4.71-4.80 (m, 1H); 4.88 (d, $1 \mathrm{H}, J=2.7 \mathrm{~Hz}) ; 6.07$ (d, 1H, $J=2.2 \mathrm{~Hz}$); 6.17 (d, 1H, $J=2.2 \mathrm{~Hz}$); 7.11-7.40 (m, 5H); 9.40 ArOH (br, s, 1H).
${ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 40.8,55.1,55.8,58.9,72.9,75.4,90.9,95.0,106.4$, 126.1, 127.8, 128.2, 140.4, 157.2, 159.1, 160.2.

Representative signals of the O-alkylated product:
${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.93-4.08(\mathrm{~m}, 1 \mathrm{H}) ; 5.21(\mathrm{~d}, 1 \mathrm{H}, J=6.75 \mathrm{~Hz})$
${ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 59.1\left(\mathrm{CH}_{2} \mathrm{OCH}_{3}\right), 74.4(\mathrm{CHOH}), 80.6(\mathrm{CHOAr})$.

2-((1S*,2R*)-2-Hydroxy-3-methoxy-1-phenylpropyl)-3,5dimethoxyphenol (anti-3ga) (table 1, entry 8).
The first eluting fractions of the above described column chromatography afforded pure 2-((1S*,2R*)-2-hydroxy-3-methoxy-1-phenylpropyl)-3,5-dimethoxyphenol (anti-3ga) (contamined with 4% of O-alkylated product) (yield=14\%), as an oil.
${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.28-3.45(\mathrm{~m}, 4 \mathrm{H}) ; 3.51\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=9.75 \mathrm{~Hz}, J_{2}=3.75\right.$ $\mathrm{Hz}) ; 4.50-4.60(\mathrm{~m}, 1 \mathrm{H}) ; 4.64(\mathrm{~d}, 1 \mathrm{H}, J=4.0 \mathrm{~Hz}) ; 5.97$ (d, 1H, $J=2.25 \mathrm{~Hz}) ; 6.11$ (d, $1 \mathrm{H}, \mathrm{J}=2.25 \mathrm{~Hz}$); 7.08-7.41 (m, 5H); 9.09 ArOH (br, s, 1H).
${ }^{13} \mathrm{C}$ NMR (62.5 MHz, CDCl_{3}) $\delta 42.5,55.1,56.6,58.9,71.7,75.2,91.2,94.8,110.2$, 126.3, 127.7, 129.5, 156.4, 158.6, 159.8.

($2 R^{*}, 3 R^{*}$)-Methyl 2-hydroxy-3-(2-hydroxy-4,6-dimethoxyphenyl)-3-phenylpropanoate (3ca) (table 1, entry 10).

Using the general procedure, a solution of tris (3,5dimethoxyphenyl) borate (1a) ($705 \mathrm{mg}, 1.5 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
(1.0 mL) was added at $-78^{\circ} \mathrm{C}$ to a solution of cis-methyl-2,3-epoxy-3-phenylpropanoate ${ }^{1}$ ($2 \mathbf{i}$) ($178 \mathrm{mg}, 1.0 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$. The mixture was allowed to react for 18 hours at $-78^{\circ} \mathrm{C}$. The crude mixture, containing 12% of O-alkylated product, was purified by column chromatography eluting with hexanes/AcOEt 7:3 to give compound 3ca (containing 13\% of trans-stereoisomer) ($172.6 \mathrm{mg}, 52 \%$). For ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR data see above.

2-((1R*,2R*)-3-(Ethoxymethoxy)-2-hydroxy-1phenyl propyl)-3,5-dimethoxyphenol (3ja) (table 1, entry 11).
Using the general procedure, a solution of tris (3,5dimethoxyphenyl) borate (1a) ($705 \mathrm{mg}, 1.5 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ was added at $-78^{\circ} \mathrm{C}$ to a solution of cis-2-((ethoxymethoxy)methyl)-3-phenyloxirane $\mathbf{2 j}$ ($208 \mathrm{mg}, 1.0 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL}$). The mixture was allowed to react for 18 hours at $-78^{\circ} \mathrm{C}$. Column chromatography eluting with hexanes/AcOEt 7:3 afforded pure $\mathbf{3 j a}$ ($253.4 \mathrm{mg}, 70 \%$), as an oil. $\mathrm{R}_{\mathrm{F}}=0.16$ (hexanes $/ \mathrm{AcOEt} 7: 3$).
${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHZ}, \mathrm{CDCl}_{3}$) $\delta 1.20\left(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}\right.$); $3.32\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=11.5 \mathrm{~Hz}, J_{2}=\right.$ $9.3 \mathrm{~Hz})$ 3.50-3.73 (m, 3H); 3.71 (s, 3H); 3.76 (s, 3H); 3.83 (dd, $1 \mathrm{H}, J_{1}=11.2 \mathrm{~Hz}, J_{2}=$ $2.4 \mathrm{~Hz}) ; 4.54-4.80(\mathrm{~m}, 3 \mathrm{H}) ; 4.91(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.1 \mathrm{~Hz}) ; 6.07(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.4 \mathrm{~Hz}) ; 6.15(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{J}=2.4 \mathrm{~Hz}$); 7.11-7.39 (m, 5H); 9.42 ArOH (br, s, 1H).
${ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 15.0,40.8,55.1,55.8,63.8,73.4,73.5,91.0,95.2$, 96.1, 106.5, 126.2, 127.8, 128.3, 140.6, 157.3, 159.2, 160.4.

Anal. Calcd. For $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{6}$: C, 66.28%; H, 7.23\%. Found: C, 66.30\%; H, 7.23\%.

