Total Synthesis of (-)-Sarain A

Michael H. Becker, Peter Chua, Robert Downham, Christopher J. Douglas, Neil K. Garg, Sheldon Hiebert, Stefan Jaroch, Richard T. Matsuoka, Joy A. Middleton, Fay W. Ng, Larry E. Overman*

Department of Chemistry, 1102 Natural Sciences II, University of California, Irvine, California 92697-2025, USA

Supporting Information - Table of Contents

Materials and Methods S1
Experimental Procedures S2
${ }^{1} H$ NMR Spectra S58
Comparison Spectra for (-)-Sarain A (1) S125
References. S127

Materials and Methods. Unless stated otherwise, reactions were conducted in flame-dried glassware under an atmosphere of nitrogen using anhydrous solvents (either freshly distilled or passed through activated alumina columns). All commercially obtained reagents were used as received. Reaction temperatures were controlled using an IKAmag temperature modulator, and unless stated otherwise, reactions were performed at room temperature (rt , approximately $23^{\circ} \mathrm{C}$). Thin-layer chromatography (TLC) was conducted with E. Merck silica gel 60 F254 pre-coated plates, $(0.25 \mathrm{~mm})$ and visualized using a combination of UV, anisaldehyde, ceric ammonium molybdate, and potassium permanganate staining. ICN silica gel (particle size $0.032-0.063 \mathrm{~mm}$) was used for flash column chromatography. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on Bruker spectrometers (at 500 or 600 MHz) and are reported relative to deuterated solvent signals. Data for ${ }^{1} \mathrm{H}$ NMR spectra are reported as follows: chemical shift ($\delta \mathrm{ppm}$), multiplicity, coupling constant (Hz) and integration. ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker Spectrometers (at 125 or 150 MHz). Data for ${ }^{13} \mathrm{C}$ NMR spectra are reported in terms of chemical shift. IR spectra were recorded on an Applied Systems REACT-IR 1000 spectrometer and are reported in terms of frequency of absorption $\left(\mathrm{cm}^{-1}\right)$. Optical rotations were measured with a Jasco P-1010 polarimeter. High resolution mass spectra were obtained from the UC Irvine Mass Spectrometry Facility. Elemental analyses were performed at Atlantic Microlab, Inc., P.O. Box 2288, Norcross, Georgia 30091. CD spectra were recorded on a Jasco 810 spectrometer at the UC Irvine Laser Spectroscopy Facility.

Experimental Procedures.

Supporting information for compounds $\mathbf{3 5}, \mathbf{3 6}, \mathbf{3 7}, \mathbf{3 8}, \mathbf{4 1}-\mathbf{5 0}$ has previously been reported in an earlier publication from our laboratory. ${ }^{1}$

Sulfonamide 30. A solution of 3-butynol-1-ol ($6.9 \mathrm{~mL}, 88.0 \mathrm{mmol}$), triphenylphosphine ($38.5 \mathrm{~g}, 146 \mathrm{mmol}$), N-tert-butoxycarbonyl-p-toluenesulfonamide ($19.9 \mathrm{~g}, 73.3 \mathrm{mmol}$) and THF (400 mL) was cooled in an ice bath under an N_{2} atmosphere. After the dropwise addition of diethylazidodicarboxylate ($20.8 \mathrm{~mL}, 131.9 \mathrm{mmol}$), the ice bath was removed and the solution was allowed to stir for 24 h . The mixture was then concentrated under reduced pressure, absorbed onto silica gel and purified by flash chromatography (1:7 EtOAc:hexanes, then 1:6 EtOAc:hexanes) to yield sulfonamide $30(20.9 \mathrm{~g}, 88 \%)$ as a colorless oil. $R_{f} 0.57$ (20% EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.79$ (d, $J=8.3,2 \mathrm{H}$), 7.31 (d, $J=8.3,2 \mathrm{H}$), 4.00 (m, 2H), $2.65(\mathrm{~m}, 2 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{t}, J=2.7,1 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , CDCl_{3}): $\delta 150.6,144.2,137.0,129.1,127.7,84.4,80.3,70.4,45.1,27.7,21.4,19.8$; IR (film): 3289, 2982, 1732, 1359, $1157 \mathrm{~cm}^{-1}$; HRMS-CI $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{NO}_{4} \mathrm{~S}, 32.1269$; found, 324.1279; Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{~S}: \mathrm{C}, 59.42$; $\mathrm{H}, 6.55$; N, 4.33; found: C, 59.33; H, 6.56; N, 4.33.

Ynoate 31. A solution of alkyne $30(21.46 \mathrm{~g}, 66.5 \mathrm{mmol})$ in THF (200 mL) was cooled to $-78{ }^{\circ} \mathrm{C}$ under N_{2} atmosphere. $n-\mathrm{BuLi}(2.5 \mathrm{M}, 28.4 \mathrm{~mL}, 71.1 \mathrm{mmol})$ was added dropwise down the side of the flask at a rate that does not cause the internal temperature of the reaction to go above $-60{ }^{\circ} \mathrm{C}$ as monitored by a thermocouple probe. The reaction was slowly warmed to $-30{ }^{\circ} \mathrm{C}$ and then re-cooled to $-78{ }^{\circ} \mathrm{C}$. Another flask was charged with THF (200 mL) and methyl chloroformate ($18.4 \mathrm{~mL}, 199.4 \mathrm{mmol}$) and was cooled to $-78^{\circ} \mathrm{C}$ under N_{2} atmosphere. The anion was added to the chloroformate via cannula, again in a manner such that the solution of the anion
travels down the side of the cooled flask. After the addition was complete, the mixture was allowed to warm to rt, quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$, and concentrated under reduced pressure. The resulting solution was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$ and the organic phases were collected, washed with $10 \% \mathrm{HCl}(50 \mathrm{~mL})$ and saturated $\mathrm{NaHCO}_{3}(2 \times 50 \mathrm{~mL})$, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by flash chromatography (gradient: 1:7 EtOAc:hexanes to 1:2 EtOAc:hexanes) to give ynoate 31 (23.25 $\mathrm{g}, 92 \%$) as a viscous oil which solidified upon standing to give a white amorphous solid. $R_{f} 0.38$, 20% EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.81$ (d, $J=8.1,2 \mathrm{H}$), 7.79 (d, $J=8.1,2 \mathrm{H}$), $4.04(\mathrm{t}, J=7.4,2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 2.82(\mathrm{t}, J=7.4,2 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 153.8,150.5,144.4,136.9,129.3,127.8,85.2,84.8,74.4,52.6,44.1,27.8,21.6$, 20.2; IR (film): 2981, 2242, 1720, 1356, $1259 \mathrm{~cm}^{-1}$; $\operatorname{HRMS}-\mathrm{FAB}(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}_{6} \mathrm{SNa}$, 404.1144; found, 404.1150; Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}_{6} \mathrm{~S}: \mathrm{C}, 56.68 ; \mathrm{H}, 6.08 ; \mathrm{N}$, 3.67; found: C, 56.75; H, 6.09; N, 3.65.

(Z)-Enoate 32. A three-neck flask containing ynoate 31 ($4.74 \mathrm{~g}, 12.4 \mathrm{mmol}$), Lindlar catalyst ($5 \% \mathrm{Pd} / \mathrm{CaCO}_{3}$ with $3.5 \% \mathrm{~Pb}, 185 \mathrm{mg}, 0.04 \mathrm{wt} \%$ catalyst loading) and toluene (100 mL) was fitted with 2 septa and a balloon of hydrogen gas. The reaction vessel was evacuated and backfilled with hydrogen 5 times. The reaction mixtures was stirred at rt for 3 h , filtered through celite, and concentrated at ambient temperature to give enoate $32(4.7 \mathrm{~g}, 99 \%)$ as a near colorless oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.70(\mathrm{~d}, J=8.2,2 \mathrm{H}), 7.31(\mathrm{~d}, J=8.2,2 \mathrm{H}), 6.31(\mathrm{dt}, J=11.5$, $7.5,1 \mathrm{H}), 5.92(\mathrm{dt}, J=11.5,1.7,1 \mathrm{H}), 3.97(\mathrm{~m}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.12(\mathrm{~m}, 2 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 1.32$ (s, 9H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.4,150.8,145.2,144.1,137.3,129.2,127.8,121.5$, 84.3, 51.1, 45.7, 29.5, 27.8, 21.5; IR (film): 2981, 1725, 1649, 1598, 1439, 1357, 1291, 1257, 1157, 1088, 816, 721, $674 \mathrm{~cm}^{-1} ; \operatorname{HRMS}-\mathrm{CI}(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{NO}_{6} \mathrm{~S}, 384.1480$; found, 384.1469.

(\mathbf{Z})-Enoate 57. Lindlar's catalyst was added to a suspension of polyvinylpyridine, ynoate SI- $\mathbf{1}^{2}(39.0 \mathrm{~g}, 157.1 \mathrm{mmol})$ and $\operatorname{EtOAc}(300 \mathrm{~mL})$ at rt under nitrogen. The reaction vessel was evacuated and backfilled with hydrogen 3 times, then allowed to stir under an atmosphere of H_{2} for 2 d . The reaction mixture was filtered through celite, concentrated under reduced pressure, diluted with $\mathrm{Et}_{2} \mathrm{O}$, absorbed on silica gel, then purified by flash chromatography ($3 \% \mathrm{EtOAc}$ hexanes; then 5\% EtOAc-hexanes; then 10% EtOAc-hexanes; then 15% EtOAc-hexanes) to give enoate 57 ($31.0 \mathrm{~g}, 123.9 \mathrm{mmol}, 79 \%$ yield). Enoate 57 was used directly in the subsequent transformation.

Michael adduct 58. Oxazoline (-)-36 was prepared following the procedure previously used to synthesize (+)-36. ${ }^{1}$ Both enoate 57 and oxazoline (-)-36 were separately dried by azeotroping with PhMe , and then further dried under vacuum for 2 h . A solution of oxazoline (-)-36 ($10.3 \mathrm{~g}, 21.1 \mathrm{mmol}, 1.00$ equiv) and DME (20 mL) was added dropwise by syringe pump to a solution of freshly prepared LDA (28.6 mmol , 1.4 equiv) at $-78{ }^{\circ} \mathrm{C}$. The reaction was maintained at $-78{ }^{\circ} \mathrm{C}$ for 30 min . A solution of enoate $57(14.0 \mathrm{~g}, 55.9 \mathrm{mmol}, 2.7$ equiv) and DME (10 mL) was added dropwise by syringe pump to the newly generated oxazoline enolate solution. After addition, the reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 2 h and then placed in a cryocool bath maintained at $-65^{\circ} \mathrm{C}$ for 19 h . The reaction mixture was poured into sat. aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$ (3 x 100 mL). The combined organic extracts was dried over MgSO_{4} and concentrated under reduced pressure to give a residue that was purified by flash chromatography (3\% EtOAc-hexanes, 5\% EtOAc-hexanes, 10\% EtOAc-hexanes, 15\% EtOAchexanes, 20\% EtOAc-hexanes), affording Michael adduct $58(11.1 \mathrm{~g}, 15.0 \mathrm{mmol}, 71 \%$ yield) as a pale yellow viscous oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.05(\mathrm{~d}, J=7.1,2 \mathrm{H}), 7.66(\mathrm{td}, J=6.6$, $1.4,3 \mathrm{H}), 7.52-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.44-7.35(\mathrm{~m}, 9 \mathrm{H}), 7.27(\mathrm{~d}, J=8.4,2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.6,2 \mathrm{H}), 4.76$
(dd, $J=2.7,2.8,1 \mathrm{H}), 4.42(\mathrm{q}, J=16.9,5.3,2 \mathrm{H}), 4.21-4.11(\mathrm{~m}, 3 \mathrm{H}), 3.97(\mathrm{dd}, J=11.5,2.6,1 \mathrm{H})$, 3.77 (s, 3H), $3.58(\mathrm{~s}, 3 \mathrm{H}), 3.63-3.50(\mathrm{~m}, 2 \mathrm{H}), 2.74-2.67(\mathrm{~m}, 2 \mathrm{H}), 2.33$ (dd, $J=15.7,7.1,1 \mathrm{H}$), $2.05-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.18(\mathrm{t}, J=7.1,3 \mathrm{H}), 0.99(\mathrm{~s}, 9 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (125 MHz , CDCl_{3}): $\delta 135.6,135.3,133.1,132.6,131.4,130.4,129.54,129.51,128.9,128.5,128.0,127.5$, $127.4,127.2,113.5,85.4,81.2,72.3,68.0,63.4,61.2,55.0,51.4,41.8,34.6,31.1,26.5,18.9$, 13.8; IR (film): 1731, $1656 \mathrm{~cm}^{-1}$; HRMS-FAB $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{43} \mathrm{H}_{52} \mathrm{NO}_{8} \mathrm{Si}, 738.3462$; found, 738.3443; Anal. Calcd for $\mathrm{C}_{43} \mathrm{H}_{51} \mathrm{NO}_{8} \mathrm{Si}$: C, 69.99; H, 6.97; N, 1.90; found: C, 70.26; H , 7.19; N, 1.96; $[\alpha]^{26}{ }_{405}+111.8,[\alpha]^{26}{ }_{435}+94.6,[\alpha]^{26}{ }_{546}+54.4,[\alpha]^{26}{ }_{577}+44.6,[\alpha]^{26}{ }_{\mathrm{D}}+48.5,(c 0.75$, CHCl_{3}).

59

Lactone 59. DDQ ($14.0 \mathrm{~g}, 61.7 \mathrm{mmol}, 1.91$ equiv) was added to a solution of Michael adduct $58\left(23.8 \mathrm{~g}, 32.3 \mathrm{mmol}, 1.00\right.$ equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The reaction mixture was vigorously stirred at rt for 1.5 h , then poured into chilled 1 N aqueous NaOH and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 200 \mathrm{~mL}$). The combined organic extracts were dried over MgSO_{4}, filtered, and evaporated under reduced pressure to give the crude product. Purification by flash chromatography (10% EtOAc-hexanes, 30% EtOAc-hexanes, 50% EtOAc-hexanes) furnished a mixture of alcohol and lactone products. The mixture of crude products was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(300 \mathrm{~mL})$ and treated with PPTS $(2.0 \mathrm{~g}, 7.96 \mathrm{mmol})$. After stirring at rt for 1.5 h , the reaction mixture was poured into chilled 1 N aqueous HCl , and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 200 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4}, then concentrated under reduced pressure to give a residue the crude product. Purification by flash chromatography $\left(\mathrm{SiO}_{2}, 25 \% \mathrm{EtOAc}-\right.$ hexanes, 30% EtOAc-hexanes, 50% EtOAc-hexanes) afforded lactone 59 ($16.5 \mathrm{~g}, 28.2 \mathrm{mmol}$, 77% yield). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.98$ (d, $J=8.1,2 \mathrm{H}$), $7.60(\mathrm{t}, J=7.0,4 \mathrm{H}), 7.54-7.51$ $(\mathrm{m}, 1 \mathrm{H}), 7.44-7.39(\mathrm{~m}, 4 \mathrm{H}), 7.37-7.32(\mathrm{~m}, 4 \mathrm{H}), 4.53(\mathrm{t}, J=3.1,1 \mathrm{H}), 4.42(\mathrm{ddd}, J=11.4,10.7$, $5.0,1 \mathrm{H}), 4.25-4.20(\mathrm{~m}, 1 \mathrm{H}), 4.19-4.10(\mathrm{~m}, 2 \mathrm{H}), 4.01(\mathrm{dd}, J=11.7,4.2,1 \mathrm{H}), 3.89(\mathrm{dd}, J=11.7$, $2.8,1 \mathrm{H}), 2.62-2.58(\mathrm{~m}, 2 \mathrm{H}), 2.26(\mathrm{dd}, J=18.2,12.2,1 \mathrm{H}), 2.07-2.03(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.89(\mathrm{~m}$, $1 \mathrm{H}), 1.16(\mathrm{t}, J=7.1,3 \mathrm{H}), 0.97(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 170.9,170.5,165.2$,
$135.6,135.4,132.9,132.5,131.9,129.73,129.69,128.6,128.2,127.60,127.56,84.4,80.5,67.7$, 63.1, 61.6, 39.4, 30.3, 26.5, 24.3, 18.9, 13.9; IR (film): 1749, $1643 \mathrm{~cm}^{-1}$; HRMS-FAB (m / z): [M $+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{34} \mathrm{H}_{40} \mathrm{NO}_{6} \mathrm{Si}$, 586.2625; found, 586.2630; Anal. Calcd for $\mathrm{C}_{34} \mathrm{H}_{39} \mathrm{NO}_{6} \mathrm{Si}$: C, 69.71; H 6.71; N, 2.39; found: C, 69.45; H, 6.62; N, 2.25; [$\alpha]^{26}{ }_{405}+147.4,[\alpha]^{26}{ }_{435}+122.8,[\alpha]^{26}{ }_{546}$ $+69.5,[\alpha]^{26}{ }_{577}+59.8[\alpha]^{26}{ }_{\mathrm{D}}+64.8\left(c 0.95, \mathrm{CHCl}_{3}\right)$.

Allylic bromide 60. Alkyne SI-2 ${ }^{3}$ ($10.0 \mathrm{~g}, 45.8 \mathrm{mmol}, 1.00$ equiv) was added dropwise to a solution of $n-\operatorname{BuLi}\left(62.1 \mathrm{mmol}, 1.36\right.$ equiv) in THF $(60 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. The reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1.5 h , then neat 1,4 -diiodobutane ($12 \mathrm{~mL}, 91.0 \mathrm{mmol}, 2.00$ equiv) was added. The solution was allowed to warm to rt , heated at $60^{\circ} \mathrm{C}$ for 18 h , cooled to rt , then poured into sat. aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 150 \mathrm{~mL})$, and the combined organic layers were dried over MgSO_{4} and concentrated under reduced pressure. Purification by flash chromatography (5\% EtOAc-hexanes, 10% EtOAc-hexanes, 15% EtOAc-hexanes) provided iodide SI-3 ($14.2 \mathrm{~g}, 35.5 \mathrm{mmol}, 78 \%$ yield) as an oil. This intermediate was typically used directly in subsequent transformations.

A solution of t-BuOK (1.0 M in THF, $14.0 \mathrm{~mL}, 14.0 \mathrm{mmol}, 1.30$ equiv) was added dropwise to a solution of iodide SI-3 ($4.30 \mathrm{~g}, 10.74 \mathrm{mmol}, 1.00$ equiv) in THF (15 mL) at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min , poured into ice-cold $\mathrm{H}_{2} \mathrm{O}$, and extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{x} 50 \mathrm{~mL})$. The combined organic extracts were dried over MgSO_{4} and concentrated under reduced pressure to give alkene SI-4. This intermediate was typically used directly in the subsequent transformation.

A solution of alkene SI-4 ($3.72 \mathrm{~g}, 13.66 \mathrm{mmol}$) in THF (5.0 mL) was added dropwise to a solution of $9-\mathrm{BBN}$ dimer $(1.60 \mathrm{~g}, 6.56 \mathrm{mmol})$ in THF $(30 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was allowed to warm to rt . After 3 h at rt , the mixture was cooled to $0^{\circ} \mathrm{C}$ and 3 N aqueous NaOH
(7.5 mL) was added. After stirring vigorously for 45 min , this mixture was added to a suspension of (2-iodoallyloxy)(t-butyl)dimethylsilane ${ }^{4}(4.04 \mathrm{~g}, 13.55 \mathrm{mmol})$ and $\mathrm{PdCl}_{2}(\mathrm{pddf})_{2} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}(720$ $\mathrm{mg}, 0.88 \mathrm{mmol})$ in THF $(15 \mathrm{~mL})$. The reaction mixture was stirred at rt for 16 h , poured into brine, and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 30 \mathrm{~mL})$. The combined organic extracts were dried over MgSO_{4} and concentrated under reduced pressure. The crude residue was purified by flash chromatography (100% hexanes, 3\% EtOAc-hexanes, 5\% EtOAc-hexanes, 10\% EtOAchexanes) to furnish product SI-5 ($4.80 \mathrm{~g}, 80 \%$) as an oil.

A solution of glacial acetic acid (1.8 mL) and TBAF ($30 \mathrm{~mL}, 30.0 \mathrm{mmol}, 1 \mathrm{M}$ in THF) was added to a solution of SI-5 ($4.8 \mathrm{~g}, 10.8 \mathrm{mmol}, 1.00$ equiv) and THF (30 mL) at $0^{\circ} \mathrm{C}$. The reaction mixture was allowed to warm to rt . After stirring at rt for 24 h , the mixture was poured into sat. aqueous $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 40 \mathrm{~mL})$. The combined organic extracts were dried over MgSO_{4}, then concentrated under reduced pressure. Purification by flash chromatography (5\% EtOAc-hexanes, 30\% EtOAc-hexanes) gave allylic alcohol SI-6 (2.86 g, 80% yield) as a pale yellow oil.
$\mathrm{MsCl}(2.6 \mathrm{~mL}, 33.6 \mathrm{mmol})$ was added dropwise to a solution of SI-6 (4.40 g, 13.3 mmol$)$ and $\mathrm{Et}_{3} \mathrm{~N}(9.3 \mathrm{~mL}, 66.7 \mathrm{mmol})$ in $(120 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. After 2 h and 15 min , the reaction mixture was poured into sat. aqueous NaHCO_{3} and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3x). The combined organic extracts were dried over MgSO_{4}, and concentrated under reduced pressure. The crude mesylate was added to $\mathrm{LiBr}(10 \mathrm{~g})$ in THF $(100 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was allowed to warm to rt , then stirred for $\sim 12 \mathrm{~h}$. The resulting mixture was poured into brine and extracted with $\mathrm{Et}_{2} \mathrm{O}$ (3x). The combined organic extracts were dried over MgSO_{4} and concentrated under reduced pressure. Filtration through basic alumina afforded allylic bromide $\mathbf{6 0}(4.9 \mathrm{~g}, 93 \%) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.26(\mathrm{~d}, J=8.6,2 \mathrm{H}), 6.88(\mathrm{~d}, \mathrm{~J}=8.6,2 \mathrm{H}), 5.16(\mathrm{~s}, 1 \mathrm{H}), 4.97(\mathrm{~s}, 1 \mathrm{H}), 4.43$ $(\mathrm{s}, 2 \mathrm{H}), 3.97(\mathrm{~s}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.46(\mathrm{t}, J=6.4,2 \mathrm{H}), 2.23(\mathrm{t}, J=7.3,2 \mathrm{H}), 2.21-2.16(\mathrm{~m}, 4 \mathrm{H})$, $1.73-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.67-1.51(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 159.1,145.3,130.7$, $129.2,115.0,113.7,80.2,80.0,72.5,69.6,55.2,36.7,32.8,28.9,28.5,26.4,25.8,18.56,18.54$; IR (film): 1607, $1507 \mathrm{~cm}^{-1}$; HRMS-EI (m / z): $[\mathrm{M}-\mathrm{H}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{BrO}_{2}, 391.1273$, 393.1255; found, 391.1286, 393.1262.

Lactone 61. A solution of lactone $\mathbf{5 9}$ ($690 \mathrm{mg}, 1.18 \mathrm{mmol}$) in THF (10 mL) was added dropwise via syringe pump to a solution of LDA ($2.3 \mathrm{~mL}, 1.79 \mathrm{mmol}, 0.78 \mathrm{M}$ in THF) $-78{ }^{\circ} \mathrm{C}$. The reaction was stirred at $-78^{\circ} \mathrm{C}$ for 1.3 h , then a solution of bromide $\mathbf{6 0}(700 \mathrm{mg}, 1.78 \mathrm{mmol})$ and HMPA (1 mL) was added dropwise via syringe pump to the newly generated enolate. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 30 min , then placed in a cryocool bath maintained at $55^{\circ} \mathrm{C}$ for 14 h . The reaction mixture was poured into sat. aqueous $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ and extracted with EtOAc (3 x 10 mL). The combined organic extracts were dried over MgSO_{4} and concentrated under reduced pressure. Purification of the residue by flash chromatography (5\% EtOAc-hexanes, 10\% EtOAc-hexanes, 30\% EtOAc-hexanes, 40\% EtOAc-hexanes) provided alkyne $61(862 \mathrm{mg}, 81 \%)$ as a pale yellow oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.95(\mathrm{~d}, J=7.5$, $2 \mathrm{H}), 7.62(\mathrm{~d}, J=6.8,4 \mathrm{H}), 7.49(\mathrm{t}, J=7.2,1 \mathrm{H}), 7.43-7.34(\mathrm{~m}, 8 \mathrm{H}), 7.25(\mathrm{~d}, J=8.5,2 \mathrm{H}), 6.87(\mathrm{~d}$, $J=8.5,2 \mathrm{H}), 4.90(\mathrm{~s}, 1 \mathrm{H}), 4.85-4.82(\mathrm{~m}, 2 \mathrm{H}), 4.42(\mathrm{~s}, 2 \mathrm{H}), 4.41-4.40(\mathrm{~m}, 1 \mathrm{H}), 4.34(\mathrm{q}, J=5.8$, $1 \mathrm{H}), 4.22-4.16(\mathrm{~m}, 1 \mathrm{H}), 4.12-4.07(\mathrm{~m}, 2 \mathrm{H}), 3.94(\mathrm{dd}, J=11.7,2.4,1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.45(\mathrm{t}, J=$ $6.4,2 \mathrm{H}), 2.65-2.60(\mathrm{~m}, 1 \mathrm{H}), 2.50(\mathrm{dd}, J=13.6,5.3,1 \mathrm{H}), 2.45(\mathrm{t}, J=5.7,1 \mathrm{H}), 2.33(\mathrm{dd}, J=13.5$, $10.0,1 \mathrm{H}), 2.15-2.03(\mathrm{~m}, 7 \mathrm{H}), 1.96-1.91(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.57-1.46(\mathrm{~m}, 6 \mathrm{H}), 1.16(\mathrm{t}$, $J=7.1,3 \mathrm{H}), 0.96(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.4,170.8,165.4,159.1,145.3$, 135.7, 135.4, 133.2, 132.6, 131.8, 130.7, 129.8, 129.7, 129.1, 128.7, 128.2, 127.63, 127.61, $126.6,113.9,113.7,86.2,80.9,80.0,72.4,69.6,66.6,63.1,61.5,55.2,44.1,40.5,39.8,34.3$, $28.8,28.6,26.7,26.6,25.8,22.5,19.0,18.52,18.48,13.9$; IR (film): $1745,1654 \mathrm{~cm}^{-1}$; HRMSFAB $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{55} \mathrm{H}_{68} \mathrm{NO}_{8} \mathrm{Si}, 898.4714$; found, 898.4727; $[\alpha]^{26}{ }_{405}-18.2,[\alpha]^{26}{ }_{435}-$ $13.5,[\alpha]^{26}{ }_{546}-5.9,[\alpha]^{26}{ }_{577}-3.9,[\alpha]^{26}-3.2\left(c 0.90, \mathrm{CHCl}_{3}\right)$.

Azide 62. A homogeneous solution of alkyne $61(2.05 \mathrm{~g}, 2.28 \mathrm{mmol})$, THF (10 mL) and 1.0 N aqueous $\mathrm{HCl}(14 \mathrm{~mL})$ was stirred at rt for 12 h , then extracted with $\mathrm{EtOAc}(3 \times 100 \mathrm{~mL})$. The combined organic extracts were dried over MgSO_{4} and concentrated under reduced pressure. Purification of the residue by flash chromatography ($5 \% \mathrm{EtOAc}$-hexanes, 10% EtOAc-hexanes, 30% EtOAc-hexanes, 50% EtOAc-hexanes) provides starting material alkyne $61(0.37 \mathrm{~g}, 0.41$ mmol, 18\%) and pyrrolidinone SI-7 ($1.35 \mathrm{~g}, 1.47 \mathrm{mmol}, 64 \%$) as a white foam. Pyrrolidinone SI-7 was typically used directly in subsequent transformations.

