Supporting Information

for

Insights on Co-Catalyst Promoted Enamine Formation between Dimethylamine and Propanal through ab-initio and Density Functional Theory Study

Mahendra P. Patil and Raghavan B. Sunoj *

Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai 400076, India

E-mail: sunoj@chem.iitb.ac.in

	Table of Contents	
	Full citation for Ref.23	S10
	List of Figures	
Figure S1	Bond Order (in green) for Representative Bonds, Natural (in blue) and Mulliken Charges (in red) for Selected Atoms for the Transition States in Step-I Computed at the mPW1PW91/6-311+G** Level of Theory.	S11
Figure S2	Bond Order (in green) for Representative Bonds, Natural (in blue) and Mulliken Charges (in red) for Selected Atoms for the Transition States in step-II Computed at the mPW1PW91/6-311+G** Level of Theory.	S13
Figure S3	The Intrinsic Reaction Coordinate (IRC) Plots of Transition States for Step-I Generated at the mPW1PW91/6-311+G** and B3LYP/6- 311+G** Level of Theories. [Extended IRC was performed for TS-Ih]	S15
Figure S4	The Intrinsic Reaction Coordinate (IRC) plots of transition states for step-II generated at the mPW1PW91/6-311+G** and B3LYP/6- 311+G** level of theories. [Extended IRC were performed for all TS in step-II at the mPW1PW91/6-311+G** level. Additional MP2/6-31G* IRC calculations were also carried out for TS-IIf , TS-IIf IIg and TS-IIIg]	S22
	List of Tables	
	Details	
Table S1	Summary of Atoms in Molecule (AIM) Analyses Performed Using the Wave Functions Generated at the MP2(full)/6- 311+G**//mPW1PW91/6-311+G** Level of Theory for Pre- reacting complex (PRC) and Carbinolamine and at the MP2(full)/6- 311+G**//MP2(full)/6-31G* level of theory for TS-I	S27
Table S2	Summary of Atoms in Molecule (AIM) Analyses Performed Using the Wave Functions Generated at the MP2(full)/6-	S28

	311+G**//mPW1PW91/6-311+G** Level of Theory for Pre-	
	reacting Complex (PRC) and Carbinolamine ^a and at the	
	MP2(full)/6-311+G**//MP2(full)/6-31G* level of theory for TS-Ia	
	and Ib	
	Summary of Atoms in Molecule (AIM) Analyses Performed Using	
	ine wave Functions Generated at the MP2(101)/0-	
Table S3	reacting Compley (DBC) and Carbinelemine ^a and at the	S29
	$MD2(f_1)/(6.211+C**//MD2(f_2))/(6.21C*)$ level of theory for TS Le	
	and Id	
	Summary of Atoms in Molecule (AIM) Analyses Performed Using	
	the Wave Functions Generated at the MP2(full)/6-	
Table S4	311+G**//mPW1PW91/6-311+G** Level of Theory for Pre-	S30
	reacting Complex and Carbinolamine ^a and at the MP2(full)/6-	000
	$311+G^{**}/(MP2(full)/6-31G^*)$ level of theory for TS-Ie^b and TS-If	
	Summary of Atoms in Molecule (AIM) Analyses Performed Using	
	the Wave Functions Generated at the MP2(full)/6-	
Table S5	311+G**//mPW1PW91/6-311+G** Level of Theory for Pre-	S31
	reacting Complex and carbinolamine ^a and at the MP2(full)/6-	
	$311+G^{**}/MP2(full)/6-31G^*$ Level of Theory for TS-Ig ^b and TS-Ih	
	Summary of Atoms in Molecule (AIM) Analyses Performed Using	
	the Wave Functions Generated at the MP2(full)/6-	
Table S6	311+G**//mPW1PW91/6-311+G** level of theory for Pre-reacting	S32
	complex and Carbinolamine ^a and at the MP2(full)/6-	
	311+G**//MP2(full)/6-31G* level of theory for TS-If and TS-Ij	
	Summary of Atoms in Molecule (AIM) Analyses Performed Using	
Table S7	the Wave Functions Generated at the MP2(full)/6-	G 22
	$311+G^{**}/mPW1PW91/6-311+G^{**}$ Level of Theory for Pre-	833
	reacting Complex and Carbinolamine" and at the MP2(full)/6- 211 $(5*/(MP2(full))/(210*)$ level of the one for TS He and TS H ^b	
Table 69	SIIT-G: //WP2(IUII)/O-SIG* level of theory for IS-IK and IS-I/	S24
1 abie 58	Summary of Atoms in Molecule (AIM) Analyses Performed Using	334

