Supporting Information

Rh-Catalyzed Synthesis of Helically Chiral and Ladder-Type Molecules via [2 + 2 + 2] and Formal $[2+1+2+1]$ Cycloadditions Involving C-C Triple Bond Cleavage

Ken Tanaka,* Akiyoshi Kamisawa, Takeshi Suda, Keiichi Noguchi, and Masao Hirano

Department of Applied Chemistry, Graduate School of Engineering, and Instrumentation Analysis Center, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan

I. General

Anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (No. 27,099-7), $\left(\mathrm{CH}_{2} \mathrm{Cl}\right)_{2}$ (No. 28,450-5), and THF (No. 18,656-2) were obtained from Aldrich and used as received. Tol-BINAP and xyl-Segphos [(4,4'-bi-1,3-benzodioxole)-5,5'-diylbis\{di(3,5-dimethylphenyl)phosphine\}] were obtained from Takasago International Corporation. All other reagents were obtained from commercial sources and used as received. All reactions were carried out under an atmosphere of argon in oven-dried glassware with magnetic stirring.

II. Synthesis of Triynes

2-Methoxymethoxy-1-[2-(trimethylsilyl)ethynyl]naphthalene (2).

To a solution of 1-iodo-2-methoxymethoxynaphthalene ${ }^{1}(\mathbf{1}, 8.84 \mathrm{~g}, 28.1 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(325 \mathrm{mg}, 0.281 \mathrm{mmol})$ in $i-\mathrm{Pr}_{2} \mathrm{NH}(200 \mathrm{~mL})$ was added trimethylsilyl acetylene $(5.6 \mathrm{~mL}, 139 \mathrm{mmol})$ at rt . The mixture was then stirred at rt for 5 min , and $\mathrm{CuI}(107 \mathrm{mg}$, 0.562 mmol) was added. The resulting mixture was stirred at rt for 23 h . The reaction mixture was filtered and concentrated. The crude alkyne $2(10.89 \mathrm{~g})$ was used in the next step without purification.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 8.32-8.23(\mathrm{~m}, 1 \mathrm{H}), 7.85-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.62-7.51(\mathrm{~m}$, $1 \mathrm{H}), 7.46-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{~s}, 2 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 0.35(\mathrm{~s}, 9 \mathrm{H})$.

1-Ethynyl-2-(methoxymethoxy)naphthalene (3). ${ }^{1}$

A solution of $\mathrm{KOH}(1.89 \mathrm{~g}, 33.7 \mathrm{mmol})$ in distilled water (7.4 mL) was added to a solution of the crude alkyne $2(10.89 \mathrm{~g})$ in $\mathrm{MeOH}(147 \mathrm{~mL})$ and THF (37 mL). The mixture was stirred at rt for 45 min . The reaction mixture was diluted with water and extracted with ether. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified on a silica gel column chromatography (hexane/EtOAc $=10: 1$) to afford $\mathbf{3}(5.90 \mathrm{~g}, 27.8 \mathrm{mmol}, 99 \%$ yield from $\mathbf{1})$ as a pale red oil.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 8.34-8.25(\mathrm{~m}, 1 \mathrm{H}), 7.87-7.75(\mathrm{~m}, 2 \mathrm{H}), 7.62-7.50(\mathrm{~m}$, $1 \mathrm{H}), 7.48-7.36(\mathrm{~m}, 2 \mathrm{H}), 5.40(\mathrm{~s}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 1 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H})$.

Bis[2-(methoxymethoxy)naphthalen-1-yl]acetylene (4).

To a solution of $\mathbf{1}(1.57 \mathrm{~g}, 5.01 \mathrm{mmol})$ in $i-\mathrm{Pr}_{2} \mathrm{NH}(10 \mathrm{~mL})$ were added $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(115.3$ $\mathrm{mg}, 0.100 \mathrm{mmol})$ and $\mathrm{CuI}(38.0 \mathrm{mg}, 0.200 \mathrm{mmol})$ and washed remaining materials away by using $i-\mathrm{Pr}_{2} \mathrm{NH}(10 \mathrm{~mL})$. To the mixture was slowly added a solution of $\mathbf{3}(1.06 \mathrm{~g}, 5.00$ mmol) in $i-\mathrm{Pr}_{2} \mathrm{NH}(30 \mathrm{~mL})$. The resulting mixture was stirred at rt overnight. The reaction was quenched by the addition of water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, and the water layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified on a silica gel column chromatography (hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}=1: 1$), which furnished $4(1.88 \mathrm{~g}, 4.72 \mathrm{mmol}, 95 \%$ yield from 3$)$ as a pale yellow solid.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 8.69-8.59(\mathrm{~m}, 2 \mathrm{H}), 7.91-7.78(\mathrm{~m}, 4 \mathrm{H}), 7.66-7.54(\mathrm{~m}$, $2 \mathrm{H}), 7.51-7.40(\mathrm{~m}, 4 \mathrm{H}), 5.51(\mathrm{~s}, 4 \mathrm{H}), 3.63(\mathrm{~s}, 6 \mathrm{H})$.

Bis(2-hydroxynaphthalen-1-yl)acetylene (5).