A solution of pyrrolidinone-alcohol SI-7 ($920 \mathrm{mg} 1.00 \mathrm{mmol}, 1.00$ equiv) in THF (12 mL) was cooled to $0{ }^{\circ} \mathrm{C}$. Reagents were added in the following order: solid $\mathrm{PPh}_{3}(340 \mathrm{mg}, 1.30$ mmol, 1.30 equiv), dropwise addition of $\operatorname{DEAD}(210 \mu \mathrm{~L}, 1.33 \mathrm{mmol}, 1.33$ equiv), and then dropwise addition of DPPA ($300 \mu \mathrm{~L}, 1.40 \mathrm{mmol}, 1.40$ equiv). The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 2.3 h , then concentrated under reduced pressure. Purification of the residue by flash chromatography (5\% EtOAc-hexanes, 10\% EtOAc-hexanes, 30\% EtOAc-hexanes, 50\% EtOAchexanes) furnished azide $62(850 \mathrm{mg}, 0.903 \mathrm{mmol}, 90 \%)$ as a viscous oil. ${ }^{1} \mathrm{H}$ NMR (500 MHz , CDCl_{3}): $\delta 8.10(\mathrm{dd}, J=7.2,1.1,2 \mathrm{H}), 7.65(\mathrm{tt}, J=7.5,1.2,1 \mathrm{H}), 7.58-7.54(\mathrm{~m}, 4 \mathrm{H}), 7.51(\mathrm{t}, J=$ $7.6,2 \mathrm{H}), 7.41(\mathrm{tt}, J=7.3,1.3,1 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.25(\mathrm{~d}, J=8.6,2 \mathrm{H}), 7.13(\mathrm{t}, J=7.7,2 \mathrm{H})$, $6.87(\mathrm{~d}, J=8.7,2 \mathrm{H}), 6.83(\mathrm{~s}, 1 \mathrm{H}), 5.59(\mathrm{t}, J=2.7,1 \mathrm{H}), 4.83(\mathrm{~s}, 1 \mathrm{H}), 4.78(\mathrm{~s}, 1 \mathrm{H}), 4.43(\mathrm{~s}, 2 \mathrm{H})$, 4.30-4.27 (m, 2H), $3.98(\mathrm{dd}, J=12.2,3.0,1 \mathrm{H}), 3.87(\mathrm{dd}, J=12.3,2.4,1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.46(\mathrm{t}$, $J=6.5,2 \mathrm{H}), 3.31-3.27(\mathrm{~m}, 1 \mathrm{H}), 3.22-3.19(\mathrm{~m}, 1 \mathrm{H}), 2.70-2.67(\mathrm{~m}, 2 \mathrm{H}), 2.39(\mathrm{dd}, J=14.9,4.8$, $1 \mathrm{H}), 2.19-2.13(\mathrm{~m}, 5 \mathrm{H}), 2.06-2.04(\mathrm{~m}, 2 \mathrm{H}), 1.88-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.66(\mathrm{~m}, 3 \mathrm{H}), 1.57-1.44$ $(\mathrm{m}, 6 \mathrm{H}), 1.34(\mathrm{t}, J=7.2,3 \mathrm{H}), 1.07(\mathrm{~s}, 9 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 177.6,171.2,165.4$, $159.1,146.5,135.4,135.3,133.7,131.8,131.6,130.7,130.1,111.4,80.1,80.0,72.45,72.40$, $69.6,64.4,62.3,55.2,49.7,41.5,40.3,34.8,33.6,28.9,28.7,26.7,26.6,25.8,25.4,19.0,18.6$, 18.5, 4.1; IR (film): 3428, 3200, 2098, 1740, 1721, $1697 \mathrm{~cm}^{-1}$; HRMS-FAB $(m / z):[\mathrm{M}+\mathrm{H}]^{+}$ calcd for $\mathrm{C}_{55} \mathrm{H}_{69} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{Si}$, 941.4885; found, 941.4916; $[\alpha]^{26}{ }_{405}-6.2,[\alpha]^{26}{ }_{435}-4.6,[\alpha]^{26}{ }_{546}-3.2$, $[\alpha]^{26}{ }_{577}-3.1,[\alpha]^{26}-4.2\left(c 0.90, \mathrm{CHCl}_{3}\right)$.

Imide 63. Di-tert-butyl dicarbonate ($800 \mathrm{mg}, 3.67 \mathrm{mmol}, 2.19$ equiv) and DMAP (50 mg , $0.41 \mathrm{mmol})$ were added sequentially to a solution of pyrrolidinone $\mathbf{6 2}(1.58 \mathrm{~g}, 1.67 \mathrm{mmol}, 1.00$ equiv) and $\mathrm{CH}_{3} \mathrm{CN}(20 \mathrm{~mL})$ at rt . The reaction mixture was stirred at rt for 3 h , quenched with saturated aqueous $\mathrm{NaHCO}_{3}(25 \mathrm{~mL})$, then extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$. The combined organic extracts were dried over MgSO_{4} and concentrated under reduced pressure. Purification of the crude product by flash chromatography (5\% EtOAc-hexanes, 10\% EtOAc-hexanes, 25\% EtOAc-hexanes) afforded imide $\mathbf{6 3}\left(151 \mathrm{~g}, 1.45 \mathrm{mmol}, 87 \%\right.$ yield) as a thick oil. ${ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.18(\mathrm{~d}, J=8.2,2 \mathrm{H}), 7.67-7.63(\mathrm{~m}, 3 \mathrm{H}), 7.59(\mathrm{~d}, J=7.8,2 \mathrm{H}), 7.54(\mathrm{t}, J=7.3$, 2H), 7.40-7.37 (m, 1H), $7.32(\mathrm{t}, J=6.9,2 \mathrm{H}), 7.29-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.09(\mathrm{t}, J=7.4,2 \mathrm{H}), 6.87(\mathrm{~d}, J$ $=8.5,2 \mathrm{H}), 6.21(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.92(\mathrm{~s}, 1 \mathrm{H}), 4.87(\mathrm{~s}, 1 \mathrm{H}), 4.43(\mathrm{~s}, 2 \mathrm{H}), 4.17(\mathrm{q}, J=7.2,2 \mathrm{H}), 3.92-$ $3.88(\mathrm{~m}, 2 \mathrm{H}), 3.83-3.80(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.51-3.45(\mathrm{~m}, 3 \mathrm{H}), 3.40-3.34(\mathrm{~m}, 1 \mathrm{H}), 2.90(\mathrm{dd}, J$ $=15.2,8.5,1 \mathrm{H}), 2.59(\mathrm{dd}, J=15.0,8.5,1 \mathrm{H}), 2.39(\mathrm{dd}, J=15.0,6.2,1 \mathrm{H}), 2.19-2.09(\mathrm{~m}, 7 \mathrm{H})$, $1.72-1.51(\mathrm{~m}, 9 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}), 1.19(\mathrm{t}, J=7.1,3 \mathrm{H}), 1.01(\mathrm{~s}, 9 \mathrm{H}) ;$); ${ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 174.3,170.3,164.8,159.1,149.7,145.9,135.4,135.3,133.2,132.0,131.9,130.7$, $130.0,129.8,129.7,129.1,128.6,127.8,127.6,113.7,112.3,84.0,80.1,80.0,73.4,72.4,69.9$, $69.6,63.5,61.8,55.2,50.4,41.8,35.1,34.7,34.3,29.0,28.9,28.8,27.8,26.7,26.5,26.1,25.8$, $18.8,18.6,18.5,13.9$; IR (film): 2099, 1796, 1750, $1721 \mathrm{~cm}^{-1}$; MS-FAB (m / z): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{60} \mathrm{H}_{76} \mathrm{~N}_{4} \mathrm{O}_{10} \mathrm{SiNa}, 1063$; found, 1063; $[\alpha]^{26}{ }_{405}+98.9,[\alpha]^{26}{ }_{435}+79.5,[\alpha]^{26}{ }_{546}+39.8,[\alpha]^{26}{ }_{577}$ $+32.4,[\alpha]^{26}{ }_{\mathrm{D}}+38.6\left(c 1.35, \mathrm{CHCl}_{3}\right)$.

Pyrrolidine 64. i - $\mathrm{BuAl}_{2} \mathrm{H}$ (1.5 M in $\mathrm{PhMe}, 300 \mu \mathrm{~L}, 0.45 \mathrm{mmol}, 1.47$ equiv) was added dropwise to a solution of imide $\mathbf{6 3}\left(320 \mathrm{mg}, 0.31 \mathrm{mmol}, 1.00\right.$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.0 \mathrm{~mL})$ at -78 ${ }^{\circ} \mathrm{C}$. The reaction mixture was held at $-78{ }^{\circ} \mathrm{C}$ for 30 min , quenched with EtOAc (0.7 mL), then slowly warmed to $0{ }^{\circ} \mathrm{C} .1 \mathrm{~N}$ aqueous $\mathrm{HCl}(5.0 \mathrm{~mL})$ was added, and the resulting mixture was vigorously stirred until two clear layers were present. The mixture was partitioned, and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10 \mathrm{~mL})$. The combined organic extracts were dried over MgSO_{4} and concentrated to give a 3:2 mixture of hemiaminals SI-8 as an oil. The crude hemiaminal product was used directly in the next step without further purification.

Hemiaminal SI-8 was dissolved in glacial acetic acid (10 mL), then NaCNBH_{3} (100 mg , 1.59 mmol , 5.1 equiv) was added in three portions over a period of 4 h . The reaction mixture was poured into chilled 1 N aqueous NaOH , then extracted with EtOAc ($3 \times 25 \mathrm{~mL}$). The combined organic extracts were washed with brine ($1 \times 50 \mathrm{~mL}$), dried over MgSO_{4} and concentrated under reduced pressure. Purification of the crude product by flash chromatography (5\% EtOAchexanes, 10\% EtOAc-hexanes, 25\% EtOAc-hexanes) gave pyrrolidine 64 ($268 \mathrm{mg}, 0.261 \mathrm{mmol}$, 85% yield, 2 steps), which was characterized as a mixture of rotamers. ${ }^{1} \mathrm{H}$ NMR (500 MHz , CDCl_{3}): $\delta 8.19-8.11(\mathrm{~m}, 2 \mathrm{H}), 7.73-7.48(\mathrm{~m}, 4 \mathrm{H}), 7.42-7.37(\mathrm{~m}, 4 \mathrm{H}), 7.34-7.27(\mathrm{~m}, 5 \mathrm{H}), 7.23-$ $7.08(\mathrm{~m}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.6,2 \mathrm{H}), 6.16 \& 6.12$ (minor rotamer: $J=2.9$, major rotamer: $J=3.1$, 1H), $4.89 \& 4.87$ (minor and major rotamer: $\mathrm{s}, 1 \mathrm{H}$), $4.77 \& 4.75$ (major and minor rotamer: s , $1 \mathrm{H}), 4.43(\mathrm{~s}, 2 \mathrm{H}), 4.14-4.08(\mathrm{~m}, 2 \mathrm{H}), 3.99-3.88(\mathrm{~m}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.77-3.65(\mathrm{~m}, 1 \mathrm{H}), 3.57-$ 3.22 (m, 5H), 2.49-2.33 (m, 2H), 2.19-1.95 (m, 9H), 1.74-1.68 (m, 2H), 1.59-1.42 (m, 6H), $1.41 \& 1.34$ (minor and major rotamer: $\mathrm{s}, 9 \mathrm{H}$), $1.18 \& 1.15$ (major rotamer: $\mathrm{t}, J=7.1$, minor rotamer: $\mathrm{t}, J=7.1,3 \mathrm{H}$), $1.01 \& 0.99$ (minor and major rotamer: $\mathrm{s}, 9 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (125 MHz , CDCl_{3}): $\delta 171.0,170.6,165.1,164.9,159.1,153.8,152.6,147.7,147.1,135.6,135.5,135.5$,
135.4, 133.1, 133.0, 132.8, 132.7, 132.4, 130.7, 130.3, 129.8, 129.7, 129.1, 128.5, 127.7, 127.6, $127.6,127.5,113.7,111.4,111.3,80.9,80.1,80.0,74.8,74.5,70.5,70.3,69.6,63.7,63.4,61.2$, $61.1,55.2,51.3,51.1,50.4,50.3,50.0,45.4,44.3,36.5,35.6,35.5,35.4,33.3,33.1,28.9,28.7$, 28.3, 28.1, 26.6, 26.5, 25.8, 19.2, 18.9, 18.6, 18.5, 14.0, 13.9; IR (film): 2097, 1738, 1714, 1696 $\mathrm{cm}-1$; MS-FAB $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{60} \mathrm{H}_{78} \mathrm{~N}_{4} \mathrm{O}_{9} \mathrm{SiNa}, 1049$; found, 1049; $[\alpha]^{26}{ }_{405}+35.4$, $[\alpha]^{26}{ }_{435}+27.8,[\alpha]^{26}{ }_{546}+15.2,[\alpha]^{26}{ }_{577}+11.6,[\alpha]^{26}{ }_{\mathrm{D}}+11.9\left(c 1.00, \mathrm{CHCl}_{3}\right)$.

64

Alcohol 65. DDQ ($240 \mathrm{mg}, 1.057 \mathrm{mmol}, 2.01$ equiv) was added to a mixture of pyrrolidine $64\left(540 \mathrm{mg}, 0.525 \mathrm{mmol}, 1.00\right.$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$ at rt . After stirring for 30 min , the mixture was poured into chilled 3 N aqueous NaOH and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 25 \mathrm{~mL})$. The combined organic extracts were dried over MgSO_{4} and concentrated under reduced pressure. Purification of the crude product by flash chromatography (5\% EtOAchexanes, 25% EtOAc-hexanes, 40% EtOAc-hexanes, 50% EtOAc-hexanes) gave alcohol 65 (400 $\mathrm{mg}, 0.441 \mathrm{mmol}, 84 \%$ yield), which was characterized as a mixture of rotamers. ${ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.16(\mathrm{t}, J=8.1,2 \mathrm{H}), 7.70(\mathrm{t}, J=8.1,1 \mathrm{H}), 7.63-7.56(\mathrm{~m}, 4 \mathrm{H}), 7.53-7.50(\mathrm{~m}$, 2 H), 7.41-7.37 (m, 2H), 7.32-7.27 (m, 2H), $7.12 \& 7.08$ (major rotamer: $\mathrm{t}, \mathrm{J}=7.5$; minor rotamer: $\mathrm{t}, J=7.6,2 \mathrm{H}$), $6.13 \& 6.09$ (minor rotamer: $\mathrm{t}, J=3.0$; major rotamer: $\mathrm{t}, J=3.3,1 \mathrm{H}$), $4.86(\mathrm{~s}, 1 \mathrm{H}), 4.76 \& 4.71$ (major and minor rotamer: $\mathrm{s}, 1 \mathrm{H}), 4.23-4.08(\mathrm{~m}, 2 \mathrm{H}), 3.91-3.89(\mathrm{~m}$, $2 H$), 3.67-3.64 (m, 2H), 3.51-3.21 (m, 2H), 2.50-2.26 (m, 2H), 2.20-2.16 (m, 6H), 2.10-1.93 $(\mathrm{m}, 4 \mathrm{H}), 1.69-1.64(\mathrm{~m}, 4 \mathrm{H}), 1.59-1.45(\mathrm{~m}, 6 \mathrm{H}), 1.40 \& 1.33$ (minor and major rotamer: $\mathrm{s}, 9 \mathrm{H}$), $1.19 \& 1.13$ (major rotamer: $\mathrm{t}, J=7.1$; minor rotamer: $\mathrm{t}, J=7.1,3 \mathrm{H}$), $1.00 \& 0.98$ (minor and major rotamer: $\mathrm{s}, 9 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 171.0,170.7,165.1,164.9,153.8,152.7$, $147.8,147.2,135.7,135.6,135.5,135.4,133.0,133.0,133.0,132.6,132.3,132.2,130.5,130.3$, $129.8,129.7,128.5,128.5,127.8,127.7,127.6,127.6,111.3,81.0,80.3,80.3,80.0,80.0,74.8$, $74.1,73.7,70.4,70.3,64.4,63.7,63.4,62.4,61.3,61.2,61.15,51.3,51.1,50.4,50.3,50.2,50.0$, $45.4,44.3,36.5,35.5,35.4,33.3,33.1,31.9,28.7,28.3,28.1,26.8,26.6,26.5,25.3,19.2,19.0$, 18.6, 14.0, 13.9; IR (film): 3498, 2089, 1731, 1711, $1692 \mathrm{~cm}^{-1}$; HRMS-FAB $(m / z):[\mathrm{M}+\mathrm{Na}]^{+}$
calcd for $\mathrm{C}_{52} \mathrm{H}_{70} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{SiNa}, 929.4861$; found, 929.4878; $[\alpha]^{26}{ }_{405}+51.5,[\alpha]^{26}{ }_{435}+41.7,[\alpha]^{26}{ }_{546}$ $+21.9,[\alpha]^{26}{ }_{577}+17.8,[\alpha]^{26}{ }_{\mathrm{D}}+20.5\left(c 1.00, \mathrm{CHCl}_{3}\right)$.

Acid 66. TPAP ($25 \mathrm{mg}, 0.071 \mathrm{mmol}$) was added to a suspension of powdered $4 \AA$ molecular sieves (200 mg), NMO ($90 \mathrm{mg}, 0.768 \mathrm{mmol}, 1.83$ equiv), and alcohol $65(380 \mathrm{mg}$, 0.419 mmol, 1.00 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was allowed to warm to rt. After stirring at rt for 20 min , the reaction mixture was directly purified by flash chromatography (100% hexanes, then 50% EtOAc-hexanes) to furnish aldehyde SI-9 ($330 \mathrm{mg}, 0.365 \mathrm{mmol}, 87 \%$ yield) as a yellow oil. Aldehyde SI-9 was typically used directly in subsequent transformations.

A premixed solution of sodium chlorite ($60 \mathrm{mg}, 0.664 \mathrm{mmol}, 4.15$ equiv) and sodium phosphate monobasic ($120 \mathrm{mg}, 0.870 \mathrm{mmol}$, 5.43 equiv) in $\mathrm{H}_{2} \mathrm{O}(3.0 \mathrm{~mL})$ was added to a solution of aldehyde SI-9 ($145 \mathrm{mg}, 0.160 \mathrm{mmol}, 1.00$ equiv) and 2-methyl-2-butene (3 mL) in t $\mathrm{BuOH}(3.0 \mathrm{~mL})$ at rt . The reaction mixture was vigorously stirred for 45 min , poured into brine (10 mL), and extracted with EtOAc (3 x 15 mL). The combined organic extracts were dried over MgSO_{4} and concentrated to give carboxylic acid $66(150 \mathrm{mg}, 0.163 \mathrm{mmol}$, near quantitative yield) as an oily residue that was taken to the next step. Carboxylic acid $\mathbf{6 6}$ was characterized as a mixture of rotamers. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.17-8.11(\mathrm{~m}, 2 \mathrm{H}), 7.71-7.56(\mathrm{~m}, 5 \mathrm{H})$, $7.54-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.38(\mathrm{~g}, J=8.2,2 \mathrm{H}), 7.33-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.10(\mathrm{~m}, 2 \mathrm{H}), 6.13 \& 6.09$ (minor rotamer: $\mathrm{t}, J=3.2$; major rotamer: $\mathrm{t}, J=3.1,1 \mathrm{H}$), 4.86 (br s, 1H), 4.74 (br s, 1H), 4.19$4.05(\mathrm{~m}, 2 \mathrm{H}), 3.93-3.76(\mathrm{~m}, 2 \mathrm{H}), 3.69-3.67(\mathrm{~m}, 1 \mathrm{H}), 3.56-3.50(\mathrm{~m}, 2 \mathrm{H}), 3.47-3.38(\mathrm{~m}, 1 \mathrm{H})$, 2.52-2.49 (m, 2H), 2.46-2.34 (m, 1H), 2.25 (app. t, $J=6.8,2 H$), 2.18-2.17 (m, 2H), 2.10-1.93 $(\mathrm{m}, 3 \mathrm{H}), 1.82(\mathrm{ap} \mathrm{t}, J=6.9,2 \mathrm{H}), 1.54-1.42(\mathrm{~m}, 8 \mathrm{H}), 1.40 \& 1.33$ (minor and major rotamers: s, 9H), $1.17 \& 1.13$ (major rotamer: $\mathrm{t}, J=7.2$; minor rotamer: $\mathrm{t}, J=7.2,3 \mathrm{H}$), $1.00 \& 0.98$ (minor and major rotamers: $\mathrm{s}, 9 \mathrm{H}$) ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 178.2,177.7,171.0,170.7,165.1$, $164.9,153.8,152.8,147.8,147.2,135.5,135.4,134.4,134.2,133.5,133.2,130.8,130.5,129.8$, 129.7, 128.5, 127.8, 127.6, 111.4, 111.3, 81.2, 81.2, 80.1, 78.9, 78.8, 74.8, 70.5, 70.3, 63.7, 63.4, $61.3,61.2,51.4,51.2,50.4,50.3,45.5,44.3,36.5,35.6,35.5,32.6,32.4,33.2,32.6,32.5,28.6$,
28.4, 28.1, 26.8, 26.6, 26.5, 24.0, 24.0, 19.0, 18.6, 18.12, 18.10, 13.9; IR (film): br 3500-3100, 2100, $1704 \mathrm{~cm}^{-1}$; HRMS-FAB $(\mathrm{m} / \mathrm{z})$: $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{52} \mathrm{H}_{68} \mathrm{~N}_{4} \mathrm{O}_{9} \mathrm{SiNa}$, 943.4653; found, $943.4627 ;[\alpha]^{26}{ }_{405}+47.6,[\alpha]^{26}{ }_{435}+39.3,[\alpha]^{26}{ }_{546}+21.7,[\alpha]^{26}{ }_{577}+20.0,[\alpha]^{26}{ }_{\mathrm{D}}+16.8$ (c 1.40, CHCl_{3}).

66

Amino acid 67. Solid triphenylphospine ($150 \mathrm{mg}, 0.570 \mathrm{mmol}, 3.57$ equiv) was added to a solution of azide $\mathbf{6 6}(150 \mathrm{mg}, 0.16 \mathrm{mmol}, 1.00$ equiv $)$ in THF $(4.0 \mathrm{~mL})$ at rt . After stirring for $1.5 \mathrm{~h}, \mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{~mL})$ was added, and the reaction vessel was heated at $50{ }^{\circ} \mathrm{C}$ for 3 days. The organic solvent was removed under reduced pressure and the residue was purified by flash chromatography (50% EtOAc-hexanes, $100 \% \mathrm{EtOAc}, 5 \% \mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}, 10 \% \mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$), providing amino acid $67(105 \mathrm{mg}, 0.117 \mathrm{mmol}, 73 \%$ yield over 2 steps) as a mixture of rotamers. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.04(\mathrm{dd}, J=13.4,7.2,2 \mathrm{H}$), 7.60-7.55 (m, 6H), $6.05 \& 6.00$ (minor rotamer: $\mathrm{t}, J=3.0$; major rotamer: $\mathrm{t}, J=3.0,1 \mathrm{H}), 4.87(\mathrm{~s}, 1 \mathrm{H}), 4.68(\mathrm{~s}, 1 \mathrm{H}), 4.18-4.10$ $(\mathrm{m}, 2 \mathrm{H}), 3.98-3.87(\mathrm{~m}, 2 \mathrm{H}), 3.85-3.78(\mathrm{~m}, 1 \mathrm{H}), 3.75-3.68(\mathrm{~m}, 1 \mathrm{H}), 3.53-3.47(\mathrm{~m}, 1 \mathrm{H}), 2.50-$ $2.43(\mathrm{~m}, 2 \mathrm{H}), 2.39-2.33(\mathrm{~m}, 1 \mathrm{H}), 2.27-2.22(\mathrm{~m}, 2 \mathrm{H}), 2.18-2.12(\mathrm{~m}, 2 \mathrm{H}), 2.02-1.91(\mathrm{~m}, 4 \mathrm{H})$, $1.86(\mathrm{t}, J=7.0,2 \mathrm{H}), 1.64-1.54(\mathrm{~m}, 8 \mathrm{H}), 1.25(\mathrm{~s}, 9 \mathrm{H}), 1.18(\mathrm{t}, J=7.2,3 \mathrm{H}), 0.98(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.2,169.7,166.2,166.0,153.7,152.8,147.4,135.4,135.4,135.3$, $133.2,133.1,132.9,132.7,132.6,129.8,129.7$, 129.5, 128.7, 128.6, 127.7, 127.6, 127.5, 111.7, $111.5,81.0,80.8,79.9,79.4,70.5,64.2,64.1,61.5,61.3,51.4,38.5,37.4,36.3,36.0,35.8,33.3$, $32.5,31.9,29.6,28.3,28.2,27.9,27.9,27.1,27.0,26.7,26.6,26.5,24.2,18.9,18.4,13.9$; IR (film): 3389, 3041, $1725 \mathrm{~cm}^{-1}$; HRMS-FAB $(m / z):[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{52} \mathrm{H}_{71} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{Si}, 895.4929$; found, 895.4931.

Lactam 68. A solution of amino acid $67(105 \mathrm{mg}, 0.117 \mathrm{mmol}, 1.00$ equiv) and triethylamine ($50 \mu \mathrm{~L}, 0.359 \mathrm{mmol}, 3.07$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added using a syringe pump ($0.49 \mathrm{~mL} / \mathrm{h}$) to a solution of Mukaiyama's salt ($60 \mathrm{mg}, 0.235 \mathrm{mmol}, 2.01$ equiv) and triethylamine ($50 \mu \mathrm{~L}, 0.359 \mathrm{mmol}, 3.07$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(80 \mathrm{~mL})$ at rt. The addition was complete after 18 h , and the resulting solution was stirred for 1 h . The reaction mixture was poured into $\mathrm{H}_{2} \mathrm{O}(40 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 30 \mathrm{~mL})$. The combined organic extracts were dried over MgSO_{4} and concentrated under reduced pressure. Purification by flash chromatography (10% EtOAc-hexanes, 40% EtOAc-hexanes, 50% EtOAc-hexanes) provided macrolactam 68 ($60 \mathrm{mg}, 0.068 \mathrm{mmol}, 58 \%$ yield), which was characterized as a mixture of rotamers. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.10-8.05(\mathrm{~m}, 2 \mathrm{H}), 7.63-7.51(\mathrm{~m}, 7 \mathrm{H}), 7.37-7.35(\mathrm{~m}$, $1 \mathrm{H}), 7.32-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.22-7.10(\mathrm{~m}, 2 \mathrm{H}), 6.12 \& 6.08$ (minor rotamer: dd, $J=4.6,2.6$; major rotamer: dd, $J=5.0,2.8,1 \mathrm{H}$), $5.86 \& 5.81$ (minor rotamer: br $\mathrm{t}, J=5.0$; major rotamer: br $\mathrm{t}, J=$ $5.0,1 \mathrm{H}$), $4.87 \& 4.85$ (minor and major rotamer: $\mathrm{s}, 1 \mathrm{H}$), $4.75 \& 4.73$ (major and minor rotamer: $\mathrm{s}, 1 \mathrm{H}), 4.16-4.03(\mathrm{~m}, 2 \mathrm{H}), 3.97(\mathrm{dd}, J=11.7,2.6,1 \mathrm{H}), 3.90-3.85(\mathrm{~m}, 1 \mathrm{H}), 3.82-3.75(\mathrm{~m}, 1 \mathrm{H})$, 3.53-3.41 (m, 2H), 3.17-2.97 (m, 1H), 2.47-2.42 (m, 1H), 2.39-2.32 (m, 2H), 2.30-2.25 (m, 2H), 2.24-2.15 (m, 4H), 2.13-2.08 (m, 2H), 2.03-1.97 (m, 1H), $1.79(\mathrm{t}, J=6.4,2 \mathrm{H}), 1.65-1.61$ $(\mathrm{m}, 1 \mathrm{H}), 1.51-1.43(\mathrm{~m}, 4 \mathrm{H}), 1.40 \& 1.30$ (minor and major rotamer: $\mathrm{s}, 9 \mathrm{H}), 1.22-1.13(\mathrm{~m}, 3 \mathrm{H})$, 0.96 (s, 9H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 174.1,172.5,172.4,170.8,170.4,165.5,165.4$, $153.8,152.7,148.0,147.4,146.6,135.5,135.4,135.4,133.1,133.0,132.7,132.5,132.4,130.3$, 130.1, 129.7, 129.7, 129.6, 129.5, 129.4, 128.6, 128.5, 128.4, 127.7, 127.6, 127.5, 127.4, 112.4, $112.2,81.6,81.3,81.0,80.0,79.5,75.9,75.3,70.7,70.5,63.8,63.5,61.3,61.2,61.1,51.6,51.3$, $47.2,45.8,38.6,36.9,35.8,35.6,35.2,35.2,35.0,34.9,33.0,28.3,28.1,28.0,28.0,27.9,27.9$, $27.8,27.45,27.36,26.8,26.7,26.6,26.5,26.4,24.1,23.9,22.9,19.0,18.4,18.3,17.6,13.9$; IR (film): 3378, 3312, 1731, 1698, $1655 \mathrm{~cm}^{-1}$; HRMS-FAB $(m / z):[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{52} \mathrm{H}_{68} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{SiNa}, 899.4643$; found, 899.4646; $[\alpha]^{26}{ }_{405}+53.1,[\alpha]^{26}{ }_{435}+50.1,[\alpha]^{26}{ }_{546}+28.8,[\alpha]^{26}{ }_{577}$ $+26.1,[\alpha]^{26}{ }_{\mathrm{D}}+26.0\left(c 1.00, \mathrm{CHCl}_{3}\right)$.