	the Wave Functions Generated at the MP2(full)/6- 311+G**//mPW1PW91/6-311+G** Level of Theory for Pre- reacting Complex and Carbinolamine ^a and at the MP2(full)/6- 311+G**//MP2(full)/6-31G* Level of Theory for TS-Im	
Table S9	Summary of Atoms in Molecule (AIM) Analyses Performed Using the Wave Functions Generated at the MP2(full)/6- 311+G**//mPW1PW91/6-311+G** Level of Theory for Pre- reacting Complex and Enamine-water Complex and at the MP2(full)/6-311+G**//MP2(full)/6-31G* Level of Theory for TS- II	S35
Table S10	Summary of Atoms in Molecule (AIM) Analyses Performed Using the Wave Functions Generated at the MP2(full)/6- 311+G**//mPW1PW91/6-311+G** Level of Theory for Pre- reacting Complex and Enamine ^{<i>a</i>} and at the MP2(full)/6- 311+G**//MP2(full)/6-31G* Level of Theory for TS-IIa and IIb	S36
Table S11	Summary of Atoms in Molecule (AIM) Analyses Performed Using the Wave Functions Generated at the MP2(full)/6- 311+G**//mPW1PW91/6-311+G** Level of Theory for Pre- reacting Complex and Enamine ^{<i>a</i>} and at the MP2(full)/6- 311+G**//MP2(full)/6-31G* Level of Theory for TS-IIc and TS- IId	S37
Table S12	Summary of Atoms in Molecule (AIM) Analyses Performed Using the Wave Functions Generated at the MP2(full)/6- 311+G**//mPW1PW91/6-311+G** Level of Theory for Pre- reacting Complex and Enamine ^{<i>a</i>} and at the MP2(full)/6- 311+G**//MP2(full)/6-31G* Level of Theory for TS-IIe ^{<i>b</i>} and TS-IIf	S38
Table S13	Summary of Atoms in Molecule (AIM) Analyses Performed Using the Wave Functions Generated at the MP2(full)/6- 311+G**//mPW1PW91/6-311+G** Level of Theory for Pre- reacting Complex and Iminium ion/Enamine ^{<i>a</i>} and at the	S39

	MP2(full)/6-311+G**//MP2(full)/6-31G* Level of Theory for TS-					
	IIg and IIIg					
Table S14	Summary of Atoms in Molecule (AIM) Analyses Performed Using the Wave Functions Generated at the MP2(full)/6- 311+G**//mPW1PW91/6-311+G** Level of Theory for Pre- reacting Complex and Enamine ^{<i>a</i>} and at the MP2(full)/6- 311+G**//MP2(full)/6-31G* Level of Theory for TS-IIh ^{<i>b</i>} and TS-IIi ^{<i>c</i>}	S40				
Table S15	Computed Activation Energies (in kcal mol^{-1}) ^a for Carbinolamine Formation (Step-I) Obtained at Different Levels of Theories ^b	S41				
Table S16	Computed Activation Energies (in kcal mol^{-1}) ^a for Dehydration (step-II) Steps Obtained at Different Levels of Theories ^b	S41				
Table S17	Computed Activation Enthalpies (in kcal mol^{-1}) ^{<i>a</i>} for Carbinolamine Formation (Step-I) Obtained at Different Levels of Theories ^{<i>b</i>}					
Table S18	Computed Activation Enthalpies (in kcal mol^{-1}) ^{<i>a</i>} for Dehydration (step-II) Steps Obtained at Different Levels of Theories ^{<i>b</i>}					
Table S19	Computed Gibbs Free Energies of Activation (in kcal mol ⁻¹) ^a for Carbinolamine Formation (Step-I) Obtained at Different Levels of Theories ^b					
Table S20	Computed Gibbs Free Energies of Activation (in kcal mol ⁻¹) ^a for Dehydration (step-II) Steps Obtained at Different Levels of Theories ^b	S43				
Table S21	Selected Bond Distances and Angles (in Å and °) of Transition State TS-I Computed at the Various Levels of Theories	S44				
Table S22	Selected Bond Distances and Angles (in Å and °) for Transition State TS-Ia Computed at the Various Levels of Theories	S45				
Table S23	Selected Bond Distances and Angles (in Å and °) for Transition State TS-Ib Computed at the Various Levels of Theories					
Table S24	Selected Bond Distances and Angles (in Å and °) for Transition State TS-Ic Computed at the Various Levels of Theories	S47				