A solution of $4(0.207 \mathrm{~g}, 0.520 \mathrm{mmol})$ in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O} /$ conc $\mathrm{HCl}(6: 2: 1,9 \mathrm{~mL})$ was stirred at rt for 16 h . The reaction was quenched by the addition of water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated.

The residue was purified on a silica gel column chromatography (hexane/EtOAc $=10: 1$) to afford $5(0.145 \mathrm{~g}, 0.466 \mathrm{mmol}, 89 \%$ yield) as a pale yellow solid.

Mp 191.5-192.5 ${ }^{\circ} \mathrm{C}$; IR (KBr) 3303, 3052, 1621, 1587, 1510, 1349, 1273, 1205, 955, 810, $742 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 8.32-8.19(\mathrm{~m}, 2 \mathrm{H}), 7.90-7.75(\mathrm{~m}, 4 \mathrm{H}), 7.66-$ $7.54(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.20(\mathrm{~m}, 2 \mathrm{H}), 6.36(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75\right.$ $\mathrm{MHz}) \delta 156.3,133.5,131.2,128.6,128.4,127.8,124.9,124.3,116.6,102.8,93.3$; HRMS (FAB) calcd for $\mathrm{C}_{22} \mathrm{H}_{14} \mathrm{O}_{2}[\mathrm{M}]^{+} 310.0994$, found 310.0995.

Bis[2-(4-methoxy-4-oxobut-2-ynyloxy)naphthalen-1-yl]acetylene (6a).

A solution of $4(1.04 \mathrm{~g}, 2.60 \mathrm{mmol})$ in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O} /$ conc $\mathrm{HCl}(6: 2: 1,18 \mathrm{~mL})$ was stirred at rt for 21 h . The reaction was quenched by the addition of water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to afford crude alkyne $5(0.732 \mathrm{~g})$. To a stirred suspension of $\mathrm{K}_{2} \mathrm{CO}_{3}(0.461 \mathrm{~g}, 3.34 \mathrm{mmol})$ in acetone $(5 \mathrm{~mL})$ was added the crude alkyne $5(0.206 \mathrm{~g})$ and propargyl bromide ($0.242 \mathrm{~g}, 2.03$ $\mathrm{mmol})$ in acetone (10 mL), and the resulting mixture was stirred at rt for 88 h . The reaction mixture was quenched by the addition of water and extracted with EtOAc. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to afford crude bis[2-(prop-2-ynyloxy)naphthalen-1-yl]acetylene (0.244 g) as a pale yellow solid, a portion of which (0.115 g) was used in the next step without further purification.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 8.71-8.61(\mathrm{~m}, 2 \mathrm{H}), 7.90-7.77(\mathrm{~m}, 4 \mathrm{H}), 7.68-7.56(\mathrm{~m}, 2 \mathrm{H})$, $7.50-7.35(\mathrm{~m}, 4 \mathrm{H}), 5.06(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 4 \mathrm{H}), 2.60(\mathrm{t}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H})$.

A solution of LDA, prepared from $i-\mathrm{Pr}_{2} \mathrm{NH}(0.10 \mathrm{~mL}, 0.708 \mathrm{mmol}), n-\mathrm{BuLi}(0.45 \mathrm{~mL}$, 1.52 M in hexane, 0.68 mmol), and THF (10 mL), was added dropwise to a stirred solution of the crude bis[2-(prop-2-ynyloxy)naphthalen-1-yl]acetylene (0.115 g) in THF (10 mL) at $-78^{\circ} \mathrm{C}$, and the resulting mixture was stirred at $-78^{\circ} \mathrm{C}$ for 30 min . To the resulting solution was slowly added a solution of methyl chloroformate ($0.096 \mathrm{~mL}, 1.24 \mathrm{mmol}$) in THF (10 mL) at $-78{ }^{\circ} \mathrm{C}$, and the resulting mixture was stirred at rt for 3 h . The reaction was quenched by the addition of water and extracted with EtOAc. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified on a silica gel column chromatography (hexane/EtOAc $=10: 1$), which furnished $\mathbf{6 a}(0.087 \mathrm{~g}$, $0.173 \mathrm{mmol}, 50 \%$ yield from 4) as a pale yellow solid.

Mp 197.0-198.5 ${ }^{\circ} \mathrm{C}$; IR (KBr) 3038, 2954, 2906, 2854, 2246, 1711, 1510, 1434, 1262, $1044 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 8.68-8.55(\mathrm{~m}, 2 \mathrm{H}), 7.95-7.78(\mathrm{~m}, 4 \mathrm{H}), 7.73-7.60$
(m, 2H), 7.53-7.41 (m, 2H), $7.37(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.19(\mathrm{~s}, 4 \mathrm{H}), 3.77(\mathrm{~s}, 6 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 156.7,153.3,134.3,130.2,129.5,128.1,127.7,125.9,125.1,115.2$, 109.2, 93.7, 82.2, 78.7, 57.7, 52.9; HRMS (FAB) calcd for $\mathrm{C}_{32} \mathrm{H}_{22} \mathrm{O}_{6}[\mathrm{M}]^{+} 502.1416$, found 502.1329 .