Spirolactone 69. TBAF (1.0 M in THF, $0.20 \mathrm{~mL}, 0.20 \mathrm{mmol}, 2.94$ equiv) was added to a solution of macrolactam $68\left(60 \mathrm{mg}, 0.068 \mathrm{mmol}, 1.00\right.$ equiv) in THF $(3.0 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The resulting solution was allowed to warm to rt and stirring was continued for 1.5 h . The reaction mixture was quenched with saturated aqueous NaHCO_{3} and extracted with EtOAc ($3 \times 5 \mathrm{~mL}$). The combined organic extracts were dried over MgSO_{4} and concentrated under reduced pressure. The crude mixture of products SI-10 and SI-11 was used directly in the next step.

The crude mixture of products was dissolved in $\mathrm{MeOH}(10.0 \mathrm{~mL})$ and solid anhydrous potassium carbonate ($20 \mathrm{mg}, 0.145 \mathrm{mmol}, 2.14$ equiv) was added. The mixture was stirred at rt for 20 h and quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$. The methanol was removed under reduced pressure and the residue was extracted with EtOAc $(4 \times 5 \mathrm{~mL})$. The organic extracts were combined, dried over MgSO_{4} and concentrated under reduced pressure. Purification by flash chromatography (25% EtOAc-hexanes, 50% EtOAc-hexanes, $100 \% \mathrm{EtOAc}$) afforded spirolactone 69 ($27 \mathrm{mg}, 0.055 \mathrm{mmol}, 81 \%$ yield over the two steps), which was characterized as a mixture of rotamers. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.25(\mathrm{br} \mathrm{d}, J=6.8,1 \mathrm{H}, \mathrm{NH}), 5.06(\mathrm{~d}, J=$ $11.2,1 \mathrm{H}), 4.94(\mathrm{~s}, 1 \mathrm{H}), 4.83(\mathrm{~s}, 1 \mathrm{H}), 4.81(\mathrm{dd}, J=10.7,4.3,1 \mathrm{H}), 4.39 \& 4.32$ (major rotamer: d, $J=10.7$; minor rotamer: d, $J=10.6,1 \mathrm{H}$), $4.02 \& 3.97$ (major rotamer: dd, $J=11.0,4.1$; minor rotamer: dd, $J=10.5,4.6,1 \mathrm{H}$), $3.61 \& 3.57$ (minor rotamer: dd, $J=10.1,7.5$; major rotamer: dd, $J=10.1,7.0,1 \mathrm{H}), 3.45(\mathrm{ddd}, J=12.0,9.7,2.2,1 \mathrm{H}), 3.24 \& 3.16$ (minor rotamer: $\mathrm{t}, J=10.8$; major rotamer: $\mathrm{t}, J=10.8,1 \mathrm{H}), 2.42(\mathrm{ddd}, J=12.8,7.5,7.5,1 \mathrm{H}), 2.30(\mathrm{ddd}, J=14.1,7.5,6.7$, $1 \mathrm{H}), 2.26-2.22(\mathrm{~m}, 5 \mathrm{H}), 2.19-2.10(\mathrm{~m}, 2 \mathrm{H}), 2.07(\mathrm{dd}, J=9.5,6.0,1 \mathrm{H}), 2.00-1.94(\mathrm{~m}, 2 \mathrm{H}), 1.91-$ $1.82(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.66-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.59-1.53(\mathrm{~m}, 1 \mathrm{H}), 1.56 \& 1.47$ (minor and major rotamer: $\mathrm{s}, 9 \mathrm{H}$), $1.44-1.38(\mathrm{~m}, 2 \mathrm{H}), 1.56 \& 1.47$ (minor and major rotamer: $\mathrm{s}, 9 \mathrm{H}$), 1.441.38 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 173.3,172.6,157.1,147.0,111.3,82.1,80.9,80.1$, $78.3,74.7,71.2,51.4,45.0,37.8,36.9,34.4,34.3,34.1,28.2,27.4,26.0,24.2,22.9,18.1,17.6$;

IR (film): 3342, 1772, $1654 \mathrm{~cm}^{-1}$; HRMS-FAB $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{27} \mathrm{H}_{41} \mathrm{~N}_{2} \mathrm{O}_{6}, 489.2965$; found, 489.2967; $[\alpha]^{26}{ }_{405}-59.4,[\alpha]^{26}{ }_{435}-46.0,[\alpha]^{26}{ }_{546}-26.0,[\alpha]^{26}{ }_{577}-21.9,[\alpha]^{26}-27.8(c 1.00$, CHCl_{3}).

Lactol 70. i - $\mathrm{BuAl}_{2} \mathrm{H}(50 \mu \mathrm{~L}, 0.075 \mathrm{mmol}, 3.33$ equiv) was added to a solution of spirolactone $69\left(11 \mathrm{mg}, 0.023 \mathrm{mmol}, 1.00\right.$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1.2 h , quenched with EtOAc , and slowly warmed to $0{ }^{\circ} \mathrm{C} .1 \mathrm{~N}$ aqueous HCl was added and the mixture was vigorously stirred, then extracted with EtOAc (4 x 5 mL). The combined organic extracts were dried over MgSO_{4} and concentrated under reduced pressure. Purification by flash chromatography ($50 \% \mathrm{EtOAc}$-hexanes, $100 \% \mathrm{EtOAc}$) furnished oxazolidinone-lactol 70 ($7 \mathrm{mg}, 0.0168 \mathrm{mmol}, 63 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.83$ (s, $1 \mathrm{H}), 5.68(\mathrm{br} \mathrm{t}, J=5.6,1 \mathrm{H}, \mathrm{NH}), 4.94(\mathrm{~s}, 1 \mathrm{H}), 4.83(\mathrm{~s}, 1 \mathrm{H}), 4.14(\mathrm{dd}, J=9.3,6.9,1 \mathrm{H}), 4.06-4.01$ (m, 1H), 3.68 (dd, $J=11.6,3.1,1 \mathrm{H}), 3.55-3.46(\mathrm{~m}, 2 \mathrm{H}), 3.26-3.19(\mathrm{~m}, 1 \mathrm{H}), 3.16(\mathrm{dd}, J=11.5$, $5.6,1 \mathrm{H}), 2.63-2.60(\mathrm{~m}, 1 \mathrm{H}), 2.44-3.37(\mathrm{~m}, 3 \mathrm{H}), 2.27-2.22(\mathrm{~m}, 6 \mathrm{H}), 2.17-2.12(\mathrm{~m}, 1 \mathrm{H}), 2.07-$ $2.00(\mathrm{~m}, 1 \mathrm{H}), 1.90(\mathrm{~d}, J=11.9,1 \mathrm{H}), 1.84-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.69(\mathrm{~m} 2 \mathrm{H}), 1.62-1.58(\mathrm{~m}, 1 \mathrm{H})$, 1.48-1.40 (m, 2H), 1.31-1.07 (m, 1H); IR (film): 3335, 1752, 1730, $1649 \mathrm{~cm}^{-1} ; \operatorname{MS}-\mathrm{FAB}(\mathrm{m} / \mathrm{z})$: $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Na}, 439.23$; found, 439.18.

Aldehyde 75. Enoxysilane 74 was prepared by the general strategy used to synthesize enoxysilanes 48 and 103. A round bottom flask containing a mixture of enoxysilane isomers 74 ($450 \mathrm{mg}, 0.586 \mathrm{mmol}$) and 2,6-di-tert-butyl-4-methyl-pyridine ($360 \mathrm{mg}, 1.76 \mathrm{mmol}$) was purged
with N_{2}, charged with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(18 \mathrm{~mL})$ and cooled to $-78{ }^{\circ} \mathrm{C} . \mathrm{BCl}_{3}(1.0 \mathrm{M}$ heptane, $4.7 \mathrm{~mL}, 4.69$ mmol) was added dropwise. The flask was then sealed and placed to stir in a cryocool maintained at $-78^{\circ} \mathrm{C}$. Every hour, the temperature was increased by approximately $5^{\circ} \mathrm{C}$ until a temperature of $-40^{\circ} \mathrm{C}$ was attained. Stirring was continued for another 6 h , then the reaction was cooled to $-78^{\circ} \mathrm{C}$ and quenched by rapid transfer via cannula into a solution of saturated aqueous $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ with rapid stirring. The mixture was extracted with EtOAc $(5 \times 30 \mathrm{~mL})$ and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under reduced pressure. Purification by preparative TLC (1 mm thickness, $20 \mathrm{~cm} \times 20 \mathrm{~cm}$ EM Science plates, $\sim 100 \mathrm{mg}$ crude per plate, eluting $3 \times$ with $100 \% \mathrm{EtOAc}$) afforded aldehyde 75 ($253 \mathrm{mg}, 0.49 \mathrm{mmol}, 83 \%$) as a colorless oil. $\mathrm{R}_{f} 0.48$ (19:1 EtOAc:MeOH); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.33$ (d, $J=1.3$, $1 \mathrm{H}), 7.71(\mathrm{~d}, J=8.4,2 \mathrm{H}), 7.33(\mathrm{~d}, J=8.4,2 \mathrm{H}), 5.13(\mathrm{~s}, 1 \mathrm{H}), 4.45(\mathrm{t}, J=4.1,1 \mathrm{H}), 4.34(\mathrm{dd}, J=$ $12.9,3.8,1 \mathrm{H}), 4.27(\mathrm{dd}, J=13.0,4.1,1 \mathrm{H}), 3.68(\mathrm{dd}, J=12.9,8.5,1 \mathrm{H}), 3.58(\mathrm{t}, J=6.6,2 \mathrm{H})$, 3.22 (ddd, $J=9.5,3.6,1.3,1 \mathrm{H}), 3.15(\mathrm{dt}, J=12.9,5.0,1 \mathrm{H}), 3.03(\mathrm{~d}, J=9.9,1 \mathrm{H}), 2.70-2.55(\mathrm{~m}$, $2 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 1 \mathrm{H}), 2.24-2.16(\mathrm{~m}, 1 \mathrm{H}), 2.03-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.73-0.70(\mathrm{~m}, 12 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta 196.6,160.7,144.2,136.2,129.9,127.8,82.7,66.9,62.7,60.0,56.8$, 53.3, 53.2, 42.1, 41.5, 39.6, 34.0, 21.5, 29.7, 29.5, 29.4, 25.4, 22.0, 21.5; IR (film): 3444, 2932, 2857, 1748, $1325 \mathrm{~cm}^{-1}$; HRMS-FAB $(\mathrm{m} / z):[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{~S}, 521.2321$; found, $521.2320 ;[\alpha]^{28}{ }_{405}-100.2,[\alpha]^{28}{ }_{435}-71.7,[\alpha]^{28}{ }_{546}-32.8,[\alpha]^{28}{ }_{577}-25.4,[\alpha]^{28}{ }_{\mathrm{D}}-25.8$ (c 1.45, CHCl_{3}).

Allylated lactam 86. Lactam (+)-38 was prepared following the procedure previously used to synthesize (-)-38. ${ }^{1}$ A solution of lactam (+)-38 ($16.5 \mathrm{~g}, 22.3 \mathrm{mmol}$), THF (150 mL) and DMPU (50.0 mL) in a flask equipped with a sealable top was cooled at $-78^{\circ} \mathrm{C}$ under an Ar atmosphere for 15 min and LHMDS (1.0 M in THF, $7.80 \mathrm{~mL}, 7.80 \mathrm{mmol}$) was added dropwise. After 30 min , allyl bromide ($5.80 \mathrm{~mL}, 66.9 \mathrm{mmol}$) was added dropwise and the flask was sealed. The reaction flask was placed in a cryocool bath and maintained at $-55^{\circ} \mathrm{C}$ for 24 h . The reaction mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$ and allowed to warm to room
temperature. Hexanes $(20 \mathrm{~mL})$ and EtOAc $(150 \mathrm{~mL})$ were added to the resulting mixture and the aqueous layer was extracted with $\operatorname{EtOAc}(3 \times 100 \mathrm{~mL})$. The combined organic extracts were washed with brine $(1 \times 100 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. Purification of the crude product by flash chromatography (25% EtOAc-hexanes) afforded lactam 86 ($15.4 \mathrm{~g}, 20.4 \mathrm{mmol}, 92 \%$) as a colorless foam. $\mathrm{R}_{f} 0.31$, (25% EtOAc-hexanes); ${ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl_{3}): $\delta 7.88$ (d, $\left.J=8.3,2 \mathrm{H}\right), 7.63-7.61$ ($\mathrm{d}, J=8.3,2 \mathrm{H}$), 7.58-7.55 (m, 4H), 7.44-7.21 (m, 11H), 5.63-5.55 (m, 1H), 5.03-4.98 (m, 2H), 4.35-4.27 (m, 2H), 4.21-4.13 (m, $1 \mathrm{H}), 4.10-4.00(\mathrm{~m}, 3 \mathrm{H}), 3.90(\mathrm{dd}, J=11.7,2.4,1 \mathrm{H}), 2.47-2.43(\mathrm{~m}, 3 \mathrm{H}), 2.37-2.24(\mathrm{~m}, 3 \mathrm{H})$, 2.11-2.04 (m, 1H), 1.95-1.92(m, 1H), $1.15(\mathrm{t}, J=7.1,3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (125 MHz , CDCl_{3}): $\delta 171.5,170.8,165.3,144.1,136.4,135.7,135.4,134.3,133.2,132.6,131.4,129.8$, 129.7, 129.2, 128.72, 128.70, 127.9, 127.64, 127.57, 126.5, 118.8, 86.1, 81.0, 62.9, 61.5, 44.7, 44.6, 44.0, 38.3, 26.6, 23.5, 21.7, 19.0, 13.9; IR (film): 3073, 2934, 2860, 1752, 1714, 1652, 1351, 1274, 1170, 1112, $1089 \mathrm{~cm}^{-1}$; HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{44} \mathrm{H}_{51} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{SSi}$, 779.3187; found, 779.3203; Anal. Calcd for $\mathrm{C}_{44} \mathrm{H}_{50} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{SSi}$: C, 67.84; H, 6.47; N, 3.60; found: C, 67.88, H, 6.53; N, 3.66; $[\alpha]^{27}{ }_{\mathrm{D}}+94.6,[\alpha]^{27}{ }_{577}+97.1,[\alpha]^{27}{ }_{546}+112.0,[\alpha]^{27}{ }_{435}+206.7$, $[\alpha]^{27}{ }_{405}+257.5\left(c 1.00, \mathrm{CHCl}_{3}\right)$.

Imide 89. A solution of alkene $86(6.78 \mathrm{~g}, 8.71 \mathrm{mmol})$, THF (60 mL) and $2.0 \mathrm{~N} \mathrm{HCl}(15$ mL) was maintained at rt for 2 days. The reaction was quenched with saturated aqueous NaHCO_{3} (70 mL), concentrated, and extracted with EtOAc $(4 \times 100 \mathrm{~mL})$. The combined organic extracts were washed with brine $(1 \times 200 \mathrm{ml})$, dried over MgSO_{4}, and concentrated to give pyrrolidinone SI-12 ($6.77 \mathrm{~g}, 8.49 \mathrm{mmol}, 98 \%$) as a colorless foam, which was typically used directly in the subsequent transformation.

Di-tert-butyl dicarbonate ($9.91 \mathrm{~g}, 45.5 \mathrm{mmol}$) and DMAP ($2.22 \mathrm{~g}, 18.2 \mathrm{mmol}$) were added sequentially to a solution of pyrrolidinone SI-12 (14.5 g, 18.2 mmol) and $\mathrm{CH}_{3} \mathrm{CN}(180$ mL) at rt . The mixture was stirred for 15 h , then quenched with water (150 ml) and saturated aqueous $\mathrm{NHCl}_{4}(100 \mathrm{~mL})$. Hexanes (50 mL) was added and the aqueous layer was extracted with

EtOAc $(3 \times 70 \mathrm{~mL})$. The organic extracts were combined, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. Purification of the residue by flash chromatography (33% EtOAc-hexanes) provided imide $\mathbf{8 9}$ ($17.4 \mathrm{~g}, 17.5 \mathrm{mmol}, 96 \%$) as a colorless foam. $\mathrm{R}_{f} 0.35$ (25\% EtOAc-hexanes); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.21$ (dd, $J=8.0,1.5,2 \mathrm{H}$), 7.66 (d, $J=$ $7.0,2 \mathrm{H}), 7.61(\mathrm{dd}, J=8.0,1.5,2 \mathrm{H}) 7.57-7.50(\mathrm{~m}, 5 \mathrm{H}), 7.38-7.21(\mathrm{~m}, 6 \mathrm{H}), 7.01(\mathrm{t}, J=7.6,2 \mathrm{H})$, $6.23(\mathrm{t}, J=2.8,1 \mathrm{H}), 6.10(\mathrm{dddd}, J=19.8,10.3,6.4,6.3,1 \mathrm{H}), 5.19(\mathrm{dd}, J=17.1,1.6,1 \mathrm{H}), 5.09$ $(\mathrm{d}, J=10.1,1 \mathrm{H}), 4.20-4.14(\mathrm{~m}, 2 \mathrm{H}), 4.04(\mathrm{ddd}, J=14.1,11.6,5.2,1 \mathrm{H}), 3.88-3.74(\mathrm{~m}, 4 \mathrm{H})$, 2.85-2.81 (m, 1H), 2.71-2.66 (m, 1H), 2.62-2.55 (m, 1H), 2.42 (s, 3H), 2.39-2.33 (m, 1H), 1.82 (ddd, $J=24.0,11.9,4.0,1 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 1.28(\mathrm{~s}, 9 \mathrm{H}), 1.17(\mathrm{t}, J=7.1,3 \mathrm{H}), 0.98(\mathrm{~s}, 9 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 174.6,170.0,165.4,150.7,149.6,144.2,137.4,136.1,135.5,135.4$, $133.0,132.0,131.9,130.1,129.8,129.69,129.68,129.2,128.8,127.8,127.6,127.6,116.4,84.6$, 84.0, $73.1,70.0,63.5,61.7,45.5,44.6,35.7,30.8,27.83,27.79,26.6,21.5,18.9,13.8$; IR (film): 2980, 2934, 2860, 1795, 1722, 1359, 1285, 1258, 1150, 1112, $1089 \mathrm{~cm}^{-1} ;$ HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+$ $\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{54} \mathrm{H}_{68} \mathrm{~N}_{2} \mathrm{O}_{12} \mathrm{SSiNa}$, 1019.4160; found, 1019.4149; Anal. Calcd for $\mathrm{C}_{54} \mathrm{H}_{68} \mathrm{~N}_{2} \mathrm{O}_{12} \mathrm{SSi}: \mathrm{C}, 65.03$; H, 6.87; N, 2.81; found: C, 64.89; H, 6.92; N, 2.83; $[\alpha]^{27}{ }_{\mathrm{D}}+21.7$, $[\alpha]^{27}{ }_{577}+22.6,[\alpha]^{27}{ }_{546}+25.5,[\alpha]^{27}{ }_{435}+50.4,[\alpha]^{27}{ }_{405}+64.2\left(c 1.00, \mathrm{CHCl}_{3}\right)$.

Pyrrolidine 90. DIBAL-H (1.5 M in PhMe, $17.3 \mathrm{~mL}, 25.9 \mathrm{mmol}$) was added dropwise over 35 min to a solution of pyrrolidinone $\mathbf{8 9}(17.2 \mathrm{~g}, 17.3 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(330 \mathrm{~mL})$. The reaction was maintained at $-78^{\circ} \mathrm{C}$ for 25 min , then quenched with EtOAc (25 mL). The mixture was warmed to $0{ }^{\circ} \mathrm{C}$, diluted with $1.0 \mathrm{M} \mathrm{NaOH}(300 \mathrm{~mL})$, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 100$ $\mathrm{mL})$. The combined organic extracts were dried over MgSO_{4}, filtered through Celite ${ }^{\circledR}$, and concentrated under reduced pressure to give a mixture of hemiaminals SI-13 as an oily residue, which was immediately subjected to further reduction.

This crude mixture of hemiaminals SI-13 was combined with glacial acetic acid (90 mL). Sodium cyanoborohydride ($7.05 \mathrm{~g}, 112 \mathrm{mmol}$) was added to this mixture in three portions over a period of 5 h . After stirring at rt for 12 h , the reaction mixture was quenched slowly with 1 M
$\mathrm{NaOH}(700 \mathrm{~mL})$, such that $\mathrm{pH}=9$, then $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$ was added. The layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 150 \mathrm{~mL})$. The combined organic extracts were dried over $\mathrm{Mg}_{2} \mathrm{SO}_{4}$, filtered through Celite ${ }^{\circledR}$, and concentrated under reduced pressure. Purification of the residue by flash chromatography ($50 \% \mathrm{Et}_{2} \mathrm{O}$-pentane) provided pyrrolidine 90 ($15.9 \mathrm{~g}, 16.1 \mathrm{mmol}, 93 \%$ over two steps) as a colorless foam. $\mathrm{R}_{f} 0.40$ (25% EtOAc-hexanes); ${ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl_{3}): $\delta 8.19$ (d, $J=7.7,2 \mathrm{H}$), 7.70-7.67 (m, 2H), 7.64-7.47 (m, 6H), 7.39$7.36(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.21(\mathrm{~m}, 5 \mathrm{H}), 7.09-7.02(\mathrm{~m}, 2 \mathrm{H}), 6.17 \& 6.12$ (minor rotamer: $\mathrm{t}, \mathrm{J}=3.2$; major rotamer: $\mathrm{t}, J=3.6,1 \mathrm{H}), 5.83-5.75(\mathrm{~m}, 1 \mathrm{H}), 5.15-5.04(\mathrm{~m}, 2 \mathrm{H}), 4.16-3.87(\mathrm{~m}, 6 \mathrm{H}), 3.84-$ $3.77(\mathrm{~m}, 2 \mathrm{H}), 3.64(\mathrm{~m}, 1 \mathrm{H}), 3.55-3.47(\mathrm{~m}, 1 \mathrm{H}), 2.46-2.35(\mathrm{~m}, 2 \mathrm{H}), 2.41 \& 2.40$ (major and minor rotamers, s, 3H), 2.28-2.24(m, 1H), $2.16(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.40 \& 1.34$ (minor and major rotamers, $\mathrm{s}, 9 \mathrm{H}$), $1.30 \& 1.29$ (major and minor rotamers, $\mathrm{s}, 9 \mathrm{H}$), $1.14 \& 1.12$ (major rotamer, $\mathrm{t}, J=7.1$; minor rotamers, $\mathrm{t}, J=7.1,3 \mathrm{H}$), $1.00 \& 0.99$ (minor and major rotamers, s , $9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.7,170.4,165.6,165.3,153.8,152.8,150.7,144.0$, $144.0,138.0,137.6,137.5,137.5,135.6,135.5,135.4,133.2,132.8,132.7,132.6,132.3,132.2$, $130.3,130.1,130.1,130.1,129.7,129.7,129.6,129.6,129.2,128.7,128.6,128.4,128.0,128.0$, $127.8,127.7,127.6,116.5,116.4,84.4,84.3,81.0,80.0,74.3,74.2,70.5,70.3,63.6,63.3,61.1$, $61.0,51.0,46.1,45.7,45.6,45.0,38.9,38.4,31.1,31.0,28.4,28.13,28.09,28.0,27.8,26.7,26.7$, 21.5, 19.0, 13.8; IR (film): 2980, 2934, 2860, 1725, 1702, 1393, 1363, 1266, 1154, $1112 \mathrm{~cm}^{-1}$; HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{54} \mathrm{H}_{70} \mathrm{~N}_{2} \mathrm{O}_{11} \mathrm{SSiNa}$, 1005.4367; found, 1005.4373; $\mathrm{C}_{54} \mathrm{H}_{70} \mathrm{~N}_{2} \mathrm{O}_{11} \mathrm{SSi}: \mathrm{C}, 65.96 ; \mathrm{H}, 7.18$; N, 2.85; found: C, 65.96; H, 7.26; N, 2.79; $[\alpha]^{26}{ }_{\mathrm{D}}+1.37$, $[\alpha]^{26}{ }_{577}+0.98,[\alpha]^{26}{ }_{546}+1.74,[\alpha]^{26}{ }_{435}+4.11,[\alpha]^{26}{ }_{405}+5.30\left(c 1.00, \mathrm{CHCl}_{3}\right)$.

Spirolactone 91. A solution of pyrrolidine $90(15.3 \mathrm{~g}, 15.6 \mathrm{mmol})$ in DMSO (50 mL) was sparged with Ar for 20 min , then heated to $130{ }^{\circ} \mathrm{C}$ for 4.5 h . The solution was cooled to rt and purified by flash chromatography ($50 \% \mathrm{Et}_{2} \mathrm{O} /$ pentane, $R_{f}=0.36,50 \% \mathrm{Et}_{2} \mathrm{O} /$ pentane) to yield pyrrolidine SI-14 (10.7 g, $12.1 \mathrm{mmol}, 78 \%$) as a colorless foam, which was used directly in the subsequent transformation.

TBAF (1.0 M in THF, $60.3 \mathrm{~mL}, 60.3 \mathrm{mmol}$) was added to a solution containing pyrrolidine SI-14, $\mathrm{Et}_{3} \mathrm{~N}$ ($25.0 \mathrm{~mL}, 181 \mathrm{mmol}$), and acetic anhydride ($11.0 \mathrm{~mL}, 121 \mathrm{mmol}$) in THF (150 mL). The resulting solution was heated to $70^{\circ} \mathrm{C}$ under a N_{2} atmosphere. After 13 h , the mixture was quenched with water $(300 \mathrm{~mL})$ and extracted with 66% EtOAc-hexanes $(1 \times 150$ $\mathrm{mL})$, then EtOAc ($3 \times 100 \mathrm{~mL}$). The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The resulting residue was filtered through silica gel (3350\% EtOAc-hexanes) to give the crude desilylated pyrrolidine SI-15 as a colorless foam.