Table S25	Selected Bond Distances and Angles (in Å and °) for Transition State TS-Id Computed at the Various Levels of Theories	S48
Table S26	Selected Bond Distances and Angles (in Å and °) for Transition State TS-Ie Computed at the Various Levels of Theories	S49
Table S27	Selected Bond Distances and Angles (in Å and °) for Transition State TS-If Computed at the Various Levels of Theories	S50
Table S28	Selected Bond Distances and Angles (in Å and °) for Transition State TS-Ig Computed at the Various Levels of Theories	S51
Table S29	Selected Bond Distances and Angles (in Å and °) for Transition State TS-Ih Computed at the Various Levels of Theories	S52
Table S30	Selected Bond Distances and Angles (in Å and °) for Transition State TS-Ii Computed at the Various Levels of Theories	S53
Table S31	Selected Bond Distances and Angles (in Å and °) for Transition State TS-Ij Computed at the Various Levels of Theories	S54
Table S32	Selected Bond Distances and Angles (in Å and °) for Transition State TS-Ik Computed at the Various Levels of Theories	S55
Table S33	Selected Bond Distances and Angles (in Å and °) for Transition State TS-I / Computed at the Various Levels of Theories	S56
Table S34	Selected Bond Distances and Angles (in Å and °) for Transition State TS-Im Computed at the Various Levels of Theories	S57
Table S35	Selected Bond Distances and Angles (in Å and °) for Transition State TS-II Computed at the Various Levels of Theories	S58
Table S36	Selected Bond Distances and Angles (in Å and °) for Transition State TS-IIa Computed at the Various Levels of Theories	S59
Table S37	Selected Bond Distances and Angles (in Å and °) for Transition State TS-IIb Computed at the Various Levels of Theories	S60
Table S38	Selected Bond Distances and Angles (in Å and °) for Transition State TS-IIc Computed at the Various Levels of Theories	S61
Table S39	Selected Bond Distances and Angles (in Å and °) for Transition State TS-IId Computed at the Various Levels of Theories	S62

Table S40	Selected Bond Distances and Angles (in Å and °) for Transition State TS-IIe Computed at the Various Levels of Theories	S63					
Table S41	Selected Bond Distances and Angles (in Å and °) for Transition State TS-IIf Computed at the Various Levels of Theories						
Table S42	Selected Bond Distances and Angles (in Å and °) for Transition State TS-IIg Computed at the Various Levels of Theories						
Table S43	Selected Bond Distances and Angles (in Å and °) for Transition State TS-IIIg Computed at the Various Levels of Theories						
Table S44	Selected Bond Distances and Angles (in Å and °) for Transition State TS-IIh Computed at the Various Levels of Theories	S67					
Table S45	Selected Bond Distances and Angles (in Å and °) for Transition State TS-IIi Computed at the Various Levels of Theories						
Table S46	The Second-Order Perturbation Energy of Delocalization and C_2-O_3 Bond Distances (in Å) for the Pre-reacting Complexes Computed at the NBO//mPW1PW91/6-311+G** level of theory. ^{<i>a</i>}						
Table S47	Selected Bond Distances (in Å) for Pre-Reacting Complex Obtained through Intrinsic Reaction Coordinate (IRC) and <i>geomfreq</i> Calculations on TS-IIg Performed at the MP2(full)/6-31G* and mPW1PW91/6-311+G** Levels of Theories						
Table S48	Selected Bond Distances (in Å) of Iminium Ion Intermediate Obtained through Intrinsic Reaction Coordinate (IRC) and <i>geomfreq</i> Calculation on TS-IIg Performed at the MP2(full)/6-31G* and mPW1PW91/6-311+G** Levels of Theories	S71					
Table S49	Selected Bond Distances (in Å) of Iminium Ion Intermediate Obtained through Intrinsic Reaction Coordinate (IRC) and <i>geomfreq</i> Calculation on TS-IIIg Performed at the MP2(full)/6-31G* and mPW1PW91/6-311+G** Levels of Theories	S72					
Table S50	Selected Bond Distances (in Å) of Enamine obtained by Intrinsic Reaction Coordinate (IRC) and <i>geomfreq</i> Calculation on TS-IIIg Performed at the MP2(full)/6-31G* and mPW1PW91/6-311+G**						

