Supporting Information

Discriminating Detection between $\mathbf{M g}^{2+}$ and Ca^{2+} by Fluorescent Signal from Anthracene aromatic amide moiety

Jeongsik Kim †, Tatsuya Morozumi ${ }^{\ddagger}$, and Hiroshi Nakamura ${ }^{\ddagger} *$
${ }^{\dagger}$ Division of Environmental Material Science, Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
${ }^{\dagger}$ Section of Materials Science, Research Faculty of Environmental Earth
Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
E-mail : nakamura@ees.hokudai.ac.jp

Table of Contents

Table of Contents S1
Experimental Details for syntheses of compounds $\mathbf{1}$ and $\mathbf{2}$ S2
Data for characterization of compounds $\mathbf{1}$ and $\mathbf{2}$ S3
Evaluation of Mg^{2+} and Ca^{2+} concentrations in mixture of these ions S4
Fluorescence spectra of $\mathbf{1}$ and its Mg^{2+} and Ca^{2+} complexes S5
Fluorescence spectra of $\mathbf{1}$ and its Sr^{2+} and Ba^{2+} complexes S6
Fluorescence spectra of $\mathbf{2}$ and its Sr^{2+} and Ba^{2+} complexes S7
${ }^{1} \mathrm{H}$ NMR of compound 1 S8
${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{1}$ and $\mathbf{2}$ S9
Fluorescence emission colors of free $\mathbf{2}, \mathbf{2} \cdot \mathrm{Mg}^{2+}$ and $\mathbf{2} \cdot \mathrm{Ca}^{2+}$ S10
Curve fitting plot for fluorescence intensity vs. [metal]:[ligand] in the $1 \cdot \mathrm{Ca}^{2+}$ complex S11

Experimental Details for syntheses of compounds 1 and 2

Tetraethylene glycol ($3.88 \mathrm{~g}, 0.02 \mathrm{~mol}$) in pyridine (50 mL) was stirred under $10{ }^{\circ} \mathrm{C}$ for 1 h with the addition of p-toluenesulfonly chloride ($3.80 \mathrm{~g}, 0.02 \mathrm{~mol}$), and was stored in refrigerator for 1 day. The solution was treated with HCl and water, and extracted by benzene, and then CHCl_{3}. The CHCl_{3} phase was dried with MgSO_{4}, and evaporated. The residue was dissolved in toluene (80 mL), and refluxed with addition of potassium phthalimide ($3.01 \mathrm{~g}, 0.016 \mathrm{~mol}$) and tri-butylhexadecyl phosphonium bromide ($1.1 \mathrm{~g}, 0.0002 \mathrm{~mol}$). The reaction mixture was filtered, and evaporated. The residue was tosylated as above, once more. The crude product (compound A) was purified by chromatography on silica gel column with chloroform / hexane (9:1) as eluent. Compound A ($3.29 \mathrm{~g}, 0.014 \mathrm{~mol}$) in 20 mL of DMF was added dropwise to DMF solution $(20 \mathrm{~mL})$ of t-BuOK ($1.12 \mathrm{~g}, 0.0014 \mathrm{~mol}$) and N-(2-hydroxyphenyl)-9-anthryl-amide $(3.14 \mathrm{~g}, 0.0014 \mathrm{~mol})$. The reaction mixture was heated for 1 day at $110^{\circ} \mathrm{C}$. The reaction mixture was evaporated under reduced pressure, and was dissolved in CHCl_{3}. The solution was washed with distilled water, dried over MgSO_{4}, and evaporated. The residue was dissolved in 80 mL of EtOH , and treated with $\mathrm{NH}_{2} \mathrm{NH}_{2} \cdot \mathrm{H}_{2} \mathrm{O}(1.7 \mathrm{~g}, 0.03 \mathrm{~mol})$ under reflux for 4 h at $90^{\circ} \mathrm{C}$. The precipitate was removed by filtration. The filtrate was evaporated, and dissolved in CHCl_{3}. The solution was washed with water, and evaporated. The residue and $\mathrm{HOBt}(1.9 \mathrm{~g}, 0.013 \mathrm{~mol})$ was dissolved in 50 mL of DMF, and each 0.013 mol of butanoic acid or benzenepropanoic acid was added. The solution was treated with dicyclohexylcarbodiimide ($2.6 \mathrm{~g}, 0.013 \mathrm{~mol}$) under stirring for 1 day at $0^{\circ} \mathrm{C}$. The solvent was evaporated under reduced pressure, and the crude compound was obtained. Compounds $\mathbf{1}$ or $\mathbf{2}$ were purified by silica gel column chromatography (Wakogel C-200, eluent; chloroform for $\mathbf{1}$, and chloroform / ethyl acetate ($9: 1$) for $\mathbf{2}$, respectively).