The crude mixture was dissolved in $\mathrm{MeOH}(60 \mathrm{~mL})$, and solid anhydrous potassium carbonate ($10.1 \mathrm{~g}, 73.2 \mathrm{mmol}$) was added. The mixture was stirred for 12 h , then quenched with water (100 mL). EtOAc (150 mL) and hexanes (50 mL) were added and the pH was adjusted to pH 8 by the addition of 2 M HCl . The layers were separated and the aqueous phase was extracted with EtOAc $(3 \times 100 \mathrm{~mL})$. The combined organic extracts were washed with brine $(1 \times 150 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. Purification of the residue by flash chromatography (33 to 50% EtOAc-hexanes) afforded spirolactone $91(5.76 \mathrm{~g}, 10.6 \mathrm{mmol}, 68 \%$ over three steps) as a colorless solid, which can be crystallized from $\mathrm{Et}_{2} \mathrm{O} /$ pentane. $\mathrm{R}_{f} 0.33$ (50% EtOAc-hexanes); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.68$ (d, $J=8.2,2 \mathrm{H}$), 7.30 (d, $J=8.3,2 \mathrm{H}$), $5.77-5.69(\mathrm{~m}, 1 \mathrm{H}), 5.11-5.08(\mathrm{~m}, 2 \mathrm{H}), 4.83(\mathrm{~d}, J=11.3,1 \mathrm{H}), 4.73 \& 4.65$ (minor rotamer: dd, J $=11.2,5.5$; major rotamer: dd, $J=10.7,4.7,1 \mathrm{H}), 4.36(\mathrm{~d}, J=10.7,1 \mathrm{H}), 4.31-4.28(\mathrm{~m}, 1 \mathrm{H}), 4.09$ (dd, $J=11.2,4.4,1 \mathrm{H}), 3.55(\mathrm{dd}, J=10.4,6.9,1 \mathrm{H}), 3.30 \& 3.19$ (minor rotamer: $\mathrm{t}, J=9.9$; major rotamer: $\mathrm{t}, J=10.3,1 \mathrm{H}), 2.87-2.78(\mathrm{~m}, 2 \mathrm{H}), 2.50-2.44(\mathrm{~m}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.39-2.36(\mathrm{~m}$, $1 \mathrm{H}), 2.24-2.10(\mathrm{~m}, 2 \mathrm{H}), 1.80-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.57-1.48(\mathrm{~m}, 1 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 173.7,157.1,143.6,136.5,135.5,129.8,127.0,117.1,83.3,82.1,77.6,75.8$, $74.7,74.0,71.0,51.2,51.1,47.8,45.7,41.5,41.4,40.2,39.2,31.8,29.6,28.2,28.0,23.4,21.5$; IR (film): 3482, 3277, 2980, 2930, 1772, 1668, 1409, 1370, 1328, 1158, $1092 \mathrm{~cm}^{-1}$; HRMS-FAB $(m / z)[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{SNa}, 517.1985$; found, 517.1993; Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{~S}: \mathrm{C}, 58.28 ; \mathrm{H}, 6.93$; N, 5.66; found: C, $58.41 ; \mathrm{H}, 6.90 ; \mathrm{N}, 5.50 ;[\alpha]^{27}{ }_{\mathrm{D}}-52.5$, $[\alpha]^{27}{ }_{577}-54.9,[\alpha]^{27}{ }_{546}-63.1,[\alpha]^{27}{ }_{435}-116,[\alpha]^{27}{ }_{405}-144\left(c\right.$ 1.00, $\left.\mathrm{CHCl}_{3}\right)$.

91

92

Aminal 92. A solution of spirolactone $91(5.12 \mathrm{~g}, 10.4 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(65.0 \mathrm{~mL})$ was cooled to $-78{ }^{\circ} \mathrm{C}$ under a N_{2} atmosphere. DIBAL-H (1.5 M in PhMe, $41.5 \mathrm{~mL}, 62.2 \mathrm{mmol}$) was added dropwise over 75 min . The resulting mixture was maintained at $-78^{\circ} \mathrm{C}$ for 5 h , then quenched with $\operatorname{EtOAc}(25.0 \mathrm{ml})$ at $-78^{\circ} \mathrm{C}$. The reaction mixture was slowly warmed to $0{ }^{\circ} \mathrm{C}$ and $2 \mathrm{~N} \mathrm{HCl}(100 \mathrm{~mL})$ and THF (10.0 mL) were added. The reaction mixture was stirred vigorously for 40 h , then extracted with EtOAc $(3 \times 100 \mathrm{~mL})$. The combined organic extracts were washed with saturated aqueous $\mathrm{NaHCO}_{3}(1 \times 100 \mathrm{~mL})$ and brine $(1 \times 100 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. Purification of the residue by flash chromatography (33\% EtOAc-hexanes) gave aminal $92(3.22 \mathrm{~g}, 6.73 \mathrm{mmol}, 65 \%)$ and a mixture of lactone 91 and the corresponding lactol ($1.30 \mathrm{~g}, 2.63 \mathrm{mmol}, 25 \%$). The mixture of lactone 91 and the corresponding lactol was resubjected to the reaction conditions and purified as described above, affording aminal $92(1.10 \mathrm{~g}, 2.31 \mathrm{mmol}, 88 \%)$ as a colorless foam ($4.32 \mathrm{~g}, 9.03 \mathrm{mmol}, 87 \%$ combined yield for both reactions). $\mathrm{R}_{f} 0.67$ (50% EtOAc-hexanes); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.74$ (d, $J=8.2,2 \mathrm{H}), 7.25(\mathrm{~d}, J=7.8,2 \mathrm{H}), 6.68 \& 6.49$ (major and minor isomers, $\mathrm{s}, 1 \mathrm{H}), 5.73-5.65(\mathrm{~m}$, $1 \mathrm{H}), 5.07-5.00(\mathrm{~m}, 2 \mathrm{H}), 4.63(\mathrm{~d}, J=10.6,1 \mathrm{H}), 4.16(\mathrm{dd}, J=9.5,6.2,1 \mathrm{H}), 3.75-3.68(\mathrm{~m}, 2 \mathrm{H})$, $3.60-3.56(\mathrm{~m}, 2 \mathrm{H}), 3.08(\mathrm{t}, J=11.0,1 \mathrm{H}), 2.78(\mathrm{t}, J=12.0,1 \mathrm{H}), 2.39(\mathrm{~s}, 4 \mathrm{H}), 2.07(\mathrm{t}, J=6.9$, $2 \mathrm{H}), 1.77-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.59-1.35(\mathrm{~m}, 2 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 157.3$, $143.2,136.7,135.5,129.4,127.7,116.6,81.5,80.3,78.5,73.8,69.2,51.1,42.7,37.6,37.2,31.3$, 28.3, 21.6, 21.5; IR (film): $3435,2976,2034,2883,1660 \mathrm{~cm}, 1393,1370,1343,1162,961 \mathrm{~cm}^{-1}$; HRMS-FAB $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}, 479.2216$; found, 479.2221; Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}: \mathrm{C}, 60.23 ; \mathrm{H}, 7.18$; N, 5.85; found: C, $59.98 ; \mathrm{H}, 7.16 ; \mathrm{N}, 5.70 ;[\alpha]^{27}{ }_{\mathrm{D}}-26.8$, $[\alpha]^{27}{ }_{577}-29.0,[\alpha]^{27}{ }_{546}-34.8,[\alpha]^{27}{ }_{435}-57.1,[\alpha]^{27}{ }_{405}-69.9\left(c 0.470, \mathrm{CHCl}_{3}\right)$.

Tetracycle 87. A solution of tricyclic aminal $92(1.99 \mathrm{~g}, 4.16 \mathrm{mmol})$ in THF (40.0 mL) was cooled to $0{ }^{\circ} \mathrm{C}$ under an N_{2} atmosphere, and sodium methoxide ($270 \mathrm{mg}, 5.00 \mathrm{mmol}$) was added. The reaction mixture was allowed to warm to rt, then stirred for $4 \mathrm{~h} . \mathrm{H}_{2} \mathrm{O}(100 \mathrm{ml})$, EtOAc (40 ml) and hexanes (10 ml) were added. The reaction was neutralized by the dropwise addition of 2 M HCl . The phases were separated and the aqueous phase was extracted with EtOAc $(3 \times 30 \mathrm{~mL})$. The combined organic extracts were washed with brine $(1 \times 500 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure to give a mixture of tetracycle $\mathbf{8 7}$ and Boc-deprotected amino alcohol.

This crude mixture was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(42.0 \mathrm{ml})$ and cooled to $0{ }^{\circ} \mathrm{C}$ in an ice bath. Triethylamine ($1.50 \mathrm{ml}, 10.4 \mathrm{mmol}$) and triphosgene ($3.85 \mathrm{~g}, 13.0 \mathrm{mmol}$) were added, and the reaction mixture was maintained at $0^{\circ} \mathrm{C}$ for 45 min . The reaction mixture was poured into saturated aqueous $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$ and water $(50 \mathrm{ml})$. The layers were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Purification of the residue by flash chromatography (33 to 50% EtOAc-hexanes) afforded tetracycle 87 ($1.55 \mathrm{~g}, 3.82 \mathrm{mmol}, 92 \%$) as a colorless foam. $\mathrm{R}_{f} 0.36\left(50 \% \mathrm{EtOAc}\right.$-hexanes); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.76$ (d, $J=$ $8.3,2 \mathrm{H}$), 7.28 (d, $J=8.5,2 \mathrm{H}$), 5.69 (dddd, $J=21.1,10.2,6.8,6.8,1 \mathrm{H}), 5.50(\mathrm{~s}, 1 \mathrm{H}), 5.07-5.02$ (m, 2H), 4.49 (dd, $J=6.3,3.3,1 \mathrm{H}), 4.21(\mathrm{dd}, J=11.2,6.3,1 \mathrm{H}), 3.92$ (dd, $J=11.2,3.2,1 \mathrm{H})$, 3.72 (dd, $J=11.8,6.4,1 \mathrm{H}), 3.64(\mathrm{dt}, J=12.5,3.6,1 \mathrm{H}), 2.86(\mathrm{t}, J=11.5,1 \mathrm{H}), 2.77(\mathrm{dt}, J=12.6$, $2.0,1 \mathrm{H}$), $2.42(\mathrm{~s}, 3 \mathrm{H}), 2.23-2.14(\mathrm{~m}, 2 \mathrm{H}), 2.11-2.07(\mathrm{~m}, 2 \mathrm{H}), 1.47$ (ddd, $J=13.3,9.1,4.1,1 \mathrm{H}$); ${ }^{13}{ }^{1}$ NMR (125 MHz, CDCl_{3}): $\delta 162.2,143.7,136.1,135.0,129.4,127.7,116.7,87.5,85.2,72.5$, 68.8, 51.9, 43.3, 40.1, 38.2, 30.5, 21.9, 21.4; IR (film): 2934 2887, 1760, 1343, 1305, $1162 \mathrm{~cm}^{-1}$; HRMS-FAB $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}, 405.1484$; found, 405.1484; Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}: \mathrm{C}, 59.39 ; \mathrm{H}, 5.98$; $\mathrm{N}, 6.93$; found: C, $59.38 ; \mathrm{H}, 6.00 ; \mathrm{N}, 6.98 ;[\alpha]_{\mathrm{D}}^{27}+8.8$, $[\alpha]^{27}{ }_{577}+8.8,[\alpha]^{27}{ }_{546}+10.9,[\alpha]^{27}{ }_{435}+19.7,[\alpha]^{27}{ }_{405}+24.6\left(c 1.00, \mathrm{CHCl}_{3}\right)$.

Alcohol 93. Borane-THF complex (1.0 M in THF, $5.06 \mathrm{~mL}, 5.06 \mathrm{mmol}$) was added dropwise over 5 min to cyclohexene ($1.03 \mathrm{ml}, 10.1 \mathrm{mmol}$) under an N_{2} atmosphere at $0{ }^{\circ} \mathrm{C}$ (ice bath). The mixture was allowed to warm to rt with stirring, and a colorless precipitate formed. After 2.5 h the mixture was cooled to $0^{\circ} \mathrm{C}$ (ice bath) and a solution of oxazolidinone $87(1.02 \mathrm{~g}$, 2.53 mmol) in THF (6.00 ml) was added dropwise. The resulting mixture was allowed to warm to rt . After 16 h at rt , the colorless solution was cooled to $0^{\circ} \mathrm{C}$ (ice bath), and a suspension of $\mathrm{NaBO}_{3} \cdot 4 \mathrm{H}_{2} \mathrm{O}(2.31 \mathrm{~g}, 15.0 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added slowly. The reaction mixture was allowed to warm to rt. After 8 h , the reaction was neutralized with 2 M HCl , diluted with water $(50 \mathrm{~mL})$ and extracted with EtOAc $(5 \times 40 \mathrm{~mL})$. The combined organic extracts were washed with brine $(1 \times 100 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. Purification of the residue by flash chromatography ($100 \% \mathrm{EtOAc}$) gave alcohol 93 (972 mg , $2.30 \mathrm{mmol}, 91 \%$) as a colorless foam. $\mathrm{R}_{f} 0.35(100 \% \mathrm{EtOAc}) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 7.73 (d, $J=8.3,2 \mathrm{H}), 7.27(\mathrm{~d}, J=8.6,2 \mathrm{H}), 4.50(\mathrm{dd}, J=6.2,3.1,1 \mathrm{H}), 4.19(\mathrm{dd}, J=11.2,6.3$, $1 \mathrm{H}), 3.90(\mathrm{dd}, J=11.2,3.1,1 \mathrm{H}), 3.69(\mathrm{dd}, J=11.7,6.5,1 \mathrm{H}), 3.61-3.59(\mathrm{~m}, 3 \mathrm{H}), 2.82(\mathrm{t}, J=$ $11.6,1 \mathrm{H}), 2.75(\mathrm{dt}, J=12.6,1.8,1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.22-2.17(\mathrm{~m}, 1 \mathrm{H}), 2.14-2.07(\mathrm{~m}, 1 \mathrm{H}), 1.79-$ $1.77(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.53-1.45(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.37(\mathrm{~m}, 2 \mathrm{H}), 1.34-1.31(\mathrm{~m}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta 162.5,143.8,136.1,129.5,127.8,87.6,85.4,72.5,68.9,62.2,52.2$, 43.9, 40.5, 38.3, 31.0, 22.6, 22.1, 21.5; IR (film): 3505, 2937, 2880, 1756, 1343, 1309, 1158, 1073, 1042, $972 \mathrm{~cm}^{-1}$; HRMS-FAB $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}, 423.5190$; found, 423.1590; Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}$: C, 56.86 ; H, 6.20 ; N, 6.63; found: C, 56.63 ; H, 6.35; N, $6.44 ;[\alpha]^{27}{ }_{\mathrm{D}}+6.75,[\alpha]^{27}{ }_{577}+6.17,[\alpha]^{27}{ }_{546}+7.53,[\alpha]^{27}{ }_{435}+14.6,[\alpha]^{27}{ }_{405}+18.3\left(c 1.00, \mathrm{CHCl}_{3}\right)$.

Ester 99. A mixture of alcohol 93 ($1.12 \mathrm{~g}, 2.65 \mathrm{~g}$), sodium chlorite ($630 \mathrm{mg}, 5.57 \mathrm{mmol}$), $\mathrm{MeCN}(20.0 \mathrm{~mL})$, sodium phosphate buffer ($20 \mathrm{~mL}, 0.67 \mathrm{M} \mathrm{NaH}_{2} \mathrm{PO}_{4} / \mathrm{Na}_{2} \mathrm{HPO}_{4}, \mathrm{pH} 6.7$) and TEMPO ($41.4 \mathrm{mg}, 0.265 \mathrm{mmol}$) was heated to $37^{\circ} \mathrm{C}$. Then, $3 \times 200 \mu \mathrm{~L}$ of dilute bleach (1.06 $\mathrm{mL} 5.25 \% \mathrm{NaOCl}$ diluted into 20 mL water) was added dropwise over a period of 45 min . After stirring the mixture for another 4.5 h , sodium chlorite ($370 \mathrm{mg}, 3.27 \mathrm{mmol}$) and another $500 \mu \mathrm{~L}$ of dilute bleach were added. After 24 h , the mixture was cooled to rt and diluted with water (30 mL). The pH of the mixture was adjusted to pH 8 with 2 M NaOH . The mixture was poured into a cold $\left(\sim 0{ }^{\circ} \mathrm{C}\right)$ solution of $0.5 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{3}$ and maintained $<20^{\circ} \mathrm{C}(\mathrm{pH}$ of the aqueous layer $8.5-$ 9.0). After stirring 0.5 h at rt , MTBE (30 mL) was added. The organic layer was separated and discarded. EtOAc (30 mL) was added and the aqueous layer was acidified with 2 M HCl to pH $3-4$. The layers were separated and the aqueous phase was extracted with EtOAc $(2 \times 30 \mathrm{~mL})$. The combined organic extracts were washed with water $(2 \times 30 \mathrm{~mL})$ and brine $(1 \times 50 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure to give the crude acid $\mathbf{9 8}(1.11 \mathrm{~g}$, $2.53 \mathrm{mmol}, 96 \%$) as a colorless foam, which was used without further purification.

Methyl iodide ($0.500 \mathrm{~mL}, 8.00 \mathrm{mmol}$) was added dropwise to a mixture of the crude acid $98(436 \mathrm{mg}, 1.00 \mathrm{mmol})$, potassium carbonate ($691 \mathrm{mg}, 5.00 \mathrm{mmol}$) and DMF (10.0 mL). After 0.5 h at rt , the reaction mixture was cooled to $0^{\circ} \mathrm{C}$, then diluted with water (30 mL), saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(10 \mathrm{~mL})$, and $\mathrm{EtOAc}(30 \mathrm{~mL})$. The pH was adjusted to pH 8 with 2 M HCl . The layers were separated and the aqueous phase was extracted with EtOAc $(3 \times 40 \mathrm{~mL})$. The combined organic extracts were washed with brine $(1 \times 100 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. Purification of the residue by flash chromatography (5 to $10 \% \mathrm{Et}_{2} \mathrm{O}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$) gave methyl ester $99(407 \mathrm{mg}, 0.903 \mathrm{mmol}, 90 \%)$ as a colorless foam, which can be crystallized from EtOAc. $\mathrm{R}_{f} 0.57\left(10 \% \mathrm{Et}_{2} \mathrm{O}-\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $7.75(\mathrm{~d}, J=8.3,2 \mathrm{H}), 7.28(\mathrm{~d}, J=8.3,2 \mathrm{H}), 5.50(\mathrm{~s}, 1 \mathrm{H}), 4.48(\mathrm{dd}, J=6.3,3.2,1 \mathrm{H}), 4.22(\mathrm{dd}, J=$ $11.2,6.3,1 \mathrm{H}), 3.92$ (dd, $J=11.2,3.3,1 \mathrm{H}), 3.71$ (dd, $J=11.7,6.5,1 \mathrm{H}), 3.67$ (s, 3H), 3.65-3.62 $(\mathrm{m}, 1 \mathrm{H}), 2.82(\mathrm{~m}, 1 \mathrm{H}), 2.78(\mathrm{dt}, J=12.6,1.9,1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{t}, J=7.0,2 \mathrm{H}), 2.24-2.19$ $(\mathrm{m}, 1 \mathrm{H}), 2.11-2.06(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.57(\mathrm{~m}, 3 \mathrm{H}), 1.46(\mathrm{ddd}, J=13.3,9.1,4.1,1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR
($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.9,162.3,143.8,136.2,129.5,127.8,87.6,85.3,72.3,68.9,51.81$, $51.78,43.3,40.6,38.2,32.3,22.2,21.5$; IR (film): 2935, 2883, 1764, 1343, 1309, 1162, 1092, 1038, $972 \mathrm{~cm}^{-1}$; HRMS-FAB $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}, 451.1539$; found, 451.1548; Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{~S}$: C, 55.99; H, 5.82; N, 6.22; found: C, $56.26 ; \mathrm{H}, 5.88 ; \mathrm{N}, 6.15$; $[\alpha]^{27}{ }_{\mathrm{D}}+8.8,[\alpha]^{27}{ }_{577}+8.6,[\alpha]^{27}{ }_{546}+10.4,[\alpha]^{27}{ }_{435}+19.0,[\alpha]^{27}{ }_{405}+23.76\left(c 1.00, \mathrm{CHCl}_{3}\right)$.

Alkene 100. LDA (0.3 M in THF-hexanes, $1.50 \mathrm{~mL}, 0.458 \mathrm{mmol}$) was added dropwise over 5 min to a solution of ester $99(712 \mathrm{mg}, 0.330 \mathrm{mmol})$ in THF (1.40 mL) and DMPU (0.950 mL) at $-78^{\circ} \mathrm{C}$ (acetone/dry ice). The solution was maintained at $-78^{\circ} \mathrm{C}$ for 10 min , then allowed to warm up to $-55^{\circ} \mathrm{C}$ over 20 min . 5-bromo-1-pentene ($45.0 \mu \mathrm{~L}, 0.382 \mathrm{mmol}$) was added to the resulting deep yellow solution. After 15 min at $-55^{\circ} \mathrm{C}$, another equivalent of 5-bromo-1-pentene ($45.0 \mu \mathrm{~L}, 0.382 \mathrm{mmol}$) was added and the solution was allowed to warm up $-40^{\circ} \mathrm{C}$ over 0.5 h . The pale yellow solution was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(3.00 \mathrm{ml})$, then allowed to warm up to rt . Water (100 mL) was added and the mixture was extracted with EtOAc (3×30 $\mathrm{mL})$. The combined organic extracts were washed brine $(1 \times 50 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. Purification of the residue by flash chromatography (60 to 75% EtOAc-hexanes) furnished recovered starting material 99 ($100 \mathrm{mg}, 0.222 \mathrm{mmol}, 58 \%$) and alkylated ester $100(24.2 \mathrm{mg}, 0.0467 \mathrm{mmol}, 12 \%)$ as a colorless foam, which could be crystallized from EtOAc-hexanes. $\mathrm{R}_{f} 0.44$ (50% EtOAc-hexanes); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 7.73 (d, $J=8.2,2 \mathrm{H}), 7.27(\mathrm{~d}, J=8.1,2 \mathrm{H}), 5.77-5.68(\mathrm{~m}, 1 \mathrm{H}), 5.47(\mathrm{~s}, 1 \mathrm{H}), 4.99-4.92(\mathrm{~m}, 2 \mathrm{H})$, $4.46 \& 4.44$ (minor diastereomer: dd, $J=6.3,3.2$; major diastereomer: dd, $J=6.3,3.2,1 \mathrm{H}$), 4.21 \& 4.18 (major diastereomer: dd, $J=11.2,6.3$; minor diastereomer: dd, $J=11.2,6.2,1 \mathrm{H}$), $3.90 \&$ 3.89 (major diastereomer: dd, $J=11.2,3.2$; minor diastereomer: dd, $J=11.2,3.3,1 \mathrm{H}$), $3.74 \&$ 3.59 (minor diastereomer: dd, $J=11.6,6.6$; minor diastereomer: dd, $J=11.8,6.5,1 \mathrm{H}$), $3.66 \&$ 3.65 (major and minor diastereomer, s, 3H), 3.63-3.59 (m, 1H), 2.84-2.71 (m, 2H), 2.41 (s, 3H), 2.27-2.13 (m, 2H), 2.01-1.96 (m, 3H), 1.77-1.54 (m, 4H), 1.47-1.38 (m, 3H), 1.37-1.27 (m,

2H); ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta 175.9,175.6,162.3,162.2,143.8,143.8,138.0,138.0$, $136.2,129.5,129.5,127.8,127.8,115.0,87.7,87.6,85.3,85.2,72.4,72.1,68.9,68.9,61.0,51.9$, $51.8,51.7,44.3,44.0,42.3,42.1,41.0,40.3,38.2,38.0,33.3,32.5,32.3,29.1,28.7,26.4,26.3$, 22.3, 22.1, 21.5; IR (film): 2937, 2887, 1764, 1733, 1459, 1440, 1343, 1162, $973 \mathrm{~cm}^{-1}$; HRMS$\mathrm{CI}(\mathrm{m} / \mathrm{z})[\mathrm{M}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{~S}, 518.2087$; found, 518.2094; Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{~S}$: C, 60.21; H, 6.61; N, 5.40; found: C, 60.48; H, 6.80; N, 5.35; $[\alpha]^{27}{ }_{D}+13.4,[\alpha]^{27}{ }_{577}+13.1$, $[\alpha]^{27}{ }_{546}+15.6,[\alpha]^{27}{ }_{435}+28.1,[\alpha]^{27}{ }_{405}+34.9\left(c 0.640, \mathrm{CHCl}_{3}\right)$.

Aldehyde SI-16. Sodium bicarbonate ($620 \mathrm{mg}, 7.4 \mathrm{mmol}$) was added to a solution of alkene $87(3.0 \mathrm{~g}, 7.4 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{CH}_{3} \mathrm{OH}(8: 1,70 \mathrm{~mL})$. The suspension was stirred vigorously and cooled to $-78{ }^{\circ} \mathrm{C}$. Ozone was bubbled through the reaction mixture until the suspension remained a dark blue color. Oxygen was bubbled through the reaction mixture until the suspension became colorless. Dimethyl sulfide ($1.2 \mathrm{~mL}, 16.3 \mathrm{mmol}$) was added to the reaction mixture dropwise over 2 min and the suspension was warmed to rt and stirred for 12 h . The mixture was washed with water ($1 \times 15 \mathrm{~mL}$) and the aqueous portion was back extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 25 \mathrm{~mL})$. The combined organic extracts were washed with brine ($1 \times 15 \mathrm{~mL}$), dried over MgSO_{4}, and concentrated under reduced pressure. Purification of the residue by flash chromatography (1:1 EtOAc:hex, then 3:1 EtOAc:hex) provided aldehyde SI-16 as a colorless foam ($2.75 \mathrm{~g}, 92 \%$). $\mathrm{R}_{f} 0.23$ (3:1 EtOAc:hex); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.78(\mathrm{~s}, 1 \mathrm{H}), 7.76$ (d, $J=8.3,2 \mathrm{H}), 7.29(\mathrm{~d}, J=8.0,2 \mathrm{H}), 5.53(\mathrm{~s}, 1 \mathrm{H}), 4.58(\mathrm{dd}, J=6.3,3.3,1 \mathrm{H}), 4.23(\mathrm{dd}, J=11.2$, $6.3,1 \mathrm{H}), 3.93(\mathrm{dd}, J=11.2,3.3,1 \mathrm{H}), 3.79(\mathrm{~m}, 1 \mathrm{H}), 3.64(\mathrm{dt}, J=12.6,3.6,1 \mathrm{H}), 2.88(\mathrm{~m}, 1 \mathrm{H})$, 2.75 (td, $J=12.5,2.0,1 \mathrm{H}), 2.65-2.55(\mathrm{~m}, 3 \mathrm{H}), 2.49-2.43(\mathrm{~m}, 4 \mathrm{H}), 1.58-1.54(\mathrm{~m}, 1 \mathrm{H}), 1.40(\mathrm{qd}$, 12.8, 4.1, 1H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 199.2,162.1,143.9,136.0,129.6,127.8,87.6$, 85.3, 72.2, 70.0, 51.6, 40.5, 39.6, 38.0, 37.4, 22.4, 21.6; IR (film): 2934, 2887, 2841, 2737, 1760, 1722, 1598, 1343, $1162 \mathrm{~cm}^{-1} ;$ HRMS-ESI (m / z) $\left[\mathrm{M}+\mathrm{CH}_{3} \mathrm{OH}\right]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{~S}, 461.1358$; found, 461.1367; $[\alpha]^{23}{ }_{\mathrm{D}}+6.6,[\alpha]^{23}{ }_{577}+7.2,[\alpha]^{23}{ }_{435}+12.5,[\alpha]^{23}{ }_{546}+8.0,[\alpha]^{23}{ }_{405}+14.8(c 0.17$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$).

Ketone 101. A 100 mL 3-neck flask equipped with a glass stopper, reflux condenser, and a rubber septa was charged with $\mathrm{Mg}(1.26 \mathrm{~g}, 52.0 \mathrm{mmol})$. The Mg was activated by flame drying under a flow of N_{2} and suspended in $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$. The suspension was stirred and a small crystal of $I_{2}(\sim 10 \mathrm{mg})$ was added, generating a brown suspension. This suspension was heated to reflux and the brown color dissipated. A solution of 5-bromo-1-pentene ($6.0 \mathrm{~mL}, 40 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added to the suspension via cannula and the suspension was brought to reflux. At the beginning of the addition, the suspension turned yellow and then slowly turned gray. Upon completion of the addition of bromide, the external heat source was removed and the suspension was allowed to cool to rt with stirring over a period of 3.5 h . The suspension was filtered into a sealable tube under argon atmosphere using a Shlenk filter to provide a brown solution of 4-pentenyl-1-magnesium bromide $(0.75 \mathrm{M})$. This solution could be stored under argon at rt indefinitely.

A solution of 4-pentenyl-1-magnesium bromide ($13.6 \mathrm{~mL}, 10 \mathrm{mmol}, 0.75 \mathrm{M}$ in $\mathrm{Et}_{2} \mathrm{O}$) was added dropwise over 20 min to a solution of aldehyde SI-16 (3.70 g, 9.14 mmol) in THF (91 mL) at $-78^{\circ} \mathrm{C}$. The mixture was warmed to $-10^{\circ} \mathrm{C}$ and maintained at this temperature for 1 h . A saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(100 \mathrm{~mL})$ was added to the mixture in one portion. The mixture was diluted with water (50 mL) and the pH of the aqueous portion was adjusted to ~ 3.0 by dropwise addition of 1 M HCl . The mixture was extracted with EtOAc ($2 \times 100 \mathrm{~mL}$) and the combined organic extracts were washed with saturated aqueous $\mathrm{NaHCO}_{3}(1 \times 100 \mathrm{~mL})$, dried over MgSO_{4}, and concentrated under reduced pressure. Purification of the residue by flash chromatography (4:1 EtOAc:hex) gave alcohol SI-17 a colorless foam ($3.96 \mathrm{~g}, 8.32 \mathrm{mmol}, 91 \%$), which was typically used directly in subsequent transformations. Eluting the column with EtOAc gave recovered starting material SI-16 ($300 \mathrm{mg}, 0.74 \mathrm{mmol}, 8 \%$).