(1S*,2R*)-1-(2-Hydroxy-4,6-dimethoxyphenyl)-1,2,3,4-tetra hydronaphtalen-2-ol (3ka) (table 1, entry 12).
Using the general procedure, a solution of tris-(3,5dimethoxyphenyl) borate (1a) ($705 \mathrm{mg}, 1.5 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0$ mL) was added at $-80^{\circ} \mathrm{C}$ to a solution of dihydronaphtalene oxide ($2 \mathbf{k}$) ($146 \mathrm{mg}, 1.0 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$. The mixture was allowed to react for 18 hours at $-78^{\circ} \mathrm{C}$. Column chromatography eluting with hexanes/AcOEt 6:4 afforded pure $3 \mathbf{k a}$ ($156 \mathrm{mg}, 52 \%$), as a solid. M.p $=150-152^{\circ} \mathrm{C}$.

[^0]${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.75-1.92(\mathrm{~m}, 1 \mathrm{H}) ; 2.16-2.26(\mathrm{~m}, 1 \mathrm{H}) ; 2.84-3.08(\mathrm{~m}$, 2H); 3.60 (br, s, 3H); 3.72 (s, 3H); 4.19 (ddd, $1 \mathrm{H}, J_{1}=11.0 \mathrm{~Hz}, J_{2}=9.0 \mathrm{~Hz}, J_{3}=3.5$ $\mathrm{Hz}) ; 4.47(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.0 \mathrm{~Hz}) ; 6.03(\mathrm{~d}, 1 \mathrm{H}, J=2.3 \mathrm{~Hz}) ; 6.10(\mathrm{~d}, 1 \mathrm{H}, J=2.3 \mathrm{~Hz}) ; 6.85(\mathrm{~d}$, $1 \mathrm{H}, J=7.2 \mathrm{~Hz})$; 6.93-7.10 (m, 3H).
${ }^{13} \mathrm{C}$ NMR (62.5 MHz, CDCl_{3}) $\delta 28.6,31.6,44.0,55.2,55.7,71.9,92.0,94.9,126.3$, 127.8,128.4,136.0,157.1, 159.8, 160.1.

Anal. Calcd. For $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{4}$: C, 71.98%; H, 6.71\%. Found: C, 72.03%; H, 6.44%.

2-(1-(4-Fluorophenyl)-2-hydroxyethyl)-3,5-dimethylphenol (3mb) (substrate of table 2, entry 5)
Using the general procedure, a solution of tris (3,5dimethylphenyl) borate (1b) ($560.7 \mathrm{mg}, 1.5 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(1.0 \mathrm{~mL})$ was added at $-78^{\circ} \mathrm{C}$ under argon to a solution of p fluorophenyl oxirane ($\mathbf{2 m}$) ($138.1 \mathrm{mg}, 1.0 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$. The mixture was allowed to react for 1.5 hours at $-78^{\circ} \mathrm{C}$. The crude mixture (containing 16% of $O-$ alkylated product) was purified by column chromatography eluting with hexanes/AcOEt 7:3 to give compound 3mb ($150.8 \mathrm{mg}, 58 \%$), as a white solid. M.p= 119-121 ${ }^{\circ} \mathrm{C} . \mathrm{R}_{\mathrm{f}}=0.25$ (hexanes/AcOEt 7:3).
${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{MeOD}$) δ 2.13-2.22 (m, 6H); 4.16-4.49 (m, 3H); 6.43-6.53 (m, 2H); 6.83-6.98 (m, 2H); 7.24-7.39 (m, 2H).
${ }^{13} \mathrm{C}$ NMR (50 MHz , MeOD) $\delta 20.3$ (2 C), 47.1, 65.2, 114.4, 114.8, 115.2, 123.3, 124.5, 130.1, 130.3, 137.4, 138.3, 138.9, 156.0, 159.6, 164.2.

Anal. Calcd. For $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{FO}_{2}$: C, 73.83\%; H, 6.58\%. Found: C, 73.53\%; H, 6.48%.

2-(3,5-Dimethylphenoxy)-2-(4-fluorophenyl)-ethanol.

 The first eluting fractions of the above described column chromatography ($\mathrm{R}_{\mathrm{f}}=0.35$ in hexanes/AcOEt 7:3) afforded pure 2-(3,5-dimethylphenoxy)-2-(4-fluorophenyl)-ethanol as a semisolid. (19.8 mg, 7.6\%).${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.22(\mathrm{~s}, 6 \mathrm{H}) ; 3.68-3.95(\mathrm{~m}, 2 \mathrm{H}) ; 5.24\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=7.8\right.$ $\left.\mathrm{Hz}, J_{2}=4.0 \mathrm{~Hz}\right)$; 6.45-6.60 (m, 3H); 6.97-7.10 (m, 2H); 7.25-7.40 (m, 2H).
${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.4$ (2 C), 67.5, 80.2, 113.7, 115.5, 115.9, 123.2, 127.8, 128.0, 133.8, 139.2, 157.6, 164.9.

2-(2-Hydroxy-1-(4-methylphenyl)-ethyl)-3,5-dimethyl phenol ${ }^{2}$ (3nb) (substrate of table 2, entry 6).
Using the general procedure, a solution of tris-(3,5dimethylphenyl) borate (1b) ($560.7 \mathrm{mg}, 1.5 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(1.0 \mathrm{~mL})$ was added at $-78^{\circ} \mathrm{C}$ under argon to a solution of p methylphenyl oxirane (2n) (134.1 mg, 1.0 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$. The mixture was allowed to react for 1.5 hours at $-78^{\circ} \mathrm{C}$. The crude mixture (containing 13% of $O-$ alkylated product) was purified by column chromatography eluting with hexanes/AcOEt 8:2 to give compound 3nb ($143.4 \mathrm{mg}, 56 \%$), as a liquid. $\mathrm{R}_{\mathrm{f}}=0.15$ (hexanes/AcOEt 8:2).
${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.25$ (s, 3H); 2.31 (s, 3H); 2.36 (s, 3H); 2.96-3.10 CHOH (br, 1H); 4.17-4.28 (m, 1H); 4.37-4.55 (m, 2H); 6.62-6.70 (m, 2H); 7.09-7.32 (m, 4H); 8.36-8.48 ArOH (m, 1H).
${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 20.8$ (3 C), 45.9, 65.1, 116.4, 123.0, 123.5, 127.8, 129.5, 136.2, 136.4, 137.7, 138.1, 155.2.

