Supplemental material to:

Kinetic Study of Heterogeneous Reaction of Deliquesced NaCl Particles with Gaseous HNO_{3} Using Particle-on-Substrate Stagnation Flow Reactor Approach

Y. Liu, J. P. Cain, H. Wang and A. Laskin

Journal of Physical Chemistry A, 2007

Figure S1. Variations of $\left[\mathrm{HNO}_{3}\right] / k_{I}$ as a function of reaction time. Each panel represents measurements selected from series A1, A2, A3 and B1 at a fixed surface number density N_{s} value. The error bar on each datum point represents one standard deviation. The dashed line indicates the average of the measured data; the error bars at the left- and rightmost of the line indicating one standard deviation of the $\left[\mathrm{HNO}_{3}\right] / k_{I}$ data. As seen, there is no discernible, systematic variation of $\left[\mathrm{HNO}_{3}\right] / k_{I}$ as a function of reaction time over the entire range of surface number density employed in the current study.

Figure S2. Values of $1 / k_{I}$ as a function of particle number density on the substrate surface $\left(N_{s}\right)$, determined experimentally from Cl depletion (solid symbols), and N (open squares) and O (open circles) enhancements for the three series of experiments (see, Table 2).

The first-order rate constant k_{I} may be determined from Cl depletion,

$$
\begin{equation*}
k_{I}=-\frac{1}{t} \ln \left(\frac{[\mathrm{Cl} / \mathrm{Na}]_{t}^{\mathrm{EDD}}}{[\mathrm{Cl} / \mathrm{Na}]_{t=0}^{\mathrm{EDX}}}\right) . \tag{s1}
\end{equation*}
$$

Alternatively, the rate constant may be determined also from O or N enhancement, which are given respectively by

$$
\begin{equation*}
k_{I}=-\frac{1}{t} \ln \left(\frac{[\mathrm{O} / \mathrm{Na}]_{\mathrm{NaNO}_{3}}^{\mathrm{EDX}}-[\mathrm{O} / \mathrm{Na}]_{t}^{\mathrm{EDX}}}{[\mathrm{O} / \mathrm{Na}]_{\mathrm{NaNO}_{3}}^{\mathrm{EDX}}-[\mathrm{O} / \mathrm{Na}]_{t=0}^{\mathrm{EDX}}}\right) \tag{s2}
\end{equation*}
$$

and
$k_{I}=-\frac{1}{t} \ln \left(\frac{[\mathrm{~N} / \mathrm{Na}]_{\mathrm{NaNO}_{3}}^{\mathrm{EDX}}-[\mathrm{N} / \mathrm{Na}]_{t}^{\mathrm{EDX}}}{[\mathrm{N} / \mathrm{Na}]_{\mathrm{NaNO}_{3}}^{\mathrm{EDx}}-[\mathrm{N} / \mathrm{Na}]_{t=0}^{\mathrm{EDX}}}\right)$

Because of background noise of O and N signals even in pure NaCl samples, two references, [O or $\mathrm{N} / \mathrm{Na}]_{t=0}^{\mathrm{EDx}}$ and [O or $\mathrm{N} / \mathrm{Na}_{\mathrm{NaNO}_{3}}^{\mathrm{EDP}}$, corresponding to 0% and 100% conversions respectively, are used in equations (s2) and (s3).