A solution of DMSO $(10.7 \mathrm{~mL}, 150 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(90 \mathrm{~mL})$ was added dropwise to a solution of oxalyl chloride ($7.8 \mathrm{~mL}, 90 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(120 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$. The resulting suspension was stirred for 15 min and a solution of alcohol SI-17 from above ($8.43 \mathrm{~g}, 17.8$
$\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(120 \mathrm{~mL})$ was added via cannula to the reaction mixture. The suspension was stirred at $-78{ }^{\circ} \mathrm{C}$ for 15 min and then $\mathrm{Et}_{3} \mathrm{~N}(26 \mathrm{~mL}, 250 \mathrm{mmol})$ was added in one portion. The suspension was allowed to warm to rt and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ and water $(1 \times 150 \mathrm{~mL})$. The layers were separated and the aqueous portion was extracted with EtOAc $(2 \times 150 \mathrm{~mL})$. The combined organic portions were washed with brine $(1 \times 150 \mathrm{~mL})$, dried over MgSO_{4}, and concentrated under reduced pressure to give a yellow residue. Purification of this residue by flash chromatography (1:1 EtOAc:hex) gave 101 as a colorless oil which crystallized on standing ($7.70 \mathrm{~g}, 16.2 \mathrm{mmol}, 91 \%, 83 \%$ over the 2 steps). $\mathrm{mp} 138-140{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $7.74(\mathrm{~d}, J=8.3,2 \mathrm{H}), 7.27(\mathrm{~d}, J=8.3,2 \mathrm{H}), 5.72(\mathrm{ddt}, J=17.0,10.3,6.7,1 \mathrm{H}), 5.50(\mathrm{~s}, 1 \mathrm{H}), 5.00-$ $4.95(\mathrm{~m}, 2 \mathrm{H}), 4.56(\mathrm{dd}, J=6.2,3.2,1 \mathrm{H}), 4.18(\mathrm{dd}, J=11.2,6.3,1 \mathrm{H}), 3.90(\mathrm{dd}, J=11.2,3.1$, $1 \mathrm{H}), 3.73(\mathrm{dd}, J=11.6,6.2,1 \mathrm{H}), 3.61(\mathrm{dt}, J=12.6,3.6,3.6,1 \mathrm{H}), 2.82(\mathrm{t}, J=11.1,1 \mathrm{H}), 2.73(\mathrm{td}$, $J=12.5,2.0,1 \mathrm{H}), 2.51-2.35(\mathrm{~m}, 9 \mathrm{H}), 2.02(\mathrm{q}, J=7.1,2 \mathrm{H}), 1.67-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.53-1.49(\mathrm{~m}$, $1 \mathrm{H}), 1.37(\mathrm{qd}, J=12.6,4.1,1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 208.2,162.1,143.8,137.6$, $136.3,129.5,127.8,115.5,87.7,85.3,72.4,69.0,51.7,42.0,39.7,39.0,38.7,38.2,32.9,22.7$, 22.4, 21.5; IR (film): 2934, 2891, 1764, 1710, 1640, 1598, 1343, $1162 \mathrm{~cm}^{-1}$; Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}: \mathrm{C}, 60.74$; H, 6.37; N, 5.90; found: C, 60.68; H, 6.33; N, 5.74; $[\alpha]_{\mathrm{D}}^{23}+6.5,[\alpha]^{23}{ }_{577}$ $+7.3,[\alpha]^{23}{ }_{546}+8.4,[\alpha]^{23}{ }_{435}+13.5,[\alpha]^{23}{ }_{405}+17.6\left(c 0.17, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

101

SI-18

103

Aldehyde 103. Phosphonium salt $\mathbf{1 0 2}^{5}(61.2 \mathrm{~g}, 154 \mathrm{mmol})$ was suspended in THF (1.1 L) and cooled to $-78{ }^{\circ} \mathrm{C}$. N-potassiumhexamethyldisilazane ($24.0 \mathrm{~g}, 120 \mathrm{mmol}$) was added in one portion and the suspension was vigorously stirred for 15 min . The colorless reaction mixture became red. A solution of ketone $101(8.14 \mathrm{~g}, 17.2 \mathrm{mmol})$ in THF (100 mL) was added to the reaction mixture by cannula. The reaction was allowed to warm to rt over 30 min at which point TLC analysis indicated the complete consumption of ketone 101. Saturated aqueous NaHCO_{3} $(400 \mathrm{~mL})$ was added and the mixture was extracted ($3 \times 500 \mathrm{~mL}$) with EtOAc. The combined organic extracts were washed with brine ($1 \times 500 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated onto

Celite (200 g) under reduced pressure. Purified by flash chromatography using a gradient solvent system (1:4 EtOAc:hex, then 2:3 EtOAc:hex) afforded SI-18 as a mixture of E and Z isomers (2:5, unassigned). The crude product was used directly in the subsequent transformation.

A solution of HF ($10 \mathrm{~mL}, 49 \% \mathrm{aq}$) was added dropwise over 2 min to a solution of enol ether SI-18 in MeCN (100 mL) in a polyethylene reaction vessel. The resulting solution was maintained at rt for 18 h . A solution of saturated aqueous NaHCO_{3} was added dropwise (CAUTION! Gas evolution) until $\mathrm{pH}=8$. The mixture was extracted with EtOAc ($3 \times 150 \mathrm{~mL}$) and the combined organic extracts were washed with brine ($1 \times 150 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated onto Celite (30 g). Purification by flash chromatography on silica gel (2:3 EtOAc:hex, then 1:1 EtOAc:hex) provided a mixture of aldehydes $\mathbf{1 0 3}(7.69 \mathrm{~g}, 15.7 \mathrm{mmol}, 91 \%$ over 2 steps) as a colorless foam. This mixture of diastereomers was not separated and was characterized as a mixture. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.58(\mathrm{~d}, J=1.9,1.7 \mathrm{H}), 9.53(\mathrm{~d}, J=$ $2.8,1 \mathrm{H}), 7.76(\mathrm{~d}, J=8.1,5.4 \mathrm{H}), 7.29(\mathrm{~d}, J=8.0,5.4 \mathrm{H}), 5.73(\mathrm{~m}, 2.7 \mathrm{H}), 5.50(\mathrm{~s}, 2.7 \mathrm{H}), 5.03-$ $4.96(\mathrm{~m}, 5.4 \mathrm{H}), 4.49-4.46(\mathrm{~m}, 2.7 \mathrm{H}), 4.23-4.19(\mathrm{~m}, 2.7 \mathrm{H}), 3.92-3.90(\mathrm{~m}, 2.7 \mathrm{H}), 3.71(\mathrm{dd}, J=$ $11.6,6.5,2 \mathrm{H}), 3.65-3.61(\mathrm{~m}, 4.4 \mathrm{H}), 2.87-2.73(\mathrm{~m} \mathrm{5.4H}), 2.42(\mathrm{~s}, 8.1 \mathrm{H}), 2.23-2.17(\mathrm{~m}, 5.4 \mathrm{H})$, 2.08-2.04 (m, 8.1), 1.82-1.25 (m, 26H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 203.7,203.5,162.3$, $162.2,143.9,143.86,137.6,136.1,129.6,129.5,127.9,127.8,115.4,115.38,87.6,87.5,85.3$, $72.3,72.1,68.9,52.12,52.0,41.8,41.78,40.8,40.2,38.1,38.0,33.5,28.9,28.8,26.0,25.96$, $25.0,24.8,22.3,22.2,21.6$ (not all peaks for the two diastereomers are resolved); IR (film), 3068, 2930, 2883, 2860, 2722, 1763, 1719, 1640, $1597 \mathrm{~cm}^{-1}$; HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}$, 489.2059; found, 489.2039; $[\alpha]^{23}{ }_{\mathrm{D}}+20.0,[\alpha]^{23}{ }_{577}+20.1,[\alpha]^{23}{ }_{546}+22.7,[\alpha]^{23}{ }_{435}$ $+46.4,[\alpha]^{23}{ }_{405}+65.5\left(c 0.19, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Enoxysilanes 104. Tri-iso-propylsilyltriflate (TIPSOTf, $14.7 \mathrm{~mL}, 54.6 \mathrm{mmol}$) was added dropwise to a solution of diastereomeric aldehydes $103(7.62 \mathrm{~g}, 15.60 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(15.2 \mathrm{~mL}$, $109.2 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. The reaction was allowed to warm to rt, then stirred
for 12 h . A saturated aqueous solution of $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$ was added and the mixture was extracted with EtOAc ($3 \times 150 \mathrm{~mL}$). The combined organic extracts were washed with brine (1 x 100 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated onto Celite (20 g). Purification by flash chromatography on silica gel (1:10:39 $\left.\mathrm{Et}_{3} \mathrm{~N}: E t O A c: h e x\right)$ furnished a $\sim 3: 2$ mixture of enoxysilanes 104 ($9.75 \mathrm{~g}, 15.1 \mathrm{mmol}, 97 \%$) as a pale yellow foam. This mixture of isomers was not separated and was characterized as a mixture. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.75(\mathrm{~d}, J=$ $8.2,5 \mathrm{H}), 7.29(\mathrm{~d}, J=8.5,1 \mathrm{H}), 6.15(\mathrm{~s}, 2.5 \mathrm{H}), 5.82-5.76(\mathrm{~m}, 2.5 \mathrm{H}), 5.49(\mathrm{~s}, 1.5 \mathrm{H}), 5.48(\mathrm{~s}, 1 \mathrm{H})$, $5.00-4.91(\mathrm{~m}, 5 \mathrm{H}), 4.50-4.47(\mathrm{~m}, 1.5 \mathrm{H}), 4.21-4.71(\mathrm{~m}, 2.5 \mathrm{H}), 3.92-3.90(\mathrm{~m}, 2.5 \mathrm{H}), 3.66-3.62$ $(\mathrm{m}, 5 \mathrm{H}), 2.90-2.74(\mathrm{~m}, 5 \mathrm{H}), 2.24(\mathrm{~s}, 7.5 \mathrm{H}), 2.30-2.19(\mathrm{~m}, 2.5 \mathrm{H}), 2.13-1.71(\mathrm{~m}, 19.5 \mathrm{H}), 1.48-$ 1.40 ($\mathrm{m}, 8.0$), $1.14-1.03(\mathrm{~m}, 56 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 163.0,162.8,144.3,144.2$, $139.2,138.9,136.8,136.76,130.0,129.95,128.3,116.9,116.5,115.2,114.9,88.2,88.17,85.8$, 85.77, 73.2, 73.1, 69.42, 69.4, 52.9, 52.8, 42.7, 42.6, 41.3, 41.1, 38.9, 38.7, 34.1, 33.5, 31.0, 27.8, $27.5,26.3,23.3,22.7,22.0,18.2,18.18,12.34,12.3$ (not all peaks for the two isomers are resolved); IR (film): 2943, 1772, 1653, $1458 \mathrm{~cm}^{-1}$; HRMS-ESI (m / z) $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{34} \mathrm{H}_{52} \mathrm{~N}_{2} \mathrm{NaO}_{6} \mathrm{SSi}$, 667.3213; found, 667.3228; $[\alpha]^{23}{ }_{\mathrm{D}}+1.7,[\alpha]^{23}{ }_{577}+1.9,[\alpha]^{23}{ }_{546}+2.6,[\alpha]^{23}{ }_{435}$ $+4.8,[\alpha]^{23}{ }_{405}+6.5\left(c 0.79, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Aldehyde 105. A flask was charged enol ethers 104 ($2.0 \mathrm{~g}, 3.1 \mathrm{mmol}$) and 2,6-di-tert-butyl-4-methylpyridine ($1.9 \mathrm{~g}, 9.32 \mathrm{mmol}$). The mixture was dried by azeotropic distillation with benzene (3x). The flask was equipped with a sealable top and placed under an argon atmosphere. Methylene chloride (111 mL) was added via syringe and the solution was cooled to $0{ }^{\circ} \mathrm{C}$. A solution of $\mathrm{BCl}_{3}(12.4 \mathrm{~mL}, 12.4 \mathrm{mmol}, 1.0 \mathrm{M}$ in heptane) was added in one portion via an ovendried glass syringe and the solution was allowed to warm to rt. The vessel was sealed under an argon atmosphere. The colorless solution turned slightly pink and cloudy precipitate slowly formed. The suspension was gently stirred for 15 h at rt . The seal was opened to an N_{2} atmosphere and methylene chloride (200 mL) was added to the reaction mixture. The suspension
was transferred by rapid cannulation into a solution of saturated aqueous $\mathrm{NaHCO}_{3}(250 \mathrm{~mL})$. The two homogeneous phases were separated and the aqueous portion was extracted with EtOAc (5 x 100 mL). The combined organic extracts were washed with brine, dried over MgSO_{4}, and concentrated under reduced pressure. Purification of this foam by flash chromatography (1:1 EtOAc:hex, then 2:1 EtOAc:hex, then 3:1 EtOAc:hex) gave 105 as a colorless powder (1.29 g , 85%). $\mathrm{R}_{f} 0.23$ (1:3 hexanes:EtOAc); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.34(\mathrm{~d}, J=1.7,1 \mathrm{H}$), 7.71 (d, $J=8.4,2 \mathrm{H}), 7.33(\mathrm{~d}, J=8.0,2 \mathrm{H}), 5.56(\mathrm{ddt}, J=17.9,10.4,6.5,1 \mathrm{H}), 5.13(\mathrm{~s}, 1 \mathrm{H}), 4.88-4.84$ $(\mathrm{m}, 2 \mathrm{H}), 4.45(\mathrm{t}, J=4.1,1 \mathrm{H}), 4.34-4.32(\mathrm{~m}, 1 \mathrm{H}), 4.27-4.24(\mathrm{~m}, 1 \mathrm{H}), 3.67(\mathrm{dd}, J=13.0,8.4$, $1 \mathrm{H}), 3.23-3.20(\mathrm{~m}, 1 \mathrm{H}), 3.13(\mathrm{td}, J=12.9,5.0,1 \mathrm{H}), 3.03(\mathrm{~d}, J=9.9,1 \mathrm{H}), 2.64-2.60(\mathrm{~m}, 2 \mathrm{H})$, 2.44-2.41 (m, 4H), 2.22-2.19 (m, 1H), 2.02-2.00 (m, 2H), 1.72-1.69 (m, 1H), 1.57-1.48 (m, 2H), 1.28-1.01 (m, 1H) 0.91-0.84 (m, 1H); ${ }^{13}$ C NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 196.5,160.7,144.3$, $137.6,136.4,129.9,127.8,114.9,82.7,60.1,56.8,53.3,53.2,42.1,41.6,39.7,33.6,33.4,29.7$, 21.6, 21.5, 21.46; IR (film): 3466, 2934, 2717, 1756, 1640, 1598, 1324, $1158 \mathrm{~cm}^{-1}$; LRMS-ESI $(m / z)[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}, 489$; found, 489; Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}$: C, 61.46; $\mathrm{H}, 6.60$; N, 5.73; found: C, 61.22; H, 6.62; N, 5.61; $[\alpha]^{23}{ }_{\mathrm{D}}-21.3,[\alpha]^{23}{ }_{577}$ $-21.5,[\alpha]^{23}{ }_{546}-26.4,[\alpha]^{23}{ }_{435}-53.3,[\alpha]^{23}{ }_{405}-79.1\left(c \quad 0.3, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; The structure of aldehyde $\mathbf{1 0 5}$ was confirmed by COSY, HMQC, and NOESY experiments.

Enoxysilanes 107. A reaction vessel containing alkene $103(55 \mathrm{mg}, 0.113 \mathrm{mmol})$ and Pd/C (10 mg, 10\% Degüssa Type) in EtOAc (4 mL) was stirred under H_{2} gas (1 atm). After 15 min, the mixture was filtered over a plug of SiO_{2} topped with Celite (EtOAc eluent). Removal of solvent under reduced pressure afforded aldehydes SI-19, which were used directly in the subsequent transformation.

TIPSOTf ($110 \mu \mathrm{~L}, 0.407 \mathrm{mmol}$) was added dropwise to a solution of diastereomeric aldehydes SI-19 prepared above, $\mathrm{Et}_{3} \mathrm{~N}(113 \mu \mathrm{~L}, 0.814 \mathrm{mmol})$, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.2 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$.

The reaction mixture was allowed to warm to rt over 30 min . After 4 h at rt , a saturated aqueous solution of $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$ was added and the mixture was extracted with EtOAc ($5 \times 1.5 \mathrm{~mL}$). The combined organic extracts were washed with brine ($1 \times 1 \mathrm{~mL}$), dried by passage over a short plug of SiO_{2} (EtOAc eluent), and evaporated under reduced pressure. The resulting material was purified by flash chromatography on silica gel (4:1 hexanes: EtOAc containing $2 \% \mathrm{Et}_{3} \mathrm{~N}$; then, 3:1 hexanes: EtOAc containing $2 \% \mathrm{Et}_{3} \mathrm{~N}$) to give a $\sim 3: 2$ mixture of enoxysilanes $107(68 \mathrm{mg}$, 93% over 2 steps). The enoxysilane isomers could be separated by preparative HPLC ($2 \times 15 \mathrm{mg}$ injections, Alltech Alltima 5μ silica column $(250 \times 10 \mathrm{~mm}), 10.0 \mathrm{~mL} / \mathrm{min}, 12 \% \mathrm{EtOAc}$ in hexanes, $\lambda=254 \mathrm{~nm}, \mathrm{~T}_{\mathrm{R}}=19.9 \mathrm{~min}$, minor isomer, $\mathrm{T}_{\mathrm{R}}=22.7 \mathrm{~min}$, major isomer) to provide 12.0 mg of minor isomer (Z)-107 and 17.1 mg of major isomer (E)-107. For (Z)-107: $\mathrm{R}_{f} 0.69$ (1:1 hexanes:EtOAc); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.77(\mathrm{~d}, J=8.3,2 \mathrm{H}), 7.29(\mathrm{~d}, J=8.1,2 \mathrm{H}), 6.15$ (s, 1H), $5.50(\mathrm{~s}, 1 \mathrm{H}), 4.47$ (app. q, $J=3.1,1 \mathrm{H}), 4.22(\mathrm{dd}, J=11.2,6.3,1 \mathrm{H}), 3.93(\mathrm{dd}, J=11.2$, 3.1), 3.70-3.59 (m, 2H), 2.91 (app. t, $J=11.7,1 \mathrm{H}$), 2.80 (app. t, $J=11.7,1 \mathrm{H}$), 2.43 (s, 3H), $2.32-2.24(\mathrm{~m}, 1 \mathrm{H}), 2.19-2.05(\mathrm{~m}, 3 \mathrm{H}), 1.85-1.78(\mathrm{~m}, 3 \mathrm{H}), 1.50-1.36(\mathrm{~m}, 1 \mathrm{H}), 1.33-1.24(\mathrm{~m}$, $4 \mathrm{H}), 1.24-0.98(\mathrm{~m}, 23 \mathrm{H}), 0.88(\mathrm{t}, J=7.2,3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 162.8,143.9$, $136.6,136.3,129.7,129.1,116.6,87.9,85.6,72.8,69.2,52.8,42.5,41.1,38.7,31.5,31.3,28.0$, 23.1, 22.7, 22.4, 21.8, 18.0, 14.3, 12.0; IR (film): 2929, 2867, 1767, 1465, 1347, 1204, 1162, 1142, $812 \mathrm{~cm}^{-1}$; HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{34} \mathrm{H}_{54} \mathrm{~N}_{2} \mathrm{NaO}_{6} \mathrm{SSi}$, 669.3370; found, 669.3379; $[\alpha]^{26}{ }_{\mathrm{D}}-7.9,[\alpha]^{26}{ }_{577}-8.4,[\alpha]^{26}{ }_{546}-8.9,[\alpha]^{26}{ }_{435}-14.1,[\alpha]^{26}{ }_{405}-16.6\left(c 1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. For (E)-107: $\mathrm{R}_{f} 0.69$ (1:1 hexanes:EtOAc); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.77(\mathrm{~d}, J=8.3,2 \mathrm{H}$), 7.30 $(\mathrm{d}, J=8.1,2 \mathrm{H}), 6.14(\mathrm{~s}, 1 \mathrm{H}), 5.51(\mathrm{~s}, 1 \mathrm{H}), 4.50(\mathrm{app} . \mathrm{q}, J=3.1,1 \mathrm{H}), 4.21(\mathrm{dd}, J=11.2,6.3,1 \mathrm{H})$, 3.93 (dd, $J=11.2,3.2,1 \mathrm{H}), 3.71-3.61(\mathrm{~m}, 2 \mathrm{H}), 2.84$ (app. t, $J=11.7,1 \mathrm{H}), 2.75(\mathrm{td}, J=11.7$, $1.6,1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.30-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.19-1.96(\mathrm{~m}, 3 \mathrm{H}), 1.95-1.82(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.70(\mathrm{~m}$, $1 \mathrm{H}), 1.54-1.45(\mathrm{~m}, 1 \mathrm{H}), 1.37-1.20(\mathrm{~m}, 6 \mathrm{H}), 1.17-1.01(\mathrm{~m}, 21 \mathrm{H}), 0.87(\mathrm{t}, J=7.2,3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz, CDCl_{3}): $\delta 162.6,144.0,136.5,136.3,129.7,128.1,117.0,88.0,85.5,73.0,69.2$, 52.6, 42.4, 40.8, 38.5, 32.0, 28.3, 27.5, 26.4, 22.7, 22.4, 21.8, 17.9, 14.3, 12.1; IR (film): 2944, 2929, 2867, 1767, 1663, 1465, 1347, 1162, $816 \mathrm{~cm}^{-1}$; HRMS-ESI (m / z) [M $+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{34} \mathrm{H}_{54} \mathrm{~N}_{2} \mathrm{NaO}_{6} \mathrm{SSi}$, 669.3370; found, 669.3690; $[\alpha]^{26}{ }_{\mathrm{D}}+5.3$, $[\alpha]^{26}{ }_{577}+5.5,[\alpha]^{26}{ }_{546}+6.4,[\alpha]^{26}{ }_{435}+12.2,[\alpha]^{26}{ }_{405}+15.8\left(c 1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. The olefin geometry of $(E) \mathbf{- 1 0 7}$ was determined from NOESY experiments,
 as depicted.

N, O-acetal 113. N, O-acetal 113 was routinely observed in cyclization experiments that were carried out at low temperatures for short reaction times. An analytical sample of $\mathbf{1 1 3}$ was prepared as follows: A solution of $\mathrm{BCl}_{3}(75 \mu \mathrm{~L}, 0.0745 \mathrm{mmol}, 1 \mathrm{M}$ solution in heptane) was added dropwise over 15 sec to a stirred solution of enoxysilanes $107(12 \mathrm{mg}, 0.186 \mathrm{mmol})$ and 2,6-di-t-butyl-4-methylpyridine ($11.5 \mathrm{mg}, 0.0559 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(745 \mu \mathrm{l})$ at $0{ }^{\circ} \mathrm{C}$. After an additional 30 sec , the reaction mixture was quenched by the addition of saturated aq. $\mathrm{NaHCO}_{3}(1$ mL). After warming to rt , the layers were separated and the aqueous layer was extracted with EtOAc ($4 \times 1 \mathrm{~mL}$) The combined organic layers were washed with brine (1 mL), dried by passage over a plug of silica gel (EtOAc eluent), and evaporated under reduced pressure. Purification of the residue by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$; then $4: 1$ hexanes:EtOAc eluent) afforded N, O-acetal 113 ($6.9 \mathrm{mg}, 57 \%$) as a white foam. $\mathrm{R}_{f} 0.26$ ($4: 1$ hexanes:EtOAc); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 7.65 (d, $\left.J=8.1,2 \mathrm{H}\right), 7.30,(\mathrm{~d}, J=8.1,2 \mathrm{H}), 4.86(\mathrm{dd}, J=8.2,5.7,1 \mathrm{H}), 4.57$ (app. $\mathrm{t}, J=8.2,1 \mathrm{H}), 4.37(\mathrm{dd}, J=8.1,5.8,1 \mathrm{H}), 4.43(\mathrm{~s}, 1 \mathrm{H}), 3.80-3.74(\mathrm{~m}, 2 \mathrm{H}), 3.62(\mathrm{~d}, J=$ $11.4,1 \mathrm{H}), 3.39(\mathrm{td}, J=13.8,4,1 \mathrm{H}), 2.49(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.45-2.39(\mathrm{~m}, 4 \mathrm{H}), 2.16-2.05(\mathrm{~m}, 2 \mathrm{H}), 2.03-$ $1.97(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.20-0.93(\mathrm{~m}, 29 \mathrm{H}), 0.83(\mathrm{t}, J=7.3,3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , CDCl_{3}): $\delta 155.4,143.9,138.2,130.0,126.9,90.4,74.9,66.5,65.3,57.2,52.6,47.6,40.2,39.9$, $39.7,34.0,33.0,30.4,23.5,22.8,22.4,21.7,18.0,14.4,12.6$; IR (film): 2943, 2933, 2869, 1810, 1468, 1331, 1158, $1086 \mathrm{~cm}^{-1}$; HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{34} \mathrm{H}_{55} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{SSi}, 647.3550$; found, 647.3558; $[\alpha]^{25}{ }_{\mathrm{D}}+30.3,[\alpha]^{25}{ }_{577}+30.0,[\alpha]^{25}{ }_{546}+31.8,[\alpha]^{25}{ }_{435}+60.2$, $[\alpha]^{25}{ }_{405}+69.3\left(c\right.$ 1.00, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. The relative stereochemistry of N, O-acetal 113 was determined from NOE experiments, as depicted.

Enoxysilanes 114. TIPSOTf ($1.9 \mathrm{~mL}, 7.07 \mathrm{mmol}$) was added dropwise to a solution of 2methylpentanal (SI-20) ($250 \mu \mathrm{~L}, 2.02 \mathrm{mmol}$), $i-\operatorname{Pr} \mathrm{P}_{2} \mathrm{NEt}(2.46 \mathrm{~mL}, 14.14 \mathrm{mmol})$, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20$ mL) at $-78^{\circ} \mathrm{C}$. The reaction mixture was allowed to warm to rt over 30 min . After 12 h at rt , the reaction mixture was poured into a saturated aqueous solution of $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$. The layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 20 \mathrm{~mL})$. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under reduced pressure. The resulting material was purified by flash chromatography on SiO_{2} (hexanes eluent) to give a 2.3:1 mixture of enoxysilanes 114 ($610 \mathrm{mg}, 82 \%$). (Z) $\mathbf{- 1 1 4}$ (higher R_{f}) could be isolated as a single stereoisomer by careful flash chromatography (hexanes eluent) using copious quantities of SiO_{2} (i.e., 100 mg of enoxysilanes $\mathbf{1 1 4}$ chromatographed using a $2 \times 20 \mathrm{~cm}$ column). $\mathrm{R}_{f} 0.71$ (hexanes); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.16(\mathrm{~s}, 1 \mathrm{H}), 2.09(\mathrm{~d}, J=7.58,2 \mathrm{H}), 1.51(\mathrm{~d}, J=1.3$, 3 H), 1.41 (app. sextet, $J=7.4,2 \mathrm{H}), 1.20-1.06(\mathrm{~m}, 21 \mathrm{H}), 0.90,(\mathrm{t}, J=7.4,3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 134.4,116.1,30.9,20.7,18.0,17.3,14.3,12.2$; IR (film): 2958, 2944, 2867, 1677, 1465, 1169, $996 \mathrm{~cm}^{-1}$; HRMS-APCI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{33} \mathrm{NOSi}$ 257.2301; found, 257.2308. The olefin geometry of (Z) $\mathbf{- 1 1 4}$ was determined from NOESY experiments, as depicted.

