Supporting Information

Insertion of a Bulky Rhodium Complex

into a DNA Cytosine-Cytosine Mismatch:

An NMR Solution Study

Christine Cordier[†], Valérie C. Pierre[§], Jacqueline K. Barton*

Division of Chemistry and Chemical Engineering,

California Institute of Technology, Pasadena, California 91125, USA

* to whom correspondence should be addressed at jkbarton@caltech.edu

[†] Current address: ITODYS, UMR CNRS 7086, Université Denis Diderot, Paris VII, 1 rue Guy de la Brosse, 75005 Paris, France. [§] Current address: Department of Chemistry, University of Minnesota, 207 Pleasant St., SE, Minneapolis, MN 55455, USA.

Table S1. NOE contacts of the free oligonucleotide d(CGGACTCCG). All chemical shifts are relative to DSS-d₆ (δ = 0.000 ppm). The chemical shifts of the non-exchangeable and exchangeable protons were measured at 10 °C and 4 °C respectively. Experimental conditions: [dsDNA] = 2.32 mM, 50 mM Pi, 20 mM NaCl, pH = 6.10(2).

Residue	H6/H8	H1'	H5/H2/Me	H2'	H2"	H3'	H4'	H5'	H5"	NH / NH ₂
C1	7.615	5.758	5.929	1.852	2.352	4.692	4.062	3.962	3.705	8.334-7.245
G2	7.921	5.477	-	2.676	2.698	4.707	4.304	4.072	3.962	13.292
G3	7.799	5.648	-	2.647	2.755	5.037	4.414	4.194	4.133	12.804
A4	8.182	6.259	7.957	2.749	2.829	4.954	4.215	4.499	4.414	-
C5	7.261	5.721	5.404	2.431	1.772	4.695	4.102	4.365	4.047	-
T6	7.615	6.051	1.689	2.369	2.534	4.891	4.238	?	4.047	14.406
C7	7.603	6.002	5.721	2.153	2.448	4.823	4.175	4.108	?	8.481-6.961
C8	7.542	5.672	5.734	2.034	2.369	4.854	4.141	4.108	4.072	8.823-7.210
G9	8.019	6.222	-	2.681	2.386	4.719	4.210	4.145	4.096	13.230

Table S2. NOE connectivities of the Rh-bound oligonucleotide. All chemical shifts are relative to DSS-d₆ ($\delta = 0.000$ ppm). The chemical shifts of the non-exchangeable and exchangeable protons were measured at 10 °C and 4 °C respectively. The two nOe walks resulting from the loss of the C₂ symmetry in the central part of the oligonucleotide are indicated as a (blue) and b (green). For A₄, only the amino protons of the a and b strands were distinguishable. Experimental conditions: [dsDNA] = 1.62 mM, [Δ -Rh(bpy- d_8)₂chrysi³⁺] = 1.62 mM (1 equivalent per mismatch), 50 mM Pi, 20 mM NaCl, pH = 6.10(2). § Ambiguous assignment. Line broadening and overlaps render the distinction between H5' and H5'' uncertain.