Anal. Calcd. For $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{2}$: C, 79.65%; H, 7.86\%. Found: C, 79.74%; H, 7.63\%.

1-((1S)-2-Hydroxy-1-phenylethyl)naphtalen-2-ol (3ld) (substrate of table 2, entry 7).

Using the general procedure, a solution of tris (β-naphtyl) borate (1d) $(660 \mathrm{mg}, 1.5 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ was added at $-78^{\circ} \mathrm{C}$ under argon to a solution of $(R)-(+)$-styrene oxide (2l) (120.1 mg, 1.0 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$. The mixture was allowed to react for 1.5 hours $-78^{\circ} \mathrm{C}$. The crude mixture (containing 17% of O-alkylated product) was purified by column chromatography eluting with hexanes/AcOEt 8:2 to give compound 3ld (179.5 mg, 68 \%) (containing 24% of (R)-stereoisomer) as a white solid. M. $\mathrm{p}=112-114^{\circ} \mathrm{C} . \mathrm{R}_{\mathrm{f}}=0.26$ (hexanes/AcOEt 7:3). $[\alpha]_{D}{ }^{20}=-49.6\left(c=1.0, \mathrm{CHCl}_{3}\right)$.
${ }^{1}{ }^{H} \mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 2.75-3.20 OH (br, 1H); $4.32(\mathrm{~m}, 1 \mathrm{H}) ; 4.47\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{1}=\right.$ $\left.11.4 \mathrm{~Hz}, J_{2}=4.9 \mathrm{~Hz}\right) ; 5.05-5.20(\mathrm{~m}, 1 \mathrm{H}) ; 7.12-7.50(\mathrm{~m}, 8 \mathrm{H}) ; 7.68-7.90(\mathrm{~m}, 3 \mathrm{H}) ; 9.00-$ 9.35 ArOH (br, 1H).
${ }^{13} \mathrm{C}$ NMR (62.5 MHz, CDCl_{3}) $\delta 45.8,65.4,117.5,120.3,122.3,122.8,126.7,126.9$, 128.2, 128.8, 129.0, 129.3, 129.5, 133.7, 139.8, 153.4.

Anal. Calcd. For $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{2}$: C, 81.79%; H, 6.10\%. Found: C, 81.55\%; H, 6.06\%. HPLC analysis performed on a Daicel Chiralcel ${ }^{\circledR}$ OD-H column, flow rate: 0.5 $\mathrm{mL} / \mathrm{min}$, mobile phase: hexane/isopropanol 90/10, retention times (min): 27.3 (R, minor stereoisomer), 39.6 (S, major stereoisomer).

2-(Naphtalen-2-yloxy)-2-phenylethanol.

The first eluting fractions of the above described column chromatography ($\mathrm{R}_{\mathrm{f}}=0.35$ in hexanes/AcOEt 7:3) afforded pure 2-naphtoxy-2-phenyl-ethanol as a semisolid. (15.8 mg , 6.6\%).
${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 2.68-2.88 OH (br, 1H); 3.80-4.06 (m, 2H); 5.41 (dd, $\left.1 \mathrm{H}, J_{1}=8.0 \mathrm{~Hz}, J_{2}=3.7 \mathrm{~Hz}\right) ; 7.01-7.50(\mathrm{~m}, 10 \mathrm{H}) ; 7.56(\mathrm{~d}, 1 \mathrm{H}, J=7.9 \mathrm{~Hz}) ; 7.62-7.80$ (m, 2H).

Synthesis of 2,3-dihydrobenzofuranes by Mitsunobu cyclodehydration (Table 2).

(2S*,3R*)-Methyl 5-methyl-3-(2-methylphenyl)-2,3-dihydrobenzofuran-2-carboxylate(4dc) (table 2, entry 1).

Using the general procedure described in the main text, to a solution of $\left(2 R^{*}, 3 R^{*}\right)$-methyl-2-hydroxy-3-(2-hydroxy-5-methylphenyl)-3-(2-methylphenyl)propanoate ${ }^{2}$ (3dc) ($60.0 \mathrm{mg}, 0.2 \mathrm{mmol}$) in anhydrous THF (0.8 mL) were added triphenylphosphine ($104.9 \mathrm{mg}, 0.4 \mathrm{mmol}$) and diethylazodicarboxylate ($52.2 \mathrm{mg}, 0.3 \mathrm{mmol}$). The mixture was allowed to react for 4 hours at rt. Column chromatography eluting with hexanes/ $\mathrm{Et}_{2} \mathrm{O}$ 9:1 afforded pure $\mathbf{4 d c}$ ($35.0 \mathrm{mg}, 62 \%$), as a solid. M.p $=105-107^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.26$ (s, 3H); 2.48 (s, 3H); 3.19 (s, 3H); 5.25 (d, 1H, $J=10.2 \mathrm{~Hz}) ; 5.50(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=10.2 \mathrm{~Hz}) ; 6.81-6.96$ (m, 3H); 6.99-7.22 (m, 4H).
${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 19.3,20.8,47.3,51.4,83.7,109.6,125.8,126.1,127.4$, 128.4, 129.3, 129.8, 131.0, 137.0, 174.1.

