Supporting Information

Functionalized Cyclobutanes Via Heck Cyclization

Anna Innitzer, Lothar Brecker and Johann Mulzer*
Institut für Organische Chemie der Universität Wien, Währinger Strasse 38,
A-1090 Wien, Austria

Part I

Table of contents

Experimental Procedures

General

All reactions were carried out in flame-dried glassware under argon atmosphere. Solvents were purified by distillation over the agents indicated: DCM $\left(\mathrm{P}_{4} \mathrm{O}_{10}\right), \mathrm{Et}_{2} \mathrm{O}$ (Na), THF (Na), DMF $\left(\mathrm{P}_{4} \mathrm{O}_{10}\right)$, $\mathrm{MeOH}(\mathrm{Mg})$. NEt_{3}, diisopropylamine and TMSCI were distilled over CaH_{2} prior to use. All commercially available compounds (Aldrich, FLUKA, Acros) were used without further purification.
Monitoring of the reactions was carried out by thin layer chromatography (TLC) with E. Merck silica gel $60-\mathrm{F}^{254}$ plates. Flash column chromatography was performed with Merck silica gel (0.04-0.63 $\mu \mathrm{m}, 240-400$ mesh). NMR spectra were recorded either on a Bruker Avance DRX 400 or on a DRX 600 spectrometer.
Unless otherwise stated, all NMR spectra were measured in CDCl_{3} solution and are referenced to the residual CHCl_{3} signal ($1 \mathrm{H}, \delta=7.26$; $13 \mathrm{C}, \delta=77.16$). $\mathrm{All}{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ shifts are given in ppm ($\mathrm{s}=$ singlet; $\mathrm{d}=$ doublet; $\mathrm{t}=$ triplet; $\mathrm{q}=$ quadruplet; hept $=$ heptet; $\mathrm{m}=$ multiplet; $\mathrm{br} \mathrm{s}=$ broad signal). Coupling constants J are given in Hz . Proton and carbon assignment was confirmed, when possible, by correlated spectroscopy (COSY, HSQC, HMBC). Stereochemical assignment was confirmed by NOESY experiments. IR spectra were recorded as thin films on a silicon disc on a Perkin-Elmer 1600 FT-IR spectrometer. Mass spectra were measured either on a Micromass, trio 200 Fisions Instrument or a Kratos Profile HV-4 Instrument. High resolution mass spectra (HRMS) were performed with a Finnigan MAT 8230 with a resolution of 10000. Melting points (mp) were determined on a Leica Galen III apparatus and are uncorrected.

Starting Materials

(E)-Pent-2-en-1-ol, ${ }^{1} \quad(E)$-4-methyl-pent-2-en-1-ol, ${ }^{1} \quad(E)$-3-methoxy-prop-3-en-1-ol, ${ }^{2}$ isobutyric acid but-2-enyl ester (17a), ${ }^{3}$ propionic acid 3-methyl-but-2-enyl ester (17e) ${ }^{4}$ were prepared according to literature procedures. The yields and the analytical data were in accordance with the literature references.
[1] Mulzer, J.; Lammer, O. Chem. Ber. 1986, 119, 2178.
[2] Glorius, F.; Neuhurger, M.; Pfaltz, A. Helv. Chim. Acta 2001, 84, 3178.
[3] Ireland, R. E.; Mueller, R. H.; Willard, A. K. J. Am. Chem. Soc. 1976, 98, 2868.
[4] Yadav, J. S.; Reddy, G. S.; Srinivas, D.; Himabindu, K.; Synth. Commun. 1998, 28, 2337.

Strategies for Preparation of Enol Triflates (1a-1i)

17a $R^{1}, R^{2}, R^{3}=M e, R^{4}=H$
17b $R^{1}, R^{2}=M e, R^{3}=E t, R^{4}=H$
17c $\mathrm{R}^{1}, \mathrm{R}^{2}=\mathrm{Me}, \mathrm{R}^{3}=i-\mathrm{Pr}, \mathrm{R}^{4}=\mathrm{H}$
17d $R^{1}=O B n, R^{2}=H, R^{3}, R^{4}=M e$
17e $R^{1}, R^{3}, R^{4}=M e, R^{2}=H$
$17 f R^{1}, R^{3}=M e, R^{2}=O P M B, R^{4}=H$
$17 \mathrm{~g} \mathrm{R}{ }^{1}, R^{2}=M e, R^{3}=O M e, R^{4}=H$

18a $R^{1}, R^{2}, R^{3}=M e, R^{4}=H$ 18b $R^{1}, R^{2}=M e, R^{3}=E t, R^{4}=H$ 18c $\mathrm{R}^{1}, \mathrm{R}^{2}=\mathrm{Me}, \mathrm{R}^{3}=i-\mathrm{Pr}, \mathrm{R}^{4}=\mathrm{H}$ 18d $R^{1}=O B n, R^{2}=H, R^{3}, R^{4}=M e$ 18e $R^{1}, R^{3}, R^{4}=M e, R^{2}=H$ $18 f R^{1}, R^{3}=M e, R^{2}=O P M B, R^{4}=H$ $18 \mathrm{~g} \mathrm{R}^{1}, \mathrm{R}^{2}=\mathrm{Me}, \mathrm{R}^{3}=\mathrm{OMe}, \mathrm{R}^{4}=\mathrm{H}$

1a $R^{1}, R^{2}, R^{3}=M e, R^{4}=H$
1a $R^{1}, R^{2}, R^{3}=M e, R^{4}=H$
1b $R^{1}, R^{2}=M e, R^{3}=E t, R^{4}=H$ 1b $R^{1}, R^{2}=\mathrm{Me}, \mathrm{R}^{3}=\mathrm{Et}, \mathrm{R}^{4}=\mathrm{H}$
1c $\mathrm{R}^{1}, \mathrm{R}^{2}=\mathrm{Me}, \mathrm{R}^{3}=i-\mathrm{Pr}, \mathrm{R}^{4}=\mathrm{H}$ 1d $R^{1}=O B n, R^{2}=H, R^{3}, R^{4}=M e$ 1e $R^{1}, R^{3}, R^{4}=M e, R^{2}=H$ If $R^{1}, R^{3}=M e, R^{2}=O P M B, R^{4}=H$ $1 g R^{1}, R^{2}=M e, R^{3}=O M e, R^{4}=H$

General Procedure for Esters obtained from Acid Chlorides

To a solution of acid chloride (1.0 eq.) in DCM (0.7 M) was added pyridine (1.1 eq .) at $0{ }^{\circ} \mathrm{C}$. After 10 min , allylic alcohol (1.0 eq.) was added slowly. The resulting suspension was stirred at room temperature until completion (TLC). 1 N HCl was added, the layers were separated and the aqueous layer was extracted three times with DCM. The combined organic layers were washed successively with sat. NaHCO_{3} solution and brine, dried over $\mathrm{Mg}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. Purification was carried out either by column chromatography (pentane/E $\mathrm{t}_{2} \mathrm{O}$) to yield the products in analytically pure forms.

Isobutyric acid (E)-pent-2-enyl ester (17b)
($1.5 \mathrm{~g}, 94 \%$, colorless oil)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.81(\mathrm{~m}, 1 \mathrm{H}), 5.55(\mathrm{~m}, 1 \mathrm{H}), 4.51(\mathrm{dd}, 2 \mathrm{H}, \mathrm{J}=6.4,1.1$ Hz,), 2.55 (hept, 1H, J = 7.0 Hz), 2.07 (m, 2H), 1.17 (d, 6H, J=7.0 Hz), 1.00 (t, 3H, J $=7.5 \mathrm{~Hz}$).
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=177.1,137.8,123.2,65.1,34.2,25.3,19.2$ (2C), 13.3.

IR $v_{\text {max }}=2930,2860,1735,1474,1381,1153 \mathrm{~cm}^{-1}$.

Isobutyric acid (E)-4-methyl-pent-2-enyl ester (17c)
($3.2 \mathrm{~g}, 94 \%$, colorless oil)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.73(\mathrm{~m}, 1 \mathrm{H}), 5.51(\mathrm{~m}, 1 \mathrm{H}), 4.51(\mathrm{~m}, 2 \mathrm{H}), 2.56$ (hept, $1 \mathrm{H}, J=7.0 \mathrm{~Hz}), 2.31(\mathrm{~m}, 1 \mathrm{H}), 1.17(\mathrm{~d}, 6 \mathrm{H}, J=7.0 \mathrm{~Hz}), 1.01(\mathrm{~d}, 6 \mathrm{H}, J=6.8 \mathrm{~Hz})$.
${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=177.1,143.0,121.3,65.2,34.2,30.1,22.2$ (2C), 19.1 (2C).
MS (EI, $70 \mathrm{eV}, 30^{\circ} \mathrm{C}$): m/z. 170, 82, 71, 55.
HRMS ($70 \mathrm{eV}, 3{ }^{\circ} \mathrm{C}$): m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{2}$: 170.1304, found: 170.1307.
IR $v_{\text {max }}=2925,2854,1740,1459,1377,1155 \mathrm{~cm}^{-1}$.

2-Benzyloxy-acetic acid 3-methyl-but-2-enyl ester (17d)
($2.3 \mathrm{~g}, 98 \%$, colorless oil)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.33(\mathrm{~m}, 5 \mathrm{H}), 5.35(\mathrm{~m}, 1 \mathrm{H}), 4.67(\mathrm{~d}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz})$, 4.63 (s, 2H), 4.09 (s, 2H), 1.76 (s, 3H), 1.72 (s, 3H).
${ }^{13}{ }^{3}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCI}_{3}$): $\delta=170.5,140.1,137.6,128.6$ (2C), 128.2 (2C), 128.1, 118.4, 73.8, 67.7, 62.0, 25.8 (2C).

IR $v_{\max }=2975,2854,1731,1497,1453,1380,1202,1121,747,700 \mathrm{~cm}^{-1}$.

Isobutyric acid (E)-3-methoxy-allyl ester (17g)
($1.6 \mathrm{~g}, 85 \%$, colorless oil)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.61(\mathrm{~d}, 1 \mathrm{H}, J=12.6 \mathrm{~Hz}), 4.92(\mathrm{dt}, 1 \mathrm{H}, J=12.6,7.7$ $\mathrm{Hz}), 4.48(\mathrm{dd}, 2 \mathrm{H}, J=7.7,0.7 \mathrm{~Hz}), 3.56(\mathrm{~s}, 3 \mathrm{H}), 2.54($ hept, $1 \mathrm{H}, J=7.0 \mathrm{~Hz}), 1.15(\mathrm{~d}$, $6 \mathrm{H}, J=7.0 \mathrm{~Hz}$).
${ }^{13}{ }^{3}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=177.3,153.2,97.3,62.5,56.2,34.2,19.1,18.9$.
MS (EI, $70 \mathrm{eV}, 30^{\circ} \mathrm{C}$): m/z. 158, 87, 71, 55.
HRMS $\left(70 \mathrm{eV}, 3{ }^{\circ} \mathrm{C}\right)$: m / z calcd for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{O}_{3}$: 158.0943 , found: 158.0943 .