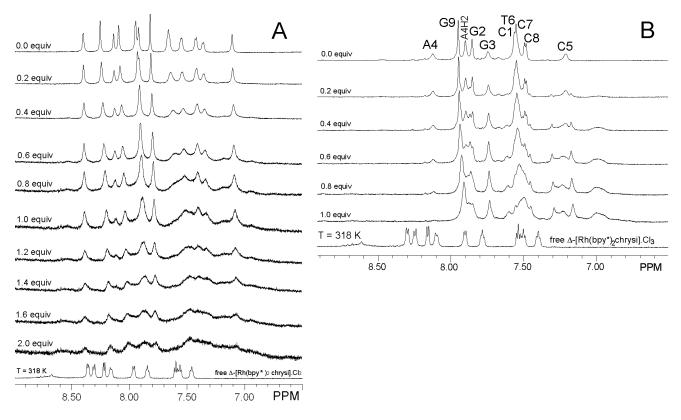

Residue	H6/H8	H1'	H5/H2/Me	H2'	H2"	H3'	H4'	H5' / H5"	NH / NH ₂
C1	7.583	5.699	5.676	1.795	2.318	4.698	4.095 [§]	3.948 - 3.948	8.333-6.905
G2	7.908	5.441	-	2.619	2.619	5.022	4.192	4.192 - 4.026	13.222
G3	7.791	5.555	-	2.622	2.642	5.051	4.351	4.130 - 4.026	13.222
A4a	7.972	6.017	7.973	2.210	2.545	4.857	4.413	4.114 - 3.974	8.421-6.959
A4b	"	"	"	"	"	"	"	"	8.323-7.208
C5a	7.661	6.083	5.741	2.239	2.366	4.817	4.413	4.049 - 3.952	-
C5b	7.557	5.829	5.881	2.261	2.398	4.897	4.660	4.017 - 3.978	-
T6a	7.615	5.744	1.946	2.199	2.369	4.875	4.420	4.140 - 3.965	12.793
T6b	7.511	5.679	1.940	2.053	2.364	4.527	4.283	4.101 - 3.978	12.793
C7	7.557	5.715	5.786	2.097	2.443	4.840	4.156	4.101 - ?	8.743-7.227
C8	7.550	5.503	5.773	2.125	2.369	4.892	4.108	4.049 - ?	8.743-7.217
G9	7.973	6.147	-	2.704	2.368	4.694	4.192	4.121 - 4.065	12.793

Table S3. Chemical shifts of the hydrogens of the chrysi ligand in the absence and presence of mismatched DNA. All chemical shifts are relative to DSS-d₆ ($\delta = 0.000$ ppm). Experimental conditions: [dsDNA] = 1.62 mM, [Δ -Rh(bpy-d₈)₂chrysi³⁺] = 1.62 mM (1 equivalent per mismatch), 50 mM Pi, 20 mM NaCl, pH = 6.10(2). The chemical shifts of the non-exchangeable and exchangeable protons were measured at 10 °C and 4 °C respectively.