[^1]
(2S*,3R*)-5-Methyl-2,3-diphenyl-2,3-dihydrobenzofuran (4bc) (table 2, entry 2).

Using the general procedure, to a solution of (2-((1R*,2R*)-1,2-diphenylethyl-2-hydroxy)-4-methylphenol ${ }^{2}$ (3bc) (45.6 $\mathrm{mg}, 0.15 \mathrm{mmol}$) in anhydrous THF (0.6 mL) were added triphenylphosphine (78.8 $\mathrm{mg}, 0.3 \mathrm{mmol}$) and diethylazodicarboxylate ($39.1 \mathrm{mg}, 0.225 \mathrm{mmol}$). The mixture was allowed to react for 5 hours at rt. Column chromatography eluting with hexanes/ $\mathrm{Et}_{2} \mathrm{O}$ 8:2 afforded pure $\mathbf{4 b c}\left(27.9 \mathrm{mg}, 65 \%\right.$), as a solid. M.p $=70-73^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (200 MHz, CDCl_{3}) $\delta 2.28(\mathrm{~s}, 3 \mathrm{H}) ; 4.82(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.9 \mathrm{~Hz}) ; 6.00(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ 8.9 Hz); 6.66-6.73 (m, 2H); 6.91-7.09 (m, 10H); 7.26 (s, 1H).
${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 20.8,54.0,88.7,109.3,126.5,127.2,127.6,127.7$, 129.2, 130.5, 130.7, 137.6, 139.2.

Anal. Calcd. For $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{3}$: C, 88.08\%; H, 6.34\%. Found: C, 88.11\%; H, 6.12\%.

4,6-Dimethoxy-3-phenyl-2,3-dihydrobenzofuran (4la) (table 2, entry 3).
Using the general procedure, to a solution of 2-(2-hydroxy-1-phenylethyl)-3,5-dimethoxyphenol ${ }^{2}$ (3la) (115.1 mg, 0.42 mmol) in anhydrous THF (1.7 mL) were added triphenylphosphine ($220.3 \mathrm{mg}, 0.84$ mmol) and diethylazodicarboxylate ($109.6 \mathrm{mg}, 0.63 \mathrm{mmol}$). The mixture was allowed to react for 2 hours at rt. Column chromatography eluting with hexanes/ $\mathrm{Et}_{2} \mathrm{O}$ 9:1 afforded pure 4la ($102.1 \mathrm{mg}, 95 \%$), as a solid. M.p= $103-105^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.65$ (s, 3H); 3.82 (s, 3H); 4.49 (dd, $1 \mathrm{H}, J_{1}=8.3 \mathrm{~Hz}$, $\left.J_{2}=4.2 \mathrm{~Hz}\right) ; 4.61\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=8.9 \mathrm{~Hz}, J_{2}=4.2 \mathrm{~Hz}\right) ; 4.89(\mathrm{t}, 1 \mathrm{H}, J=8.7 \mathrm{~Hz}) ; 6.05(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{J}=1.8 \mathrm{~Hz}) ; 6.19$ (d, 1H, J= 1.8 Hz); 7.15-7.38 (m, 5H).
${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 45.8,55.2,55.4,80.3,88.3,91.5,109.4,126.5,127.0$, 128.4, 143.5, 157.0, 162.1.

Anal. Calcd. For $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{3}$: C, 74.98%; H, 6.29\%. Found: C, 75.11%; H, 6.22\%.

4,6-Dimethyl-3-(4-fluorophenyl)-2,3-dihydrobenzofuran (4mb)

(table 2, entry 5).

Using the general procedure, to a solution of 2-(2-hydroxy-1-(4-fluorophenyl)-ethyl)-3,5-dimethylphenol (3mb) (109.2 mg, 0.42 mmol) in anhydrous THF (1.7 mL) were added triphenylphosphine (220.3 mg, 0.84 mmol) and diethylazodicarboxylate ($109.6 \mathrm{mg}, 0.63 \mathrm{mmol}$). The mixture was allowed to react for 2 hours at rt. Column chromatography eluting with hexanes $/ \mathrm{Et}_{2} \mathrm{O} 9: 1$ afforded pure $\mathbf{4 m b}$ ($89.4 \mathrm{mg}, 88 \%$), as a solid. M.p= $63-65^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.94$ (s, 3H); 2.33 (s, 3H); 4.39 (dd, $1 \mathrm{H}, J_{1}=8.4 \mathrm{~Hz}$, $\left.J_{2}=4.8 \mathrm{~Hz}\right) ; 4.49-4.55(\mathrm{~m}, 1 \mathrm{H}) ; 4.85(\mathrm{t}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz}) ; 6.52(\mathrm{br}, \mathrm{s}, 1 \mathrm{H}) ; 6.60(\mathrm{br}, \mathrm{s}$, 1H); 6.94-7.15 (m, 4H).
${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 18.5,21.4,46.8,79.5,107.9,115.3,115.7,123.2$, 128.8, 129.0, 134.9, 139.1, 159.2, 164,1.

Anal. Calcd. For $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{FO}$: C, 79.32%; H, 6.24\%. Found: C, 79.11%; H, 6.32%.