	Level of Theories							
Table S51	Computed Activation Parameters (in kcal mol ⁻¹) ^a for Carbinolamine							
	Formation (Step-I) and Dehydration (step-II) Steps Obtained at the							
	mPW1PW91/6-311+G** Level of Theory							
Table S52	The mPW1PW91/6-31G* Optimized Geometries (in Cartesian							
	coordinates), Total Electronic Energies (in hartree/particle), and							
	Number of Imaginary Frequencies (in cm ⁻¹) of Transition States for	5/5						
	Carbinolamine Formation (Step-I)							
Table S53	The mPW1PW91/6-31G* Optimized Geometries (in Cartesian							
	coordinates), Total Electronic Energies (in hartree/particle), and	C 01						
	Number of Imaginary Frequencies (in cm ⁻¹) of Transition States for	301						
	Dehydration of Carbinaolamine (Step-II)							
Table S54	The mPW1PW91/6-311+G** Optimized Geometries (in Cartesian							
	coordinates), Total Electronic Energies (in hartree/particle), and							
	Number of Imaginary Frequencies (cm ⁻¹) of Pre-reacting							
	Complexes, Transition States and Final Products for Carbinolamine							
	Formation (Step-I)							
Table S55	The mPW1PW91/6-311+G** Optimized Geometries (in Cartesian							
	coordinates), Total Electronic Energies (in hartree/particle), and							
	Number of Imaginary Frequencies (in cm ⁻¹) of Pre-Reacting							
	Complexes, Transition States and Final Products for Dehydration							
	step (Step-II) [In case of TS-III, geometry (in Cartesian							
	coordinates), Total Electronic Energies (in hartree/particle) obtained							
	at the mPW1PW91/6-311g** level of theory is reported.]							
Table S56	The MP2(full)/6-31G* Optimized Geometries (in Cartesian							
	coordinates), Total Electronic Energies (in hartree/particle), and							
	Number of Imaginary Frequencies (in cm ⁻¹) of Transition States for							
	Carbinolamine Formation (Step-I)							
Table S57	The MP2(full)/6-31G* Optimized Geometries (in Cartesian	S121						
	coordinates), Total Electronic Energies (in hartree/particle), and							

	Number of Imaginary Frequencies (in cm ⁻¹) of Transition States for	
	Dehydration step (Step-II)	
Table S58	The PCM-mPW1PW91/6-31G* Optimized Geometries (in Cartesian coordinates), Total Electronic Energies (in hartree/particle), and	S126
	Number of Imaginary Frequencies (in cm ⁻¹) of Transition States for Carbinolamine Formation (Step-I)	5120
Table S59	The PCM-mPW1PW91/6-31G* Optimized Geometries (in Cartesian coordinates), Total Electronic Energies (in hartree/particle), and Number of Imaginary Frequencies (cm ⁻¹) of Transition States for Dehydration Step (Step-II)	S133
Table S60	The B3LYP/6-311+G** Optimized Geometries (in Cartesian coordinates), Total Electronic Energies (in hartree/particle), and Number of Imaginary Frequencies (cm ⁻¹) of Transition States for Carbinolamine Formation (Step-I)	S138
Table S61	The B3LYP/6-311+G** Optimized Geometries (in Cartesian coordinates), Total Electronic Energies (in hartree/particle), and Number of Imaginary Frequencies (cm ⁻¹) of Transition States for Dehydration step (Step-II)	S145
Table S62	The PCM-B3LYP/6-31G* Optimized Geometries (in Cartesian coordinates), Total Electronic Energies (in hartree/particle), and Number of Imaginary Frequencies (cm ⁻¹) of Transition States for Carbinolamine Formation (Step-I)	S150
Table S63	The PCM-B3LYP/6-31G* Optimized Geometries (in Cartesian coordinates), Total Electronic Energies (in hartree/particle), and Number of Imaginary Frequencies (cm ⁻¹) of Transition States for Dehydration Step (Step-II)	S156

Full citation for Ref.23

Gaussian98:

Gaussian 98, Revision A.11.4, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A.D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J. W.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A., Gaussian, Inc., Pittsburgh PA, 2002.

Gaussian03:

Gaussian 03, Revision C.02, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A., Gaussian, Inc., Wallingford CT, 2004.