General Procedure for Esters obtained from Carboxylic Acids

To a solution of carboxylic acid (1.3 eq), allylic alcohol (1.0 eq) and DMAP (cat.) in DCM (0.3 M) was added DIC (1.2 eq .) at $0{ }^{\circ} \mathrm{C}$. The resulting suspension was stirred for 2 h at $0^{\circ} \mathrm{C}$ and then at room temperature until completion (TLC). After filtration and removal of DCM in vacuo, the residue was taken up in $\mathrm{Et}_{2} \mathrm{O}$ and filtered again. Concentration of the solvent in vacuo and column chromatography yielded the products in analytically pure forms.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.27(\mathrm{~d}, 2 \mathrm{H}, J=8.9 \mathrm{~Hz}), 6.86(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz})$, $5.80(\mathrm{~m}, 1 \mathrm{H}), 5.59(\mathrm{~m}, 1 \mathrm{H}), 4.60(\mathrm{~d}, 1 \mathrm{H}, J=11.2 \mathrm{~Hz}), 4.56(\mathrm{~d}, 2 \mathrm{H}, J=6.5 \mathrm{~Hz}), 4.37$ (d, 1H, J = 11.2 Hz), 4.02 (q, 1H, J = 6.8 Hz), 3.79 (s, 3H), 1.72 (m, 3H), 1.40 (d, 3H, $J=6.8 \mathrm{~Hz}$).
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=173.3,159.5,131.9,129.9,129.8$ (2C), 124.9, 114.0 (2C), 73.9, 71.8, 65.6, 55.4, 18.8, 17.9.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.56(\mathrm{~m}, 10 \mathrm{H}), 6.03(\mathrm{~m}, 1 \mathrm{H}), 5.86(\mathrm{~m}, 1 \mathrm{H}), 5.31(\mathrm{~s}$, 1 H), 4.87 (dd, 2H, $J=6.5,1.1 \mathrm{~Hz}$), 1.98 (dd, $3 \mathrm{H}, J=6.4,1.1 \mathrm{~Hz}$).
${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.4,138.9$ (2C), 131.8, 128.7 (6C), 127.7 (4C), 124.9, 66.0, 57.2, 17.8.

MS (EI, $70 \mathrm{eV}, 30^{\circ} \mathrm{C}$): m/z. 266, 167, 152, 55.
HRMS ($70 \mathrm{eV}, 3{ }^{\circ} \mathrm{C}$): m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{2}$: 266.1307, found: 266.1312 .
IR $v_{\max }=3029,2942,1732,1600,1495,1453,1376,1148,700,637 \mathrm{~cm}^{-1}$.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.29(\mathrm{~m}, 10 \mathrm{H}), 5.70(\mathrm{dd}, 1 \mathrm{H}, J=15.4,6.4 \mathrm{~Hz}), 5.50$ (m, 1H), 5.04 (s, 1H), $4.60(\mathrm{~d}, 2 \mathrm{H}, J=6.4 \mathrm{~Hz}), 2.29(\mathrm{~m}, 1 \mathrm{H}), 0.98(\mathrm{~d}, 6 \mathrm{H}, \mathrm{J}=6.8 \mathrm{~Hz})$. ${ }^{13}{ }^{\mathbf{C}}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.4$, 143.7, 138.9 (2C), 131.8, 128.8 (4C), 128.7 (3C), 127.4 (2C), 120.8 , 66.1, 57.2, 30.9, 22.1 (2C).
MS (EI, $70 \mathrm{eV}, 50^{\circ} \mathrm{C}$): m/z. 294, 226, 167, 152.
HRMS ($70 \mathrm{eV}, 30^{\circ} \mathrm{C}$): m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{2}$: 294.1620, found: 294.1625.
IR $v_{\max }=3062,3029,2959,1737,1600,1496,1453,1305,1147,700,638 \mathrm{~cm}^{-1}$.

2,2,3-Trimethyl-pent-4-enoic acid (18a)

To a stirred solution of isobutyric acid but-2-enyl ester ($5.7 \mathrm{~g}, 40 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}(400$ mL) was added KHMDS (0.5 M in toluene, $50 \mathrm{mmol}, 100 \mathrm{~mL}$) at $-78^{\circ} \mathrm{C}$. After being stirred for 5 min at $-78{ }^{\circ} \mathrm{C}$, the reaction mixture was allowed to reach room temperature. 1 N HCl was added at $0^{\circ} \mathrm{C}$, the layers were separated and the aqueous layer was extracted three times with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with brine, dried over $\mathrm{Mg}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The residue was purified by Kugelrohr distillation ($50 \mathrm{mbar}, 120^{\circ} \mathrm{C}$) to yield $5.2 \mathrm{~g}(93 \%)$ pure acid as colorless oil.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=11.50(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.73(\mathrm{~m}, 1 \mathrm{H}), 5.06(\mathrm{~m}, 2 \mathrm{H}), 2.52(\mathrm{~m}$, 1 H), 1.15 (s, 3H), 1.13 (s, 3H), 1.01 (d, 3H, $J=6.9 \mathrm{~Hz}$).
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=184.4,139.6,116.2,45.6,45.3,23.1,20.9,15.4$.
MS (El, $70 \mathrm{eV}, 30^{\circ} \mathrm{C}$): m/z. 142, 127, 88, 73, 59, 55.
HRMS ($70 \mathrm{eV}, 3{ }^{\circ} \mathrm{C}$): m / z calcd for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{O}_{2}$: 142.0994, found: 142.0998 .
IR $v_{\text {max }}=2961,2919,1702,1462,1378 \mathrm{~cm}^{-1}$.

General Procedure for Ireland-Claisen Rearrangement using LDA/TMSCI

To a solution of diisopropylamine (2.06 eq.) in THF (0.5 M) was added n-BuLi (2 eq., 2.5 M in hexanes) at $-78{ }^{\circ} \mathrm{C}$ and stirring was continued for 30 min at $0^{\circ} \mathrm{C}$. The solution was added to allylic ester (1 eq.) in THF (0.1 M) at $-78{ }^{\circ} \mathrm{C}$. After stirring for 1 h , trimethylchlorosilane (2.1 eq.) was added and the resulting mixture was kept at -78
${ }^{\circ} \mathrm{C}$ for an additional hour. The reaction mixture was allowed to warm to room temperature and further stirred until completion (TLC). The reaction was quenched at $0{ }^{\circ} \mathrm{C}$ using 1 M HCl solution and stirring was continued for 30 min . After dilution with $\mathrm{Et}_{2} \mathrm{O}$, the layers were separated and the organic layer was washed successively with 1 M HCl solution and brine. The solvent was removed in vacuo and the residue dissolved in hexanes. 2 N NaOH solution was added and the mixture stirred for 30 \min at $0^{\circ} \mathrm{C}$. After separation of the layers, the organic layer was washed two times with 2 N NaOH solution. The combined aqueous layers were acidified with 1 N HCl solution at $0{ }^{\circ} \mathrm{C}$ and extracted four times with DCM. After drying over $\mathrm{Mg}_{2} \mathrm{SO}_{4}$, filtration and removal of the solvent in vacuo the carboxylic acids were obtained in analytically pure forms.

3-Ethyl-2,2-dimethyl- pent-4-enoic acid (18b)

($630 \mathrm{mg}, 65 \%$, colorless oil)
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.51$ (ddd, $1 \mathrm{H}, J=16.9,10.0,7.0 \mathrm{~Hz}$), $5.06(\mathrm{dd}, 1 \mathrm{H}$, $J=10.0,2.3, \mathrm{~Hz}), 5.01$ (dd, $1 \mathrm{H}, J=16.9,2.3 \mathrm{~Hz}), 2.13(\mathrm{~m}, 1 \mathrm{H}), 1.21(\mathrm{~m}, 2 \mathrm{H}), 1.14(\mathrm{~s}$, $3 \mathrm{H}), 1.12(\mathrm{~s}, 3 \mathrm{H}), 0.84(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz})$.
${ }^{13}{ }^{3}$ NMR (101 MHz, CDCl_{3}): $\delta=183.8,137.7,118.4,53.8,45.7,24.1,22.6,20.8$, 12.7.

IR $v_{\text {max }}=2965,2921,1710,1465,1379 \mathrm{~cm}^{-1}$.

3-Isopropyl-2,2-dimethyl-pent-4-enoic acid (18c)
($250 \mathrm{mg}, 70 \%$, colorless oil)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.65$ (ddd, $1 \mathrm{H}, \mathrm{J}=16.9,10.2,6.6 \mathrm{~Hz}$), 5.14 (dd, 1 H , $J=10.1,2.4 \mathrm{~Hz}), 5.03(\mathrm{dd}, 1 \mathrm{H}, J=16.9,2.4 \mathrm{~Hz}), 2.18(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 1.78(\mathrm{~m}, 1 \mathrm{H})$, $1.16(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}), 0.85(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz})$.
${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=184.7,135.5,118.8,57.4,45.3,28.7,26.1,23.3$, 21.0, 19.7.

IR $v_{\max }=2967,2925,1699,1460,1375 \mathrm{~cm}^{-1}$.

2-Benzyloxy-3,3-dimethyl-pent-4-enoic acid (18d)

($730 \mathrm{mg}, 73 \%$, colorless oil)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.34(\mathrm{~m}, 5 \mathrm{H}), 5.94(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=17.6,10.5 \mathrm{~Hz}), 5.05$ (m, 2H), 4.68 (d, 1H, J = 11.6 Hz), 4.42 (d, 1H, J = 11.6 Hz), $3.70(\mathrm{~s}, 1 \mathrm{H}), 1.14(\mathrm{~s}$, 6 H).
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=175.3,143.7,137.0,128.6$ (2C), 128.2 (3C), 113.2, 85.5, 73.4, 40.7, 23.5, 23.4.

MS (ESI): m/z. 257, 211, 189, 102, 91.
HRMS (ESI): m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{Na}$: 257.1154, found: 257.1148.
IR $v_{\max }=2970,1717,1455,1239,1114,738,699 \mathrm{~cm}^{-1}$.

2,3,3-Trimethyl-pent-4-enoic acid (18e)

($400 \mathrm{mg}, 40 \%$, colorless oil)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.86(\mathrm{dd}, 1 \mathrm{H}, J=17.3,10.8 \mathrm{~Hz}), 5.00(\mathrm{~m}, 2 \mathrm{H}), 2.39$ ($\mathrm{q}, 1 \mathrm{H}, J=7.1 \mathrm{~Hz}$), $1.12(\mathrm{~m}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=181.2,145.9,112.5,48.9,38.6,25.2,23.8,12.9$.
MS (EI, $70 \mathrm{eV}, 30^{\circ} \mathrm{C}$): m/z. 142, 127, 97, 85, 69, 57.
HRMS ($70 \mathrm{eV}, 30^{\circ} \mathrm{C}$): m / z calcd for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{O}_{2}: 142.0994$, found: 142.0997 .
IR $v_{\max }=2971,1704,1462,1417,1378,1287 \mathrm{~cm}^{-1}$.