4,6-Dimethyl-3-(4-methylphenyl)-2,3-dihydrobenzofuran (4nb) (table 2, entry 6).
Using the general procedure, to a solution of 2-(2-hydroxy-1-(4-methylphenyl)-ethyl)-3,5-dimethylphenol (3nb) ($61.4 \mathrm{mg}, 0.24$ mmol) in anhydrous THF (0.96 mL) were added triphenylphosphine ($125.9 \mathrm{mg}, 0.48 \mathrm{mmol}$) and diethylazodicarboxylate (62.6 mg , 0.36 mmol). The mixture was allowed to react for 2 hours at rt. Column chromatography eluting with hexanes/Et $\mathrm{t}_{2} \mathrm{O} 9: 1$ afforded pure $\mathbf{4 n b}$ ($48.6 \mathrm{mg}, 85 \%$), as an oil.
${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHZ}, \mathrm{CDCl}_{3}$) $\delta 1.94$ (s, 3H); 2.32 (s, 3H); 2.34 (s, 3H); 4.40 (dd, 1H, $\left.J_{1}=8.2 \mathrm{~Hz}, J_{2}=5.0 \mathrm{~Hz}\right) ; 4.51\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=8.9 \mathrm{~Hz}, J_{2}=5.0 \mathrm{~Hz}\right) ; 4.85(\mathrm{t}, 1 \mathrm{H}, J=8.5$ $\mathrm{Hz}) ; 6.51$ (br, s, 1H); 6.59 (br, s, 1H); 7.00-7.15 (m, 4H).
${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 18.5,21.0,21.4,47.2,79.7,106.1,107.7,110.1,123.0$, 126.0, 127.4, 129.3, 135.1, 136.2, 138.8, 140.3, 160.3.

MS (relative intensity) 238 ($\mathrm{M}^{+}, 100$), 223 (53), 208 (17), 195 (18), 165 (10), 119 (11). Anal. Calcd. For $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}$: C, 85.67%; H, 7.61\%. Found: C, 85.11%; H, 7.32%.

(S)-1-Phenyl-1,2-dihydronaphtho[2,1-b]furan (4ld) (table 2, entry 7).

Using the general procedure, to a solution of 1-((1S)-2-hydroxy-1-phenylethyl)naphtalen-2-ol (3ld) ${ }^{3}$ (127.7 $\left.\mathrm{mg}, 0.48 \mathrm{mmol}\right)$ in anhydrous THF (1.92 mL) were added triphenylphosphine ($251.8 \mathrm{mg}, 0.96 \mathrm{mmol}$) and diethylazodicarboxylate ($125.3 \mathrm{mg}, 0.72 \mathrm{mmol}$). The mixture was allowed to react for 3 hours at rt. The product (containing 22 \% of (R)-stereoisomer) was isolated (112.2 mg, 95\%) by column chromatography eluting with hexanes/AcOEt 8:2, as a light brown solid. M.p $=89-90^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{20}=+45.2\left(\mathrm{c}=3.7, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.60\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=7.8 \mathrm{~Hz}, J_{2}=4.4 \mathrm{~Hz}\right) ; 5.01-5.26(\mathrm{~m}$, 2H); 7.18-7.45 (m, 9H); 7.72-7.90 (m, 2H).
${ }^{13} \mathrm{C} \operatorname{NMR}\left(62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 48.2,80.3,112.1,121.0,122.8,126.6,126.9,127.6$, 128.7, 128.8, 129.7, 130.0, 130.6, 143.3, 158.2.

Anal. Calcd. For $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{O}$: C, 87.78%; H, 5.73%. Found: C, 87.90%; H, 5.65%.
HPLC analysis performed on a Daicel Chiralcel ${ }^{\circledR}$ OD-H column, flow rate: 0.5 $\mathrm{mL} / \mathrm{min}$, mobile phase: hexane/isopropanol 98/2, retention times (min): 10.8 (R, minor stereoisomer), 15.7 (S, major stereoisomer).

($2 R^{*}, 3 R^{*}$)-4,6-Dimethoxy-3-phenyl-2,3-dihydrobenzo furan-2-yl)methyl acetate (5fa) (table 2, entry 8).
Using the general procedure, to a solution of $\left(2 R^{*}, 3 S^{*}\right)$-3-
(2-hydroxy-4,6-dimethoxy)-3-phenylpropane-1,2-diol (3fa) ($100.3 \mathrm{mg}, 0.33 \mathrm{mmol}$) in anhydrous THF (1.32 mL) were added triphenylphosphine ($173.1 \mathrm{mg}, 0.66 \mathrm{mmol}$) and diethylazodicarboxylate (87.0 mg , 0.50 mmol). The mixture was allowed to react for 5 hours at rt and then the solvent was evaporated under a vacuum. To the crude mixture dissolved in pyridine (2.0 mL) was then added at $0^{\circ} \mathrm{C}$ acetic anhydride ($673.2 \mathrm{mg}, 0.62 \mathrm{~mL}, 6.6 \mathrm{mmol}$). The mixture was allowed to react for 24 hours at rt . The mixture was then quenched with aqueous NaHCO_{3} saturated solution. The organic phase was then washed with $\mathrm{HCl} 10 \%$ and brine, dried over MgSO_{4} and filtered. Column chromatography eluting with hexanes/AcOEt 9:1 afforded pure $\mathbf{5 f a}$, as an oil ($64.9 \mathrm{mg}, 60 \%$).

[^2]${ }^{1}{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.07$ (s, 3H); 3.58 ($\mathrm{s}, 3 \mathrm{H}$); 3.77 (s, 3H); 4.22-4.38 (m, 3H); 4.70-4.78 (m, 1H); 6.00 (d, 1H, J=2.0 Hz); 6.13 (d, 1H, J=2.0 Hz); 7.09-7.15 (m, 2H); 7.20-7.31 (m, 3H).
${ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 20.8,48.6,55.3,55.5,65.1,88.4,89.4,91.9,108.1$, 126.8, 127.2, 128.6, 142.3, 157.2, 161.3, 162.3, 170.2.

Anal. Calcd. For $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{O}$: C, 69.50\%; H, 6.14\%. Found: C, 69.87\%; H, 5.89%.