TIPS ether 116. In one portion, $\operatorname{TBSCl}(2.16 \mathrm{~g}, 14.40, \mathrm{mmol})$ was added to a solution of alcohol $104(4.69 \mathrm{~g}, 9.62, \mathrm{mmol})$ and imidazole ($1.96 \mathrm{~g}, 28.84 \mathrm{mmol}$) in MeCN (96 mL). After 2 h, the mixture was poured into water (200 mL) and extracted with EtOAc ($3 \times 100 \mathrm{~mL}$). The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated onto Celite (20 g). Purification by filtration through silica gel (1:1 EtOAc:hex) provided silyl ether SI-21 as a slightly yellow foam (5.34 g) which was carried on immediately.

SI-21 (5.34 g) was dissolved in $\mathrm{MeOH}(88 \mathrm{~mL})$ and the resulting solution was cooled to $0{ }^{\circ} \mathrm{C}$. Sodium borohydride ($1.68 \mathrm{~g}, 44.4 \mathrm{mmol}$) was added in one portion and the resulting suspension was stirred at $0^{\circ} \mathrm{C}$ for 2 h . The reaction mixture was slowly poured into a saturated
aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(150 \mathrm{~mL})$ and the resulting mixture was extracted with $\mathrm{EtOAc}(3 \mathrm{x}$ 200 mL). The combined organic extracts were washed with brine (1 x 100 mL), dried over MgSO_{4}, and concentrated onto Celite (20 g). Purification by filtration through silica gel (3:1 EtOAc:hex) furnished alcohol SI-22 as a slightly yellow foam (5.31 g) which was carried on immediately.

Tri-iso-propylsilyltriflate ($5.9 \mathrm{~mL}, 21.9 \mathrm{mmol}$) was added to a solution of crude SI-22 $(5.31 \mathrm{~g})$ and $\mathrm{Et}_{3} \mathrm{~N}(4.88 \mathrm{~mL}, 35.1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(87 \mathrm{~mL})$. The solution was maintained at rt for 2 d and then quenched by the addition of saturated aqueous $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$. The phases were separated and the aqueous portion was extracted with EtOAc ($3 \times 100 \mathrm{~mL}$). The combined organic portions were dried over MgSO_{4} and concentrated onto Celite (20 g). Purification by flash chromatography on silica gel (2:5 EtOAc:hex) provided 116 as a colorless foam (5.60 g , $7.37 \mathrm{mmol}, 75 \%$ over the three steps). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.68(\mathrm{~d}, J=8.3,2 \mathrm{H}), 7.27$ (d, $J=8.2,2 \mathrm{H}), 5.72(\mathrm{ddt}, J=17.0,10.3,6.7,1 \mathrm{H}), 4.94-4.89(\mathrm{~m}, 2 \mathrm{H}), 4.55(\mathrm{dd}, J=11.8,1.7$, $1 \mathrm{H}), 4.49$ (s, 1H), 4.43 (dd, $J=7.7,1.7,1 \mathrm{H}), 4.05-3.97(\mathrm{~m}, 2 \mathrm{H}), 3.66(\mathrm{~d}, J=9.8,1 \mathrm{H}), 3.53$ (dd, $J=10.4,5.6,1 \mathrm{H}), 3.38(\mathrm{dd}, J=12.8,8.5,1 \mathrm{H}), 3.18(\mathrm{td}, J=12.8,5.2,1 \mathrm{H}), 2.98(\mathrm{~d}, J=10.7$, $1 \mathrm{H}), 2.55-2.49(\mathrm{~m}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.04-1.60(\mathrm{~m}, 8 \mathrm{H}), 1.57-1.42(\mathrm{~m}, 1 \mathrm{H}), 1.21-1.04(\mathrm{~m}$, $24 \mathrm{H}), 1.00-0.89(\mathrm{~m}, 10 \mathrm{H}), 0.12(\mathrm{~s}, 3 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 162.7$, $143.5,138.7,137.0,129.6,127.7,114.2,80.8,68.3,66.0,62.8,56.2,55.0,42.9,40.2,40.0,39.7$, 37.1, 34.2, 25.8, 22.6, 21.4, 21.2, 18.3, 18.1, 18.05, 12.3, -5.4, -5.5; IR (film): 2930, 2866, 1760, 1641, 1598, 1463, $1331 \mathrm{~cm}^{-1}$; LRMS-ESI (m / z) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{40} \mathrm{H}_{69} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{SSi}_{2}, 761$; found, 761; Anal. Calcd for $\mathrm{C}_{40} \mathrm{H}_{68} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{SSi}_{2}$: C, 63.11; H, 9.00; N, 3.68; found: C, 63.06; H, 9.04; N, 3.67; $[\alpha]_{\mathrm{D}}^{23}-21.3,[\alpha]^{23}{ }_{577}-21.5,[\alpha]^{23}{ }_{546}-26.4,[\alpha]^{23}{ }_{435}-53.3,[\alpha]^{23}{ }_{405}-79.1\left(c 0.3, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Diene 118. Freshly cut sodium ($1.15 \mathrm{~g}, 50.0 \mathrm{mmol}$) was added to a solution of naphthalene ($6.20 \mathrm{~g}, 50.0 \mathrm{mmol}$) in DME (100 mL). The mixture was stirred for 1 h and the clear, colorless mixture became a dark green solution. Sulfonamide 116 ($5.60 \mathrm{~g}, 7.40 \mathrm{mmol}$) was
dried by azeotropic distillation of benzene ($3 \times 14 \mathrm{~mL}$). The resulting residue was dissolved in THF (75 mL) and cooled to $-78^{\circ} \mathrm{C}$. The solution of sodium naphthalide was added dropwise to the sulfonamide solution until the dark green color persisted and TLC analysis indicated complete consumption of the sulfonamide. Saturated aqueous $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$ was added rapidly and the resulting cloudy colorless suspension was allowed to warm to rt. Water (50 mL) was added and the mixture was extracted with EtOAc ($3 \times 100 \mathrm{~mL}$). The combined organic extracts were washed with brine ($1 \times 50 \mathrm{~mL}$), dried over MgSO_{4}, and concentrated under reduced pressure. Purification by flash chromatography (1:10 EtOAc:hex then, 1:5 EtOAc:hex) to gave amine $\mathbf{1 1 7}$ as a viscous, colorless oil ($3.77 \mathrm{~g}, 6.20 \mathrm{mmol}, 84 \%$) that yellowed upon exposure to air. The product was carried on immediately.

In one portion, $\mathrm{NaBH}_{3} \mathrm{CN}(3.10 \mathrm{~g}, 49.6 \mathrm{mmol})$ was added to a stirred suspension of amine $117(3.77 \mathrm{~g}, 6.2 \mathrm{mmol})$, 6-hepten-1-al ($1.7 \mathrm{~mL}, 12.4 \mathrm{mmol}$), powdered $4 \AA \mathrm{~mol}$ sieves $(3.10 \mathrm{~g})$ and acetic acid $(0.73 \mathrm{~mL}, 12.4 \mathrm{mmol})$ in $\mathrm{MeCN}(62 \mathrm{~mL})$. The suspension was stirred for 10 min and a second portion of 6-hepten-1-al ($1.7 \mathrm{~mL}, 12.4 \mathrm{mmol}$) was added. The suspension was stirred for an additional 15 min . The reaction mixture was poured into saturated aqueous $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$ and extracted with EtOAc ($3 \times 100 \mathrm{~mL}$). The combined organic extracts were washed with brine ($1 \times 50 \mathrm{~mL}$), dried over MgSO_{4}, and concentrated under reduced pressure. Purification by flash chromatography (EtOAc:hex, 1:10) gave a mixture of diene 118 and an unidentified byproduct. The residue was further purified by flash chromatography (1:9 EtOAc:benzene) to give diene 118 as a colorless oil ($4.08 \mathrm{~g}, 5.81 \mathrm{mmol}, 94 \%$). $\mathrm{R}_{f} 0.55$ (3:7 EtOAc:hex); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.79(\mathrm{~m}, 2 \mathrm{H}), 5.01-4.93(\mathrm{~m}, 4 \mathrm{H}), 4.51(\mathrm{~d}, J=5.9$, $1 \mathrm{H}), 4.14(\mathrm{dd}, J=10.7,2.0,1 \mathrm{H}), 3.90-3.81(\mathrm{~m}, 2 \mathrm{H}), 3.53(\mathrm{~d}, J=9.7,1 \mathrm{H}), 3.47-3.43(\mathrm{~m}, 1 \mathrm{H})$, 3.10-2.97 (m, 2H), 2.90-2.83 (m, 2H), 2.64 (br t, $J=10.2,1 \mathrm{H}$), 2.48-2.46 (m, 2H), 2.07-2.02 $(\mathrm{m}, 5 \mathrm{H}), 1.89(\mathrm{dd}, J=14.1,4.5,1 \mathrm{H}), 1.81-1.75(\mathrm{~m}, 3 \mathrm{H}), 1.53-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.41-1.20(\mathrm{~m}, 9 \mathrm{H})$, $1.11-1.07(\mathrm{~m}, 20 \mathrm{H}), 0.08(\mathrm{~d}, J=3.8,6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 162.9,138.8,138.79$, $114.5,114.4,82.1,68.8,66.1,63.0,61.0,58.6,55.6,45.7,41.2,40.5,36.4,35.1,34.8,33.7,29.5$, $28.8,26.7,25.6,22.4,22.3,18.4,18.1,12.1,-5.2,-5.6$; IR (film): 3076, 2930, 2864, 1760, 1640, $1463 \mathrm{~cm}^{-1}$; LRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{40} \mathrm{H}_{75} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Si}_{2}, 703$; found, 703; Anal. Calcd for $\mathrm{C}_{40} \mathrm{H}_{74} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Si}_{2}$: C, 68.32; H, 10.61; N, 3.98; found: C, 68.45; H, 10.81; N, 4.02; $[\alpha]^{23}{ }_{\mathrm{D}}-3.2$, $[\alpha]^{23}{ }_{577}-3.2,[\alpha]^{23}{ }_{546}-4.2,[\alpha]^{23}{ }_{435}-6.1,[\alpha]^{23}{ }_{405}-9.8\left(c 0.3, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Macrocycle SI-23. A 5-L 3-neck flask was equipped with a magnetic stir bar, a reflux condenser, a gas dispersion tube, and a straight tube adaptor with an in-line Teflon screw seal. A septum was fitted to the straight tube adaptor and a gas flow adaptor, fitted with an argon inlet and an oil bubbler outlet, was placed atop the reflux condenser. The flask was charged with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.4 \mathrm{~L})$ and diene $118(416 \mathrm{mg}, 0.59 \mathrm{mmol})$, and the solution was sparged for 1 h with a flow of argon through the gas dispersion tube. The solution was heated to reflux and a solution of catalyst $\mathbf{1 2 1}(24.3 \mathrm{mg}, 0.030 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(11 \mathrm{~mL})$ was added in one portion through the septum and the Teflon screw was firmly sealed to avoid contact of the solvent vapor with the rubber septum. The solution was refluxed for 8 h under a flow of argon and DMSO ($400 \mu \mathrm{~L}$) was added. The solution was allowed to cool to rt over 12 h , then the solvent was evaporated under reduced pressure. The residue was purified by flash chromatography on silica using a gradient solvent system (1:99 EtOAc:benzene; then 5:95 EtOAc:benzene) to provide macrocycles $\mathbf{1 1 9}$ as a slightly yellow ($2: 1$ mixture of E and Z isomers). 119 was used directly in the subsequent transformation. As separation of the alkene stereoisomers proved difficult, $\mathbf{1 1 9}$ was characterized as a mixture. $\mathrm{R}_{f} 0.55$ (1:9 EtOAc:benzene); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.40-5.34$ (overlapping, m, 1H), 5.30-5.23 (overlapping, m, 1H), 4.34 (dd, $J=8.4,2.0,0.33 \mathrm{H}$), 4.41 (dd, J $=6.9,2.1,0.67 \mathrm{H}$), 3.97 (overlapping, $\mathrm{m}, 1 \mathrm{H}$), $3.87(\mathrm{~d}, J=9.5,0.33 \mathrm{H}$), 3.80-3.75 (overlapping $\mathrm{m}, 1.67 \mathrm{H}$), $3.61(\mathrm{~d}, J=9.7,0.67 \mathrm{H}$), $3.51(\mathrm{~d}, J=9.5,0.33 \mathrm{H}$), 3.41 (overlapping apt dd, $J=10.3$, $5.2,1 \mathrm{H}$), 3.03-2.92 (overlapping m, 3.66H), 2.42-2.39 (overlapping m, 3.66H), 2.35-2.13 (overlapping m, 1.33H), 2.03-1.95 (overlapping m, 3H), 1.66-1.10 (overlapping m, 13H), 1.091.02 (overlapping peaks, 18 H), $0.90(\mathrm{~s}, 9 \mathrm{H}), 0.75(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 162.1$, $130.4,98.2,83.6,83.4,69.3,69.2,66.2,63.2,62.8,62.4,62.0,59.1,59.0,54.5,54.8,43.5,43.4$, 43.0, 41.9, 41.4, 41.3, 40.4, 38.2, 37.7, 32.9, 29.7, 28.2, 26.9, 26.8, 25.9, 25.9, 24.6, 22.6, 21.9, $21.8,21.5,18.4,18.3,18.2,13.7,12.2,-5.2,-5.3,-5.4$ (not all peaks for the two isomers are resolved).

Palladium on carbon ($155 \mathrm{mg}, 10 \%$ Degüssa Type) was added to a degassed solution of alkenes 119 in EtOAc (4.5 mL). The reactor was purged with H_{2} and the suspension was stirred under $\mathrm{H}_{2}(1 \mathrm{~atm})$ for 6 h . The reaction mixture was filtered through a plug of SiO_{2} topped with Celite (EtOAc eluent). Evaporation under reduced pressure afforded macrocycle SI-23 (330 mg , $82 \%, 2$ steps) as a colorless foam. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.40(\mathrm{t}, J=2.7,1 \mathrm{H}), 4.01$ (dd, $J=11.5,3.0,1 \mathrm{H}), 3.92(\mathrm{dd}, J=11.4,2.5,1 \mathrm{H}), 3.88(\mathrm{~d}, J=10.3,1 \mathrm{H}), 3.50(\mathrm{~d}, J=10.3,1 \mathrm{H})$, 3.40 (dd, $J=9.6,5.2,1 \mathrm{H}$), 3.13 (d, $J=10.3,1 \mathrm{H}$), $3.07-2.95(\mathrm{~m}, 3 \mathrm{H}), 2.60-2.51(\mathrm{~m}, 2 \mathrm{H}), 2.46-$ $2.42(\mathrm{~m}, 1 \mathrm{H}), 2.05-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.95-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.80-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.62-1.56(\mathrm{~m}, 3 \mathrm{H})$, $1.46-1.41(\mathrm{~m}, 8 \mathrm{H}), 1.27-1.21(\mathrm{~m}, 9 \mathrm{H}), 1.09-1.05(\mathrm{~m}, 22 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta 163.0,81.8,68.9,64.8,61.8,61.5,59.1,54.9,45.1,41.5,41.1,40.9,36.7$, 33.7, 28.0, 27.1, 26.4, 25.9, 25.5, 24.7, 24.4, 23.6, 22.2, 20.4, 18.3, 18.2, 12.3, -5.4, -5.6; IR (film): 2935, 2866, 1753, cm^{-1} LRMS-ESI (m / z) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{38} \mathrm{H}_{73} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Si}_{2}$, 677; found, 677; Anal. Calcd for $\mathrm{C}_{38} \mathrm{H}_{72} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Si}_{2}$: C, 67.40; H, 10.72; N, 4.14; found: C, 67.49; H, 10.81; N, 4.16. $[\alpha]^{23}{ }_{\mathrm{D}}+9.9,[\alpha]^{23}{ }_{577}+9.9,[\alpha]^{23}{ }_{546}+11.2,[\alpha]^{23}{ }_{435}+14.5,[\alpha]^{23}{ }_{405}+15.6\left(c 0.21, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

One molar aqueous $\mathrm{HCl}(975 \mu \mathrm{~L})$ was added to a solution of TBS ether SI-23 (330 mg , $0.487 \mathrm{mmol})$ in THF (4.13 mL). The solution was maintained at rt for 6 h . The reaction mixture was poured into 10 mL saturated aqueous NaHCO_{3} (CAUTION! Gas evolution) and then extracted with EtOAc ($4 \times 15 \mathrm{~mL}$). The combined organic extracts were washed with brine (1 x 15 mL), dried over MgSO_{4}, and evaporated under reduced pressure. Purification of the resulting residue by flash chromatography ($4: 1$ benzene: EtOAc; then $3: 1$ benzene: EtOAc) gave $\mathbf{1 2 2}$ as a colorless foam ($260 \mathrm{mg}, 95 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.51(\mathrm{t}, J=6.4,1 \mathrm{H}), 3.92-3.89$ $(\mathrm{m}, 2 \mathrm{H}), 3.82(\mathrm{dd}, J=11.3,6.8,1 \mathrm{H}), 3.73(\mathrm{~d}, J=10.0,1 \mathrm{H}), 3.66(\mathrm{~d}, J=10.0,1 \mathrm{H}), 3.42(\mathrm{dd}, J=$ $10.0,5.3,1 \mathrm{H}), 3.07-3.04(\mathrm{~m}, 3 \mathrm{H}), 3.01-2.94(\mathrm{~m}, 1 \mathrm{H}), 2.72-2.67(\mathrm{~m}, 2 \mathrm{H}), 2.58-2.53(\mathrm{~m}, 1 \mathrm{H})$, $2.15-2.07(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.78(\mathrm{~m}, 4 \mathrm{H}), 1.62-1.07(\mathrm{~m}, 39 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $159.6,84.0,69.1,65.5,60.6,60.5,57.8,53.5,45.3,43.0,41.9,41.4,36.8,35.0,27.3,26.2,26.0$,
25.2, 24.7, 24.2, 22.0, 20.7, 18.14, 18.1, 12.2; IR (film): 3412, 2926, 2864, 1733, $1463 \mathrm{~cm}^{-1}$; LRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{32} \mathrm{H}_{59} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Si}$, 563; found, 563; Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{58} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Si}$: C, 68.28; H, 10.39; N, 4.98; found: C, 68.24; H, 10.54; N, 4.81; $[\alpha]^{24}{ }_{\mathrm{D}}-12.4$, $[\alpha]^{24}{ }_{577}-13.0,[\alpha]^{24}{ }_{546}-15.1,[\alpha]^{24}{ }_{435}-28.0\left(c 0.77, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

PMB ether 123. A solution of NaHMDS ($0.85 \mathrm{~mL}, 1.0 \mathrm{M}$ in THF) was added to a stirred solution of alcohol 122 ($435 \mathrm{mg}, 0.77 \mathrm{mmol}$), para-methoxybenzyl chloride ($\mathrm{PMBCl}, 0.16 \mathrm{~mL}$, $0.85 \mathrm{mmol})$, and DMF (7.7 mL). A flocculent colorless precipitate formed and the suspension was stirred for 30 min while the precipitate slowly dissolved. The reaction mixture was poured into water (50 mL) and extracted with EtOAc ($3 \times 50 \mathrm{~mL}$). The combined organic extracts were washed with brine ($1 \times 50 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. Purification by flash chromatography (3:7 EtOAc:hex) provided $\mathbf{1 2 3}$ as a white foam (467 mg , $0.69 \mathrm{mmol}, 89 \%$) which yellowed upon exposure to air. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.40(\mathrm{t}, J$ $=2.7,1 \mathrm{H}), 4.01(\mathrm{dd}, J=11.5,3.0,1 \mathrm{H}), 3.92(\mathrm{dd}, J=11.4,2.5,1 \mathrm{H}), 3.88(\mathrm{~d}, J=10.3,1 \mathrm{H}), 3.50$ (d, $J=10.3,1 \mathrm{H}), 3.40(\mathrm{dd}, J=9.6,5.2,1 \mathrm{H}), 3.13(\mathrm{~d}, J=10.3,1 \mathrm{H}), 3.07-2.95(\mathrm{~m}, 3 \mathrm{H}), 2.60-$ $2.51(\mathrm{~m}, 2 \mathrm{H}), 2.46-2.42(\mathrm{~m}, 1 \mathrm{H}), 2.05-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.95-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.80-1.75(\mathrm{~m}, 1 \mathrm{H})$, $1.62-1.56(\mathrm{~m}, 3 \mathrm{H}), 1.46-1.41(\mathrm{~m}, 8 \mathrm{H}), 1.27-1.21(\mathrm{~m}, 9 \mathrm{H}), 1.09-1.05(\mathrm{~m}, 22 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H})$, 0.08 (s, 3H); ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta 159.4,152.7,129.6,113.9,70.3,69.2,66.6,66.5$, $64.8,62.9,59.8,55.3,53.9,43.1,42.9,36.8,36.2,35.8,33.6,27.8,26.6,25.8,25.3,24.9,24.3$, 24.1, 22.0, 21.8, 18.2, 18.16, 12.1; IR (film): 2937, 2864, 1695, 1613, $1513 \mathrm{~cm}^{-1}$; LRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{40} \mathrm{H}_{66} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Si}$, 684; found, 684; $[\alpha]^{23}{ }_{405}-9.8,[\alpha]^{23}{ }_{435}-6.1,[\alpha]^{23}{ }_{546}-4.2$, $[\alpha]^{23}{ }_{577}-3.2,[\alpha]_{\mathrm{D}}^{23}-3.2\left(c 0.3, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; This structure was further confirmed by COSY, HMQC, and HMBC .

Diamine diol 124. In a glove box with an N_{2} atmosphere, a mixture of $\mathbf{1 2 3}(340 \mathrm{mg}$, 0.498 mmol) and tris(dimethylamino)sulfur (trimethylsilyl)difluoride (TAS-F, $642 \mathrm{mg}, 2.49$ mmol) was dissolved in N, N-dimethylacetamide (DMA, 5.0 mL). The resulting yellow solution was heated to $100{ }^{\circ} \mathrm{C}$ for 1 h . The reaction vessel was allowed to cool to rt , then removed from the glove box. The reaction mixture was poured into water (30 mL) and the resulting mixture was extracted with EtOAc ($3 \times 30 \mathrm{~mL}$). The combined organic extracts were washed with brine ($1 \times 30 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated onto Celite (2 g). Purification by flash chromatography (1:1 EtOAc:hex; then, 3:1 EtOAc:hex eluent) provided alcohol SI-24 as a yellow foam that was used directly in the subsequent transformation.

A Teflon screw cap sealable tube with a ground glass adaptor was charged with a magnetic stir bar and freshly pulverized $\mathrm{KOH}(800 \mathrm{mg}, 14.26 \mathrm{mmol})$ then placed under an atmosphere of argon. A solution of crude oxazinanone SI-24 (prepared above) in EtOH (4 mL) was added by syringe and the resulting suspension was stirred until homogeneous. The solution was degassed by 5 cycles of freeze-pump-thaw, sealed under an atmosphere of argon, and heated in a $90{ }^{\circ} \mathrm{C}$ oil bath and maintained for 12 h . The mixture was allowed to cool to rt and the reaction mixture was poured into 30 mL brine with the aid of $60 \mathrm{mLCH} \mathrm{Cl}_{2}$ and 15 mL brine. The cloudy phases were separated and the organic portion was washed with brine ($1 \times 40 \mathrm{~mL}$). The combined aqueous portions were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \times 50 \mathrm{~mL})$. The combined organic portions were dried over MgSO_{4} and then filtered through a plug of basic alumina (Brockman I, $4 \times 2 \mathrm{~cm}$). The filter cake was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}(9: 1,3 \times 75 \mathrm{~mL})$. The filtrate was concentrated and the resulting residue dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, filtered through cotton, and then concentrated to give $\mathbf{1 2 4}$ as slightly yellow flakes (161 mg , 65% over 2 steps). ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 4.40(\mathrm{t}, J=2.7,1 \mathrm{H}), 4.01(\mathrm{dd}, J=11.5,3.0,1 \mathrm{H}), 3.92(\mathrm{dd}, J=11.4,2.5$, $1 \mathrm{H}), 3.88(\mathrm{~d}, J=10.3,1 \mathrm{H}), 3.50(\mathrm{~d}, J=10.3,1 \mathrm{H}), 3.40(\mathrm{dd}, J=9.6,5.2,1 \mathrm{H}), 3.13(\mathrm{~d}, J=10.3$, $1 \mathrm{H}), 3.07-2.95(\mathrm{~m}, 3 \mathrm{H}), 2.60-2.51(\mathrm{~m}, 2 \mathrm{H}), 2.46-2.42(\mathrm{~m}, 1 \mathrm{H}), 2.05-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.95-1.88$ $(\mathrm{m}, 2 \mathrm{H}), 1.80-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.62-1.56(\mathrm{~m}, 3 \mathrm{H}), 1.46-1.41(\mathrm{~m}, 8 \mathrm{H}), 1.27-1.21(\mathrm{~m}, 9 \mathrm{H}), 1.09-$
$1.05(\mathrm{~m}, 22 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 160.1,130.9,130.2$, $114.4,79.0,73.1,72.2,67.3,66.1,60.7,60.4,55.8,52.1,43.24,43.2,42.5,40.0,38.1,37.2,28.1$, 27.7, 26.7, 25.9, 25.0, 24.5, 23.9, 22.8, 22.1; IR (film): 3351, 2933, 2860, $1614,1514 \mathrm{~cm}^{-1}$; LRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{30} \mathrm{H}_{49} \mathrm{~N}_{2} \mathrm{O}_{4}, 501$; found, 501; Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{48} \mathrm{~N}_{2} \mathrm{O}_{4}$: C, 71.96; H, 9.66; N, 5.59; found: C, 71.71; H, 9.67; N, 5.61; $[\alpha]^{24}{ }_{\mathrm{D}}-1.3,[\alpha]^{24}{ }_{577}-1.1,[\alpha]^{24}{ }_{546}-$ $0.3,[\alpha]^{24}{ }_{435}+2.0,[\alpha]^{24}{ }_{405}+5.5\left(c 0.9, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Ester SI-27. Silver nitrate ($0.74 \mathrm{~g}, 4.40 \mathrm{mmol}$) was added to a solution of SI-25 ${ }^{6}$ (6.77 g , 44.0 mmol) in THF (45 mL). The suspension was shielded from light and stirred at rt for 5 min . N-iodosuccinimide ($10.1 \mathrm{~g}, 44.0 \mathrm{mmol}$) was added to the reaction mixture in one portion and stirring was maintained for 2 h . The reaction mixture was poured into 100 mL water and extracted with $\mathrm{Et}_{2} \mathrm{O}$ (3 x 100 mL). The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated onto Celite. Purification by flash chromatography (1:10 $\mathrm{Et}_{2} \mathrm{O}:$ pentane) gave SI-26 as a light and air sensitive colorless powder ($8.52 \mathrm{~g}, 30.4 \mathrm{mmol}, 69 \%$) that was used directly in subsequent reactions.

A reaction vessel equipped with a Teflon screw-cap top was charged with 2-methyl-2butene ($3.7 \mathrm{~mL}, 34.8 \mathrm{mmol}$) and cooled to $0{ }^{\circ} \mathrm{C} . \mathrm{BH}_{3} \cdot \mathrm{DMS}(1.74 \mathrm{~mL}, 17.4 \mathrm{mmol})$ was added dropwise by syringe pump over 30 min . The reaction vessel was sealed and the reaction was allowed to warm to rt over 2 h . The reaction was cooled to $0^{\circ} \mathrm{C}$ and a solution of diyne SI-26 $(1.20 \mathrm{~g}, 4.34 \mathrm{mmol})$ in THF (4.2 mL) was added dropwise by syringe pump over 30 min . The reaction vessel was sealed and allowed to warm to rt over 8 h . Acetic acid ($8.0 \mathrm{~mL}, 139 \mathrm{mmol}$) was added to the reaction mixture dropwise (CAUTION! Gas evolution) over 10 min and the solution was maintained for 14 h . The reaction was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ and poured into a stirred saturated aqueous solution of $\mathrm{NaHCO}_{3}(300 \mathrm{~mL}$, CAUTION! gas evolution). The aqueous phase was adjusted to $\mathrm{pH}=8$ by the addition of a solution of 3 M aqueous NaOH (10 $\mathrm{mL})$ and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 100 \mathrm{~mL})$. The combined organic portions
were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated onto Celite (50 g). Purification by flash chromatography (1:20 $\mathrm{Et}_{2} \mathrm{O}:$ pentane) gave diene SI-27 ($694 \mathrm{mg}, 2.58 \mathrm{mmol}, 57 \%$) as a light sensitive colorless oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.24(\mathrm{~d}, J=7.3,1 \mathrm{H}$), 6.15 (app. q, $J=$ 7.0), 5.47-5.39 (m, 2H), $3.68(\mathrm{~s}, 3 \mathrm{H}), 2.91(\mathrm{t}, J=5.8,2 \mathrm{H}), 2.47-2.35(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 173.42,139.2,129.4,126.4,82.7,51.6,33.9,33.3,23.0$; IR (film): 3014, 2952, 1736, 1605, $1435 \mathrm{~cm}^{-1} ;$ LRMS-CI $(\mathrm{m} / \mathrm{z})\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$calcd for $\mathrm{C}_{9} \mathrm{H}_{17} \mathrm{INO}_{2}, 298$; found, 298.