Bis[2-(4-n-butoxy-4-oxobut-2-ynyloxy)naphthalen-1-yl]acetylene (6b).

A solution of $4(0.250 \mathrm{~g}, 0.627 \mathrm{mmol})$ in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O} /$ conc $\mathrm{HCl}(6: 2: 1,9 \mathrm{~mL})$ was stirred at rt for 15 h . The reaction was quenched by the addition of water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to afford crude alkyne $5(0.205 \mathrm{~g})$. To a stirred suspension of $\mathrm{K}_{2} \mathrm{CO}_{3}(0.467 \mathrm{~g}, 3.38 \mathrm{mmol})$ in acetone (5 mL) was added the crude alkyne $5(0.205 \mathrm{~g}$) and propargyl bromide (0.246 g , $2.06 \mathrm{mmol})$ in acetone $(15 \mathrm{~mL})$, and the resulting mixture was stirred at rt for 22 h . The reaction mixture was quenched by the addition of water and extracted with EtOAc. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to afford crude bis[2-(prop-2-ynyloxy)naphthalen-1-yl]acetylene (0.250 g). A solution of LDA, prepared from $i-\mathrm{Pr}_{2} \mathrm{NH}(0.22 \mathrm{~mL}, 1.56 \mathrm{mmol}), n-\mathrm{BuLi}(0.9 \mathrm{~mL}, 1.59 \mathrm{M}$ in hexane, 1.43 mmol$)$, and THF (10 mL), was added dropwise to a stirred solution of the crude bis[2-(prop-2-ynyloxy)naphthalen-1-yl]acetylene (0.250 g) in THF (20 mL) at $-78^{\circ} \mathrm{C}$, and the resulting mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 20 min . To the resulting solution was slowly added with stirring a solution of n-butyl chloroformate $(0.33 \mathrm{~mL}, 2.59 \mathrm{mmol})$ in THF (10 mL) at $-78^{\circ} \mathrm{C}$, and the resulting mixture was stirred at rt for 18 h . The reaction was quenched by the addition of water and extracted with EtOAc three times. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified on a silica gel column chromatography (hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}=2: 1$), which furnished $\mathbf{6 b}(0.178 \mathrm{~g}, 0.303 \mathrm{mmol}$, 48% yield from 4) as a pale yellow solid.

Mp 129.5-131.0 ${ }^{\circ} \mathrm{C}$; IR (KBr) 3050, 2957, 2247, 1706, 1257, $1053 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 8.63-8.58(\mathrm{~m}, 2 \mathrm{H}), 7.93-7.80(\mathrm{~m}, 4 \mathrm{H}), 7.72-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.42$ $(\mathrm{m}, 2 \mathrm{H}), 7.37(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.18(\mathrm{~s}, 4 \mathrm{H}), 4.18(\mathrm{t}, J=6.6 \mathrm{~Hz}, 4 \mathrm{H}), 1.64-1.57(\mathrm{~m}, 4 \mathrm{H})$, $1.44-1.29(\mathrm{~m}, 4 \mathrm{H}), 0.91(\mathrm{t}, J=7.5 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 156.7$, 153.1, $134.3,130.1,129.5,128.1,127.7,125.9,125.1,115.2,109.2,93.7,81.8,79.1,66.1,57.7$, 30.3, 19.0, 13.6; HRMS (FAB) calcd for $\mathrm{C}_{38} \mathrm{H}_{34} \mathrm{O}_{6}[\mathrm{M}]^{+} 586.2355$, found 586.2376.

Bis[2-(hept-2-ynyloxy)naphthalen-1-yl]acetylene (6c).

A solution of $4(0.398 \mathrm{~g}, 1.00 \mathrm{mmol})$ in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O} /$ conc $\mathrm{HCl}(6: 2: 1,6 \mathrm{~mL})$ was stirred at rt for 5 h . The reaction was quenched by the addition of water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to afford crude alkyne $5(0.394 \mathrm{~g})$. To a stirred suspension of $\mathrm{K}_{2} \mathrm{CO}_{3}(0.691 \mathrm{~g}, 5.00 \mathrm{mmol})$ in acetone $(5 \mathrm{~mL})$ was added the crude alkyne $5(0.394 \mathrm{~g})$ and 2-heptynyl tosylate ${ }^{2}(0.666 \mathrm{~g}, 2.50$ mmol) in acetone (25 mL), and the resulting mixture was stirred at rt for 21 h . The reaction mixture was extracted with EtOAc. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The crude product was purified on a silica gel column chromatography (hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}=4: 1$) to afford $\mathbf{6 c}(0.147 \mathrm{~g}, 0.295 \mathrm{mmol}, 30 \%$ yield from 4) as a pale yellow solid.