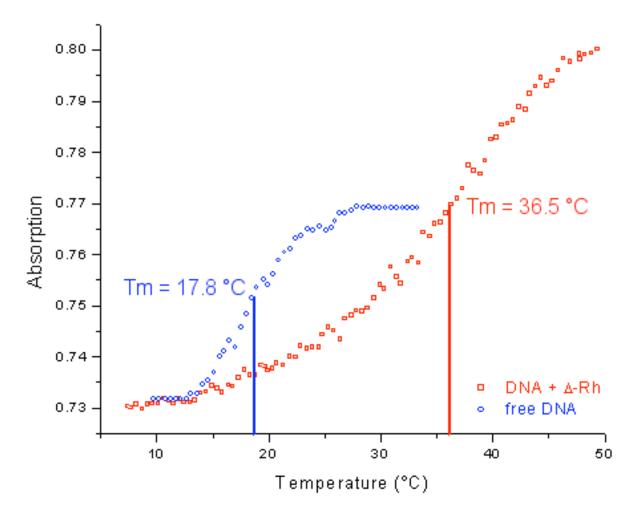
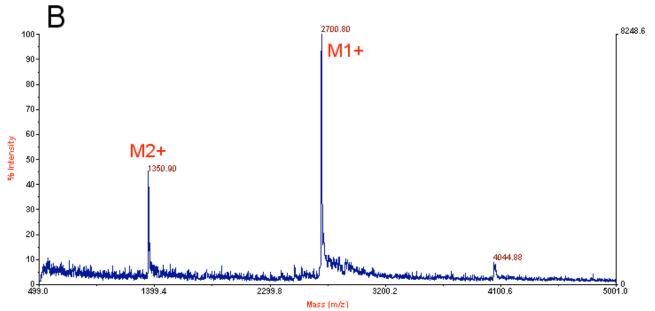
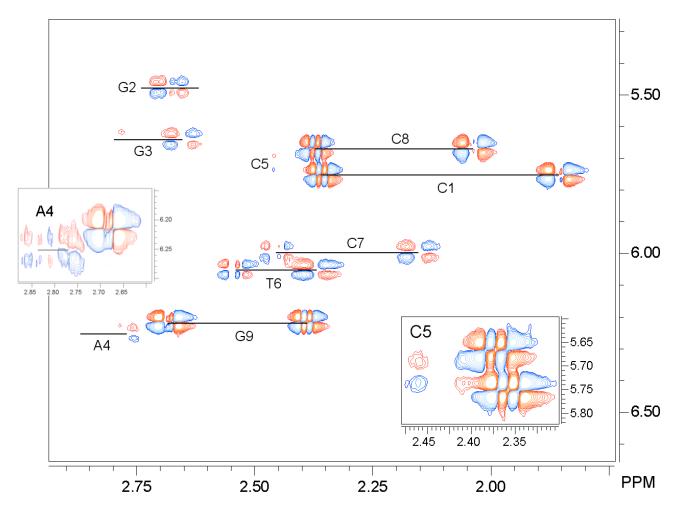
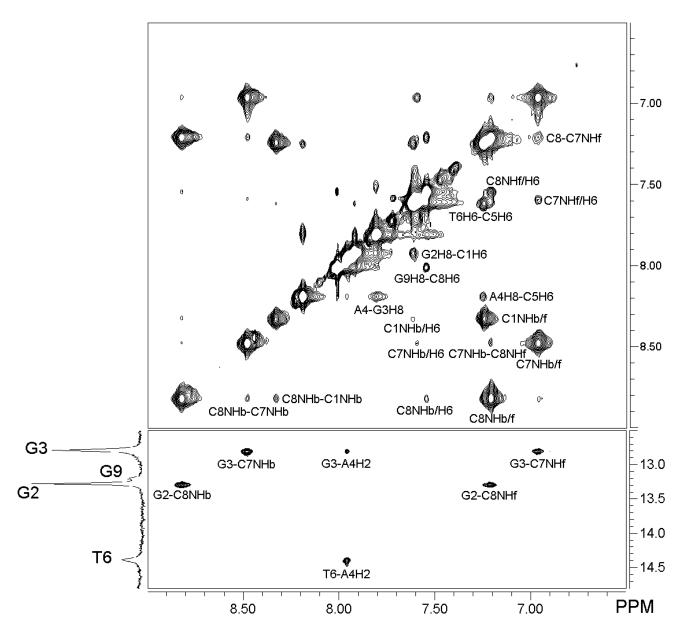
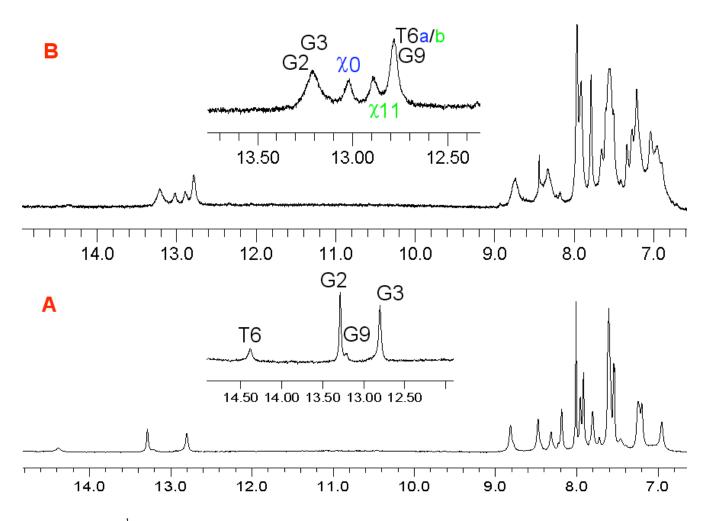

Proton	Unbound Δ -Rh(bpy-	DNA bound by			
	d_8) ₂ chrysi ³⁺	Δ -Rh(bpy- d_8) ₂ chrysi ³⁺			
$\chi 0$	8.703	13.032			
χ1	8.164	7.210			
χ2	7.516	7.018			
χ3	7.767	7.923			
χ4	8.242	6.188			
χ5	8.303	7.198			
χ6	8.303	7.934			
χ7	8.059	6.984			
χ8	7.515	7.241			
χ9	7.393	7.276			
χ10	7.889	7.364			
χ11	8.703	12.900			