4,6-Dimethoxy-2,2-dimethyl-3-phenyl-2,3-dihydro benzofuran (4qa) (table 2, entry 9).
Using the general procedure, a solution of tris-(3,5dimethyoxyphenyl) borate (1a) ($705 \mathrm{mg}, 1.5 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(1.0 \mathrm{~mL})$ was added at rt under argon to a solution of 1,2-epoxy-2-methyl-1-phenylpropane (2q) ($148 \mathrm{mg}, 1.0 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$. The mixture was allowed to react for 18 hours at $-40^{\circ} \mathrm{C}$. The reaction was then quenched and the solvent was evaporated under a vacuum. To the crude mixture dissolved in toluene (18.5 mL) was then added with p - $\mathrm{TsOH}(28.5 \mathrm{mg}, 0.15 \mathrm{mmol})$ and it was allowed to react for 3 hours at $100^{\circ} \mathrm{C}$. The mixture was quenched with aqueous NaHCO_{3} saturated solution, dried over MgSO_{4} and filtered. Column chromatography eluting with hexanes/Et $\mathrm{E}_{2} \mathrm{O}$ 9:1 afforded pure 4qa, as a solid ($156.2 \mathrm{mg}, 55 \%$). M.p= $86-89^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.97$ (s, 3H); 1.53 (s, 3H); 3.60 (s, 3H); 3.80 (s, 3H); 4.18 (s, 1H); 6.02 (s, 1H); 6.11 (s, 1H); 6.90-7.10 (m, 2H); 7.15-7.28 (m, 3H).
${ }^{13}{ }^{13}$ NMR (62.5 MHz, CDCl_{3}) $\delta 24.5,29.4,55.3,55.5,55.6,88.3,90.4,91.3,109.4$, 126.6, 127.0, 127.3, 140.4, 157.3, 160.7, 162.0

Anal. Calcd. For $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{O}: \mathrm{C}, 76.03 \%$; H, 7.09\%. Found: C, 75.87%; H, 6.89%.

($2 S^{*}, 3 R^{*}$)-2,3-Dihydro-4,6-dimethoxy-2-
(ethoxymethoxy)methyl-3-phenyl-benzofuran (4ja) (Table
2, entry 10). Using the general procedure, triphenylphosphine ($251.8 \mathrm{mg}, 0.96 \mathrm{mmol}$) and diethylazodicarboxylate ($125.3 \mathrm{mg}, 114 \mu \mathrm{~L}, 0.72 \mathrm{mmol}$) were added to a solution of 2-((1R*,2R*)-3-(ethoxymethoxy)-2-hydroxy-1-phenylpropyl)-3,5-dimethoxy phenol (3hi) ($173 \mathrm{mg}, 0.48 \mathrm{mmol}$) in anhydrous THF $(1.9 \mathrm{~mL})$. The mixture was allowed to react for 2 hours at rt. Column chromatography eluting with hexanes/AcOEt 8:2, afforded pure $\mathbf{4 j a}$ ($128.8 \mathrm{mg}, 78 \%$), as an oil. ${ }^{1} \mathrm{H}$

NMR (250 MHz, CDCl_{3}) $\delta 1.13(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}) ; 3.25-3.41(\mathrm{~m}, 2 \mathrm{H}) ; 3.50(\mathrm{q}, 2 \mathrm{H}$, $J=7.1 \mathrm{~Hz}) ; 3.56(\mathrm{~s}, 3 \mathrm{H}) ; 3.76(\mathrm{~s}, 3 \mathrm{H}) ; 4.49-4.58(\mathrm{~m}, 3 \mathrm{H}) ; 4.97-5.25(\mathrm{~m}, 1 \mathrm{H}) ; 6.00(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{J}=2.0 \mathrm{~Hz}$); $6.17(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.0 \mathrm{~Hz}) ; 6.90-7.05(\mathrm{~m}, 2 \mathrm{H}) ; 7.12-7.25(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 15.0,47.6,55.3,55.5,63.2,67.9,86.2,88.5,91.9,95.2$, 109.9, 126.9, 128.1, 128.3, 138.6, 156.8, 161.6, 162.2.

Anal. Calcd. For $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{5}$: C, 69.75\%; H, 7.02\%. Found: C, 69.89\%; H, 6.89\%.

Compound 4ka (table 2, entry 11).
Using the general procedure, to a solution of $\left(1 S^{*}, 2 R^{*}\right)$-1-(2-hydroxy-4,6-dimethoxy phenyl)-1,2,3,4-tetahydronaphtalen-2-ol (3ka) ($143.0 \mathrm{mg}, 0.48 \mathrm{mmol}$) in anhydrous THF (1.92 mL) were added triphenylphosphine ($251.8 \mathrm{mg}, 0.96 \mathrm{mmol}$) and diethylazodicarboxylate ($125.3 \mathrm{mg}, 0.72 \mathrm{mmol}$). The mixture was allowed to react for 2 hours at rt. Column chromatography eluting with hexanes/AcOEt 8:2 afforded pure 4ka ($53.8 \mathrm{mg}, 40 \%$), as an oil. ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.72-1.90(\mathrm{~m}, 1 \mathrm{H})$; 2.36-2.48 (m, 1H); 2.432.56 (m, 1H); 2.83-3.00 (m, 1H); 3.73 (s, 1H); 3.80 (s, 3H); 4.67 (d, 1H, J= 8.25 Hz); 5.21-5.30 (m, 1H); 5.95 (d, 1H, J=2.0 Hz); 6.03 (d, 1H, $J=2.0 \mathrm{~Hz}$); 7.03-7.28 (m, 3H); 7.68 (d, 1H, $J=7.25 \mathrm{~Hz}$). ${ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 24.3,27.9,42.3,55.2$, 55.5, 83.1, 88.2, 91.4, 110.2, 125.9, 126.0, 128.2, 130.2, 136.2, 137.7, 157.3, 161.6, 161.7. Anal. Calcd. For $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{2}$: C, 81.40% H, 7.19\%. Found: C, 81.33%; H, 7.21\%.