2-(4-Methoxy-benzyloxy)-2,3-dimethyl-pent-4-enoic acid (18f)
($250 \mathrm{mg}, 63 \%$, colorless oil, d.r. $=3: 1$)
major diastereomer:
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.28(\mathrm{~m}, 2 \mathrm{H}), 6.89(\mathrm{~m}, 2 \mathrm{H}), 5.81(\mathrm{~m}, 1 \mathrm{H}), 5.13(\mathrm{~m}$, $2 \mathrm{H}), 4.48$ (m, 2H), 3.81 (s, 3H), 2.66 (m, 1H), 1.52 (s, 3H), 1.12 (d, 3H, J=6.9 Hz).
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=176.0,159.5,138.3,130.1,129.4$ (2C), 117.2, 114.1 (2C), 83.0, 66.7, 55.5, 46.0, 18.7, 15.0.
minor diastereomer:
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.28(\mathrm{~m}, 2 \mathrm{H}), 6.89(\mathrm{~m}, 2 \mathrm{H}), 5.96(\mathrm{~m}, 1 \mathrm{H}), 5.07(\mathrm{~m}$, 2H), 4.48 (m, 2H), $3.80(\mathrm{~s}, 3 \mathrm{H}), 2.66(\mathrm{~m}, 1 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H}), 1.10(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz})$.
${ }^{13}{ }^{3}$ NMR (101 MHz, CDCl_{3}): $\delta=176.0,159.5,138.3,130.1,129.4$ (2C), 116.5, 114.1 (2C), 83.0, 66.2, 55.5, 45.6, 18.7, 15.0.

IR $v_{\max }=2935,1718,1611,1459,1382,1172 \mathrm{~cm}^{-1}$.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.67$ (ddd, $1 \mathrm{H}, J=17.2,10.4,8.2 \mathrm{~Hz}$), 5.38 (dd, 1 H , $J=17.2,1.7 \mathrm{~Hz}), 5.31$ (dd, 1H, $J=10.4,1.7 \mathrm{~Hz}), 3.69(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}), 3.31$ (s, 3H), 1.18 (s, 3H), 1.16 (s, 3H).
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=180.6,133.5,121.2,87.8,57.1,46.5,22.9,19.7$.
MS (El, $70 \mathrm{eV}, 30^{\circ} \mathrm{C}$): m/z. 158, 99, 82, 71, 55.
HRMS $\left(70 \mathrm{eV}, 30^{\circ} \mathrm{C}\right): \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{O}_{3}$: 158.0943, found: 158.0943 .
IR $v_{\max }=2938,2824,1704,1450,1388,1182 \mathrm{~cm}^{-1}$.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.31(\mathrm{~m}, 10 \mathrm{H}), 5.63$ (ddd, $1 \mathrm{H}, \mathrm{J}=17.4,10.1,7.2 \mathrm{~Hz}$), 5.02 (m, 2H), 3.88 (m, 1H), 0.91 (d, 3H, $J=7.7 \mathrm{~Hz}$).
${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=178.6,139.7,139.4$ (2C), 130.9 (2C), 130.5 (2C), 127.6 (2C), 127.3 (2C), 127.2 (2C), 116.6, 64.8, 40.3, 16.6.

MS (EI, $70 \mathrm{eV}, 30^{\circ} \mathrm{C}$): m/z. 266, 221, 211, 194, 183, 165, 152, 133, 115, 105, 91, 77. HRMS ($70 \mathrm{eV}, 30^{\circ} \mathrm{C}$): m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{2}$: 266.1307, found: 266.1306.
IR $v_{\max }=3025,2940,1699,1600,1497,1370,1260,709 \mathrm{~cm}^{-1}$.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.31(\mathrm{~m}, 10 \mathrm{H}), 5.57$ (ddd, $1 \mathrm{H}, \mathrm{J}=17.0,10.1,6.8 \mathrm{~Hz}$), 5.21 (dd, 1H, J = 17.0, 2.2 Hz), 5.16 (dd, 1H, J = 10.1, 2.2 Hz), 3.49 (m, 1H), 1.96 (m, $1 \mathrm{H}), 1.01(\mathrm{~d}, 3 \mathrm{H}, J=6.7 \mathrm{~Hz}),-0.16(\mathrm{~d}, 3 \mathrm{H}, J=6.7 \mathrm{~Hz})$.
${ }^{13}{ }^{3}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=178.8,140.7,140.4,134.5,131.2$ (2C), 130.3 (2C), $127.9(2 \mathrm{C}), 127.4(2 \mathrm{C}), 127.3(2 \mathrm{C}), 119.6,64.9,52.0,28.6,23.8,17.4$.
MS (El, $70 \mathrm{eV}, 100^{\circ} \mathrm{C}$): m/z. 294, 212, 194, 165, 128, 105, 91, 77.
HRMS ($70 \mathrm{eV}, 100^{\circ} \mathrm{C}$): m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{2}$: 294.1620, found: 294.1628.
IR $v_{\text {max }}=2959,1700,1699,1498,1444,1386,1261,715 \mathrm{~cm}^{-1}$.

General procedure for Weinreb Amides obtained from Carboxylic Acids

To a solution of carboxylic acid (1.0 eq .) in DCM (0.5 M) was added oxalyl chloride (2 eq.) and DMF (cat.) at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 10 min at $0^{\circ} \mathrm{C}$ and for one additional hour at room temperature. After evaporation of the solvent, the crude acid chloride was dissolved in $\mathrm{Et}_{2} \mathrm{O}(0.5 \mathrm{M})$. This was added to an ice cooled suspension of N, O-dimethylhydroxylamine hydrochloride (2.0 eq.), anhydrous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ (4.0 eq.) and pyridine (cat.) in $\mathrm{Et}_{2} \mathrm{O}(0.5 \mathrm{M})$. The resulting reaction mixture was stirred overnight at room temperature.

After addition of water, the organic layer was separated, dried over $\mathrm{Mg}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to afford the products as coloured oils. Purification was carried out by column chromatography (pentanes/ $\mathrm{Et}_{2} \mathrm{O}$).

2,2,3-Trimethyl-pent-4-enoic acid methoxy-methyl-amide (19a)
($6.0 \mathrm{~g}, 93 \%$, yellow oil)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.72(\mathrm{~m}, 1 \mathrm{H}), 5.01(\mathrm{~m}, 2 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.16(\mathrm{~s}, 3 \mathrm{H})$, $2.86(\mathrm{~m}, 1 \mathrm{H}), 1.16$ (s, 3H), 1.14 (s, 3H), 0.93 (d, 3H, J = 6.9 Hz).
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=179.2,140.5,115.9,60.9,46.9,42.9,34.5,22.9$, 21.6, 15.3.

MS (EI, $70 \mathrm{eV}, 30^{\circ} \mathrm{C}$): m/z. 185, 125, 97, 83, 69, 61.
HRMS ($70 \mathrm{eV}, 3{ }^{\circ} \mathrm{C}$): m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{NO}_{2}$: 185.1416 , found: 185.1413 .
IR $v_{\text {max }}=2972,1654,1474,1389 \mathrm{~cm}^{-1}$.

3-Ethyl-2,2,-dimethyl-pent-4-enoic acid methoxy-methylamide (19b)
($310 \mathrm{mg}, 95 \%$, yellow oil)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.52(\mathrm{~m}, 1 \mathrm{H}), 5.09(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=10.2,2.3 \mathrm{~Hz}), 5.01$ (dd, $1 \mathrm{H}, \mathrm{J}=16.9,2.3 \mathrm{~Hz}$), 3.67 (s, 3H), 3.16 (s, 3H), 2.49 (m, 1H), 1.28 (m, 2H), 1.16 (s, 3H), 1.15 (s, 3H), 0.82 (t, 3H, J= 7.4 Hz).
${ }^{13}{ }^{\mathbf{C}}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=179.2,138.9,118.2,60.6,51.5,46.9,34.1,23.2$, 22.3, 21.8, 12.7.

MS (EI, $70 \mathrm{eV}, 30^{\circ} \mathrm{C}$): m/z. 199, 139, 111, 69, 57.
HRMS ($70 \mathrm{eV}, 30^{\circ} \mathrm{C}$): m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{21} \mathrm{NO}_{2}$: 199.1572, found: 199.1575.
IR $v_{\text {max }}=2960,1664,1469,1382 \mathrm{~cm}^{-1}$.

3-Isopropyl-2,2-dimethyl-pent-4-enoic acid methoxy-methylamide (19c)
($640 \mathrm{mg}, 85 \%$, yellow oil)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.66(\mathrm{~m}, 1 \mathrm{H}), 5.09(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=10.1,2.5 \mathrm{~Hz}), 4.97$ (dd, 1H, J = 16.9, 2.5 Hz), 3.67 (s, 3H), 3.15 (s, 3H), 2.51 (dd, $1 \mathrm{H}, J=10.3,3.8 \mathrm{~Hz}$), 1.71 (m, 1H), 1.22 (s, 3H), 1.16 (s, 3H), $0.85(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=3.9 \mathrm{~Hz}), 0.84(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=4.1$ Hz).
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=179.5,136.4,117.8,60.5,55.1,46.6,34.2,28.4$, 25.1, 23.6, 22.5, 20.0.

MS (EI, $70 \mathrm{eV}, 30^{\circ} \mathrm{C}$): m/z. 213, 153, 125, 83, 69, 55.
HRMS ($70 \mathrm{eV}, 30^{\circ} \mathrm{C}$): m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{23} \mathrm{NO}_{2}: 213.1729$, found: 213.1726 IR $v_{\text {max }}=2955,1658,1463,1380 \mathrm{~cm}^{-1}$.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.30(\mathrm{~m}, 5 \mathrm{H}), 6.03(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=17.3,10.9 \mathrm{~Hz}), 5.01$ (m, 2H), $4.67(\mathrm{~d}, 1 \mathrm{H}, J=12.3 \mathrm{~Hz}), 4.36(\mathrm{~d}, 1 \mathrm{H}, J=12.3 \mathrm{~Hz}), 4.22(\mathrm{bs}, 1 \mathrm{H}), 3.48(\mathrm{~s}$, 3H), 3.17 (s, 3H), 1.14 (s, 6H).
${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=176.5,144.7,137.0,128.4$ (2C), 127.7 (3C), 112.1, 79.9, 71.9, 60.9, 41.6, 32.3, 24.1, 23.9.

MS (ESI): m/z. 300, 278, 260, 232, 189, 171.

HRMS (ESI): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{O}_{3} \mathrm{NNa}: 300.1576$, found: 300.1568 .
IR $v_{\max }=2965,1635,1453,1117,730,698 \mathrm{~cm}^{-1}$.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.94(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=17.3,10.9 \mathrm{~Hz}), 4.95(\mathrm{~m}, 2 \mathrm{H}), 3.66$ (s, 3H), 3.16 (s, 3H), 2.88 (bs, 1H), 1.08 (s, 3H), 1.06 (s, 3H), 1.05 (d, 3H, J = 7.0 Hz).
${ }^{13}{ }^{\mathbf{C}}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=177.0,146.7,111.5,61.4,42.3,39.4,32.1,24.9$, 24.0, 13.4.