Aldehyde 129. $i-\mathrm{Bu}_{2} \mathrm{AlH}$ ($1.7 \mathrm{~mL}, 1.5 \mathrm{M}$ in toluene) was added dropwise to a solution of ester SI-27 (334 mg, 1.2 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.8 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$. The solution was allowed to warm to rt over 1 h , then quenched by the addition of saturated aqueous sodium potassium tartrate (5 mL). The resulting mixture was stirred for 1 h , diluted with water (20 mL), and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 40 \mathrm{~mL})$. The combined organic extracts were washed with brine (1 x 40 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to provide alcohol SI-28 (242 mg, 0.96 mmol , 80%) as a colorless, light-sensitive oil.

A portion of freshly prepared alcohol SI-28 from above (86 mg) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3.4 \mathrm{~mL})$ and Dess-Martin Periodinane ($160 \mathrm{mg}, 0.376$) was added in one portion. The cloudy mixture was stirred at rt for 30 min , then concentrated onto Celite (400 mg). Purification by flash chromatography on silica gel (1:7 $\mathrm{Et}_{2} \mathrm{O}$:pentane) gave aldehyde 129 as a colorless oil (62 mg , 73%). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.79(\mathrm{t}, J=1.4,1 \mathrm{H}), 6.25(\mathrm{dt}, J=7.3,1.4,1 \mathrm{H}), 6.15(\mathrm{app}$. $\mathrm{q}, J=7.0,1 \mathrm{H}), 5.47-5.41(\mathrm{~m}, 2 \mathrm{H}), 2.92(\mathrm{t}, J=5.5,2 \mathrm{H}), 2.55-2.51(\mathrm{~m}, 2 \mathrm{H}), 2.47-2.42(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 201.8,139.1,129.2,126.5,82.8,43.6,33.4,20.4$; IR (film): 3014, 2917, 2823, 2722, 1724, 1654, 1606, $1408 \mathrm{~cm}^{-1}$; HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{IO}, 250.9933$; found, 250.9925.

$\boldsymbol{N}, \boldsymbol{O}$-acetal 130. Diamine diol $124(55 \mathrm{mg}, 0.11 \mathrm{mmol})$ and aldehyde $129(68 \mathrm{mg}, 0.27$ $\mathrm{mmol})$ were dissolved in benzene (2.5 mL) and heated to reflux using a Dean-Stark trap. After 18 h , the reaction mixture was allowed to cool to rt and the solution was placed directly on a silica gel column. Flash chromatography (1:4, EtOAc:hex) gave N, O-acetal $130(50 \mathrm{mg}, 63 \%)$ as a white foam. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.31(\mathrm{~d}, J=8.4,2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.4,2 \mathrm{H}), 6.21$ (dt, $J=7.3,1.3,1 \mathrm{H}), 6.13(\mathrm{dt}, J=7.1,6.7,1 \mathrm{H}), 5.50-5.41(\mathrm{~m}, 1 \mathrm{H}), 5.38-5.31(\mathrm{~m}, 1 \mathrm{H}), 4.71(\mathrm{~d}, J$ $=11.2,1 \mathrm{H}), 4.45(\mathrm{~d}, J=11.2,1 \mathrm{H}), 4.14(\mathrm{dd}, J=7.8,4.9,1 \mathrm{H}), 3.92(\mathrm{dd}, J=11.6,2.9,1 \mathrm{H}), 3.81$ (s, 3H), 3.68-3.64 (m, 2H), 3.33 (d, $J=11.8,1 \mathrm{H}), 3.28$ (d, $J=11.8,1 \mathrm{H}), 3.14(\mathrm{~d}, J=9.3,1 \mathrm{H})$, $3.09(\mathrm{~s}, 1 \mathrm{H}), 3.06-3.02(\mathrm{~m}, 1 \mathrm{H}), 2.86(\mathrm{t}, J=6.8,2 \mathrm{H}), 2.79-2.62(\mathrm{~m}, 3 \mathrm{H}), 2.60-2.57(\mathrm{~m}, 1 \mathrm{H})$, 2.20-1.97 (m, 4H), 1.95-1.94 (m, 1H), 1.77-1.12 (m, 23H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $159.0,139.8,131.5,131.2,129.2,125.0,113.8,87.3,85.1,82.4,80.2,70.7,68.5,65.5,59.4$, $59.1,55.3,50.1,43.8,42.6,41.0,39.2,38.4,38.3,36.6,33.4,27.7,26.9,25.7,25.4,25.0,24.2$, 23.8, 22.3, 21.7; LRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{38} \mathrm{H}_{57} \mathrm{IN}_{2} \mathrm{O}_{4}$, 733; found, 733. This structural assignment was confirmed by COSY, HMQC, and HMBC. The relative stereochemistry of $\mathrm{N}, \mathrm{O}-$ acetal 130 was determined from NOESY experiments, as depicted.

Tetracycle 132. Benzene (1.8 mL) was added to a mixture of aldehyde $\mathbf{1 2 9}(47 \mathrm{mg}, 0.19$ mmol) and diamine diol 124 ($37 \mathrm{mg}, 0.075 \mathrm{mmol}$). The solution was maintained at reflux for 14 h with a Dean-Stark apparatus topped with a CaCl_{2} drying tube, shielded from light. The reaction mixture was concentrated, and the resulting residue suspended in $\mathrm{MeCN}(1.0 \mathrm{~mL})$.

Sodium cyanoborohydride ($70 \mathrm{mg}, 1.13 \mathrm{mmol}$) was added and the reaction mixture was vigorously stirred until consumption of aldehyde $\mathbf{1 2 9}$ was complete, as judged by TLC analysis. Methylene chloride $(1.0 \mathrm{~mL})$ and $\mathrm{AcOH}(0.04 \mathrm{~mL})$ were added, followed by a second charge of $\mathrm{NaBH}_{3} \mathrm{CN}(70 \mathrm{mg}, 1.13 \mathrm{mmol})$. The suspension was vigorously stirred for 12 h , then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ and washed with aqueous phosphate buffer $(\mathrm{pH}=8)$. The aqueous portion was back extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 10 \mathrm{~mL})$. The combined organic portions were washed with brine ($2 \times 20 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. Purification of the resulting residue by column chromatography on silica using a gradient solvent system (10:36:1 EtOAc:hex: $\mathrm{Et}_{3} \mathrm{~N}$, then 40:9:1 EtOAc:hex: $\mathrm{Et}_{3} \mathrm{~N}$) gave tetracycle $\mathbf{1 3 2}$ as a viscous oil (47 $\mathrm{mg}, 0.064 \mathrm{mmol}, 85 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 318 \mathrm{~K}\right): \delta 7.18(\mathrm{~d}, J=8.6,2 \mathrm{H}), 6.86(\mathrm{~d}, J=$ $8.6,2 \mathrm{H}), 6.21(\mathrm{~d}, J=7.3,1 \mathrm{H}), 6.14(\mathrm{dd}, J=13.9,6.91 \mathrm{H}), 5.49-5.45(\mathrm{~m}, 1 \mathrm{H}), 5.41-5.36(\mathrm{~m}$, $1 \mathrm{H}), 4.42$ (app. s, 2H), 4.24-4.20 (m, 1H), 3.84-3.77 (m, 6H), $3.75(\mathrm{~m}, 1 \mathrm{H}), 3.45(\mathrm{~d}, J=11.4$, $1 \mathrm{H}), 3.34(\mathrm{~m}, 1 \mathrm{H}), 3.11(\mathrm{~m}, 1 \mathrm{H}), 3.04-2.29(\mathrm{~m}, 5 \mathrm{H}), 2.60-2.50(\mathrm{~m}, 2 \mathrm{H}), 2.34-2.25(\mathrm{~m}, 4 \mathrm{H})$, 2.16-2.08 (m, 1H), 2.06-1.98 (m, 1H), 1.97-1.91 (m, 3H), $1.90(\mathrm{t}, J=9.6,1 \mathrm{H}), 1.52-1.33(\mathrm{~m}$, 18H), 1.24-1.19 (m, 1H), 1.18-1.09 (m, 1H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 318 \mathrm{~K}$): $\delta 159.2$, $139.5,131.4,130.2,129.2,125.1,113.7,82.4,79.2,77.1,73.5,72.0,70.3,69.5,55.3,54.9,51.2$, $48.9,39.4,39.0,35.7,33.4,32.8,31.7,27.7,26.5,26.2,25.9,25.89,25.3,24.7,24.4,23.1,22.7$, 21.4 (two carbons observed at 49.8 are not resolved); IR (film): 3512, 2929, 2860, 1611, 1586 $\mathrm{cm}^{-1} ;$ HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{38} \mathrm{H}_{59} \mathrm{IN}_{2} \mathrm{O}_{4}, 735.3598$; found, $735.3615 ;[\alpha]_{\mathrm{D}}^{27}+15.1$, $[\alpha]^{27}{ }_{577}+15.6,[\alpha]^{27}{ }_{546}+17.6,[\alpha]^{27}{ }_{435}+29.0,[\alpha]^{27}{ }_{405}+35.6\left(c \quad 2.0, \mathrm{CHCl}_{3}\right)$; This structure was confirmed by COSY, HMQC, and HMBC.

Diol 131. Diamine diol 124 ($40 \mathrm{mg}, 0.08 \mathrm{mmol}$) and aldehyde 129 ($50 \mathrm{mg}, 0.20 \mathrm{mmol}$) were dissolved in benzene (2.5 mL) and heated to reflux using a Dean-Stark trap. After 18 h , the reaction mixture was allowed to cool to rt and the solvent was removed under reduced pressure. The crude residue was dissolved in toluene $(2.0 \mathrm{~mL})$, cooled to $-78^{\circ} \mathrm{C}$, and $i-\mathrm{Bu}_{2} \mathrm{AlH}(264 \mu \mathrm{l}$,
1.5 M in toluene, 0.40 mmol) was added. The reaction was maintained at $-78^{\circ} \mathrm{C}$ for 30 min . and then quenched by addition of saturated aqueous sodium potassium tartrate (2 mL) and EtOAc (2 mL). After warming to rt and stirring for 2 h , the layers were separated and the aqueous layer was extracted with EtOAc ($3 \times 5 \mathrm{~mL}$) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4} and evaporated under reduced pressure. The crude product was purified by flash chromatography (EtOAc:hex, 1:1) to give diol 131 ($41 \mathrm{mg}, 71 \%$) as an oil. ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, 318 \mathrm{~K}\right): \delta 7.29(\mathrm{~d}, J=8.5,2 \mathrm{H}), 6.89(\mathrm{~d}, J=8.5,2 \mathrm{H}), 6.20(\mathrm{~d}, J=7.3,1 \mathrm{H}), 6.13-$ $6.09(\mathrm{~m}, 1 \mathrm{H}), 5.42-5.37(\mathrm{~m}, 1 \mathrm{H}), 5.34-5.29(\mathrm{~m}, 1 \mathrm{H}), 4.79(\mathrm{~d}, J=11.1,1 \mathrm{H}), 4.40(\mathrm{~d}, J=11.1$, $1 \mathrm{H}), 4.12-4.10(\mathrm{~m}, 1 \mathrm{H}), 3.90-3.88(\mathrm{~m}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.76-3.74(\mathrm{~m}, 1 \mathrm{H}), 3.56(\mathrm{~d}, J=11.1$, $1 \mathrm{H}), 3.49$ (d, $J=11.2,1 \mathrm{H}), 3.17-3.15(\mathrm{~m}, 2 \mathrm{H}), 2.89-2.60(\mathrm{~m}, 11 \mathrm{H}), 2.18-2.14(\mathrm{~m}, 2 \mathrm{H}), 2.05-$ $1.99(\mathrm{~m}, 3 \mathrm{H}), 1.74-1.15(\mathrm{~m} \mathrm{23H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 318 \mathrm{~K}$): $\delta 159.1,139.6,131.5$, $131.2,128.8,128.3,125.1,113.8,82.2,81.8,71.1,70.3,69.7,60.8,60.7,59.2,58.6,55.3,51.8$, $43.9,42.7,41.0,39.9,38.6,37.6,33.5,29.3,27.9,26.7,25.9,25.8,25.6,25.5,24.4,24.3,22.8$, 22.3; IR (film): 3374, 2922, 2857, 1613, 1514, 1246, $1035 \mathrm{~cm}^{-1} ; \operatorname{HRMS}-E S I(m / z)[M+H]^{+}$ calcd for $\mathrm{C}_{38} \mathrm{H}_{60} \mathrm{IN}_{2} \mathrm{O}_{4}, 735.3598$; found, 735.3583; $[\alpha]^{23}{ }_{405}-102.1,[\alpha]^{23}{ }_{435}-84.9,[\alpha]^{23}{ }_{546}-50.0$, $[\alpha]^{23}{ }_{577}-39.5,[\alpha]_{\mathrm{D}}^{23}-39.7\left(c \quad 0.3, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; This structure was further confirmed by COSY, HMQC, and HMBC.

130

SI-29

Aldehyde SI-29. IBX ($69 \mathrm{mg}, 0.25 \mathrm{mmol}$) was added to alcohol $\mathbf{1 3 0}$ ($90 \mathrm{mg}, 0.12 \mathrm{mmol}$) in DMSO (1.2 mL) at rt . After 60 min , the reaction was quenched by the addition of saturated aqueous $\mathrm{NaHCO}_{3}(3 \mathrm{~mL}) . \mathrm{NaCl}$ was added to the aqueous layer until it was saturated, and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \times 5 \mathrm{~mL})$. The combined organic extracts were dried over MgSO_{4} and evaporated under reduced pressure. Purification by flash chromatography (EtOAc:hex: $\mathrm{Et}_{3} \mathrm{~N}, 10: 90: 2$ to 20:80:2) gave aldehyde SI-29 ($60 \mathrm{mg}, 67 \%$) as an oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.20(\mathrm{~d}, J=2.7,1 \mathrm{H}), 7.28(\mathrm{~d}, J=8.4,2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.6,2 \mathrm{H}), 6.20(\mathrm{~d}, J$ $=7.4,1 \mathrm{H}), 6.12(\mathrm{dt}, J=7.3,6.8,1 \mathrm{H}), 5.32(\mathrm{~m}, 2 \mathrm{H}), 4.53(\mathrm{~d}, J=11.1,1 \mathrm{H}), 4.46(\mathrm{~d}, J=11.4$,
$1 \mathrm{H}), 4.34(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.56(\mathrm{~d}, J=2.9,1 \mathrm{H}), 3.31(\mathrm{~d}, J=11.7,1 \mathrm{H}), 3.26(\mathrm{~d}, J=11.9$, $1 \mathrm{H}), 3.21(\mathrm{~d}, J=9.4,1 \mathrm{H}), 3.08(\mathrm{~s}, 1 \mathrm{H}), 2.99-2.74(\mathrm{~m}, 5 \mathrm{H}), 2.58(\mathrm{~m}, 2 \mathrm{H}), 2.22-1.90(\mathrm{~m}, 4 \mathrm{H})$, $1.73-1.10(\mathrm{~m}, 22 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 197.3,159.3,139.8,131.5,130.0,129.5$, $124.8,113.8,91.3,87.8,82.3,80.0,72.4,71.0,64.5,59.2,55.3,50.0,42.8,41.3,40.5,40.1,39.6$, $38.7,36.3,33.3,27.6,26.4,26.0,25.9,25.0,24.2,24.2,23.5,20.9,20.7$; IR (film): 2927, 2854, 1702, 1612, 1514, 1454, 1303, 1248, 1171, 1116, 1034, 821, $736 \mathrm{~cm}^{-1} ; \operatorname{HRMS}-E S I(\mathrm{~m} / \mathrm{z})[\mathrm{M}+$ $\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{38} \mathrm{H}_{55} \mathrm{IN}_{2} \mathrm{O}_{4} \mathrm{Na}, 753.3104$; found, 753.3124.

N, O-acetal 139. A mixture of diamine diol $124(54.0 \mathrm{mg}, 0.108 \mathrm{mmol})$ and aldehyde $\mathbf{1 3 8}^{7}(70.0 \mathrm{mg}, 0.346 \mathrm{mmol})$ in dry benzene $(6.0 \mathrm{~mL})$ was heated in a sealed vial at $80^{\circ} \mathrm{C}$ for 2 h 45 min , then cooled to rt . After evaporation of solvent under reduced pressure, the crude residue was purified by flash chromatography ($9: 1$ hexanes:EtOAc containing $2 \% \mathrm{Et}_{3} \mathrm{~N}$, then $4: 1$ hexanes:EtOAc containing $2 \% \mathrm{Et}_{3} \mathrm{~N}$) to afford N, O-acetal $139(63.5 \mathrm{mg}, 0.093 \mathrm{mmol}, 86 \%$ yield) as a yellow oil. $\mathrm{R}_{f} 0.24$ ($4: 1$ hexanes:EtOAc containing $2 \% \mathrm{Et}_{3} \mathrm{~N}$); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.30(\mathrm{~d}, J=8.6,2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.6,2 \mathrm{H}), 4.70(\mathrm{~d}, J=11.1,1 \mathrm{H}), 4.41(\mathrm{~d}, J=11.1,1 \mathrm{H}), 4.19-$ $4.15(\mathrm{~m}, 1 \mathrm{H}), 3.92(\mathrm{dd}, J=11.9,3.3,1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.69-3.62(\mathrm{~m}, 2 \mathrm{H}), 3.62-3.54(\mathrm{~m}, 2 \mathrm{H})$, $3.28(\mathrm{~s}, 2 \mathrm{H}), 3.13(\mathrm{~d}, J=9.2,1 \mathrm{H}), 3.10(\mathrm{~s}, 1 \mathrm{H}), 3.08-3.02(\mathrm{~m}, 1 \mathrm{H}), 2.76-2.66(\mathrm{~m}, 3 \mathrm{H}), 2.64-$ $2.58(\mathrm{~m}, 1 \mathrm{H}), 2.13-2.08(\mathrm{~m}, 1 \mathrm{H}), 2.08-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.96-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.66(\mathrm{~m}, 3 \mathrm{H})$, $1.60-1.10(\mathrm{~m}, 23 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.03(\mathrm{~s}, 6 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 158.9,131.2$, $129.2,113.7,87.8,85.8,80.1,70.5,68.5,65.5,63.2,59.1,59.0,55.2,49.9,43.8,42.5,41.0,39.3$, $38.6,38.4,33.2,29.6,27.7,26.8,26.0,25.7,25.2,25.1,24.2,23.7,22.4,21.6,18.3,-5.3$; IR (film): 3400 (br), 2928, 2854, 1613, 1514, 1471, 1388, 1361, 1302, 1248, 1097, $906 \mathrm{~cm}^{-1}$; HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{40} \mathrm{H}_{69} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Si}$, 685.4976; found, 685.4988; $[\alpha]^{25}{ }_{405}-46.3,[\alpha]^{25}{ }_{435}-38.6,[\alpha]^{25}{ }_{546}-22.6,[\alpha]^{25}{ }_{577}-19.9$, $[\alpha]^{25}{ }_{\mathrm{D}}-18.4\left(c 1, \mathrm{CHCl}_{3}\right)$. The relative stereochemistry of N, O-acetal 139 was determined from NOE experiments, as depicted.

Aldehyde SI-30. IBX ($75.0 \mathrm{mg}, 0.268 \mathrm{mmol}$) was added to a solution of alcohol 139 ($80.0 \mathrm{mg}, 0.117 \mathrm{mmol}$) in DMSO (2 mL) at rt . After 1 h , an additional portion of IBX (8.0 mg , 0.028 mmol) was added. After an additional 45 min of stirring at rt , the reaction mixture was loaded directly onto silica gel and rapidly purified by flash chromatography ($14 \times 1.5 \mathrm{~cm}$ column, 4:1 hexanes: EtOAc containing $2 \% \mathrm{Et}_{3} \mathrm{~N}$) to afford aldehyde SI-30 ($57.0 \mathrm{mg}, 71 \%$ yield) as a yellow oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.19(\mathrm{~d}, J=2.9,1 \mathrm{H}), 7.29(\mathrm{~d}, J=8.6,2 \mathrm{H}), 6.88$ $(\mathrm{d}, J=8.6,2 \mathrm{H}), 4.47(\mathrm{~s}, 2 \mathrm{H}), 4.33(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.55(\mathrm{~d}, J=3.0,1 \mathrm{H}), 3.55(\mathrm{~m}, 2 \mathrm{H}), 3.30$ $(\mathrm{d}, J=11.9,1 \mathrm{H}), 3.22(\mathrm{~m}, 2 \mathrm{H}), 3.08(\mathrm{~s}, 1 \mathrm{H}), 2.95(\mathrm{~m}, 1 \mathrm{H}), 2.88(\mathrm{~m}, 1 \mathrm{H}), 2.75(\mathrm{~d}, J=7.9,1 \mathrm{H})$, $2.62(\mathrm{~m}, 1 \mathrm{H}), 2.57(\mathrm{~m}, 1 \mathrm{H}), 2.17(\mathrm{~m}, 1 \mathrm{H}), 2.03(\mathrm{~m}, 1 \mathrm{H}), 1.92(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.10(\mathrm{~m}, 25 \mathrm{H}), 0.88$ (s, 9H), $0.02(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 197.4,159.3,130.0,129.7,113.7,91.4$, 88.5, 79.9, 72.4, 71.0, 64.4, 63.3, 59.1, 55.2, 49.8, 42.8, 41.3, 40.4, 40.1, 39.6, 38.7, 33.1, 29.6, 27.6, 26.4, 26.0, 25.9, 25.0, 24.2, 23.5, 20.8, 20.7, 18.3, -5.3; IR (film): 2927, 2855, 1702, 1613, 1515, 1462, 1249, 1173, 1095, 1088, 1035, 909, 834, 776, $731 \mathrm{~cm}^{-1} ; \operatorname{HRMS}-E S I(m / z)[\mathrm{M}+\mathrm{H}]^{+}$ calcd for $\mathrm{C}_{40} \mathrm{H}_{67} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Si}$, 683.4819; found, 683.4839; $[\alpha]^{25}{ }_{405}-46.5,[\alpha]^{25}{ }_{435}-35.3,[\alpha]^{25}{ }_{546}-17.4$, $[\alpha]^{25}{ }_{577}-14.0,[\alpha]^{25}-13.7\left(c 1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; This structure was further confirmed by COSY, HMQC and HMBC .

Stannane 140. n - $\mathrm{BuLi}(760 \mu \mathrm{~L}$ of a 2.3 M solution in hexanes, 1.75 mmol) was added dropwise to a solution of (E)-1,2-bis(tributylstannyl) ethene $^{8}(1 \mathrm{~mL}, 1.94 \mathrm{mmol})$ in THF (4 mL) at $-78{ }^{\circ} \mathrm{C}$. After 10 min at $-78{ }^{\circ} \mathrm{C}$, the solution was warmed to $-40{ }^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was cooled to $-78{ }^{\circ} \mathrm{C}$ and transferred via cannula to a flask cooled to $-78^{\circ} \mathrm{C}$ containing
$\mathrm{MgBr}_{2}(715 \mathrm{mg}, 3.88 \mathrm{mmol})$. The resulting heterogeneous mixture was stirred while being warmed to $0^{\circ} \mathrm{C}$ over 45 min . After 10 min at $0^{\circ} \mathrm{C}$, the suspension of Grignard 137 was cooled to $-5^{\circ} \mathrm{C}$ and used in the subsequent transformation.

Grignard $137(500 \mu \mathrm{~L}$, of a 0.5 M solution in THF, 0.25 mmol$)$ was added to aldehyde SI-30 ($19.5 \mathrm{mg}, 0.031 \mathrm{mmol}$) in THF $(500 \mu \mathrm{~L})$ at $-20^{\circ} \mathrm{C}$. Additional Grignard reagent 137 was added after $30 \mathrm{~min}(500 \mu \mathrm{~L})$, then again at $1 \mathrm{~h}(500 \mu \mathrm{~L})$ after the start of the reaction. 30 min after the final addition of Grignard reagent, the reaction was quenched by the addition of saturated aqueous NaHCO_{3} solution (1.5 mL) and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$. The resulting mixture was extracted with EtOAc ($4 \times 1.5 \mathrm{~mL}$) and the combined organics were washed with brine (1 mL) and dried by passage over a plug of SiO_{2} (EtOAc eluent). Evaporation under reduced pressure afforded the crude product, which was purified by flash chromatography (hexanes containing 2% $\mathrm{Et}_{3} \mathrm{~N}$; then 9:1 hexanes:EtOAc containing $2 \% \mathrm{Et}_{3} \mathrm{~N}$) to provide vinyl stannane $140(21.0 \mathrm{mg}$, 68%) as a $\sim 3-4: 1$ ratio of isomers. Spectral data are reported for the major isomer. ${ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.26(\mathrm{~d}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.6,2 \mathrm{H}), 6.39(\mathrm{~d}, J=19.3,1 \mathrm{H}), 6.28(\mathrm{dd}, J=4.3$, $19.1,1 \mathrm{H}), 4.80(\mathrm{~d}, J=11.1,1 \mathrm{H}), 4.46(\mathrm{~d}, J=11.1,1 \mathrm{H}), 4.39(\mathrm{~d}, J=4.4,1 \mathrm{H}), 4.10(\mathrm{~m}, 1 \mathrm{H}), 3.85$ $(\mathrm{s}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{~m}, 2 \mathrm{H}), 3.29(\mathrm{~m}, 2 \mathrm{H}), 3.15(\mathrm{~d}, J=9.3,1 \mathrm{H}), 3.11(\mathrm{~s}, 1 \mathrm{H}), 3.02(\mathrm{~m}$, $1 \mathrm{H}), 2.82-2.55(\mathrm{~m}, 4 \mathrm{H}), 2.2-1.2(\mathrm{~m}, 41 \mathrm{H}), 0.92-0.8(\mathrm{~m}, 24 \mathrm{H}), 0.02(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 158.9,151.5,131.2,128.8,126.8,113.6,88.2,85.7,80.1,74.4,72.7,68.7,66.2$, $63.4,59.4,55.2,50.4,43.9,42.4,40.9,38.9,38.6,38.4,33.9,29.7,29.1,27.7,27.3,25.9,25.7$, $25.3,25.1,24.3,23.5,22.3,21.5,18.3,13.7,9.4,-5.3$; LRMS-ESI $(m / z)[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{52} \mathrm{H}_{88} \mathrm{IN}_{2} \mathrm{O}_{4} \mathrm{Sn}, 1001$; found, 1001.