Mp 86.5-87.5 ${ }^{\circ} \mathrm{C}$; IR (KBr) 3055, 2955, 2925, 1587, 1507, 1278, 1255, 1219, 1043 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 8.71-8.63(\mathrm{~m}, 2 \mathrm{H}), 7.88-7.75(\mathrm{~m}, 4 \mathrm{H}), 7.65-7.55(\mathrm{~m}$, 2 H), $7.48-7.36(\mathrm{~m}, 4 \mathrm{H}), 5.04(\mathrm{t}, J=2.1 \mathrm{~Hz}, 4 \mathrm{H}), 2.23(\mathrm{tt}, J=6.9$ and $2.1 \mathrm{~Hz}, 4 \mathrm{H})$, $1.58-1.25(\mathrm{~m}, 8 \mathrm{H}), 0.85(\mathrm{t}, J=7.5 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 157.4,134.4$, $129.5,129.1,127.9,127.2,126.1,124.5,115.6,109.0,93.8,88.7,75.2,58.6,30.5,21.9$, 18.6, 13.5; HRMS (FAB) calcd for $\mathrm{C}_{36} \mathrm{H}_{35} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 499.2637$, found 499.2633.

Bis[2-(4-methoxy-4-oxobut-2-ynyloxy)phenyl]acetylene (6d).

To a stirred suspension of NaH (55% in paraffin liquid, $0.124 \mathrm{~g}, 2.85 \mathrm{mmol}$) in DMF (5 mL) was added a solution of $2,2^{\prime}-\left(1,2\right.$-ethynediyl)bisphenol ${ }^{3}(0.270 \mathrm{~g}, 1.28 \mathrm{mmol})$ and propargyl bromide $(0.460 \mathrm{~g}, 3.87 \mathrm{mmol})$ in DMF $(20 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, and the resulting mixture was stirred at rt for 17 h . The reaction mixture was quenched by the addition of water and extracted with EtOAc. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified on a silica gel column chromatography
(hexane/EtOAc = 10:1), which furnished bis[2-(prop-2-ynyloxy)phenyl]acetylene (0.202 g , $0.705 \mathrm{mmol}, 55 \%$ yield) as a pale yellow solid.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.61-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.16-6.91(\mathrm{~m}$, $4 \mathrm{H}), 4.86(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 4 \mathrm{H}), 2.54(\mathrm{t}, J=2.1 \mathrm{~Hz}, 2 \mathrm{H})$.

A solution of LDA, prepared from $i-\mathrm{Pr}_{2} \mathrm{NH}(0.12 \mathrm{~mL}, 0.845 \mathrm{mmol}), n-\mathrm{BuLi}(0.49 \mathrm{~mL}$, 1.58 M in hexane, 0.77 mmol), and THF (5 mL), was added dropwise to a stirred solution of bis[2-(prop-2-ynyloxy)phenyl]acetylene ($0.100 \mathrm{~g}, 0.349 \mathrm{mmol}$) in THF (12 mL) at $-78{ }^{\circ} \mathrm{C}$, and the resulting mixture was stirred at $-78^{\circ} \mathrm{C}$ for 20 min . To the resulting solution was added a solution of methyl chloroformate ($0.108 \mathrm{~mL}, 1.24 \mathrm{mmol}$) in THF (4 mL) at $-78^{\circ} \mathrm{C}$, and the resulting mixture was gradually warmed to rt . The reaction was quenched by the addition of water and extracted with EtOAc. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified on a silica gel column chromatography (hexane/EtOAc $=4: 1$), which furnished $\mathbf{6 d}(0.077 \mathrm{~g}, 0.191 \mathrm{mmol}, 55 \%$ yield) as a pale yellow solid.

Mp 120.0-121.0 ${ }^{\circ} \mathrm{C}$; IR (KBr) 3059, 3001, 2953, 2925, 2850, 2252, 1715, 1504, 1442, 1380, 1263, 1230, $1017 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.59-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.24$ $(\mathrm{m}, 2 \mathrm{H}), 7.10-6.94(\mathrm{~m}, 4 \mathrm{H}), 4.99(\mathrm{~s}, 4 \mathrm{H}), 3.77(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 157.6$, $153.3,133.7,129.7,122.2,113.85,113.78,89.8,82.2,78.6,56.6,52.8$; HRMS (FAB) calcd for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{O}_{6}[\mathrm{M}]^{+}$402.1103, found 402.1115; HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{O}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$ 425.1001 , found 425.0994 .

III. Rh-Catalyzed Cycloadditions of Triynes

General Procedure for $\mathrm{Rh}_{(\mathrm{I})^{+} /(\boldsymbol{R}, \boldsymbol{R}) \text {-Me-Duphos-Catalyzed Cycloaddition of }}$ Triynes (Tbele 1, entry 1, 6a). Under an Ar atmosphere, (R, R)-MeDuphos ($6.1 \mathrm{mg}, 0.02$ $\mathrm{mmol})$ and $\left[\mathrm{Rh}(\operatorname{cod})_{2}\right] \mathrm{BF}_{4}(8.1 \mathrm{mg}, 0.02 \mathrm{mmol})$ were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ and the mixture was stirred for $5 \mathrm{~min} . \mathrm{H}_{2}$ was introduced to the resulting solution in a Schlenk tube. After stirring at rt for 1 h , the resulting mixture was concentrated to dryness. To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(1.0 \mathrm{~mL})$ solution of the residue was added a $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL})$ solution of $\mathbf{6 a}(50.3 \mathrm{mg}$, $0.10 \mathrm{mmol})$ and washed the remaining substrate away by using $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$. The mixture was stirred at rt for 15 h . The resulting mixture was concentrated and purified on a preparative TLC (hexane/EtOAc/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}=10: 1: 1$), which furnished $7 \mathrm{a}(40.3 \mathrm{mg}, 0.0802$ $\mathrm{mmol}, 80 \%$ yield, $71 \% \mathrm{ee}$) as a yellow solid.