2-(2-Phenylcyclohex-1-enyl)-3,5-dimethoxyphenol (6). Using the general procedure, triphenylphosphine ($141.6 \mathrm{mg}, 0.40 \mathrm{mmol}$) and diethylazodicarboxylate ($69.6 \mathrm{mg}, 0.50 \mathrm{mmol}$) were added to a solution of compound 3ha ($88.6 \mathrm{mg}, 0.27 \mathrm{mmol}$) in anhydrous THF (1.1 mL). The mixture was allowed to react for 5 hours at rt and then the solvent was removed in vacuo. Column chromatography eluting with hexanes/AcOEt 9:1 afforded pure 6 ($50.2 \mathrm{mg}, 60 \%$), as an oil. ${ }^{1} \mathrm{H}$ NMR (250 MHz , CDCl_{3}) δ 1.62-1.85 (m, 4H); 2.12-2.25 (m, 2H); 2.42-2.71 (m, 2H); 3.62 (s, 3H); 3.77 (s, 3H); 5.36 ArOH (br, s, 1H); 6.07 (d, 1H, J=2.3 Hz); 6.17 (d, 1H, J=2.3 Hz); 7.057.38 (m, 5H). ${ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 25.8,27.4$, 33.0 (2 C); 55.2, 55.7, 91.7, 92.3, 111.3, 123.0, 126.2, 127.8, 128.07, 141.3, 150.0, 153.6, 158.0, 160.5

Anal. Calcd. For $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{3}$: C, 77.39\%; H, 7.14\%. Found: C, 77.64\%; H, 7.04\%.
TABLE 3. Additional Results of Cyclodehydration of Hydroxyphenols to 2,3-Dihydrobenzofuranes.
Entry

[^3]
($2 \boldsymbol{R}^{*}, 3 R^{*}$)-2,4,6-Trimethyl-3-phenyl-2,3-Dihydrobenzofuran (4ab) (table 3, entry 1).
Using the general procedure, to a solution of 2-((1R*, 2S*)-2-hydroxy-1-phenylpropyl)-3,5-dimethylphenol (3ab) (59.5 mg, 0.25 mmol) in anhydrous THF (1.00 mL) were added triphenylphosphine ($131.2 \mathrm{mg}, 0.50$ mmol) and diethylazodicarboxylate ($66.1 \mathrm{mg}, 0.38 \mathrm{mmol}$). The mixture was allowed to react for 1 hour at rt . The product (containing 3.6 \% of trans-stereoisomer as determined by GC) was isolated (Yield=75 \%) by column chromatography eluting with hexanes/ $\mathrm{Et}_{2} \mathrm{O} 9: 1$, as an oil.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 1.09(\mathrm{~d}, 3 \mathrm{H}, J=6.5 \mathrm{~Hz}) ; 1.93(\mathrm{~s}, 3 \mathrm{H}) ; 2.32(\mathrm{~s}, 3 \mathrm{H}) ;$ $4.35(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.2 \mathrm{~Hz}) ; 4.95-5.11(\mathrm{~m}, 1 \mathrm{H}) ; 6.53(\mathrm{~s}, 1 \mathrm{H}) ; 6.57(\mathrm{~s}, 1 \mathrm{H}) ; 6.90-7.01(\mathrm{~m}$, 2H); 7.15-7.40 (m 3H).
${ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta 17.0,18.4,21.6,51.0,83.2,107.6,123.0,126.8,127.6$, 127.8, 128.3, 128.9, 135.1, 138.8, 139.0, 160.0.

MS (relative intensity) 238 (${ }^{+}$, 100), 223 (85), 209 (20), 195 (40), 178 (16), 115 (21). Anal. Calcd. For $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}:$ C, 85.67%; H, 7.61%. Found: C, 85.90%; H, 7.55%.

methyl

($2 S^{*}, 3 R^{*}$)-Methyl 4,6-dimethoxy-3-(2-methylphenyl)-

 2,3-dihydrobenzofuran-2-carboxylate (4da) (table 3, entry 3).Using the general procedure, to a solution of $\left(2 R^{*}, 3 R^{*}\right)$ -
2-hydroxy-3-(2-hydroxy-4,6-dimethoxyphenyl)-3-(2methylphenyl)propanoate (3da) ($126.7 \mathrm{mg}, 0.37 \mathrm{mmol}$) in anhydrous THF (1.5 mL) were added triphenylphosphine ($194.1 \mathrm{mg}, 0.74 \mathrm{mmol}$) and diethylazodicarboxylate ($52.2 \mathrm{mg}, 0.3 \mathrm{mmol}$). The mixture was allowed to react for 1 hour at rt . The product was isolated (Yield=70\%) by column chromatography eluting with hexanes/AcOEt 8:2, as a solid. M.p $=113-114^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 250 \mathrm{MHz}\right) \delta 2.47$ (s, 3H); 3.23 (s, 3H); 3.60 (s, 3H); 3.80 (s, 3H); $5.13(\mathrm{~d}, 1 \mathrm{H}, J=9.5 \mathrm{~Hz}) ; 5.49(\mathrm{~d}, 1 \mathrm{H}, J=9.5 \mathrm{~Hz}) ; 6.03(\mathrm{~d}, 1 \mathrm{H}, J=1.5 \mathrm{~Hz}) ; 6.80(\mathrm{~d}, 1 \mathrm{H}$, $J=7.2 \mathrm{~Hz}) ; 6.96-7.24(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}_{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 62.5 \mathrm{MHz}\right) \delta 19.8,44.5,51.5,55.4,55.6,85.2,88.5,92.4,108.7$, 125.9, 126.9, 127.7, 129.6, 135.9, 136.9, 156.5, 161.2, 162.3, 168.9.