MS (EI, $70 \mathrm{eV}, 30^{\circ} \mathrm{C}$): m/z. 185, 125, 97, 83, 69, 55.
HRMS ($70 \mathrm{eV}, 30^{\circ} \mathrm{C}$): m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{O}_{2} \mathrm{~N}: 185.1416$, found: 185.1411 .
IR $v_{\max }=2967,1650,1473,1387 \mathrm{~cm}^{-1}$.

major diastereomer:
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.26(\mathrm{~m}, 2 \mathrm{H}), 6.87(\mathrm{~m}, 2 \mathrm{H}), 5.72(\mathrm{~m}, 1 \mathrm{H}), 5.07(\mathrm{~m}$, $2 \mathrm{H}), 4.41(\mathrm{~m}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}), 2.98(\mathrm{~m}, 1 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H})$, 1.11 (d, 3H, J=6.8 Hz).
${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=173.0,159.1,139.2,130.9,128.8$ (2C), 116.2, 113.9 (2C), 84.1, 66.0, 60.5, 55.4, 44.1, 33.6, 16.9, 14.4.
minor diastereomer:
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.26(\mathrm{~m}, 2 \mathrm{H}), 6.87(\mathrm{~m}, 2 \mathrm{H}), 6.04(\mathrm{~m}, 1 \mathrm{H}), 5.07(\mathrm{~m}$, $2 \mathrm{H}), 4.41(\mathrm{~m}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}), 2.98(\mathrm{~m}, 1 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H})$, 0.99 (d, 3H, J=7.0 Hz).
${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=173.0,159.1,139.2,130.9,128.8$ (2C), 116.2, 113.9 (2C), 84.1, 65.9, 60.5, 55.4, 44.1, 33.6, 16.9, 14.1.

3-Methoxy-2,2-dimethyl-pent-4-enoic acid methyl methoxy amide (19g)
($1.1 \mathrm{~g}, 95 \%$, colorless oil)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.69$ (ddd, $1 \mathrm{H}, J=17.2,10.4,7.7 \mathrm{~Hz}$), $5.26(\mathrm{~m}, 2 \mathrm{H})$, 4.08 (d, 1H, J = 7.7 Hz), 3.69 ($\mathrm{s}, 3 \mathrm{H}$), 3.26 ($\mathrm{s}, 3 \mathrm{H}$), 3.17 ($\mathrm{s}, 3 \mathrm{H}$), 1.24 ($\mathrm{s}, 3 \mathrm{H}$), 1.14 (s, 3 H).
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=177.5,133.1,119.3,86.2,60.7,56.9,47.8,34.3$, 20.9, 19.3.

MS (EI, $70 \mathrm{eV}, 30^{\circ} \mathrm{C}$): m/z. 201, 141, 113, 100, 81, 71.
HRMS $\left(70 \mathrm{eV}, 3{ }^{\circ} \mathrm{C}\right)$: m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{O}_{3} \mathrm{~N}: 201.1365$, found: 201.1368.

General Procedure for Methyl Ketones obtained from Weinreb Amides

1.6 M MeLi (1.8 eq.) was added to Weinreb amide (1 eq.) in $\mathrm{Et}_{2} \mathrm{O}\left(0.05 \mathrm{M}\right.$) at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred until completion (TLC). Sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution was added, the layers were separated, and the aqueous layer was extracted three times with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with brine, dried over $\mathrm{Mg}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. After purification by column chromatography the product was obtained as colorless oil.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.66(\mathrm{~m}, 1 \mathrm{H}), 5.02(\mathrm{~m}, 2 \mathrm{H}), 2.49(\mathrm{~m}, 1 \mathrm{H}), 2.11(\mathrm{~s}$, $3 \mathrm{H}), 1.04$ (s, 3H), 1.03 (s, 3H), 0.91 (d, 3H, J= 6.9 Hz).
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=213.8,139.7,115.5,50.8,44.3,25.6,22.3,20.1$, 15.2.

MS (EI, $70 \mathrm{eV}, 30^{\circ} \mathrm{C}$): $\mathrm{m} / \mathrm{z} .140,122,107,97,86,71$.
HRMS ($70 \mathrm{eV}, 30^{\circ} \mathrm{C}$): m / z calcd. for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}: 140.1201$, found: 140.1221
IR $v_{\text {max }}=2927,2849,1712,1456,1380 \mathrm{~cm}^{-1}$.

4-Ethyl-3,3-dimethyl-hex-5-en-2-one (20b)

(207 mg, 95\%, colorless oil)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.47(\mathrm{~m}, 1 \mathrm{H}), 5.12(\mathrm{dd}, 1 \mathrm{H}, J=10.2,2.1 \mathrm{~Hz}), 5.03$ (dd, $1 \mathrm{H}, \mathrm{J}=16.8,2.1 \mathrm{~Hz}), 2.12(\mathrm{~m}, 4 \mathrm{H}), 1.21(\mathrm{~m}, 2 \mathrm{H}), 1.04(\mathrm{~s}, 3 \mathrm{H}), 1.03(\mathrm{~s}, 3 \mathrm{H}), 0.83$ (t, 3H, J=7.3 Hz).
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta=214.0,137.8,118.1,53.3,51.1,25.7,23.1,22.5$, 20.0, 12.7.

IR $v_{\text {max }}=2933,2857,1718,1464,1385 \mathrm{~cm}^{-1}$.

 4-Isopropyl-3,3-dimethyl-hex-5-en-2-one (20c)
 ($460 \mathrm{mg}, 88 \%$, colorless oil)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.61$ (ddd, $1 \mathrm{H}, J=16.9,10.2,6.7 \mathrm{~Hz}$), 5.13 (dd, 1 H , $J=10.2,2.4 \mathrm{~Hz}$), $5.02(\mathrm{dd}, 1 \mathrm{H}, J=16.9,2.4 \mathrm{~Hz}), 2.19(\mathrm{dd}, 1 \mathrm{H}, J=10.2,6.7 \mathrm{~Hz})$, 2.13 (s, 3H), 1.65 (m, 1H), 1.12 (s, 3H), 1.01 (s, 3H), 0.85 (d, 3H, J = 6.9 Hz), 0.83 (d, $3 \mathrm{H}, J=6.8 \mathrm{~Hz}$).
${ }^{13}{ }^{\mathbf{C}}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=214.2,135.4,118.9,56.3,51.3,28.6,25.7,24.9$, 23.7, 20.3, 19.8.

MS (EI, $70 \mathrm{eV}, 30^{\circ} \mathrm{C}$): m/z. 168, 149, 125, 97, 83, 71.
No HRMS determined due to fast fragmentation in vacuo.
IR $v_{\text {max }}=2923,2851,1710,1459,1382 \mathrm{~cm}^{-1}$.

3-Benzyloxy-4,4-dimethyl-hex-5-en-2-one (20d)
(270 mg, 72\%, colorless oil)
${ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.34(\mathrm{~m}, 5 \mathrm{H}), 6.00(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=17.5,10.8 \mathrm{~Hz}), 5.01$ (m, 2H), $4.55(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=11.7 \mathrm{~Hz}), 4.39(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=11.7 \mathrm{~Hz}), 3.47(\mathrm{~s}, 1 \mathrm{H}), 2.12(\mathrm{~s}$, $3 \mathrm{H}), 1.10$ ($\mathrm{s}, 3 \mathrm{H}$), 1.07 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13}{ }^{\text {C NMR (}} 101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=211.7,143.9,137.6,128.6$ (2C), 128.0 (3C), 112.7, 92.7, 73.4, 40.6, 27.9, 24.5, 23.4.

HRMS (ESI): m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{Na}$: 255.1361, found: 255.1353.

3,4,4-Trimethyl-hex-5-en-2-one (20e)

($400 \mathrm{mg}, 91 \%$, colorless oil)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.87$ (dd, $1 \mathrm{H}, \mathrm{J}=17.4,10.8 \mathrm{~Hz}$), $4.97(\mathrm{~m}, 2 \mathrm{H}), 2.53$ ($\mathrm{q}, 1 \mathrm{H}, J=7.1 \mathrm{~Hz}$), $2.13(\mathrm{~s}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 3 \mathrm{H}), 1.04(\mathrm{~s}, 3 \mathrm{H}), 1.02(\mathrm{~d}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz})$. ${ }^{13}$ C NMR (101 MHz, CDCl_{3}): $\delta=212.9,146.2,112.1,39.1,32.1,24.7$ (2C), 24.5, 12.5.

MS (EI, $70 \mathrm{eV}, 30^{\circ} \mathrm{C}$): m/z. 140, 125, 97, 69, 55.
HRMS $\left(70 \mathrm{eV}, 3{ }^{\circ} \mathrm{C}\right): \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}: 140.1201$, found: 140.1197 .
IR $v_{\text {max }}=2925,2847,1714,1458,1379 \mathrm{~cm}^{-1}$.

3-(4-Methoxy-benzyloxy)-3,4-dimethyl-hex-5-en-2-one (20f)
(105 mg, 67\%, colorless oil)
major diastereomer:
${ }^{1}{ }^{1}$ H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.27(\mathrm{~m}, 2 \mathrm{H}), 6.89(\mathrm{~m}, 2 \mathrm{H}), 5.66(\mathrm{~m}, 1 \mathrm{H}), 5.05(\mathrm{~m}$, 2H), 4.31 (m, 2H), 3.81 (s, 3H), 2.64 (m, 1H), 2.21 (s, 3H), 1.29 (s, 3H), 1.09 (d, 3H, J $=6.8 \mathrm{~Hz}$).
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=212.8,159.3,138.6,130.8,128.8(2 \mathrm{C}), 116.4,114.0$ (2C), 86.6, 66.2, 55.5, 44.9, 25.5, 15.2, 14.4.
minor diastereomer:
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.27(\mathrm{~m}, 2 \mathrm{H}), 6.89(\mathrm{~m}, 2 \mathrm{H}), 5.99(\mathrm{~m}, 1 \mathrm{H}), 5.05(\mathrm{~m}$, 2H), 4.31 (m, 2H), 3.81 (s, 3H), 2.64 (m, 1H), 2.22 (s, 3H), 1.28 (s, 3H), 0.95 (d, 3H, J $=7.0 \mathrm{~Hz}$).
${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=212.8,159.3,139.0,130.9,128.7$ (2C), 115.6, 114.0 (2C), 86.6, 66.0, 55.5, 43.9, 25.5, 15.7, 14.2.

4-Methoxy-3,3-dimethyl-hex-5-en-2-one (20g)

($235 \mathrm{mg}, 82 \%$, colorless oil)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.63(\mathrm{~m}, 1 \mathrm{H}), 5.34(\mathrm{dd}, 1 \mathrm{H}, J=10.4,1.6 \mathrm{~Hz}), 5.26$ (dd, $1 \mathrm{H}, J=17.2,1.6 \mathrm{~Hz}$), $4.71(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 3.22(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 1.12(\mathrm{~s}$, $3 \mathrm{H})$, 1.01 (s, 3H).
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}): $\delta=213.0,134.2,120.2,88.0,56.9,51.5,26.5,22.3$, 18.8.

MS (EI, 70 eV, $30^{\circ} \mathrm{C}$): m/z. 156, 82, 71, 55.
HRMS ($70 \mathrm{eV}, 3{ }^{\circ} \mathrm{C}$): m / z calcd for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{2}$: 156.1150 , found: 156.1153 .
IR $v_{\max }=2927,2857,1730,1465,1379,1124 \mathrm{~cm}^{-1}$.