(M)-(-)-Dimethyl $\quad \mathbf{8 H , 1 1 H - n a p h t h o [2 , 1 - b] n a p h t h o [1 " , 2 " : 5 ' , 6 ’] p y r a n o [3 ' , 4 ' : 5 , 6] - ~}$ benzo[d]pyran-9,10-dicarboxylate $[(M)-(-)-7 a]$.

Mp 191.0-192.0 ${ }^{\circ} \mathrm{C} ;[\alpha]^{25}{ }_{\mathrm{D}}-908.6^{\circ}\left(\mathrm{CHCl}_{3}, c 1.49,71 \% \mathrm{ee}\right) ;$ IR (KBr) 3060, 2952, 2924, 2851, 1720, 1230, 1207, $1000 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.45(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.26(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-7.14(\mathrm{~m}, 2 \mathrm{H}), 6.87-6.71(\mathrm{~m}, 4 \mathrm{H}), 6.64-6.53(\mathrm{~m}, 2 \mathrm{H}), 5.54$ (d, $J=14.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.89(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.98(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$ $\delta 167.3,156.1,137.9,131.3,129.6,129.3,128.6,127.1,126.3,125.1,123.2,121.9,118.4$, 117.6, 67.9, 52.8; HRMS (FAB) calcd for $\mathrm{C}_{32} \mathrm{H}_{23} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}$503.1495, found 503.1472; CHIRALPAK AD, Hexane $/ i-\mathrm{PrOH}=80: 20,1.0 \mathrm{~mL} / \mathrm{min}$, retention times: 9.7 min (minor isomer) and 15.2 min (major isomer).
(-)-Di-n-butyl $8 H, 11 H$-naphtho[2,1-b]naphtho[1",2’: $5^{\prime}, 6$ ']pyrano[$\left.3^{\prime}, 4^{\prime}: 5,6\right]$ benzo-[d]pyran-9,10-dicarboxylate [(-)-7b].

Yellow solid; Mp 50.0-51.0 ${ }^{\circ} \mathrm{C}$; $[\alpha]^{25}{ }_{\mathrm{D}}-845.8^{\circ}\left(\mathrm{CHCl}_{3}, c 1.31,77 \%\right.$ ee); IR (KBr) 2957, 2926, 2853, 1722, 1231, $1195 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.44(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H})$, $7.30-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.14(\mathrm{~m}, 2 \mathrm{H}), 6.86-6.71(\mathrm{~m}, 4 \mathrm{H}), 6.63-6.52(\mathrm{~m}, 2 \mathrm{H}), 5.54(\mathrm{~d}, J=$ $14.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.89(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.46(\mathrm{dt}, J=10.8$ and $6.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.30(\mathrm{dt}, J=$ 10.8 and $6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.84-1.69(\mathrm{~m}, 4 \mathrm{H}), 1.57-1.40(\mathrm{~m}, 4 \mathrm{H}), 0.99(\mathrm{t}, J=7.5 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 167.0,156.0,137.7,131.2,129.4,129.3,128.6,127.0,126.7$, $125.1,123.2,122.0,118.4,117.5,68.0,66.0,30.6,19.3,13.7$; HRMS (FAB) calcd for $\mathrm{C}_{38} \mathrm{H}_{34} \mathrm{O}_{6}[\mathrm{M}]^{+}$586.2355, found 586.2386; CHIRALPAK AD, Hexane/i-PrOH 80:20, 1.0 $\mathrm{mL} / \mathrm{min}$, retention times: 8.1 min (minor isomer) and 25.2 min (major isomer).
(-)-8H,11H-9,10-Di-n-butylnaphtho[2,1-b]naphtho[1",2': $\mathbf{5}^{\prime}, 6$ ' $]$ pyrano[3',4':5,6]benzo[d]pyran [(-)-7c].

Pale yellow solid; Mp $135.5-136.1^{\circ} \mathrm{C}$; $[\alpha]^{25}{ }_{\mathrm{D}}-604.0^{\circ}\left(\mathrm{CHCl}_{3}, c 1.73,85 \%\right.$ ee); IR (KBr) 3056, 2956, 2925, 2852, 1227, $809 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.40(\mathrm{~d}, J=$ $8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.22-7.14(\mathrm{~m}, 2 \mathrm{H}), 6.95-6.87(\mathrm{~m}, 2 \mathrm{H}), 6.82-6.72(\mathrm{~m}$, $2 \mathrm{H}), 6.58-6.47$ (m, 2H), 5.52 (d, $J=12.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.71$ (d, $J=12.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.77(\mathrm{t}, J=$ $7.8 \mathrm{~Hz}, 4 \mathrm{H}), 1.75-1.46(\mathrm{~m}, 8 \mathrm{H}), 1.04(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$ $\delta 154.9,136.1,134.5,129.40,129.37,129.2,126.7,125.0,124.3,122.73,122.71,119.9$, 117.5, 67.7, 33.5, 28.7, 23.2, 14.0; HRMS (FAB) calcd for $\mathrm{C}_{36} \mathrm{H}_{34} \mathrm{O}_{2}[\mathrm{M}]^{+} 498.2559$, found 498.2527: CHIRALPAK AD-H, Hexane $/ i-\mathrm{PrOH}=98: 2,1.0 \mathrm{~mL} / \mathrm{min}$, retention times: 6.0 min (major isomer) and 6.8 min (minor isomer).