Figure S1. Bond Order (in green) for Representative Bonds, Natural (in blue) and Mulliken Charges (in red) for Selected Atoms for the Transition States in Step-I Computed at the mPW1PW91/6-311+G** Level of Theory.

Figure S1. (Continued..)

Figure S2. Bond Order (in green) for Representative Bonds, Natural (in blue) and Mulliken Charges (in red) for Selected Atoms for the Transition States in step-II Computed at the mPW1PW91/6-311+G** Level of Theory.

Figure S2. (Continued..)

Figure S3. The Intrinsic Reaction Coordinate (IRC) Plots of Transition States for Step-I Generated at the mPW1PW91/6-311+G** and B3LYP/6-311+G** Level of Theories. [Extended IRC was performed for **TS-Ih**]

Figure S3. (Continued..) TS-Ih

0.6

Reaction Coordinate

TS-Ik mPW1PW91/6-311+G**

B3LYP/6-311+G**

TS-Im mPW1PW91/6-311+G**

B3LYP/6-311+G**

Figure S4. The Intrinsic Reaction Coordinate (IRC) Plots of Transition States for Step-II Generated at the mPW1PW91/6-311+G** and B3LYP/6-311+G** Level of Theories. [Extended IRC were performed for all TS in step-II at the mPW1PW91/6-311+G** level. Additional MP2/6-31G* IRC calculations were also carried out for **TS-IIf**, **TS-IIg** and **TS-IIIg**]

TS-IIf

TS-IIIg

]

MP2(full)/6-31G*

Table S1. Summary of Atoms in Molecule (AIM) Analyses Performed Using the Wave Functions Generated at the MP2(full)/6- $311+G^*/$ /mPW1PW91/6- $311+G^*$ Level of Theory for the Pre-reacting complex (PRC) and the Carbinolamine and at the MP2(full)/6- $311+G^*/$ /MP2(full)/6- $31G^*$ level of theory for **TS-I**

 $a \rho(r_c)$ is the electron density at the BCP.

Table S2. Summary of Atoms in Molecule (AIM) Analyses Performed Using the Wave Functions Generated at the MP2(full)/6- $311+G^{**}/mPW1PW91/6-311+G^{**}$ Level of Theory for the Pre-reacting Complex (PRC) and the Carbinolamine^a and at the MP2(full)/6- $311+G^{**}/mP2(full)/6-31G^{*}$ level of theory for **TS-Ia** and **Ib**

^{*a*} Refers to cabinolamine-methanol/amine complex. ^{*b*} $\rho(r_c)$ is the electron density at the BCP.

Table S3. Summary of Atoms in Molecule (AIM) Analyses Performed Using the Wave Functions Generated at the MP2(full)/6- $311+G^{**}/mPW1PW91/6-311+G^{**}$ Level of Theory for the Pre-reacting Complex (PRC) and the Carbinolamine^a and at the MP2(full)/6- $311+G^{**}/mP2(full)/6-31G^{*}$ level of theory for **TS-Ic** and **Id**

^{*a*} Refers to cabinolamine-methanol/amine complex. ^{*b*} $\rho(r_c)$ is the electron density at the BCP.

Table S4. Summary of Atoms in Molecule (AIM) Analyses Performed Using the Wave Functions Generated at the MP2(full)/6- $311+G^{**}/mPW1PW91/6-311+G^{**}$ Level of Theory for the Pre-reacting Complex and the Carbinolamine^a and at the MP2(full)/6- $311+G^{**}/MP2(full)/6-31G^{*}$ level of theory for **TS-Ie**^b and **TS-If**

$ \begin{array}{c} $					3 9 9 1 2 1 4 2 1	₽ 0	
	PRC	TS-Ie	Carbinolamine		PRC	TS-If	Carbinolamine
	$\rho(\mathbf{r}_{c})^{c}$	$\rho(r_c)$	$\rho(r_c)$		$\rho(r_c)$	$\rho(r_c)$	$\rho(r_c)$
$N_1 - C_2$	0.0159	0.2249	0.2821	$N_1 - C_2$	0.1575	0.2289	0.2821
$C_2 - O_3$	0.3989	0.2909	0.2498	$C_2 - O_3$	0.3379	0.2754	0.2498
$O_3 - H_4$	-	0.1200	0.3452	$O_3 - H_4$	-	0.1343	0.3452
H_4-N_1	0.3217	0.1696	-	H_4-N_1	0.3225	0.1688	-
O3-H7	0.0171	0.0277	0.0175	O ₃ -H ₇	0.0464	0.0366	0.0175
$H_7 - N_8$	0.3278	0.3188	0.3284	$H_7 - O_8$	0.3308	0.3327	0.3284
O ₃ -H ₉	0.0169	0.0280	0.01812	O ₃ -H ₉	0.0543	0.0365	0.01812
$H_9 - N_{10}$	0.3285	0.3189	0.3287	$H_9 - O_{10}$	0.3184	0.3337	0.3287