4-Methyl-3,3-diphenyl-hex-5-en-2-one (20h)

To LiAlH_{4} (1 M in THF, 6 mmol, 2.5 eq.) in THF (6 mL) was added a solution of 3methyl -2,2-diphenyl-pent-4-enoic acid ($0.65 \mathrm{~g}, 2.4 \mathrm{mmol}, 1$ eq.) in THF (18 mL) at 0 ${ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at room temperature for 15 h (TLC). The resulting suspension was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and treated with sat. K,Na-tartrate solution and stirred for additional 24 h . After separation of the layers, the aqueous layer was extracted three times with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with brine, dried over MgSO_{4}, filtered and concentrated in vacuo to yield 0.49 $\mathrm{g}(80 \%)$ 3-methyl-2,2-diphenyl-pent-4-en-1-ol as colorless oil.
3-Methyl-2,2-diphenyl-pent-4-en-1-ol ($0.30 \mathrm{~g}, 1.19 \mathrm{mmol}, 1$ eq.) in DCM (9 mL) was added to a solution of Dess-Martin periodinane ($0.61 \mathrm{~g}, 1.43 \mathrm{mmol}, 1.2 \mathrm{eq}$.$) in DCM$ $(6 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The reaction was allowed to warm to room temperature for 3.5 h (TLC), after which a white precipitate had formed. $\mathrm{Et}_{2} \mathrm{O}$ was added and the mixture was cooled to $0{ }^{\circ} \mathrm{C}$. After addition of sodium thiosulfate (2.4 g) and sat. NaHCO_{3} solution (10 mL), the mixture was allowed to reach room temperature and was stirred for additional 20 min , after which the precipitate had dissolved. The layers were separated and the aqueous layer was extracted three times with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with sat. NaHCO_{3} solution and brine, dried over $\mathrm{Mg}_{2} \mathrm{SO} 4$, filtered and concentrated in vacuo to yield 3-methyl-2,2-diphenyl-pent-4enal (298 mg, quant.) as colorless oil which was used immediately without purification.

To a solution of 3-methyl-2,2-diphenyl-pent-4-enal ($298 \mathrm{mg}, 1.19 \mathrm{mmol}, 1 \mathrm{eq}$.) in $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added $\mathrm{MeLi}\left(1.6 \mathrm{M}\right.$ in $\mathrm{Et}_{2} \mathrm{O}, 1.55 \mathrm{mmol}, 1.3$ eq.) at $0{ }^{\circ} \mathrm{C}$. After being stirred for 30 min (TLC), the reaction was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution.

The layers were separated and the aqueous layer was extracted three times with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with brine, dried over MgSO_{4}, filtered and concentrated in vacuo to yield 4-methyl-3,3-diphenyl-hex-5-en-2-ol (317 mg , quant.) as colorless oil which was used immediately without further purification.

4-Methyl-3,3-diphenyl-hex-5-en-2-ol ($308 \mathrm{mg}, 1.16 \mathrm{mmol}, 1 \mathrm{eq}$.) in DCM (9 mL) was added to a solution of Dess-Martin periodinane ($590 \mathrm{mg}, 1.39 \mathrm{mmol}, 1.2 \mathrm{eq}$.) in DCM $(6 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction was allowed to warm to room temperature for 4 h (TLC), after which a white precipitate had formed. $\mathrm{Et}_{2} \mathrm{O}$ was added and the mixture was cooled to $0^{\circ} \mathrm{C}$. After addition of sodium thiosulfate $(2.3 \mathrm{~g})$ and sat. NaHCO_{3} solution $(10 \mathrm{~mL})$, the mixture was allowed to reach room temperature and was stirred for additional 15 min , after which the precipitate had dissolved. The layers were separated and the aqueous layer was extracted three times with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with sat. NaHCO_{3} solution and brine, dried over $\mathrm{Mg}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude product was purified by column chromatography (pentanes/Et 2 O) to yield 4-methyl-3,3-diphenyl-hex-5-en-2-one (21h) (299 mg, 97\%) as white solid.
$\mathrm{Mp}=108^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.30(\mathrm{~m}, 10 \mathrm{H}), 5.61(\mathrm{~m}, 1 \mathrm{H}), 4.95(\mathrm{~m}, 2 \mathrm{H}), 3.87(\mathrm{~m}$, $1 \mathrm{H}), 1.97$ ($\mathrm{s}, 3 \mathrm{H}$), $0.81(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz})$.
${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCI}_{3}$): $\delta=207.0,140.3,139.0,138.5,130.9$ (2C), 130.7 (2C), $128.4(2 C), 127.9$ (2C), 127.3 (2C), 116.0, 71.0, 39.8, 27.3, 16.5.
MS (EI, $70 \mathrm{eV}, 40^{\circ} \mathrm{C}$): m/z. 264, 221, 209, 192, 181, 165.
HRMS ($70 \mathrm{eV}, 40^{\circ} \mathrm{C}$): m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}: 264.1514$, found: 264.1522.
IR $v_{\max }=2935,1709,1602,1425,1381,730,699 \mathrm{~cm}^{-1}$.

4-Isopropyl-3,3-diphenyl-hex-5-en-2-one (20i)

(470 mg, 70\% (4 steps), white solid)
$\mathrm{Mp}=112{ }^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.34(\mathrm{~m}, 10 \mathrm{H}), 5.64(\mathrm{~m}, 1 \mathrm{H}), 5.18(\mathrm{~m}, 2 \mathrm{H}), 3.48(\mathrm{~d}$, $1 \mathrm{H}, J=10.5 \mathrm{~Hz}), 1.96(\mathrm{~s}, 3 \mathrm{H}), 1.92(\mathrm{~m}, 1 \mathrm{H}), 1.07(\mathrm{~d}, 3 \mathrm{H}, J=6.7 \mathrm{~Hz}),-0.25(\mathrm{~d}, 3 \mathrm{H}, J$ $=6.7 \mathrm{~Hz}$).
${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=206.7,139.7,139.6,134.9,131.5$ (2C), 130.5 (2C), 128.4 (2C), 127.7 (2C), 127.4, 126.9, 119.0, 70.9, 51.8, 28.6, 27.1, 23.8, 16.5.

MS (EI, $70 \mathrm{eV}, 60^{\circ} \mathrm{C}$): m/z. 292, 249, 210, 193, 167, 129, 81, 77, 64.
HRMS ($70 \mathrm{eV}, 60^{\circ} \mathrm{C}$): m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}: 292.1827$, found: 292.1819.
IR $v_{\max }=2929,1705,1600,1420,1385,726,702 \mathrm{~cm}^{-1}$.

General Procedure for Enol Triflates Obtained from Methyl Ketones

To a solution of 0.5 M KHMDS (1.3 eq .) in THF (0.5 M) was added methylketone (1 eq.) in THF (0.5 M) at $-78^{\circ} \mathrm{C}$. After being stirred for 45 min at $0^{\circ} \mathrm{C}$, the solution was cooled to $-78{ }^{\circ} \mathrm{C}$ and N -phenyl(bistrifluorosulfonimide) (1.3 eq.) in THF (1 M) was added. The reaction mixture was allowed to warm to room temperature over night. The solvent was removed in vacuo and the residue purified by column chromatography (pentanes/ $\mathrm{Et}_{2} \mathrm{O}, 5 \% \mathrm{NEt}_{3}$) to afford the product as colorless oil.
Enoltriflates $\mathbf{1 c}, \mathbf{1 g}, \mathbf{1 h}$ and $\mathbf{1 i}$ were directly used as crude products due to their instability when subjected to column chromatography.

Trifluoro-methanesulfonic acid 2,2,3-trimethyl-1-methylene-pent-4-enyl ester (1a)
($2.2 \mathrm{~g}, 75 \%$) colorless oil
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.70(\mathrm{~m}, 1 \mathrm{H}), 5.15(\mathrm{~d}, 1 \mathrm{H}, J=4.4 \mathrm{~Hz}), 5.05(\mathrm{~m}, 2 \mathrm{H})$, $4.93(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=4.4 \mathrm{~Hz}), 2.33(\mathrm{~m}, 1 \mathrm{H}), 1.10(\mathrm{~s}, 3 \mathrm{H}), 1.08(\mathrm{~s}, 3 \mathrm{H}), 0.97(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.9$ Hz).
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=162.9,139.1,118.6,116.2,101.3,43.3,42.6,23.8$, 21.7, 14.8.

MS (EI, $70 \mathrm{eV}, 30^{\circ} \mathrm{C}$): m/z. 272, 257, 218, 122, 107, 97, 81, 67.
HRMS ($70 \mathrm{eV}, 30^{\circ} \mathrm{C}$): m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{O}_{3} \mathrm{SF}_{3}$: 272.0694, found: 272.0700 .
IR $v_{\max }=3081,2981,2886,1653,1461,1338,1102 \mathrm{~cm}^{-1}$.

${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta=5.46(\mathrm{~m}, 1 \mathrm{H}), 5.15(\mathrm{~m}, 2 \mathrm{H}), 5.04$ (dd, 1H, J = 16.7, $2.3 \mathrm{~Hz}), 4.92(\mathrm{~d}, 1 \mathrm{H}, J=4.5 \mathrm{~Hz}), 1.92(\mathrm{~m}, 1 \mathrm{H}), 1.51(\mathrm{~m}, 2 \mathrm{H}), 1.09(\mathrm{~s}, 3 \mathrm{H}), 1.08(\mathrm{~s}$, $3 \mathrm{H}), 0.83(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta=163.2,137.3,118.7,118.2,101.4,52.3,42.7,24.5$, 21.9, 21.6, 12.7.

MS (El, $70 \mathrm{eV}, 30^{\circ} \mathrm{C}$): m/z. 286, 218, 136, 84, 69.
HRMS ($70 \mathrm{eV}, 3{ }^{\circ} \mathrm{C}$): m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{O}_{3} \mathrm{SF}_{3}$: 286.0851, found: 286.0855.
IR $v_{\max }=3085,2975,2885,1650,1457,1335,1105 \mathrm{~cm}^{-1}$.

Trifluoro-methanesulfonic acid 2-benzyloxy-3,3-dimethyl-1-methylene-pent-4-enyl ester (1d)
(290 mg, 81\%, colorless oil)
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta=7.34(\mathrm{~m}, 5 \mathrm{H}), 5.88(\mathrm{dd}, 1 \mathrm{H}, J=17.3,10.9 \mathrm{~Hz}), 5.39$ (d, 1H, J = 3.4 Hz), $5.25(\mathrm{~d}, 1 \mathrm{H}, J=3.4 \mathrm{~Hz}), 5.01(\mathrm{~m}, 2 \mathrm{H}), 4.72(\mathrm{~d}, 1 \mathrm{H}, J=11.7 \mathrm{~Hz})$, 4.36 (d, 1H, J = 11.7 Hz), 3.61(s, 1H), 1.06 (s, 6H).
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta=153.4,143.5,137.6,128.5$ (2C), 128.1 (2C), 127.9, 118.5, 113.1, 107.5, 85.4, 71.9, 41.3, 23.2 (2С).

MS (EI, $70 \mathrm{eV}, 30^{\circ} \mathrm{C}$): m/z. 364, 273, 196, 160, 107, 91, 69.
HRMS ($70 \mathrm{eV}, 3{ }^{\circ} \mathrm{C}$): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{O}_{4} \mathrm{SF}_{3}$: 364.0956, found: 364.0951.
IR $v_{\max }=3079,2878,1637,1455,1333,1112,729,702 \mathrm{~cm}^{-1}$.

Trifluoro-methanesulfonic acid 2,3,3-trimethyl-1-methylene-pent-4-enyl ester (1e)
($400 \mathrm{mg}, 91 \%$, colorless oil)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.78$ (dd, $1 \mathrm{H}, J=17.4,10.8 \mathrm{~Hz}$), $5.18(\mathrm{~d}, 1 \mathrm{H}, J=3.8$ $\mathrm{Hz}), 5.00(\mathrm{~m}, 2 \mathrm{H}), 4.89(\mathrm{~d}, 1 \mathrm{H}, J=3.8 \mathrm{~Hz}), 2.29(\mathrm{q}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 1.10(\mathrm{~d}, 3 \mathrm{H}, J=$ $7.2 \mathrm{~Hz}), 1.05(\mathrm{~s}, 3 \mathrm{H}), 1.04(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta=159.1,145.2,118.6,112.7,104.8,48.4,39.3,25.6$, 23.8, 14.2.