SCHEME 1

Data for characterization of compounds $\mathbf{1}$ and $\mathbf{2}$

1-[2-(9-anthracenecarboxamido)phenoxy]-11-(butanamido)-3,6,9-trioxaundecane (1) : Yield 47%. Yellowish oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\right.$ acetonitrile- $\left.d_{3}\right) \delta(\mathrm{ppm})=0.86\left(-\mathrm{CH}_{3}, \mathrm{~m}, 3 \mathrm{H}\right), 1.52$ $\left(\mathrm{C}-\mathrm{CH}_{2}-\mathrm{C}, \mathrm{m}, 2 \mathrm{H}\right), 2.01\left(\mathrm{CO}_{\left.-\mathrm{CH}_{2}-\mathrm{C}, \mathrm{t}, 2 \mathrm{H}\right), 2.91\left(-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{O}, \mathrm{t}, 2 \mathrm{H}\right), 3.12\left(-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{O}, \mathrm{t}, 4 \mathrm{H}\right) \text {, }}\right.$ $3.15\left(-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{O}, \mathrm{t}, 2 \mathrm{H}\right), 3.27\left(-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{O}, \mathrm{t}, 2 \mathrm{H}\right), 3.31\left(-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{O}, \mathrm{t}, 2 \mathrm{H}\right), 3.60\left(-\mathrm{C}_{2} \mathrm{CH}_{2}-\mathrm{O}, \mathrm{t}, 2 \mathrm{H}\right)$, $4.11\left(-\mathrm{C}_{-} \mathrm{CH}_{2}-\mathrm{O}, \mathrm{t}, 2 \mathrm{H}\right), 6.25(\mathrm{NH}, \mathrm{s}, 1 \mathrm{H}), 7.12$ (aromatic, d, 1 H), 7.17 (aromatic, t, 1 H), 7.21 (aromatic, t, 1 H), 7.58 (aromatic, m, 4H), 8.13 (aromatic, d, 2 H), 8.17 (aromatic, d, 2 H), 8.49 (aromatic, d, 1 H), 8.65 (aromatic, $\mathrm{s}, 1 \mathrm{H}), 8.83(\mathrm{NH}, \mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $(\mathrm{ppm})=172.8,167.4,147.8,132.1,131.1,128.6,128.39,128.32,128.1,126.7,125.5,125.2$, 124.6, 122.1, 121.2, 113.2, 70.32, 70.10, 70.06, 69.85, 69.81, 69.26, 39.02, 38.6, 19.1, 13.7. Found : C, 69.76; H, 6.96; N, 4.90\%. Calcd. for $\mathrm{C}_{33} \mathrm{H}_{38} \mathrm{O}_{6} \mathrm{~N}_{2} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 69.82 ; \mathrm{H}, 6.93$; N , 4.93\%.

1-[2-(9-anthracenecarboxamido)phenoxy]-11-(benzenepropanamido)-3,6,9-trioxaundecane

(2) : Yield 45%. Yellowish oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (acetonitrile- $\left.d_{3}\right) \delta(\mathrm{ppm})=2.32\left(\mathrm{CO}-\mathrm{CH}_{2}-\mathrm{C}, \mathrm{t}\right.$, $2 \mathrm{H}), 2.82\left(\mathrm{C}-\mathrm{CH}_{2}-\mathrm{C}, \mathrm{t}, 2 \mathrm{H}\right), 2.89\left(-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{O}, \mathrm{t}, 2 \mathrm{H}\right), 3.13\left(-\mathrm{C}_{\left.-\mathrm{CH}_{2}-\mathrm{O}, \mathrm{t}, 2 \mathrm{H}\right), 3.14\left(-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{O}, \mathrm{t} \text {, }\right.}\right.$ $4 \mathrm{H}), 3.20\left(-\mathrm{C}_{-} \mathrm{CH}_{2}-\mathrm{O}, \mathrm{t}, 2 \mathrm{H}\right), 3.29\left(-\mathrm{C}_{-} \mathrm{CH}_{2}-\mathrm{O}, \mathrm{t}, 2 \mathrm{H}\right), 3.58\left(-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{O}, \mathrm{t}, 2 \mathrm{H}\right), 4.09\left(-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{O}, \mathrm{t}\right.$, $2 \mathrm{H}), 6.26(\mathrm{NH}, \mathrm{s}, 1 \mathrm{H}), 7.10$ (aromatic, $\mathrm{d}, 1 \mathrm{H}), 7.13$ (aromatic, $\mathrm{q}, 4 \mathrm{H}$), 7.18 (aromatic, $\mathrm{t}, 1 \mathrm{H}$), 7.57 (aromatic, $\mathrm{m}, 4 \mathrm{H}), 8.12$ (aromatic, $\mathrm{m}, 4 \mathrm{H}$), 8.47 (aromatic, $\mathrm{s}, 1 \mathrm{H}$), 8.64 (aromatic, $\mathrm{s}, 1 \mathrm{H}$), $8.81(\mathrm{NH}, \mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})=172.1,167.7,148.1,141.2,132.4$, 131.4, 128.8, 128.6, 128.5, 128.4, $128.1127 .0,126.3,125.8,125.5,124.9,122.4,121.5,113.5$, 70.61, 70.37, 70.32, 70.11, 70.00, 69.53, 69.53, 39.3, 38.5, 31.9. Found: C, 72.28; H, 6.58; N, 4.45%. Calcd. for $\mathrm{C}_{36} \mathrm{H}_{38} \mathrm{O}_{6} \mathrm{~N}_{2} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 72.48 \mathrm{H}, 6.56 ; \mathrm{N}, 4.45 \%$.