Anal. Calcd. For $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{O}: \mathrm{C}, 69.50 \%$; H, 6.14\%. Found: C, 69.87%; H, 6.09%.

dimethoxyphenyl)-3-phenylpropanoate (3ca) (containing 13% of $2 S^{*}, 3 S^{*}$ stereoisomer) ($66.8 \mathrm{mg}, 0.20 \mathrm{mmol}$) in anhydrous THF (0.8 mL) were added triphenylphosphine ($104.9 \mathrm{mg}, 0.4 \mathrm{mmol}$) and diethylazodicarboxylate ($52.2 \mathrm{mg}, 0.3$ mmol). The mixture was allowed to react for 1 hour at rt. The product (containing 13% of the trans-diastereoisomer 5ca) was isolated (Yield=77\%) by column chromatography eluting with hexanes/AcOEt 8:2, as a solid.
${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 250 \mathrm{MHz}$) $\delta 3.27$ (s, 3H); 3.58 (s, 3H); 3.80 (s, 3H); 4.79 (d, 1H, J= 9.25 Hz); 5.43 (d, 1H, $J=9.25 \mathrm{~Hz}$); 6.03 (d, 1H, $J=2.0 \mathrm{~Hz}$); $6.24(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.0 \mathrm{~Hz})$; 6.95-7.05 (m, 2H); 7.13-7.23 (m, 3H).
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 62.5 \mathrm{MHz}\right) \delta 49.2,51.6,55.4,55.5,85.8,88.6,92.5,108.2,127.2$, 127.9, 128.2, 138.4, 156.8, 161.1, 162.4, 168.7.

Anal. Calcd. For $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{O}$: C, 68.78\%; H, 5.77\%. Found: C, 69.07\%; H, 5.39\%.
Representative signals of compound 5ca: ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.71$ (d, 1 H , $J=4.0 \mathrm{~Hz}), 4.98(\mathrm{~d}, 1 \mathrm{H}, J=4.0 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 62.5 \mathrm{MHz}\right) \delta 50.3,87.9$.

(2 $R^{*}, 3 R^{*}$)-4,6-Dimethoxy-2-methyl-3-phenyl-2,3-dihydro benzofuran (4aa) (table 3, entry 5).

Using the general procedure for the stereoselective ring-opening of aryl epoxides, a solution of tris (3,5-dimethoxyphenyl) borate (1a) ($705 \mathrm{mg}, 1.5 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ was added at rt under argon to a solution of trans- β-methyl-styrene (2a) ($134 \mathrm{mg}, 1.0 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$. The mixture was allowed to react for 18 hours at $-78^{\circ} \mathrm{C}$. The reaction was then quenched and the solvent was evaporated under a vacuum. To the crude mixture, containing 27% of O alkylated product, dissolved in THF (2.9 mL) were then added triphenylphosphine ($382.9 \mathrm{mg}, 1.46 \mathrm{mmol}$) and diethylazodicarboxylate ($189.7 \mathrm{mg}, 1.09 \mathrm{mmol}$). The
mixture was allowed to react for 2 hours at rt. The purification by flash column chromatography eluting with hexanes/Et $2_{2} \mathrm{O} 9: 1$ afforded $\left(2 R^{*}, 3 R^{*}\right)$-4,6-dimethoxy-2-methyl-3-phenyl-2,3-dihydrobenzofuran (4aa) (contaminated with 19% of the transdiastereoisomer 5aa, see below), as an oil ($137.7 \mathrm{mg}, 51 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 250 \mathrm{MHz}\right) \delta 1.02(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.3 \mathrm{~Hz}) ; 3.60(\mathrm{~s}, 3 \mathrm{H}) ; 3.78$ (s, 3H); 4.38 (d, 1H, J=8.3 Hz); 4.93-5.10 (m, 1H); 6.01 (s, 1H); 6.13 (s, 1H); 6.92 (d, 2H, $J=7.3 \mathrm{~Hz})$; 7.10-7.27 (m, 3H).
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 62.5 \mathrm{MHz}\right) \delta 16.8,49.3,55.4,55.5,84.4,88.3,91.6,126.6,127.2$, 128.4, 139.3, 156.8, 161.9 (2C).

Anal. Calcd. For $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{3}$: C, 75.53%; H, 6.71\%. Found: C, 75.47%; H, 6.49\%.
Representative signals of ($2 S^{*}, 3 R^{*}$)-stereoisomer (trans-5aa):
${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.11(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=5.0 \mathrm{~Hz}) ; 4.60-4.70(\mathrm{~m}, 1 \mathrm{H})$.

[^0]: ${ }^{1}$ Denis, J.N; Greene, A. E; Serra, A. A; Luche M. J. J. Org. Chem. 1986, 51, 46-50.

[^1]: ${ }^{2}$ Bertolini, F.; Crotti, P.; Macchia, F.; Pineschi, M. Tetrahedron Lett. 2006, 47, 61.

[^2]: ${ }^{3}$ Guss, C. O.; Jules, L. H. J. Am. Chem. Soc. 1950, 72, 3462.

[^3]: ${ }^{\bar{a}}$ All reactions were carried out in accordance with general procedures. ${ }^{\text {b }}$ Isolated yield after chromatography on silica gel. ${ }^{\text {c }}$ Compound 3aa was not isolated but directly cyclized to 4aa using the Mitsunobu-type cyclodehydration.