MS (El, $70 \mathrm{eV}, 30^{\circ} \mathrm{C}$): m/z. 272, 229, 160, 139, 123, 107, 91, 81, 69, 53.
HRMS (70 eV, $30{ }^{\circ} \mathrm{C}$): m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{O}_{3} \mathrm{SF}_{3}$: 272.0694, found: 272.0699.

IR $v_{\text {max }}=3080,2979,2884,1650,1464,1336,1105 \mathrm{~cm}^{-1}$.

major diastereomer:
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.25(\mathrm{~m}, 2 \mathrm{H}), 6.88(\mathrm{~m}, 2 \mathrm{H}), 5.74(\mathrm{~m}, 1 \mathrm{H}), 5.39(\mathrm{~m}$, $1 \mathrm{H}), 5.23(\mathrm{~m}, 1 \mathrm{H}), 5.09(\mathrm{~m}, 2 \mathrm{H}), 4.38(\mathrm{~s}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.59(\mathrm{~m}, 1 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H})$, 1.09 (d, 3H, J=6.9 Hz).
${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=159.3,156.3,138.4,130.7,128.8$ (2C), 121.1, 116.7, 113.9 (2C), 104.9, 80.2, 64.9, 55.4, 45.9, 16.9, 14.1.

MS (El, $70 \mathrm{eV}, 30^{\circ} \mathrm{C}$): m/z. 394, 261, 219, 164, 136, 121.
HRMS ($70 \mathrm{eV}, 30^{\circ} \mathrm{C}$): m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{O}_{5} \mathrm{SF}_{3}$: 394.1062, found: 394.1079.
IR $v_{\max }=3075,2942,1610,1461,1372,1170,1029 \mathrm{~cm}^{-1}$.
minor diastereomer:
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.25(\mathrm{~m}, 2 \mathrm{H}), 6.88(\mathrm{~m}, 2 \mathrm{H}), 5.97(\mathrm{~m}, 1 \mathrm{H}), 5.39(\mathrm{~m}$, $1 \mathrm{H}), 5.23(\mathrm{~m}, 1 \mathrm{H}), 5.09(\mathrm{~m}, 2 \mathrm{H}), 4.38(\mathrm{~s}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.59(\mathrm{~m}, 1 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H})$, 1.03 (d, 3H, J = 7.0 Hz).
${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=159.3,156.3,138.8,130.7,128.8$ (2C), 121.1, 116.7, 113.9 (2C), 104.9, 80.2, 64.8, 55.4, 45.2, 16.9, 13.8.

General Procedure for Pd(0) Catalyzed Tandem Cyclization Carbonylation

Reaction

To a solution of enol triflate (1 eq.) in MeOH/DMF (2:1, 0.06 M) is added NEt_{3} (3.2 eq.) and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ (0.1 eq.). The resulting mixture was stirred under CO atmosphere at $50{ }^{\circ} \mathrm{C}$ until completion (TLC). 1 N HCl and $\mathrm{Et}_{2} \mathrm{O}$ were added, the layers were separated and the aqueous layer was extracted three times with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed successively with sat. $\mathrm{NaHCO}_{3}, \mathrm{H}_{2} \mathrm{O}$ and brine, dried over MgSO_{4}, filtered and concentrated in vacuo. Column chromatography (pentanes/ $\mathrm{Et}_{2} \mathrm{O}$) of the residue afforded the product as colorless oil.

3,3,4-Trimethyl-2-methylene-hex-5-enoic acid methyl ester (9a)
(3\%, colorless oil)
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta=5.99(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=0.7 \mathrm{~Hz}, \mathrm{H}-9 \mathrm{~b}), 5.92(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5)$, 5.48 (d, 1H, J = $0.7 \mathrm{~Hz}, \mathrm{H}-9 \mathrm{a}$), 4.98 (m, 2H, H-6ab), 3.73 ($\mathrm{s}, \mathrm{H}-11$), 2.83 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-4$), 1.11 (s, 3H, H-7), 1.09 (s, 3H, H-8), 0.89 (d, 3H, J=6.8 Hz, H-10).
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=168.5(\mathrm{C}-1), 149.1(\mathrm{C}-2), 141.2(\mathrm{C}-5), 122.9(\mathrm{C}-9)$, 115.0 (C-6), 51.7 (C-11), 43.2 (C-4), 41.0 (C-3), 24.8 (C-7), 23.2 (C-8), 15.2 (C-10).

MS (EI, $70 \mathrm{eV}, 30^{\circ} \mathrm{C}$): m/z. 182, 167, 150, 139, 121, 99, 81, 67, 55.
HRMS ($70 \mathrm{eV}, 30^{\circ} \mathrm{C}$): m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{2}$: 182.1307 found: 182.1309.
IR $v_{\max }=3080,2971,1721,1624,1439,1372,1268,1172 \mathrm{~cm}^{-1}$.

(2,3,3-Trimethyl-4-methylene-cyclobutyl)-acetic acid methyl ester (7a)

d.e. > 98\%
(mixture of enantiomers, 65\%, colorless oil)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=4.70(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.8 \mathrm{~Hz}, \mathrm{H}-9 \mathrm{~b}), 4.63(\mathrm{~d}, 1 \mathrm{H}, J=2.5$ $\mathrm{Hz}, \mathrm{H}-9 \mathrm{a}$), 3.65 (s, 3H, H-11), 2.83 (ddddd, $1 \mathrm{H}, \mathrm{J}=8.4,7.0,6.4,2.8,2.5 \mathrm{~Hz}, \mathrm{H}-1$), 2.54 (dd, $1 \mathrm{H}, J=15.1,6.4 \mathrm{~Hz}, \mathrm{H}-5 \mathrm{a}$), 2.38 (dd, $1 \mathrm{H}, J=15.1,8.1 \mathrm{~Hz}, \mathrm{H}-5 \mathrm{~b}), 1.68$ (dq, $1 \mathrm{H}, J=7.0,8.4 \mathrm{~Hz}, \mathrm{H}-2$), $1.05(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-8), 1.02(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-7), 0.98(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}$, $\mathrm{H}-6$).
${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=173.2$ (C-10), 161.4 (C-4), 100.3 (C-9), 51.5 (C-11), 44.2 (C-3), 44.0 (C-2), 43.9 (C-1), 37.9 (C-5), 27.2 (C-8), 22.0 (C-7), 13.7 (C-6).

MS (EI, 70 eV, $30^{\circ} \mathrm{C}$): m/z. 182, 167, 150, 139, 123, 107, 93, 81, 67, 55.
HRMS ($70 \mathrm{eV}, 30^{\circ} \mathrm{C}$): m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{2}$: 182.1307 found: 182.1311.
IR $v_{\text {max }}=2920,2854,1648,1460,1372 \mathrm{~cm}^{-1}$.

(2-Ethyl-3,3-dimethyl-4-methylene-cyclobutyl)-acetic acid methyl ester (7b)
d.e. > 98\%
(mixture of enantiomers, 60%, colorless oil)
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=4.69(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.7 \mathrm{~Hz}, \mathrm{H}-9 \mathrm{~b}), 4.63(\mathrm{~d}, \mathrm{~J}=2.7 \mathrm{~Hz}$, 1H, H-9a), 3.65 (s, 3H, H-12), 2.87 (m, 1H, H-1), 2.52 (dd, $1 \mathrm{H}, \mathrm{J}=15.1,7.1 \mathrm{~Hz}, \mathrm{H}-$ 5a), 2.42 (dd, $1 \mathrm{H}, J=15.1,7.2 \mathrm{~Hz}, \mathrm{H}-5 \mathrm{~b}$), 1.55 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-2$), 1.48 (ddq, $1 \mathrm{H}, J=13.0$, $7.4,7.0, \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}$), 1.42 (ddq, $1 \mathrm{H}, \mathrm{J}=13.0,7.4,7.0 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}$), 1.10 (s, 3H, H-8), 1.06 (s, 3H, H-7), $0.84(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.4 \mathrm{~Hz}, \mathrm{H}-10)$.
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=173.3(\mathrm{C}-11)$, $161.3(\mathrm{C}-4), 100.3(\mathrm{C}-9), 51.5(\mathrm{C}-12)$, 51.2 (C-2), 44.2 (C-3), 42.2 (C-1), 38.6 (C-5), 28.2 (C-8), 23.2 (C-6), 21.2 (C-7), 12.9 (C-10)

MS (EI, $70 \mathrm{eV}, 30^{\circ} \mathrm{C}$): m/z. 196, 181, 121, 107, 93, 81, 67, 55.
HRMS ($70 \mathrm{eV}, 3{ }^{\circ} \mathrm{C}$): m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{2}$: 196.1463, found: 196.1462.
IR $v_{\text {max }}=2923,2852,1646,1463,1370 \mathrm{~cm}^{-1}$.

(2-Isopropyl -3,3-dimethyl-4-methylene-cyclobutyl)-acetic acid methyl ester (7c)

d.e. > 98\%
(mixture of enantiomers, 70%, colorless oil)
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=4.69(\mathrm{~d}, 1 \mathrm{H}, J=2.8 \mathrm{~Hz}, \mathrm{H}-9 \mathrm{~b}), 4.65(\mathrm{~d}, J=2.6 \mathrm{~Hz}$, 1H, H-9a), 3.66 (s, 3H, H-13), 2.96 (m, 1H, H-1), 2.54 (dd, 1H, J = 15.5, $4.5 \mathrm{~Hz}, \mathrm{H}-$ 5a), 2.44 (dd, $1 \mathrm{H}, J=15.5,8.6 \mathrm{~Hz}, \mathrm{H}-5 \mathrm{~b}$), 1.75 (dhept, $1 \mathrm{H}, J=10.6,6.6 \mathrm{~Hz}, \mathrm{H}-6$), 1.28 (dd, 1H, J = 10.6, $8.9 \mathrm{~Hz}, \mathrm{H}-2$), 1.12 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-8$), 1.09 (s, 3H, H-7), 0.84 (d, 3H, $J=6.6 \mathrm{~Hz}, \mathrm{H}-10), 0.82(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz}, \mathrm{H}-11)$.
${ }^{13}{ }^{2}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=173.2(\mathrm{C}-12)$, $161.3(\mathrm{C}-4), 100.1(\mathrm{C}-9), 56.6(\mathrm{C}-2)$, 51.5 (C-13), 44.0 (C-3), 41.3 (C-1), 39.1 (C-5), 29.9 (C-6), 28.3 (C-8), 22.2 (C-7), 22.2 (C-10), 20.7 (C-11).

MS (EI, $70 \mathrm{eV}, 30^{\circ} \mathrm{C}$): m/z. 210, 195, 163, 154, 135, 123, 107, 95, 83, 67, 55.
HRMS ($70 \mathrm{eV}, 30^{\circ} \mathrm{C}$): m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{2}$: 210.1619, found: 210.1620.
IR $v_{\text {max }}=2926,2855,1651,1467,1373 \mathrm{~cm}^{-1}$.