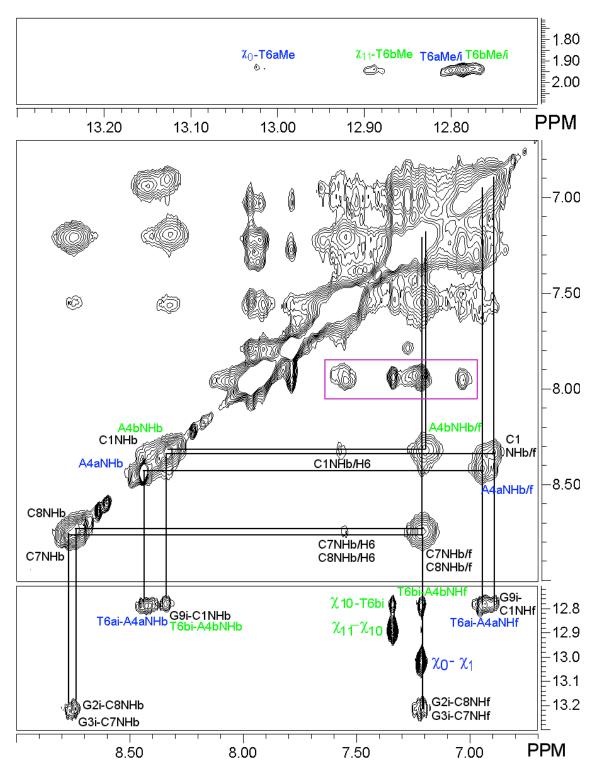
Table S4. Intermolecular nOe between Δ -Rh(bpy- d_8)₂chrysi³⁺ and the oligonucleotide. The two strands, resulting from the loss of the C₂ symmetry in the central part of the oligonucleotide, are marked a and b. Experimental conditions: [dsDNA] = 1.62 mM, [Δ -Rh(bpy- d_8)₂chrysi³⁺] = 1.62 mM (1 equivalent per mismatch), 50 mM Pi, 20 mM NaCl, pH = 6.10(2), D₂O, 10 °C.


NOEs from a strand	NOEs from b strand
χ1 – T6aH2"	χ7 – C5bH1' w
χ1 – T6aH5'/H5"	χ7 – T6bMe
χ1 – T6aMe	χ8 – C5bH4'
χ2 – C5aH1'	χ8 – C5bH5
χ2 – C5aH4'	χ8 – T6bMe
χ2 – T6aH2'	χ9 – C5bH4'
χ2 – T6aMe	χ9 – T6bH2"
χ2 – T6aH5'/H5"	χ9 – T6bMe
χ3 – C5aH1'	χ10 – T6bi
χ3 – C5aH4'	χ11 – T6bi
χ3 – T6aMe	


Figure S1. Titration of Δ -Rh(bpy- d_8)₂chrysi³⁺ to (a) an oligonucleotide containing two CA mismatches (d(CGATCGACCG), Tm = 13 ° C) and (b) an oligonucleotide containing a single CC mismatch (d(CGGACTCCG), Tm = 17.8 ° C). For clarification, only the aromatic region is represented. Experimental conditions: phosphate buffer, I = 50 mM, T = 20 °C, (a) pH = 6.03, (b) pH = 6.10.


Figure S2. UV absorption at $\lambda = 260$ nm of the free oligonucleotide (blue circle) and the metalloinsertorbound DNA (red square). The Tm values represent the midpoint of the transition as obtained by fitting the melting profiles with a sigmoidal expression.


Figure S3. Photocleavage induced by the metalloinsertor. (a) MALDI-TOF mass spectrum obtained after 1 hour of irradiation with a solar simulator. The products correspond to cleavage at the T_6 neighboring the CC mismatch. (b) MALDI-TOF mass spectrum obtained on an identical sample without photo-irradiation. The M¹⁺ and M²⁺ peaks correspond to the uncleaved 5'-CGGACTCCG-3' oligonucleotide.