2

Evaluation of $\mathbf{M g}^{\mathbf{2 +}}$ and $\mathbf{C a}^{\mathbf{2 +}}$ concentrations in mixture of these ions

The concentrations of Mg^{2+} and Ca^{2+} in a sample solution can be determined by the measurement of fluorescence intensities at two different wavelengths, according to following equations.
$I($ obs; 394 $) \simeq \eta(\mathrm{Ca} ; 394)\left[\mathrm{CA}^{2+}\right]+\eta(\mathrm{Mg} ; 394)\left[\mathrm{Mg}^{2+}\right]$
$I(\mathrm{obs} ; 440) \simeq \eta(\mathrm{Ca} ; 440)\left[\mathrm{CA}^{2+}\right]+\eta(\mathrm{Mg} ; 440)\left[\mathrm{Mg}^{2+}\right]$
$\left[\mathrm{Ca}^{2+}\right]=\{I(\mathrm{obs} ; 440) \times \eta(\mathrm{Mg} ; 394)-I(\mathrm{obs} ; 394) \times \eta(\mathrm{Mg} ; 440)\} /\{\eta(\mathrm{Ca} ; 440) \times$ $\eta(\mathrm{Mg} ; 394)-\eta(\mathrm{Ca} ; 394) \times \eta(\mathrm{Mg} ; 440)\}$
$\left[\mathrm{Mg}^{2+}\right]=\{I(\mathrm{obs} ; 394) \times \eta(\mathrm{Ca} ; 440)-I(\mathrm{obs} ; 440) \times \eta(\mathrm{Ca} ; 394)\} /\{\eta(\mathrm{Ca} ; 440) \times$ $\eta(\mathrm{Mg} ; 394)-\eta(\mathrm{Ca} ; 394) \times \eta(\mathrm{Mg} ; 440)\}$

Here, $\eta(\mathrm{Mg}$; 394) and $\eta(\mathrm{Mg}$; 440) are fluorescence intensity coefficients for the concentration of Mg^{2+} complex at 394 nm and 440 nm , respectively.
$\eta(\mathrm{Ca} ; 394)$ and $\eta(\mathrm{Ca} ; 440)$ are fluorescence intensity coefficients for the concentration of Ca^{2+} complex at 394 nm and 440 nm , respectively.
I (obs; 394) and I (obs; 440) are observed intensities at 394 nm and 440 nm , respectively, for the sample solution.

$<$ Fluorescence spectra of $\mathbf{1}$ and its Mg^{2+} complexes $>$

$<$ Fluorescence spectra of $\mathbf{1}$ and its Ca^{2+} complexes $>$

$<$ Fluorescence spectra of $\mathbf{1}$ and its Sr^{2+} complexes

$<$ Fluorescence spectra of $\mathbf{1}$ and its Ba^{2+} complexes $>$

$<$ Fluorescence spectra of $\mathbf{2}$ and its Sr^{2+} complexes $>$

$<$ Fluorescence spectra of $\mathbf{2}$ and its Ba^{2+} complexes

$<{ }^{1} \mathrm{H}$ NMR of compound $\mathbf{1}>$

Figure. Fluorescence emission colors of free $\mathbf{2}$ (left), $\mathbf{2} \cdot \mathrm{Mg}^{2+}$ (center) and $\mathbf{2} \cdot \mathrm{Ca}^{2+}$ (right).

Curve fitting plot for fluorescence intensity vs. [metal]:[ligand] in the $\mathbf{1} \cdot \mathbf{C a}^{2+}$ complex

Figure. Excitation wavelength : 363 nm . Fluorescence wavelength : 438 nm . [1] $=1 \times$ $10^{-5} \mathrm{~mol} / \mathrm{dm}^{3}$.