^{*a*} Refers to cabinolamine-methanol/amine complex .^{*b*} Analyses performed with the wave functions generated at the MP2(full)/6-31G*//mPW1PW91/6-311+G** level of theory for the pre-reacting complex and carbinolamine. For **TS-Ie** the MP2(full)/6-31G* geometry is employed. ^{*c*} $\rho(r_c)$ is the electron density at the BCP.

Table S5. Summary of Atoms in Molecule (AIM) Analyses Performed Using the Wave Functions Generated at the MP2(full)/6- $311+G^{**}/mPW1PW91/6-311+G^{**}$ Level of Theory for the Pre-reacting Complex and the carbinolamine^{*a*} and at the MP2(full)/6- $311+G^{**}/MP2(full)/6-31G^{*}$ Level of Theory for **TS-Ig**^{*b*} and **TS-Ih**

$ \begin{array}{c} $							€ € 6
	PRC	TS-Ig	Carbinolamine		PRC	TS-Ih	Carbinolamine
	$\rho(\mathbf{r}_{c})^{c}$	$\rho(r_c)$	$\rho(r_c)$		$\rho(r_c)$	$\rho(r_c)$	$\rho(r_c)$
$N_1 - C_2$	0.0112	0.2120	0.3274	$N_1 - C_2$	0.0138	0.2113	0.1255
$C_2 - O_3$	0.402	0.3291	0.2232	$C_2 - O_3$	0.3948	0.3038	0.1373
$O_3 - H_7$	0.0201	0.0438	0.0519	$O_3 - H_7$	0.0359	0.2156	0.1683
H ₇ -N ₈	0.3266	0.2997	0.2910	H ₇ -O ₈	0.3423	0.1230	0.0181
N ₈ -H ₉	0.0255	0.0429	0.0549	$O_8 - H_9$	0.0374	0.1328	0.1693
$H_9 - N_{10}$	0.3195	0.2923	0.2767	$H_9 - O_{10}$	0.3422	0.2080	0.0195
N ₁₀ -H ₄	0.0248	0.1879	0.2528	O_{10} -H ₁	0.0214	0.08020	0.1605
$H_4 - N_1$	0.3199	0.1182	0.0697	$H_1 - N_1$	0.3336	0.2685	0.0221

^a Refers to cabinolamine-methanol/amine complex. ^b Analyses performed with wave functions generated at the MP2(full)/6-31G*//mPW1PW91/6-311+G** level of theory for the pre-reacting complex and carbinolamine. For **TS-Ig** the MP2(full)/6-31G* geometry is employed. ^c $\rho(r_c)$ is the electron density at the BCP.

Table S6. Summary of Atoms in Molecule (AIM) Analyses Performed Using the Wave Functions Generated at the MP2(full)/6- $311+G^{**}/mPW1PW91/6-311+G^{**}$ level of theory for the Pre-reacting complex and the Carbinolamine^a and at the MP2(full)/6- $311+G^{**}/MP2(full)/6-31G^{*}$ level of theory for **TS-Ii**^b and **TS-Ij**

^{*a*} Refers to cabinolamine-methanol/amine complex .^{*b*} Analyses performed with the wave functions generated at the MP2(full)/6-31G*//mPW1PW91/6-311+G** level of theory for the pre-reacting complex and carbinolamine. For **TS-Ie** the MP2(full)/6-31G* geometry is employed. ^{*c*} $\rho(r_c)$ is the electron density at the BCP.

Table S7. Summary of Atoms in Molecule (AIM) Analyses Performed Using the Wave Functions Generated at the MP2(full)/6- $311+G^{**}/mPW1PW91/6-311+G^{**}$ Level of Theory for the Pre-reacting Complex and the Carbinolamine^a and at the MP2(full)/6- $311+G^{**}/MP2(full)/6-31G^{**}$ level of theory for **TS-Ik** and **TS-II**^b

^{*a*} Refers to cabinolamine-methanol-amine complex .^{*b*} Analyses performed with the wave functions generated at the MP2(full)/6-31G*//mPW1PW91/6-311+G** level of theory for the pre-reacting complex and carbinolamine. For **TS-II** the MP2(full)/6-31G* geometry is employed. ^{*c*} $\rho(r_c)$ is the electron density at the BCP.