Figure S4. 2D DQF-COSY sub-spectrum of the free oligonucleotide at 10 °C ($F2 \times F1 : H2'-H2'' \times H1'$). The crosspeak patterns indicate the conformation of the sugars. All sugars, including that of the mismatched cytosine, maintain the C₂'-*endo* puckering. Inserts: the crosspeaks associated to the A4 and C5 sugars are only visible at a lower signal-to-noise resolution.

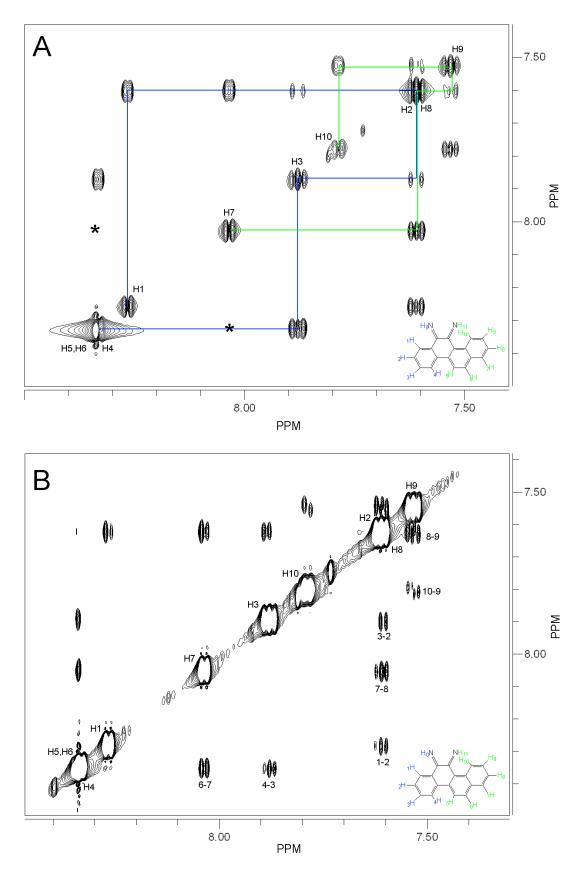

Figure S5. NOESY sub-spectra and assignments of the nOe contacts between the exchangeable protons of the free oligonucleotide (upper part: $F2 \times F1$: aromatic + amino × aromatic + amino; lower part: $F2 \times F1$: aromatic + amino × imino). The chemical shifts and the crosspeaks of the imino and amino protons indicate that all bases are Watson-Crick paired. No correlation is observed for the *C-C* mismatch, suggesting that the two cytosines are probably paired by a single hydrogen bond in a Wobble-type conformation. NHb and NHf correspond to the bound and free amino protons respectively. Experimental conditions: H_2O , 4 °C, 300 ms mixing time.

Figure S6. 1D ¹H sub-spectra of the aromatic, amino and imino protons of (a) the free oligonucleotide and (b) Δ -Rh(bpy- d_8)₂chrysi³⁺ inserted in the DNA-Rh adduct. Experimental conditions, H₂O, 4 °C.

Figure S7. NOESY sub-spectra and assignments of the NOE contacts between the exchangeable protons of the Rh-bound DNA. (lower part: $F2 \times F1$: aromatic + amino × imino; medium part: $F2 \times F1$: aromatic + amino × aromatic + amino; upper part: $F2 \times F1$: imino × T6Me groups). NHb and NHf correspond to the bound and free amino protons respectively. Loss of the C₂ symmetry in the central part of the oligonucleotide results in two unequivalent strands labeled a (blue) and b (green). Intramolecular nOe correlations between chrysi protons (labelled χ) are indicated by a purple rectangle. Experimental conditions: H₂O, 4 °C, 300 ms mixing time.

Figure S8. (a) COSY and (b) NOESY sub-spectra and assignments of the aromatic protons of the chrysi ligand of unbound Δ -Rh(bpy- d_8)₂chrysi³⁺ (D₂O, 20 °C). In the COSY spectrum two chains of scalar correlations match the two spin systems of the ligand. * Weak correlations observable only at low signal-to-noise resolution.