3-Benzyloxy-4,4-dimethyl-2-methylene-hex-5-enoic acid methyl ester (9d)
(70\%, colorless oil)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.30(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}), 6.36(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=1.7 \mathrm{~Hz}, \mathrm{H}-7 \mathrm{~b}), 5.90$ (dd, $1 \mathrm{H}, J=17.5,10.8 \mathrm{~Hz}, \mathrm{H}-5), 5.82$ (br s, 1H, H-7a), 4.95 (dd, $1 \mathrm{H}, \mathrm{J}=10.8,1.4 \mathrm{~Hz}$, $\mathrm{H}-6 \mathrm{~b}), 4.92$ (dd, $1 \mathrm{H}, J=17.5,1.4 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}), 4.48\left(\mathrm{~d}, 1 \mathrm{H}, J=11.7 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 4.32$ (br s, 1H, H-3), $4.29\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=11.7 \mathrm{~Hz}, \mathrm{OCH}_{2}\right.$), $3.75(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-10), 1.01(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-8)$, 1.00 (s, 3H, H-9).
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=168.1$ (C-1), $144.5(\mathrm{C}-5), 139.0(\mathrm{C}-2), 138.7(\mathrm{C}, \mathrm{Ar})$, 128.3 (2CH, Ar), 127.7 (2CH, Ar), 127.5 (CH, Ar), 126.6 (C-7), 112.4 (C-6), 82.5 (C3), $71.2\left(\mathrm{OCH}_{2}\right), 52.0(\mathrm{C}-10), 42.1(\mathrm{C}-4), 23.4(\mathrm{C}-8), 22.3(\mathrm{C}-9)$.

MS (EI, $70 \mathrm{eV}, 3{ }^{\circ} \mathrm{C}$): m/z. 274, 242, 205, 183, 168, 147, 115, 105, 91, 77, 69.
HRMS ($70 \mathrm{eV}, 30^{\circ} \mathrm{C}$): m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{3}$: 274.1569, found: 274.1573.
IR $v_{\text {max }}=2975,2854,1661,1464,1375,1118,735,698 \mathrm{~cm}^{-1}$.

3,4,4-Trimethyl-2-methylene-hex-5-enoic acid methyl ester (9e)

(70\%, colorless oil)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.23$ (s, $1 \mathrm{H}, \mathrm{H}-8 \mathrm{~b}$), 5.81 (dd, $1 \mathrm{H}, J=17.5,10.9 \mathrm{~Hz}$, $\mathrm{H}-5$), 5.47 (s, $1 \mathrm{H}, \mathrm{H}-8 \mathrm{a}$), 4.93 (dd, $1 \mathrm{H}, J=10.9,1.5 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}), 4.88$ (dd, $1 \mathrm{H}, J=17.5$, $1.5 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}$), 3.73 (s, 3H, H-11), 2.92 ($\mathrm{q}, 1 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{H}-3$), $1.03(\mathrm{~d}, 3 \mathrm{H}, J=7.3$ $\mathrm{Hz}, \mathrm{H}-7$), 0.95 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-9$), 0.94 (s, 3H, H-10).
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=169.2(\mathrm{C}-1), 146.5(\mathrm{C}-5), 144.0(\mathrm{C}-2), 124.8(\mathrm{C}-8)$, 111.6 (C-6), 52.0 (C-11), 41.5 (C-3), 40.0 (C-4), 24.6 (C-9), 23.8 (C-10), 15.7 (C-7).

MS (EI, $70 \mathrm{eV}, 30^{\circ} \mathrm{C}$): m/z. 182, 150, 114, 91, 69, 53.
HRMS ($70 \mathrm{eV}, 30^{\circ} \mathrm{C}$): m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{2}$: 182.1307, found: 182.1304.
IR $v_{\max }=3083,2969,1723,1625,1436,1415,1376,1273,1170 \mathrm{~cm}^{-1}$.

3-(4-Methoxy-benzyloxy)-3,4-dimethyl-2-methylene-hex-5-enoic acid methyl ester (9f)
(22\%, colorless oil)
major diastereomer:
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.25$ (m, 2H, Ar), 6.88 (m, 2H, Ar), 6.17 (d, 1H, J= $1.2 \mathrm{~Hz}, \mathrm{H}-8 \mathrm{~b}), 5.85$ (ddd, $1 \mathrm{H}, J=18.7,10.3,8.3 \mathrm{~Hz}, \mathrm{H}-5), 5.69(\mathrm{~d}, 1 \mathrm{H}, J=1.2 \mathrm{~Hz}, \mathrm{H}-$ $8 \mathrm{a}), 5.02$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-6 \mathrm{ab}$), 4.33 (m, 2H, OCH_{2}), 3.80 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$), 3.74 (s, 3H, H-10), 2.92 (m, 1H, H-4), 1.43 (s, 3H, H-7), 1.04 (d, 3H, J=6.9 Hz, H-9).
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=167.8(\mathrm{C}-1), 158.8(\mathrm{C}, \mathrm{Ar}), 143.6(\mathrm{C}-5), 140.4(\mathrm{C}-2)$, 131.6 (C, Ar), 128.4 (2CH, Ar), 125.4 (C-8), 115.5 (C-6), 113.8 (2CH, Ar), 80.6 (C-3), $64.3\left(\mathrm{OCH}_{2}\right), 55.4\left(\mathrm{OCH}_{3}\right), 51.8(\mathrm{C}-10), 46.0(\mathrm{C}-4), 19.5(\mathrm{C}-7), 14.7(\mathrm{C}-9)$.
MS (El, $70 \mathrm{eV}, 30^{\circ} \mathrm{C}$): m/z. 304, 168, 153, 137, 121.
HRMS ($70 \mathrm{eV}, 30^{\circ} \mathrm{C}$): m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{4}$: 304.1675, found: 304.1668.
IR $v_{\text {max }}=2982,2875,1659,1460,1368,1120 \mathrm{~cm}^{-1}$.
minor diastereomer:
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.25(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 6.88(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 6.12(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ $1.1 \mathrm{~Hz}, \mathrm{H}-8 \mathrm{~b}), 6.01$ (ddd, $1 \mathrm{H}, J=18.0,10.9,8.3 \mathrm{~Hz}, \mathrm{H}-5), 5.65(\mathrm{~d}, 1 \mathrm{H}, J=1.1 \mathrm{~Hz}, \mathrm{H}-$ $8 \mathrm{a}), 5.02$ (m, 2H, H-6ab), 4.33 (m, 2H, OCH 2), $3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right.$), 3.72 (s, 3H, H-10), 2.92 (m, 1H, H-4), 1.43 (s, 3H, H-7), 1.04 (d, 3H, J = 6.9 Hz, H-9).
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=167.9$ (C-1), 158.9 (C, Ar), 143.9 (C-5), 140.7 (C-2), 131.7 (C, Ar), 128.4 (2CH, Ar), 125.1 (C-8), 114.4 (C-6), 113.8 (2CH, Ar), 81.3 (C-3), $64.3\left(\mathrm{OCH}_{2}\right), 55.4\left(\mathrm{OCH}_{3}\right), 51.8(\mathrm{C}-10), 45.3(\mathrm{C}-4), 18.9(\mathrm{C}-7), 14.2(\mathrm{C}-9)$.

4-Methoxy-3,3-dimethyl-2-methylene-hex-5-enoic acid methyl ester (9 g)
(22\%, colorless oil)
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.99(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=0.5 \mathrm{~Hz}, \mathrm{H}-10 \mathrm{~b}), 5.63$ (ddd, $1 \mathrm{H}, \mathrm{J}=$ $18.3,10.5,7.8 \mathrm{~Hz}, \mathrm{H}-5), 5.55$ (d, $1 \mathrm{H}, J=0.5 \mathrm{~Hz}, \mathrm{H}-10 \mathrm{a}$), 5.23 (ddd, $1 \mathrm{H}, J=10.5,2.0$, $1.0 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}$), 5.17 (ddd, $1 \mathrm{H}, J=18.3,2.0,1.0 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}$), 4.02 (ddd, $1 \mathrm{H}, J=7.8,1.0$, $1.0 \mathrm{~Hz}, \mathrm{H}-4$), 3.72 (s, 3H, H-9), 3.20 (s, 3H, H-11), 1.17 (s, 3H, H-7), 1.10 (s, 3H, H8).
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=168.1$ (C-1), 146.9 (C-2), 134.9 (C-5), 123.1 (C-10), 118.6 (C-6), 86.4 (C-4), 56.9 (C-11), 51.2 (C-9), 42.1 (C-3), 23.0 (C-7), 22.5 (C-8).

No HRMS determined due to fast fragmentation in vacuo.
IR $v_{\text {max }}=2970,2889,1754,1462,1131 \mathrm{~cm}^{-1}$.

General Procedure for $\operatorname{Pd}(0)$ Catalyzed Cyclization Reaction

To a solution of enol triflate (1 eq.) in MeOH/DMF (2:1, 0.06 M) is added $\mathrm{NEt}_{3}(3.2$ eq.) and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\left(0.1\right.$ eq.). The resulting mixture was stirred at $50{ }^{\circ} \mathrm{C}$ until completion (TLC). 1 N HCl and $\mathrm{Et}_{2} \mathrm{O}$ were added, the layers were separated and the aqueous phase was extracted three times with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed successively with sat. $\mathrm{NaHCO}_{3}, \mathrm{H}_{2} \mathrm{O}$ and brine, dried over MgSO_{4}, filtered and concentrated in vacuo. Column chromatography (pentanes/ $\mathrm{Et}_{2} \mathrm{O}$) of the residue afforded the product as colorless oil.

diastereomer l:
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.24$ (br s, 2H, Ar), 6.81 (br s, $2 \mathrm{H}, \mathrm{Ar}$), 5.26 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-$ 8b), 5.25 (d, 1H, J = $2.4 \mathrm{~Hz}, \mathrm{H}-5 \mathrm{a}$), 4.99 (s, 1H, H-8a), 4.83 (d, 1H, J = $2.4 \mathrm{~Hz}, \mathrm{H}-5 \mathrm{~b}$), $4.45\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.76\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.16(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2), 1.33(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-7), 1.11$ (d, $3 \mathrm{H}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{H}-6)$.
${ }^{13}{ }^{\text {C NMR }}$ ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=158.4$ (C, Ar), 153.3 (C-4), 149.1 (C-3), 130.4 (C, Ar), 129.0 (2CH, Ar), 113.7 (2CH, Ar), 103.7 (C-8), 103.2 (C-5), 82.1 (C-1), 65.2 $\left(\mathrm{OCH}_{2}\right), 55.2\left(\mathrm{OCH}_{3}\right), 45.4(\mathrm{C}-2), 19.4(\mathrm{C}-7), 13.2(\mathrm{C}-6)$.
MS (EI, $70 \mathrm{eV}, 30^{\circ} \mathrm{C}$): m/z. 244, 229, 215, 135, 121, 110, 91, 77.
HRMS ($70 \mathrm{eV}, 3{ }^{\circ} \mathrm{C}$): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{2}$: 244.1463, found: 244.1448.

diastereomer II:
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.24$ (br s, $2 \mathrm{H}, \mathrm{Ar}$), 6.84 (br s, $2 \mathrm{H}, \mathrm{Ar}), 5.18$ (d, $1 \mathrm{H}, \mathrm{J}=2.0 \mathrm{~Hz}, \mathrm{H}-5 \mathrm{a}$), 5.13 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{~b})$, 4.98 (s, 1H, H-8a), 4.84 (d, 1H, J=2.0 Hz, H-5b), 4.32 (s, 2H, OCH_{2}), 3.77 (s, 3H, OCH_{3}), 2.73 (m, 1H, H-2), 1.40 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-$ 7), 1.13 (d, $3 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{H}-6$).
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=158.4$ (C, Ar), 155.3 (C-4), 147.7 (C-3), 130.0 (C, Ar), 129.0 (2CH, Ar), 113.7 (2CH, Ar), 106.7 (C-5), 106.3 (C-8), 82.4 (C-1), 65.1 $\left(\mathrm{OCH}_{2}\right), 55.2\left(\mathrm{OCH}_{3}\right), 51.0(\mathrm{C}-2), 23.7(\mathrm{C}-7), 21.7(\mathrm{C}-6)$.