8H,17H-9,18-Di-n-butylnaphtho[2,1-b]naphtho[1",2':5',6']pyrano[3',4':5,4]benzo[d]pyran (8c).

Pale yellow greasy solid; IR (KBr) 3059, 2925, 2854, 1464, 1377, 1230, 1011, 816 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.87-7.75(\mathrm{~m}, 6 \mathrm{H}), 7.46-7.33(\mathrm{~m}, 6 \mathrm{H}), 5.47(\mathrm{~d}, J=$ $12.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.76(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.79-2.54(\mathrm{~m}, 4 \mathrm{H}), 1.22-0.60(\mathrm{~m}, 8 \mathrm{H}), 0.49(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 155.8,136.1,132.6,130.4,130.0,129.2$, 128.32, 128.30, 125.9, 125.7, 123.7, 119.9, 117.9, 68.4, 32.9, 29.9, 22.0, 13.5; HRMS (FAB) calcd for $\mathrm{C}_{36} \mathrm{H}_{34} \mathrm{O}_{2}[M]^{+} 498.2559$, found 498.2538.

General Procedure for $\mathbf{R h}(\mathbf{I})^{+} /(S)$-xyl-Segphos-Catalyzed Cycloaddition of Triynes (Table 1, entry 4, 6a). Under an Ar atmosphere, (S)-xyl-Segphos ($14.5 \mathrm{mg}, 0.02 \mathrm{mmol}$) and $\left[\mathrm{Rh}(\operatorname{cod})_{2}\right] \mathrm{BF}_{4}(8.1 \mathrm{mg}, 0.02 \mathrm{mmol})$ were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ and the mixture was stirred for $5 \mathrm{~min} . \mathrm{H}_{2}$ was introduced to the resulting solution in a Schlenk tube. After stirring at rt for 1 h , the resulting mixture was concentrated to dryness. To the $\left(\mathrm{CH}_{2} \mathrm{Cl}\right)_{2}(1.0$ $\mathrm{mL})$ solution of the residue was added a $\left(\mathrm{CH}_{2} \mathrm{Cl}\right)_{2}(3.0 \mathrm{~mL})$ solution of $\mathbf{6 a}(50.3 \mathrm{mg}, 0.10$ mmol) and washed the remaining substrate away by using $\left(\mathrm{CH}_{2} \mathrm{Cl}\right)_{2}(1.0 \mathrm{~mL})$. The mixture was stirred at $80{ }^{\circ} \mathrm{C}$ for 15 h . The resulting mixture was concentrated and purified on a preparative TLC (hexane/EtOAc $=5: 1$), which furnished 7 a $(19.4 \mathrm{mg}, 0.0386 \mathrm{mmol}, 39 \%$ yield) as a pale yellow solid and $\mathbf{8 a}(17.1 \mathrm{mg}, 0.0340 \mathrm{mmol}, 34 \%$ yield) as a yellow solid.

(S)-xyl-Segphos $\left(\mathrm{Ar}=3,5-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right)$

Dimethyl $8 H, 17 H$-naphtho[2,1-b]naphtho[1", $\left.2^{\prime \prime}: 5^{\prime}, 6^{\prime}\right]$ pyrano $\left.{ }^{\prime} 3^{\prime}, 4^{\prime}: 5,4\right]$ benzo-[d]pyran-9,18-dicarboxylate (8a).

Mp 250.0-251.2 ${ }^{\circ} \mathrm{C}$; IR (KBr) 2947, 2925, 2851, 1717, 1305, $1169 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.95-7.74(\mathrm{~m}, 6 \mathrm{H}), 7.53-7.27(\mathrm{~m}, 6 \mathrm{H}), 5.49(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.96$ $(\mathrm{d}, J=13.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.99(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 167.5,155.4,137.0,130.9$, 130.8, 129.7, 129.0, 128.6, 128.3, 126.9, 124.2, 123.3, 117.9, 117.7, 68.1, 52.0; HRMS (FAB) calcd for $\mathrm{C}_{32} \mathrm{H}_{22} \mathrm{O}_{6}[M]^{+} 502.1416$, found 502.1432; HRMS (ESI) calcd for $\mathrm{C}_{32} \mathrm{H}_{22} \mathrm{O}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$525.1314, found 525.1314.

Di-n-butyl $\quad 8 H, 17 H$-naphtho[2,1-b]naphtho[1",2’:5', $\left.\mathbf{6}^{\prime}\right]$]pyrano[3',4’:5,4]benzo-[d]pyran-9,18-dicarboxylate (8b).

