Supporting Information

Kinetics and Equilibria of Cis/Trans Isomerization of Backbone Amide Bonds in Peptoids

Qiang Sui, Dan Borchardt and Dallas L. Rabenstein*

Department of Chemistry University of California Riverside, California 92521

Table of Contents

Figures S1 –S3 Table S1 Figures S4 – S6 Table S2 Pages S2 –S4 Page S5 Pages S6 – S8 Page S9

Figure S1. 1D ¹H NMR spectrum of 8.2 mM Ac-N(butyl)-N(benzyl)-NH₂ (peptoid 3) in 100% D_2O , pD 2.8 and 25°C.

Figure S2. Portions of the TOCSY spectrum of 8.2 mM Peptoid **3** in 100% D_2O , pD 2.8 and 25°C. (A) shows cross peaks between benzyl CH₂ resonances (4.61 and 4.71 ppm) and aromatic proton resonances (7.28–7.36 ppm). (B) This portion of the TOCSY spectrum shows cross peaks between the n-butyl side chain resonances; the 1D spectrum is shown on the top of the TOCSY spectrum.

Figure S3. (A) A portion of the negative-contoured ROESY spectrum of 8.2 mM Ac-N(butyl)-NH₂ in 100% D₂O, pD 2.8 and 25°C shows cross peaks between resonances of H₁(c,t) and H₄(c,t), and between resonances of H₁(c,c) and H₄(c,c). Mixing time was 120ms; (B) ROESY spectrum shows the correlations between H₄(c,c) and H₇(c,c) resonances. Both positive and negative contours are plotted.

Proton	(t, t)	(t, c)	(c, t)	(c, c)
H_1	2.139	2.189	1.941	2.013
H_4	4.321	4.228	4.418	4.389
H_7	4.076	4.135	4.177	4.147
H_{14}	4.70	4.61	4.717	4.62
H_{10}	3.37	3.42	3.23	3.32
H ₁₁	1.51	1.58	1.34	1.50
H ₁₂	1.28	1.33	1.19	1.28
H ₁₃	0.88	0.92	0.82	0.88

Table S1. Assignment of the ¹H NMR spectrum of Peptoid 3^{a}

^aUnits in ppm.

Figure S4. Intensities of resonances for the acetyl protons of the four isomers of Peptoid **3** after selectively inverting the resonance for $H_1(t,t)$ with the DANTE inversion magnetization transfer pulse sequence followed by variable mixing times. The temperature was 55°C. The resonance for $H_1(t,c)$ shows a dip in intensity while the resonances for $H_1(c,c)$ and $H_1(c,t)$ do not, which indicates chemical exchange happens only between $H_1(t,c)$ and $H_1(t,t)$ on the inversion-magnetization transfer NMR time scale. The time scale is not linear; the mixing times are as follows: 0.0001, 0.0002, 0.0004, 0.008, 0.01, 0.02, 0.004, 0.008, 0.01, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.6, 0.8, 1, 2, 4, 8, 10, 15, 20, 30 and 40 sec.

Figure S5. Eyring plots of (Top) $\ln(k_{tc/tt}/T) - \ln(k_B/T)$ vs 1/T for $H_1(t,c)$ and (Bottom) $\ln(k_{cc/ct}/T) - \ln(k_B/T)$ vs 1/T for $H_1(c,c)$, where $k_{tc/tt}$ is the rate constant for $(t,c) \rightarrow (t,t)$ reaction, and $k_{cc/ctt}$ is the rate constant for $(c,c) \rightarrow (c,t)$ reaction.

Figure S6. Intensities of resonances for the methyl protons (H_{17}) of the eight isomers of Peptoid 7 after selectively inverting the resonance for $H_{17}(t,t,t)$ at 55°C with the DANTE inversion-magnetization transfer pulse sequence followed by variable mixing times. The $H_{17}(t,t,c)$ resonance shows a dip in the arrayed resonances while other resonances barely show any, which indicates that transfer of magnetization by chemical exchange happens only between $H_{17}(t,t,c)$ and $H_{17}(t,t,t)$ on the NMR scale. The mixing time is as follows: 0.0001, 0.001, 0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5, 0.6, 0.8, 1, 1.5, 2, 2.5, 3, 4, 5, 8 sec.

Peptoid	Rate Constant	ΔH^{\ddagger} ,kcal mol ⁻¹	ΔS^{\ddagger} , cal K ⁻¹ mol ⁻¹	ΔG^{\ddagger} ,kcal mol ⁻¹
1	k _{c/t}	14.5 <u>+</u> 0.5	-15.0 <u>+</u> 1.4	19.0 <u>+</u> 0.9
2	k _{c/t}	12.9 <u>+</u> 0.4	-20.0 <u>+</u> 0.7	18.9 <u>+</u> 0.6
3	k _{tc/tt}	18.7 <u>+</u> 1	-5 <u>+</u> 2	18 <u>+</u> 2
3	k _{cc/ct}	16.7 <u>+</u> 0.8	1 <u>+</u> 3	18.3 <u>+</u> 1.5
4	k _{tc/tt}	18.6 <u>+</u> 0.9	0.6 <u>+</u> 3	18 <u>+</u> 2
4	k _{cc/ct}	16.1 <u>+</u> 0.4	-7 <u>+</u> 1.5	18.2 <u>+</u> 0.1
5	k _{cc/ct}	20 <u>+</u> 2	2 <u>+</u> 2	19.4 <u>+</u> 2.5
6	k _{tc/tt}	13.9 <u>+</u> 0.9	-14 <u>+</u> 2	18.1 <u>+</u> 1.5
6	k _{cc/ct}	15.0 <u>+</u> 2	-11 <u>+</u> 5	18.5 <u>+</u> 3
7	k _{ttc/ttt}	15.6 <u>+</u> 0.6	-10 <u>+</u> 2	18 <u>+</u> 1
7	k _{ctc/ctt}	19.7 <u>+</u> 0.8	2.5 <u>+</u> 0.3	19 <u>+</u> 0.3
7	k _{ccc/cct}	16 <u>+</u> 1	-6 <u>+</u> 3	17.8 <u>+</u> 1.8
7	k _{tcc/tct}	21 <u>+</u> 2	8 <u>+</u> 5	19 <u>+</u> 3

Table S2. Activation parameters for cis-to-trans interchange, e.g. for (t,c)-to-(t,t).