1,2-Dimethyl-5-methylene-cyclopent-3-enyloxymethyl)-4-methoxy-benzene (6f)
 (mixture of enantiomers, 35%, d.r.: 1:1)

diastereomer I:
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.24(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 6.84(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 6.14(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4)$, 5.98 (m, 1H, H-3), 5.28 (s, 1H, H-8a), 4.99 (s, 1H, H-8b), 4.50 (d, 1H, J = 10.0 Hz , OCH_{2}), $4.44\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=10.0 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 3.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.89(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2), 1.42$ (s, 3H, H-7), 1.19 (d, 3H, J=6.8 Hz, H-6).
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=158.4$ (C, Ar), 156.5 (C-5), 142.1 (C-3), 130.5 (C-4), 130.2 (C, Ar), 129.0 (2CH, Ar), 113.7 (2CH, Ar), 81.6 (C-1), $66.0\left(\mathrm{OCH}_{2}\right), 55.2$ $\left(\mathrm{OCH}_{3}\right), 41.6$ (C-2), 23.2 (C-7), 15.1 (C-6).
MS (EI, $70 \mathrm{eV}, 30^{\circ} \mathrm{C}$): m/z. 244, 226, 211, 196, 179, 165, 149, 134, 123, 121.
HRMS ($70 \mathrm{eV}, 30^{\circ} \mathrm{C}$): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{2}$: 244.1463, found: 244.1453.

diastereomer II:
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.24(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 6.81(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar})$, 6.17 (m, 1H, H-4), 5.94 (m, 1H, H-3), 5.12 (s, 1H, H-8a), 4.94 (s, $1 \mathrm{H}, \mathrm{H}-8 \mathrm{~b}), 4.24\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=10.7 \mathrm{~Hz}, \mathrm{OCH}_{2}\right.$), 4.18 (d, 1H, $J=10.7$ $\mathrm{Hz}, \mathrm{OCH}_{2}$), 3.77 (s, 3H, OCH_{3}), 3.02 (m, 1H, H-2), 1.28 (s, 3H, H7), $1.05(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{H}-6)$.
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=158.4$ (C, Ar), 155.9 (C-5), 142.2 (C-3), 130.9 (C-4), 130.2 (C, Ar), $129.0(2 \mathrm{CH}, \mathrm{Ar}), 113.7(2 \mathrm{CH}, \mathrm{Ar}), 84.9(\mathrm{C}-1), 64.4\left(\mathrm{OCH}_{2}\right), 55.2$ $\left(\mathrm{OCH}_{3}\right), 46.0(\mathrm{C}-2), 23.2(\mathrm{C}-7), 14.9(\mathrm{C}-6)$.

2-Methoxy-1,1-dimethyl-3,4-dimethylene-cyclobutane (8g)
(mixture of enantiomers, 30%, colorless oil)
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.28(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.5 \mathrm{~Hz}, \mathrm{H}-5 \mathrm{a}), 5.14(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-9 \mathrm{a})$, 4.76 (s, 1H, H-9b), 5.08 (d, 1H, J = $2.5 \mathrm{~Hz}, \mathrm{H}-5 \mathrm{~b}$), 3.94 (dd, $1 \mathrm{H}, J=2.5,2.5 \mathrm{~Hz}, \mathrm{H}-2$), 3.41 (s, 3H, H-6), 1.25 (s, 3H, H-7), 1.14 (s, 3H, H-8).
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=153.9(\mathrm{C}-4), 148.9(\mathrm{C}-1), 105.9(\mathrm{C}-5), 101.6(\mathrm{C}-9)$, 85.6 (C-2), 58.1 (C-6), 47.1 (C-3), 26.1 (C-7), 20.7 (C-8).

No HRMS determined due to fast fragmentation in vacuo.

3-Methoxy-4,4-dimethyl-5-methylene-cyclopentene (6g)

(mixture of enantiomers, 30%, colorless oil)
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.26$ (d, $1 \mathrm{H}, J=5.8 \mathrm{~Hz}, \mathrm{H}-2$), 6.06 (ddd, $1 \mathrm{H}, J=5.8$, $0.5,0.5 \mathrm{~Hz}, \mathrm{H}-1$), 4.89 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-9 \mathrm{a}$), 4.70 (s, H-9b), 3.96 (s, H-3), 3.41 (s, 3H, H-6), 1.18 (s, 3H, H-7), 1.09 (s, 3H, H-8).
${ }^{13} \mathrm{C}^{\text {NMR }}$ ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=161.1$ (C-5), $134.9(\mathrm{C}-1), 133.9(\mathrm{C}-2), 103.3(\mathrm{C}-9)$, 93.2 (C-3), 58.0 (C-6), 47.1 (C-4), 22.9 (C-8), 22.5 (C-7).

No HRMS determined due to fast fragmentation in vacuo.

2-Methyl-1,4-dimethylene-3,3-diphenyl-cyclobutane (8h)
(mixture of enantiomers, 87%, colorless oil)
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.34$ (m, 2H, Ar), 7.26 ($\mathrm{m}, 4 \mathrm{H}, \mathrm{Ar}$), 7.22 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{Ar}$), 7.19 (m, 2H, Ar), 5.55 (s, 1H, H-7a), 5.33 (d, 1H, J = $2.9 \mathrm{~Hz}, \mathrm{H}-5 b$), 5.11 (s, 1H, H7b), 4.84 (d, 1H, J= $2.9 \mathrm{~Hz}, \mathrm{H}-5 \mathrm{a}$), 3.92 (ddq, $1 \mathrm{H}, J=7.1,2.9,2.9 \mathrm{~Hz}, \mathrm{H}-2$), 0.85 (d, $3 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{H}-6)$.
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=154.5(\mathrm{C}-4), 152.5(\mathrm{C}-1), 147.4$ (C, Ar), $143.5(\mathrm{C}$, Ar), 129.4 (2CH, Ar), 128.7 (2CH, Ar), 128.0 (4CH, Ar), 126.6 (CH, Ar), 125.6 (CH, Ar), 106.3 (C-7), 103.3 (C-5), 61.8 (C-3), 46.5 (C-2), 16.2 (C-6).
MS (El, $70 \mathrm{eV}, 30^{\circ} \mathrm{C}$): m/z. 246, 231, 217, 202, 191, 165, 155, 115, 101, 91, 74.
HRMS ($70 \mathrm{eV}, 3{ }^{\circ} \mathrm{C}$): m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{18}$: 246.1409, found: 246.1413.
IR $v_{\max }=3058,3028,2956,2922,1600,1492,1445,1386,765,699 \mathrm{~cm}^{-1}$.

2-Isopropyl-1,4-dimethylene-3,3-diphenyl-cyclobutane (8i)
(mixture of enantiomers, 75%, colorless oil)
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.37(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.28(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.26(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar})$, 7.18 (m, 2H, Ar), 7.17 (m, 1H, Ar), 7.11 (m, 2H, Ar), 5.45 (s, 1H, H-7a), 5.33 (d, 1H, $J=2.5 \mathrm{~Hz}, \mathrm{H}-5 \mathrm{~b}$), 4.97 (s, 1H, H-7b), 4.88 (d, 1H, J=2.5 Hz, H-5a), 3.42 (ddd, 1H, J $=9.7,2.5,2.5 \mathrm{~Hz}, \mathrm{H}-2$), 1.55 (dqq, $1 \mathrm{H}, J=9.7,6.7,6.7 \mathrm{~Hz}, \mathrm{H}-6$), 0.85 (d, $3 \mathrm{H}, J=6.7$ $\mathrm{Hz}, \mathrm{H}-8), 0.61(\mathrm{~d}, 3 \mathrm{H}, J=6.7 \mathrm{~Hz}, \mathrm{H}-9)$.
${ }^{13}{ }^{\text {C NMR }}$ ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=156.1$ (C-4), 149.9 (C-1), 146.6 (C, Ar), 144.4 (C, Ar), 129.6 (2CH, Ar), 128.3 (2CH, Ar), 128.1 (2CH, Ar), 127.3 (2CH, Ar), 126.1 (2CH, Ar), 104.9 (C-7), 104.8 (C-5), 61.9 (C-3), 59.6 (C-2), 28.8 (C-6), 22.2 (C-8), 20.6 (C9).

MS (EI, $70 \mathrm{eV}, 30^{\circ} \mathrm{C}$): m/z. 274, 259, 231, 217, 202, 180, 165, 152, 115, 103, 91, 77. HRMS ($70 \mathrm{eV}, 30^{\circ} \mathrm{C}$): m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{22}$: 274.1722, found: 274.1727.

IR $v_{\max }=3062,3032,2965,2925,1600,1493,1449,745,702 \mathrm{~cm}^{-1}$.

Procedure for Diels Alder Reaction

2-Methyl-1,4-dimethylene-3,3-diphenyl-cyclobutane (1 eq.) was dissolved in benzene (0.03 M), BHT (cat.) and benzoquinone ($2 \mathrm{eq}$. .) were added and the resulting reaction mixture was stirred at $110{ }^{\circ} \mathrm{C}$ until completion (TLC). After concentration of the solvent in vacuo, the residue was purified by column chromatography to yield the product in analytically pure form.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.23$ (m, 10H, Ar), $6.72(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=10.4 \mathrm{~Hz}, \mathrm{H}-3$),
6.66 (d, 1H, J = $10.4 \mathrm{~Hz}, \mathrm{H}-2$), 5.26 (q, 1H, J = $7.0 \mathrm{~Hz}, \mathrm{H}-10$), 3.38 (m, 4H, H-5ab, H$8 \mathrm{ab}), 1.45$ (d, 3H, J=7.0 Hz, H-11).
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=187.3,186.8,143.7,142.1,141.6,140.7,139.6$, 136.6, 136.3, 133.6, 132.2, 130.1, 129.9, 128.3 (2C), 127.8 (2C), 127.6 (2C), 127.2 (2C), 126.4, 30.8, 27.5, 13.9.
MS (EI, $70 \mathrm{eV}, 30^{\circ} \mathrm{C}$): m/z. 352, 337, 309, 289, 275, 252, 218, 165.
HRMS $\left(70 \mathrm{eV}, 30^{\circ} \mathrm{C}\right)$: m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{O}_{2}-2 \mathrm{H}: 352.1463$, found: 352.1452 .
IR $v_{\max }=3600,3074,3029,2959,1605,1475,845 \mathrm{~cm}^{-1}$.