Small amout of pure ladder-type molecule $\mathbf{8 b}(4.4 \mathrm{mg})$ could be separated from helicenlike molecule 7b by silica gel column chromatography (hexane/EtOAc $=10: 1$) as the first fraction. Yellow solid; Mp 54.3-55.8 ${ }^{\circ} \mathrm{C}$; IR (KBr) 3060, 2956, 2925, 2854, 1712, 1302, 1248, 1176, 1124, $1020 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.96-7.89(\mathrm{~m}, 2 \mathrm{H}), 7.87-7.77$ $(\mathrm{m}, 4 \mathrm{H}), 7.50-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.51(\mathrm{~d}, J=13.8$ $\mathrm{Hz}, 2 \mathrm{H}), 4.97(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.71(\mathrm{dt}, J=10.8$ and $6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.04(\mathrm{dt}, J=10.8$ and $6.3 \mathrm{~Hz}, 2 \mathrm{H}), 0.98-0.70(\mathrm{~m}, 8 \mathrm{H}), 0.64(\mathrm{t}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ $\delta 167.3,155.4,137.0,130.9,130.6,129.9,129.4,128.5,128.2,126.9,124.2,123.5,118.0$, $117.8,68.2,65.5,29.6,18.7,13.6$; HRMS (FAB) calcd for $\mathrm{C}_{38} \mathrm{H}_{34} \mathrm{O}_{6}[\mathrm{M}]^{+} 586.2355$, found 586.2360 .

Dimethyl 6H,9H-chromeno[3',4':4,3]benzo[c]chromene-7,8-dicarboxylate (7d).

The reaction was conducted in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $40{ }^{\circ} \mathrm{C}$ for 14 h . Pale yellow solid; Mp $227.5-228.1{ }^{\circ} \mathrm{C}$; IR (KBr) 2949, 1726, 1229, 1202, $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ $\delta 7.35-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.14-7.04(\mathrm{~m}, 2 \mathrm{H}), 6.83-6.72(\mathrm{~m}, 2 \mathrm{H}), 5.64-4.50$ (br, 4H), $3.90(\mathrm{~s}, 6 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 167.0,156.5,137.2,130.34,130.28$, 129.0, 126.9, 122.8, 121.6, 117.9, 67.7, 52.7; HRMS (FAB) calcd for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}$ 403.1182, found 403.1210; HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{O}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 425.1001$, found 425.0987.

Dimethyl 6H,13H-chromeno[3', 4':4,5]benzo[c]chromene-7,14-dicarboxylate (8d).

The reaction was conducted in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $40{ }^{\circ} \mathrm{C}$ for 14 h . Pale yellow solid; Mp $186.0-187.5^{\circ} \mathrm{C}$; IR (neat) 2953, 2925, 2852, 1726, 1261, 1227, $1043,1018 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.40-7.19(\mathrm{~m}, 4 \mathrm{H}), 7.13-6.99(\mathrm{~m}, 4 \mathrm{H}), 5.02(\mathrm{~s}, 4 \mathrm{H}), 3.85(\mathrm{~s}, 6 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 169.2,155.9,133.2,130.4,127.7,127.5,125.7,122.3,122.1$, 117.7, 66.8, 52.7; HRMS (FAB) calcd for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}$403.1182, found 403.1153; HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{O}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 425.1001$, found 425.1005.
(+)-5,6-Bis(2-hydroxynaphthalen-1-yl)-1,3-dihydroisobenzofuran-4,7-dicarboxylic acid diethyl ester [(+)-10]. Under an Ar atmosphere, (R)-tol-BINAP ($4.7 \mathrm{mg}, 0.0075$ $\mathrm{mmol})$ and $\left[\mathrm{Rh}(\operatorname{cod})_{2}\right] \mathrm{BF}_{4}(3.0 \mathrm{mg}, 0.0075 \mathrm{mmol})$ were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ and the mixture was stirred at rt for $5 \mathrm{~min} . \mathrm{H}_{2}$ was introduced to the resulting solution in a Schlenk tube. After stirring at rt for 1 h , the resulting solution was concentrated and dissolved in THF $(0.3 \mathrm{~mL})$. To this solution was added a THF $(0.4 \mathrm{~mL})$ solution of 5 (93.0 $\mathrm{mg}, \quad 0.30 \mathrm{mmol})$ at rt , and then a THF (1.3 mL) solution of bis[3(ethoxycarbonyl)propargyl] ether ${ }^{4}(\mathbf{9}, 35.7 \mathrm{mg}, 0.15 \mathrm{mmol})$ dropwise over 30 min at rt . After stirring at rt for 1 h , the resulting solution was concentrated and purified on a preparative TLC (hexane/EtOAc = 2:1), which furnished $10(18.9 \mathrm{mg}, 0.034 \mathrm{mmol}, 23 \%$ yield, 69% ee) as a pale yellow solid.