Table S8. Summary of Atoms in Molecule (AIM) Analyses Performed Using the Wave Functions Generated at the MP2(full)/6- $311+G^{**}/mPW1PW91/6-311+G^{**}$ Level of Theory for the Pre-reacting Complex and the Carbinolamine^a and at the MP2(full)/6- $311+G^{**}/MP2(full)/6-31G^{*}$ Level of Theory for **TS-Im**

^{*a*} Refers to cabinolamine-methanol/amine complex .^{*b*} Analyses performed with the wave functions generated at the MP2(full)/6-31G*//mPW1PW91/6-311+G** level of theory for the pre-reacting complex and the carbinolamine.

Table S9. Summary of Atoms in Molecule (AIM) Analyses Performed Using the Wave Functions Generated at the MP2(full)/6-311+G**//mPW1PW91/6-311+G** Level of Theory for the Pre-reacting Complex and the Enamine-water Complex and at the MP2(full)/6-311+G**//MP2(full)/6-31G* Level of Theory for **TS-II**

^{*a*} $\rho(r_c)$ is the electron density at the BCP.

Table S10. Summary of Atoms in Molecule (AIM) Analyses Performed Using the Wave Functions Generated at the MP2(full)/6- $311+G^{**}/mPW1PW91/6-311+G^{**}$ Level of Theory for the Pre-reacting Complex and Enamine^{*a*} and at the MP2(full)/6- $311+G^{**}/mP2(full)/6-31G^{*}$ Level of Theory for **TS-IIa** and **IIb**

^{*a*} Refers to enamine-methanol/amine complex. ^{*b*} $\rho(r_c)$ is the electron density at the BCP.
Table S11. Summary of Atoms in Molecule (AIM) Analyses Performed Using the Wave Functions Generated at the MP2(full)/6- $311+G^{**}/mPW1PW91/6-311+G^{**}$ Level of Theory for the Pre-reacting Complex and Enamine^{*a*} and at the MP2(full)/6- $311+G^{**}/MP2(full)/6-31G^{*}$ Level of Theory for **TS-IIc** and **TS-IId**

	PRC	TS-IIc	Enamine		PRC	TS-IId	Enamine
	$\rho(r_c)^b$	$\rho(\mathbf{r}_{c})$	$\rho(r_c)$		$\rho(r_c)$	$\rho(r_c)$	$\rho(\mathbf{r}_{c})$
$N_1 - C_2$	0.2824	0.3239	0.3069	$N_1 - C_2$	0.2854	0.3511	0.3092
$C_2 - C_5$	0.2544	0.2923	0.3285	$C_2 - C_5$	0.2545	0.2647	0.3262
$C_5 - H_6$	0.2750	0.1555	0.0120	$C_5 - H_6$	0.2746	0.2690	0.0199
H ₆ -N ₈	0.0045	0.1268	0.3335	H ₆ -O ₈	-	0.0247	0.3476
N ₈ -H ₄	0.3374	0.2326	0.0396	O ₈ -H ₄	0.3542	0.0970	0.0329
H ₄ -O ₃	0.0155	0.1033	0.3311	$H_4 - O_3$	0.0282	0.2457	0.3443
$O_3 - C_2$	0.2411	0.0418	-	$O_3 - C_2$	0.2356	0.0264	-

^{*a*} Refers to enamine-methanol/amine complex. ^{*b*} $\rho(r_c)$ is the electron density at the BCP.