Diol 141. TBAF ($100 \mu \mathrm{~L}$ of a 1.0 M solution in THF, 0.10 mmol) was added to silyl ether $140(20.0 \mathrm{mg}, 0.020 \mathrm{mmol})$ in THF (1 mL) at rt. The reaction was stirred for 1 h 45 min , diluted with $\mathrm{H}_{2} \mathrm{O}(500 \mu \mathrm{~L})$ and brine (1.5 mL). The aqueous layer was extracted with EtOAc (5 x 1 mL) and the combined organic layers were dried by passage over a plug of $\mathrm{SiO}_{2}(\mathrm{EtOAc}$
eluent). Evaporation under reduced pressure afforded the crude product which was purified by flash chromatography ($3: 1$ hexanes:EtOAc containing $2 \% \mathrm{Et}_{3} \mathrm{~N}$) to afford diol $\mathbf{1 4 1}(15.1 \mathrm{mg}$, 85%) as a $\sim 3-4: 1$ mixture of diastereomers. Spectral data are reported for the major isomer. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.25(\mathrm{~d}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.6,2 \mathrm{H}), 6.41(\mathrm{~d}, J=19.1,1 \mathrm{H}), 6.23$ (dd, J $=4.1,19.1,1 \mathrm{H}), 4.76(\mathrm{~d}, J=11.0,1 \mathrm{H}), 4.49(\mathrm{~d}, J=11.0,1 \mathrm{H}), 4.45(\mathrm{~m}, 1 \mathrm{H}), 4.08(\mathrm{~m}, 1 \mathrm{H}), 3.89$ $(\mathrm{s}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{~m}, 2 \mathrm{H}), 3.36(\mathrm{~d}, J=11.8,1 \mathrm{H}), 3.27(\mathrm{~d}, J=11.9,1 \mathrm{H}), 3.15(\mathrm{~d}, J=9.4$, $1 \mathrm{H}), 3.01(\mathrm{~m}, 1 \mathrm{H}), 2.99(\mathrm{~s}, 1 \mathrm{H}), 2.81(\mathrm{~m}, 1 \mathrm{H}), 2.69(\mathrm{~m}, 1 \mathrm{H}), 2.60(\mathrm{~m}, 1 \mathrm{H}), 2.49(\mathrm{~m}, 1 \mathrm{H}), 2.21$ $(\mathrm{m}, 1 \mathrm{H}), 1.89(\mathrm{~m}, 2 \mathrm{H}), 1.80-1.10(\mathrm{~m}, 39 \mathrm{H}), 0.92-0.82(\mathrm{~m}, 15 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $159.1,151.2,130.6,129.2,127.2,113.7,87.6,81.5,80.1,74.5,71.6,68.0,67.3,62.0,60.0,55.3$, $50.9,43.6,42.5,40.9,38.2,38.1,38.0,34.0,29.2,28.4,28.0,27.5,27.3,25.7,25.6,24.4,24.3$, 23.1, 21.9, 21.7, 13.7, 9.4; IR (film): 3400 (br), 2918, 2850, 1613, 1514, 1464, 1248, 1172, 1120, 1072, 1039, 821, $805 \mathrm{~cm}^{-1}$; HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{48} \mathrm{H}_{83} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Sn}, 887.5336$; found, 887.5345.

Bis(TES) ether 142. TESCl ($14.2 \mu \mathrm{~L}, 0.0847 \mathrm{mmol}$) was added to a solution of diol 141 ($15.0 \mathrm{mg}, 0.0169 \mathrm{mmol}$) and imidazole ($11.5 \mathrm{mg}, 0.169 \mathrm{mmol}$) in dry DMF ($600 \mu \mathrm{~L}$) at $0^{\circ} \mathrm{C}$. After 15 min , the reaction mixture was quenched with saturated aqueous $\mathrm{NaHCO}_{3}(1 \mathrm{~mL})$, then diluted with $\mathrm{H}_{2} \mathrm{O}(500 \mu \mathrm{~L})$ and brine $(500 \mu \mathrm{~L})$. EtOAc ($500 \mu \mathrm{~L}$) was added and the resulting mixture was warmed to rt. The layers were separated and the aqueous layer was extracted with EtOAc (5 x 1 mL). The combined organic layers were washed with brine ($1 \times 1 \mathrm{~mL}$), dried by passage over a plug of silica gel (EtOAc eluent), and evaporated under reduced pressure with gentle heating (approximately $30^{\circ} \mathrm{C}$). The residue was first purified by passage over a second plug of silica gel ($4: 1$ hexanes:EtOAc containing $2 \% \mathrm{Et}_{3} \mathrm{~N}$), then by flash chromatography ($40: 1$ hexanes:EtOAc; then 19:1 hexanes:EtOAc; then 9:1 hexanes:EtOAc) to separate the diastereomers. The major (desired) isomer of 142 ($13.3 \mathrm{mg}, 70 \%$), which eluted after its epimer, was isolated as a colorless oil. $\mathrm{R}_{f} 0.62$ (4:1 hexanes:EtOAc containing $2 \% \mathrm{Et}_{3} \mathrm{~N}$); ${ }^{1} \mathrm{H}$ NMR (500
$\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.29(\mathrm{~d}, J=8.7,2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.7,2 \mathrm{H}), 6.31-6.14(\mathrm{~m}, 2 \mathrm{H}), 4.99(\mathrm{~d}, J=11.5$, $1 \mathrm{H}), 4.54(\mathrm{~d}, J=11.5,1 \mathrm{H}), 4.30(\mathrm{t}, J=6.8,1 \mathrm{H}), 4.16-4.09(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~d}, J=$ $8.0,1 \mathrm{H}), 3.68-3.58(\mathrm{~m}, 2 \mathrm{H}), 3.28(\mathrm{~d}, J=11.7,1 \mathrm{H}), 3.17-3.03(\mathrm{~m}, 3 \mathrm{H}), 2.97-2.88(\mathrm{~m}, 1 \mathrm{H}), 2.87-$ $2.76(\mathrm{~m}, 1 \mathrm{H}), 2.75-2.68(\mathrm{~m}, 1 \mathrm{H}), 2.68-2.55(\mathrm{~m}, 2 \mathrm{H}), 2.49-2.42(\mathrm{~m}, 1 \mathrm{H}), 2.11-1.99(\mathrm{~m}, 2 \mathrm{H})$, $1.86-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.16(\mathrm{~m}, 32 \mathrm{H}), 1.05-0.85(\mathrm{~m}, 36 \mathrm{H}), 0.66-0.53(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 158.6,151.3,132.7,131.9,128.4,113.6,88.4,83.8,80.7,79.7,74.5,69.4$, $68.9,63.5,60.5,55.4,50.8,44.5,42.2,41.1,38.8,38.1,37.5,33.8,30.5,29.9,29.5,27.7,25.3$, 25.1, 24.9, 24.4, 23.3, 23.1, 21.6, 13.9, 9.4, 7.2, 7.1, 5.5, 4.6; IR (film): 2956, 2929, 2875, 1615, 1528, 1463, 1254, 1094, $1032 \mathrm{~cm}^{-1}$; LRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{60} \mathrm{H}_{111} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Si}_{2} \mathrm{Sn}$, 1115.7; found, 1115.8; $[\alpha]^{26}{ }_{405}-6.5,[\alpha]^{26}{ }_{435}-6.1,[\alpha]^{26}{ }_{546}-4.6,[\alpha]^{26}{ }_{577}-3.5,[\alpha]^{26}-3.8(c 1.00$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$).

Alcohol 143. A mixture of bis(TES) ether 142 ($34.6 \mathrm{mg}, 0.031 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}$ (130 $\mathrm{mg}, 0.94 \mathrm{mmol})$ in methanol (5 mL) was stirred at $0^{\circ} \mathrm{C}$. The reaction mixture was allowed to warm to rt over 3 h . After 10 h at rt , additional $\mathrm{K}_{2} \mathrm{CO}_{3}(35 \mathrm{mg}, 0.25 \mathrm{mmol})$ was added and stirring was continued for 1.5 h . The reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$ and brine (6 mL), then extracted with EtOAc ($4 \times 2.5 \mathrm{~mL}$). The combined organic layers were dried by passage over a plug of silica gel (EtOAc eluent) and evaporated under reduced pressure. Purification of the resulting residue by flash chromatography (19:1 hexanes:EtOAc containing $2 \% \mathrm{Et}_{3} \mathrm{~N}$; then 4:1 hexanes:EtOAc containing $2 \% \mathrm{Et}_{3} \mathrm{~N}$) afforded alcohol $143(28.6 \mathrm{mg}, 92 \%)$ as a yellow oil. $\mathrm{R}_{f} 0.13$ (4:1 hexanes:EtOAc containing $2 \% \mathrm{Et}_{3} \mathrm{~N}$); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 7.29 (d, $J=8.5,2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.4,2 \mathrm{H}), 6.32-6.16(\mathrm{~m}, 2 \mathrm{H}), 4.94(\mathrm{~d}, J=11.4,1 \mathrm{H}), 4.54$ (d, $J=$ $11.4,1 \mathrm{H}), 4.33$ (app. t, $J=6.7,1 \mathrm{H}), 4.24-4.20(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~d}, J=7.3,1 \mathrm{H}), 2.25$ (app. t, $J=5.5,2 \mathrm{H}), 3.29(\mathrm{~d}, J=11.6,1 \mathrm{H}), 3.15-3.10(\mathrm{~m}, 2 \mathrm{H}), 3.06(\mathrm{~s}, 1 \mathrm{H}), 2.97-2.89(\mathrm{~m}, 1 \mathrm{H})$, 2.84-2.76 (m, 1H), 2.76-2.63 (m, 2H), 2.63-2.55 (m, 1H), 2.41-2.36 (m, 1H), 1.84-0.88 (m, 64H), 0.64-0.57 (m, 6H); ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta 158.7,151.4,132.4,131.7,128.6$,
$113.6,88.5,83.9,80.5,79.6,74.7,69.3,68.9,63.5,60.4,55.5,50.9,44.4,42.2,41.1,38.7,38.3$, $37.6,34.1,29.6,29.5,27.9,27.7,25.3,25.2,25.0,24.4,23.3,23.1,21.6,13.9,9.5,7.2,5.6$; IR (film): 3440 (br), 2952, 2926, 2872, 2852, 1514, 1458, 1247, 1172, 1120, 1099, 1041, $1002 \mathrm{~cm}^{-1}$; LRMS-ESI $(m / z)[M+H]^{+}$calcd for $\mathrm{C}_{54} \mathrm{H}_{97} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{SiSn}, 1001.6$; found, 1001.5; $[\alpha]^{25}{ }_{405}-9.6$, $[\alpha]^{25}{ }_{435}-7.9,[\alpha]^{25}{ }_{546}-5.6,[\alpha]^{25}{ }_{577}-4.6,[\alpha]^{25}{ }_{\mathrm{D}}-4.6\left(c 1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Stille substrate 145. Dess-Martin Periodinane ($35.6 \mathrm{mg}, 0.084 \mathrm{mmol}$) was added to a mixture of alcohol 143 ($28 \mathrm{mg}, 0.028 \mathrm{mmol}$) and $\mathrm{NaHCO}_{3}(73 \mathrm{mg}, 0.869 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2$ mL) at $0^{\circ} \mathrm{C}$. After 1 h , additional Dess-Martin Periodinane was added ($5.0 \mathrm{mg}, 0.012 \mathrm{mmol}$). After 30 min , the reaction mixture was quenched with saturated aqueous $\mathrm{NaHCO}_{3}(1 \mathrm{~mL})$ and saturated aqueous sodium metabisulfite (1 mL). The resulting cloudy mixture was stirred vigorously for 5 min at $0^{\circ} \mathrm{C}$, then for 30 min at rt . The layers were separated and the aqueous layer was extracted with EtOAc ($5 \times 1 \mathrm{~mL}$). The combined organic layers were washed with brine ($1 \times 1 \mathrm{~mL}$), dried by passage over a plug of silica gel (EtOAc eluent), and evaporated under reduced pressure. The residue was purified by flash chromatography (19:1 hexanes:EtOAc containing $2 \% \mathrm{Et}_{3} \mathrm{~N}$; then $9: 1$ hexanes:EtOAc containing $2 \% \mathrm{Et}_{3} \mathrm{~N}$) to afford aldehyde SI-31 ($24.0 \mathrm{mg}, 86 \%$) as a colorless foam which was used directly in the subsequent transformation.

NaHMDS ($288 \mu \mathrm{~L}, 0.288 \mathrm{mmol}, 1 \mathrm{M}$ in THF) was added dropwise over 1 min to a mixture of phosphonium salt $144^{9}(251.5 \mathrm{mg}, 0.481 \mathrm{mmol})$ in DME (4.3 mL) at $-78{ }^{\circ} \mathrm{C}$. After stirring 1 h 10 min , aldehyde $\mathbf{S I - 3 1}$ (24.0 mg , 0.0 .024 mmol , dried under vacuum over CaSO_{4}) in DME (1 mL) was added. The mixture was maintained at $-78^{\circ} \mathrm{C}$ for 25 min , then placed in a 0 ${ }^{\circ} \mathrm{C}$ bath for 15 min . The reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$, brine (2 mL), and EtOAc $(2 \mathrm{~mL})$. The mixture was warmed to rt and the layers were separated. The aqueous layer was further extracted with $\operatorname{EtOAc}(4 \times 2 \mathrm{~mL})$. The combined organic layers were dried by passage over a plug of silica gel (EtOAc eluent) and evaporated under reduced pressure. The residue was first purified by passage over a second plug of silica gel (4:1 hexanes:EtOAc containing 2\%
$\mathrm{Et}_{3} \mathrm{~N}$) then by flash chromatography ($40: 1$ hexanes: EtOAc; then 19:1 hexanes: EtOAc containing $2 \% \mathrm{Et}_{3} \mathrm{~N}$) to afford Stille substrate 145 ($24.5 \mathrm{mg}, 88 \%$ yield). $\mathrm{R}_{f} 0.41$ ($9: 1$ hexanes:EtOAc containing $2 \% \mathrm{Et}_{3} \mathrm{~N}$); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.29(\mathrm{~d}, J=8.5,2 \mathrm{H}), 6.85$ $(\mathrm{d}, J=8.5,2 \mathrm{H}), 6.41-6.11(\mathrm{~m}, 4 \mathrm{H}), 5.58-5.49(\mathrm{~m}, 1 \mathrm{H}), 5.42-5.33(\mathrm{~m}, 1 \mathrm{H}), 4.99(\mathrm{~d}, J=11.5$, $1 \mathrm{H}), 4.54(\mathrm{~d}, J=11.5,1 \mathrm{H}), 4.29(\mathrm{t}, J=8.0,1 \mathrm{H}), 4.17-4.10(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~d}, J=$ $8.0,1 \mathrm{H}), 3.31(\mathrm{~d}, J=11.7,1 \mathrm{H}), 3.16-3.01(\mathrm{~m}, 3 \mathrm{H}), 3.00-2.85(\mathrm{~m}, 3 \mathrm{H}), 2.84-2.71(\mathrm{~m}, 2 \mathrm{H}), 2.68-$ $2.54(\mathrm{~m}, 2 \mathrm{H}), 2.50-2.43(\mathrm{~m}, 1 \mathrm{H}), 2.33-2.13(\mathrm{~m}, 2 \mathrm{H}), 1.86-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.77-0.80(\mathrm{~m}, 59 \mathrm{H})$, $0.66-0.49$ ($\mathrm{q}, J=7.9,6 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 158.6,151.4,139.9,132.7,132.1$, $131.8,128.4,125.1,113.6,87.7,83.4,82.6,79.8,74.6,69.3,68.9,60.4,55.5,51.0,44.5,42.2$, $41.1,38.8,38.2,37.6,37.0,33.5,29.5,27.7,25.3,25.1,25.0,24.8,24.4,23.4,23.2,21.6,14.0$, 9.5, 7.3, 5.6; IR (film): 2931, 2875, 1615, 1515, 1463, 1248, 1175, 1119, 1102, 1077, 1044, 1007 cm^{-1}; LRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{58} \mathrm{H}_{100} \mathrm{IN}_{2} \mathrm{O}_{4} \mathrm{SiSn}, 1163.6$; found, 1163.6; $[\alpha]^{23}{ }_{405}$ $+11.0,[\alpha]^{23}{ }_{435}+9.6,[\alpha]^{23}{ }_{546}+4.7,[\alpha]^{23}{ }_{577}+4.4,[\alpha]^{23}{ }_{\mathrm{D}}+3.8\left(c 1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Alcohol 147. In a glove box, a solution of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(3.0 \mathrm{mg}, 0.00258 \mathrm{mmol})$ in THF $(200 \mu \mathrm{~L})$ was added to vinyl iodide $145(20.0 \mathrm{mg}, 0.0172 \mathrm{mmol})$ and $\mathrm{LiCl}(10.9 \mathrm{mg}, 0.258$ mmol) in THF (11.5 mL) at rt . After 7 d , the reaction vessel was removed from the glove box and the solvent was evaporated under reduced pressure. The residue was passed over a plug of silica gel ($4: 1$ hexanes:EtOAc containing $2 \% \mathrm{Et}_{3} \mathrm{~N}$), and the solvent was evaporated. Purification by flash chromatography ($40: 1$ hexanes: EtOAc, then 19:1 hexanes: EtOAc, then 9:1 hexanes: EtOAc) afforded Stille product $146(11.2 \mathrm{mg})$, which was contaminated with a byproduct believed to be the des-iodo derivative of $\mathbf{1 4 5}$. Nonetheless, this mixture was used directly in the subsequent transformation. From a different batch of material, an analytically pure sample of Stille product 147 was obtained by slow column chromatography using the conditions described above. $R_{\mathrm{f}} 0.55$ (4:1 hexanes:EtOAc containing $2 \% \mathrm{Et}_{3} \mathrm{~N}$); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.30$
$(\mathrm{d}, \mathrm{J}=8.6,2 \mathrm{H}), 6.88(\mathrm{~d}, \mathrm{~J}=8.6,2 \mathrm{H}), 6.65($ app. $\mathrm{t}, \mathrm{J}=13,1 \mathrm{H}), 6.18-6.14(\mathrm{~m}, 1 \mathrm{H}), 5.97$ (app. t, J $=10.8,1 \mathrm{H}), 5.60-5.42(\mathrm{~m}, 3 \mathrm{H}), 4.83(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.67(\mathrm{~d}, \mathrm{~J}=10.8,1 \mathrm{H}), 4.54(\mathrm{~d}, \mathrm{~J}=11.0,1 \mathrm{H})$, $4.38-4.35(\mathrm{~m}, 1 \mathrm{H}), 4.19(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.30(\mathrm{~d}, \mathrm{~J}=11.7,1 \mathrm{H}), 3.22-3.11(\mathrm{~m}, 2 \mathrm{H}), 3.05-$ $2.97(\mathrm{~m}, 2 \mathrm{H}), 2.83-2.77(\mathrm{~m}, 2 \mathrm{H}), 2.66-2.60(\mathrm{~m}, 1 \mathrm{H}), 2.59-2.53(\mathrm{~m}, 2 \mathrm{H}), 2.52-2.39(\mathrm{~m}, 2 \mathrm{H})$, 2.30-2.23 (m, 1H), 2.08-1.91 (m, 2H), 1.88-1.80 (m, 2H), 1.70-0.65 (m, 38H); ${ }^{13} \mathrm{C}$ NMR (150 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 159.4,134.5,131.2,130.9,129.7,128.1,127.6,113.9,89.1,79.5,76.9,73.8$, $70.3,69.8,60.8,55.5,51.3,43.6,42.2,41.4,38.9,38.7,38.0,36.3,29.9,28.6,27.5,26.4,26.0$, $25.8,25.4,24.7,24.4,23.3,22.9,21.4,7.4,5.5$; IR (film): 2928, 2874, 2854, 1514, 1463, 1250, 1117, 1066, 1044, $1012 \mathrm{~cm}^{-1}$; HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{46} \mathrm{H}_{73} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Si}, 745.5339$; found, $745.5336 ;[\alpha]^{26}{ }_{405}-8.3,[\alpha]^{26}{ }_{435}-4.1,[\alpha]^{26}{ }_{546}+10.0,[\alpha]^{26}{ }_{577}+11.4,[\alpha]^{26}{ }_{D}+15.9(c 1.00$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$).
$i-\mathrm{Bu}_{2} \mathrm{AlH}(120 \mu \mathrm{~L}, 0.12 \mathrm{mmol}, 1 \mathrm{M}$ in hexanes) was added to a solution of crude Stille product 145 in toluene $(1.5 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. After 10 min , the reaction mixture was warmed to 0 ${ }^{\circ} \mathrm{C}$, held at this temperature for 15 min , then quenched with saturated $\mathrm{Na}-\mathrm{K}$ tartrate solution (1.5 $\mathrm{mL})$ and EtOAc $(1 \mathrm{~mL})$. The resulting biphasic mixture was stirred at rt for 1 h and the layers were separated. The aqueous layer was extracted with EtOAc ($5 \times 1 \mathrm{~mL}$). The combined organic layers were washed with brine ($1 \times 1 \mathrm{~mL}$), dried by passage over a plug of silica gel (EtOAc eluent) and evaporated under reduced pressure. The residue was purified by flash chromatography ($9: 1$ hexanes:EtOAc containing $2 \% \mathrm{Et}_{3} \mathrm{~N}$, then $6: 1$ hexanes:EtOAc containing $2 \% \mathrm{Et}_{3} \mathrm{~N}$) to afford neopentyl alcohol $147(8.2 \mathrm{mg}, 64 \%) . R_{\mathrm{f}} 0.43$ (3:1 hexanes:EtOAc containing $2 \% \mathrm{Et}_{3} \mathrm{~N}$); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.30(\mathrm{~d}, J=8.6,2 \mathrm{H}), 6.91(\mathrm{~d}, J=8.6,2 \mathrm{H}), 6.80-6.68$ $(\mathrm{m}, 1 \mathrm{H}), 6.16-6.06(\mathrm{~m}, 2 \mathrm{H}), 5.65-5.48(\mathrm{~m}, 3 \mathrm{H}), 4.94(\mathrm{~d}, J=11.5,1 \mathrm{H}), 4.87(\mathrm{~d}, J=9.7,1 \mathrm{H})$, $4.64(\mathrm{~s}, 1 \mathrm{H}), 4.52(\mathrm{~d}, J=11.5,1 \mathrm{H}), 4.23-4.15(\mathrm{~m}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.59-3.45(\mathrm{~m}, 3 \mathrm{H}), 3.25-$ $2.98(\mathrm{~m}, 5 \mathrm{H}), 2.82-2.71(\mathrm{~m}, 1 \mathrm{H}), 2.58-2.48(\mathrm{~m}, 1 \mathrm{H}), 2.46-2.30(\mathrm{~m}, 4 \mathrm{H}), 2.22-2.11(\mathrm{~m}, 2 \mathrm{H})$, $1.84-0.79(\mathrm{~m}, 34 \mathrm{H}), 0.63(\mathrm{q}, J=7.7,6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 159.1,133.5,131.9$, $131.8,128.9,128.8,126.6,126.5,113.8,88.5,84.4,73.0,72.0,71.5,64.5,63.6,61.3,59.7,55.5$, 43.3, 43.2, 42.8, 39.5, 38.9, 29.9, 28.3, 27.1, 26.7, 26.5, 25.8, 24.4, 23.7, 23.1, 22.8, 21.8, 7.3, 5.6; IR (film): 3250 (br), 2931, 2875, 1615, 1517, 1465, 1250, $1042 \mathrm{~cm}^{-1}$; HRMS-ESI (m / z) [M + $\mathrm{H}]^{+}$calcd for $\mathrm{C}_{46} \mathrm{H}_{75} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Si}$, 747.5496; found, 747.5492; $[\alpha]^{24}{ }_{405}-83.3,[\alpha]^{24}{ }_{435}-77.6,[\alpha]^{24}{ }_{546}-$ $50.1,[\alpha]^{24}{ }_{577}-44.4,[\alpha]^{24}-42.9\left(c 1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

(-)-Sarain A. Freshly prepared Dess-Martin Periodinane ${ }^{10}(1.5 \mathrm{mg}, 0.00335 \mathrm{mmol})$ was added to a mixture of alcohol $147(2.7 \mathrm{mg}, 0.0036 \mathrm{mmol})$ and $\mathrm{NaHCO}_{3}(10 \mathrm{mg}, 0.119 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. After 15 min , additional Dess-Martin Periodinane was added (1.5 mg , 0.00335 mmol). After an additional 5 min , the reaction mixture was quenched with saturated aqueous $\mathrm{NaHCO}_{3}(750 \mu \mathrm{~L})$ and saturated aqueous sodium metabisulfite ($750 \mu \mathrm{~L}$). The resulting cloudy mixture was stirred vigorously for 15 min at $0^{\circ} \mathrm{C}$, then allowed to warm to rt . The layers were separated and the aqueous layer was extracted with $\mathrm{EtOAc}(5 \times 500 \mu \mathrm{~L})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{x}$ $500 \mu \mathrm{~L}$). The combined organic layers were washed with brine ($1 \times 500 \mu \mathrm{~L}$), loaded onto a plug of silica gel with EtOAc (pipette column). The silica gel column was eluted with EtOAc, then 30:1 $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}$ to remove impurities. Next, the column was eluted with $6: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}$ to collect aldehyde 148. This material was used directly in the subsequent transformation.

HF•pyridine ($30 \mu \mathrm{~L}, 1.15 \mathrm{mmol}$) was added to crude aldehyde 148 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.1 \mathrm{~mL})$ in a polyethylene vial at $0{ }^{\circ} \mathrm{C}$. After approximately 1.5 h , the reaction mixture was cooled to -10 ${ }^{\circ} \mathrm{C}$, carefully quenched by the dropwise addition of saturated aqueous $\mathrm{NaHCO}_{3}(2.5 \mathrm{~mL})$, then warmed to rt . The layers were separated and the aqueous layer was extracted with EtOAc (4 x $500 \mu \mathrm{~L})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 500 \mu \mathrm{~L})$. The combined organic layers were loaded onto a plug of silica gel with EtOAc (pipette column). The silica gel column was eluted with EtOAc, then 30:1 $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}$, and then $9: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}$ to remove impurities. Next, the column was eluted with 6:1 $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}$ to collect (-)-sarain A (1) ($0.9 \mathrm{mg}, 49 \%, 2$ steps). NOTE: (a) Omnisolve $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ from EMD Chemicals was used for chromatography; (b) prior to equilibrating the silica gel column with EtOAc for loading, the silica gel was washed with 6:1 $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}$; (c) fractions collected during chromatography of aldehyde SI-31 and sarain A (1) were routinely analyzed by both TLC ($R_{f} 0.38 \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH} ; \mathrm{I}_{2}$ and anisaldehyde staining) and LRMS-ESI. Characterization data for synthetic sarain A (${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, IR, HRMS) was indistinguishable from that reported for the naturally occurring material. ${ }^{11}$ In addition, a sample of natural sarain A was chromatographed following the exact same method used to purify our
synthetic material. ${ }^{1} \mathrm{H}$ NMR and circular dichroism spectral comparisons confirmed that the natural and synthetic samples were identical (see comparison spectra).

${ }^{1} H$ NMR Spectra (in order of appearance in manuscript and SI):

"웅

Comparison Spectra for (-)-Sarain A (1):

$(-)$-Sarain A, Comparison Spectra
Circular Dichroism in Methanol

References:

${ }^{1}$ Downham, R.; Ng, F. W.; Overman, L. E. J. Org. Chem. 1998, 63, 8096-8097.
${ }^{2}$ Baxter, J.; Mata, E. G.; Thomas, E. J. Tetrahedron 1998, 54, 14359-14376.
${ }^{3}$ Kende, A. S.; Hernando, J. I. M.; Milbank, J. B. J. Tetrahedron 2002, 58, 61-74.
${ }^{4}$ Prepared by silylation of the corresponding alcohol; see: Irifune, S.; Kibayashi, T.; Ishii, Y.; Ogawa, M. Synthesis 1998, 366-369.
${ }^{5}$ Schönauer, K.; Zbiral, E. Tetrahedron Lett. 1983, 24, 573-576.
${ }^{6}$ Kunau, W. H. Chem. Phys. Lipids 1971, 7, 101-107.
${ }^{7}$ Danishefsky, S. J.; Pearson, W. H. J. Org. Chem. 1983, 48, 3865-3866.
${ }^{8}$ Seyferth, D.; Vick, S. C. J. Organomet. Chem. 1978, 144, 1-12.
${ }^{9}$ Nicolaou, K. C.; Ramphal, J. Y.; Abe, Y. Synthesis 1989, 898-901.
${ }^{10}$ Dess-Martin Periodinane was freshly prepared using Schreiber's procedure; see: Meyer, S. D.; Schreiber, S. L. J. Org. Chem. 1994, 59, 7549-7552.
${ }^{11}$ (a) Cimino, G.; Scognamiglio, G.; Spinella, A.; Trivellone, E. J. Nat. Prod. 1990, 53, 15191525. (b) Guo, Y.; Madaio, A.; Trivellone, E.; Scognamiglio, G.; Cimino, G. Tetrahedron 1996, 52, 8341-8348.