Mp 219.0-220.0 ${ }^{\circ} \mathrm{C} ;[\alpha]^{25}{ }_{\mathrm{D}}+121.8^{\circ}\left(\mathrm{CHCl}_{3}, c 0.280,69 \%\right.$ ee); IR (KBr) 3435, 3057, 2979, 2961, 2926, 2856, 1704, 1257, 1184-1092(br), $1023 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz}) \delta 7.66-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.35(\mathrm{~m}, 4 \mathrm{H}), 7.35-7.17(\mathrm{~m}, 4 \mathrm{H}), 6.58(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H})$, $5.63-5.47(\mathrm{~m}, 2 \mathrm{H}), 5.47-5.33(\mathrm{~m}, 2 \mathrm{H}), 4.64(\mathrm{~s}, 2 \mathrm{H}), 3.78(\mathrm{q}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 0.53(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 166.3,150.5,142.1137 .0,133.5,131.5,129.3$, $128.4,127.8,126.1,124.4,123.1,118.5,117.3,74.1,61.2,13.0$; HRMS (FAB) calcd for $\mathrm{C}_{34} \mathrm{H}_{28} \mathrm{O}_{7}[\mathrm{M}]^{+} 548.1835$, found 548.1785; CHIRALCEL OD-H (Connected two columns were employed.), Hexane $/ i-\mathrm{PrOH}=85: 15,0.5 \mathrm{~mL} / \mathrm{min}$, retention times: 27.3 min (minor isomer) and 31.4 min (major isomer).

IV. References

(1) Cironi, P.; Albericio, F.; Alvarez, M. Tetrahedron Lett. 2004, 45, 7311.
(2) Baldwin, J. E.; Adlington, R. M.; Crouch, N. P.; Hill, R. L.; Laffey, T. G. Tetrahedron Lett. 1995, 36, 7925.
(3) Hiroya, K.; Suzuki, N.; Yasuhara, A.; Egawa, Y.; Kasano, A.; Sakamoto, T. J. Chem. Soc., Perkin Trans. 1 2000, 4339.
(4) Yamamoto, Y.; Nagata, A.; Nagata, H.; Ando, Y.; Arikawa, Y.; Tatsumi, K.; Itoh, K. Chem.-Eur. J. 2003, 9, 2469.

Bis(2-hydroxynaphthalen-1-yl)acetylene (5)

Bis[2-(4-methoxy-4-oxobut-2-ynyloxy)naphthalen-1-yl]acetylene (6a)

Bis[2-(4-n-butoxy-4-oxobut-2-ynyloxy)naphthalen-1-yl]acetylene ($\mathbf{6 b}$)

Bis[2-(hept-2-ynyloxy)naphthalen-1-yl]acetylene (6c)

Bis[2-(4-methoxy-4-oxobut-2-ynyloxy)phenyl]acetylene (6d)

Dimethyl $8 H, 11 H$-naphtho[2,1- $]$]naphtho[1",2":5', $\left.6^{\prime}\right]$ pyrano[$\left.3^{\prime}, 4^{\prime}: 5,6\right]$ benzo[d]pyran-9,10-dicarboxylate (7a)

Di-n-butyl $\quad 8 H, 11 H$-naphtho[2,1- b]naphtho[1",2": $\left.5^{\prime}, 6^{\prime}\right]$ pyrano[$\left.3^{\prime}, 4^{\prime}: 5,6\right]$ benzo[$\left.d\right]$ pyran-9,10-dicarboxylate (7b)

8H,11H-9,10-Di- n-butylnaphtho[2,1-b]naphtho[1", $\left.2^{\prime \prime}: 5^{\prime}, 6^{\prime}\right]$ pyrano[3', $\left.4^{\prime}: 5,6\right]$ benzo[d]pyran (7c)

Dimethyl 6H,9H-chromeno[3', $\left.4^{\prime}: 4,3\right]$ benzo $[c]$ chromene-7,8-dicarboxylate (7d)

Dimethyl $8 H, 17 H$-naphtho[2,1- b]naphtho[$\left.1^{\prime \prime}, 2^{\prime \prime}: 5^{\prime}, 6^{\prime}\right]$ pyrano[3’, $\left.4^{\prime}: 5,4\right]$ benzo[$\left.d\right]$ pyran-9,18-dicarboxylate (8a)

Di-n-butyl $\quad 8 H, 17 H$-naphtho[2,1- b]naphtho[1",2": $\left.5^{\prime}, 6^{\prime}\right]$ pyrano[$\left.3^{\prime}, 4^{\prime}: 5,4\right]$ benzo[$\left.d\right]$ pyran-9,18-dicarboxylate ($\mathbf{8 b}$).

$8 H, 17 H-9,18$-Di-n-butylnaphtho[2,1-b]naphtho[1", $\left.2^{\prime \prime}: 5^{\prime}, 6^{\prime}\right]$ pyrano[3', $\left.4^{\prime}: 5,4\right]$ benzo[d]pyran (8c)

Dimethyl $6 H, 13 H$-chromeno[3', $\left.4^{\prime}: 4,5\right]$ benzo $[c]$ chromene-7,14-dicarboxylate ($\mathbf{8 d}$)

5,6-Bis-(2-hydroxynaphthalen-1-yl)-1,3-dihydroisobenzofuran-4,7-dicarboxylic acid diethyl ester (10)