Table S12. Summary of Atoms in Molecule (AIM) Analyses Performed Using the Wave Functions Generated at the MP2(full)/6- $311+G^{**}/mPW1PW91/6-311+G^{**}$ Level of Theory for the Pre-reacting Complex and Enamine^{*a*} and at the MP2(full)/6- $311+G^{**}/mP2(full)/6-31G^{*}$ Level of Theory for **TS-IIe**^{*b*} and **TS-IIf**

	4 9 10		¢				
	PRC	TS-IIe	Enamine		PRC	TS-IIf	Enamine
	$\rho(r_c)^c$	$\rho(r_c)$	$\rho(r_c)$		$\rho(r_c)$	$\rho(r_c)$	$\rho(r_c)$
$N_1 - C_2$	0.2836	0.3494	0.3133	$N_1 - C_2$	0.2902	0.3540	0.3101
$C_2 - C_5$	0.2570	0.2797	0.3307	$C_2 - C_5$	0.2523	0.2660	0.3243
$C_5 - H_6$	0.2704	0.2228	0.0219	$C_5 - H_6$	0.2705	0.2671	0.0252
$H_6 - O_3$	-	0.0599	0.3274	$H_6 - O_3$	-	0.0213	0.3326
O ₃ - C ₂	0.2555	-	-	$O_3 - C_2$	0.2256	0.0139	-
O ₃ -H ₇	0.0197	0.0472	0.0188	O ₃ -H ₇	0.0264	0.0821	0.0246
H ₇ -N ₈	0.3270	0.2967	0.3281	H ₇ -O ₈	0.3560	0.2719	0.3565
$O_3 - H_9$	-	0.04499	0.0167	$O_3 - H_9$	0.0239	0.0775	0.0268
$H_9 - N_{10}$	-	0.2984	0.3283	$H_9 - O_{10}$	0.3575	0.2813	0.3545

^{*a*} Refers to enamine-methanol/amine complex. ^{*b*} Analyses performed with the wave functions generated at the MP2(full)/6-31G*//mPW1PW91/6-311+G** level of theory for the pre-reacting complex and enamine. For **TS-IIe** the MP2(full)/6-31G* geometry is employed. ^{*c*} $\rho(r_c)$ is the electron density at the BCP.

Table S13. Summary of Atoms in Molecule (AIM) Analyses Performed Using the Wave Functions Generated at the MP2(full)/6- $311+G^{**}/mPW1PW91/6-311+G^{**}$ Level of Theory for the Pre-reacting Complex and Iminium ion/Enamine^{*a*} and at the MP2(full)/6- $311+G^{**}/MP2(full)/6-31G^{*}$ Level of Theory for **TS-IIg** and **IIIg**

^{*a*} Refers to iminium ion/enamine-methanol complex. ^{*b*} $\rho(r_c)$ is the electron density at the BCP.

Table S14. Summary of Atoms in Molecule (AIM) Analyses Performed Using the Wave Functions Generated at the MP2(full)/6- $311+G^{**}/mPW1PW91/6-311+G^{**}$ Level of Theory for the Pre-reacting Complex and Enamine^{*a*} and at the MP2(full)/6- $311+G^{**}/mP2(full)/6-31G^{*}$ Level of Theory for **TS-IIh**^{*b*} and **TS-IIi**^{*c*}

e		$ \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $		€ O			
	PRC	TS-IIh	Enamine		PRC	TS-IIi	Enamine
	$\rho(\mathbf{r_c})^d$	$\rho(\mathbf{r}_{c})$	$\rho(\mathbf{r_c})$		$\rho(r_c)$	$\rho(\mathbf{r_c})$	$\rho(r_c)$
$N_1 - C_2$	0.2811	0.3527	0.3127	$N_1 - C_2$	0.2936	0.3988	0.3117
$C_2 - C_5$	0.2575	0.2782	0.3326	$C_2 - C_5$	0.2532	0.2674	0.3242
$C_5 - H_6$	0.2705	0.2252	0.0183	$C_5 - H_6$	0.2771	0.2623	0.0229
$H_6 - O_3$	—	0.0610	0.3331	$H_6 - O_8$	_	0.0321	0.3409
$O_3 - C_2$	0.2585	_	_	$O_8 - H_4$	0.3442	0.0733	0.0180
$O_3 - H_7$	0.0176	0.0486	0.0219	$H_4 - O_3$	0.0335	0.2822	0.3587
$H_7 - N_8$	0.3267	0.2926	0.3267	$O_3 - C_2$	0.2270	0.0256	_
$N_8 - H_9$	0.0235	0.0213	0.0240	$O_8 - H_9$	0.0330	0.0554	0.0288
$H_9 - N_{10}$	0.3197	0.3204	0.3214	$H_9 - O_{10}$	0.3484	0.3116	0.3512

^{*a*} Refers to enamine-methanol/amine complex. ^{*b*} Analyses performed with wave functions generated at the MP2(full)/6-31G*//mPW1PW91/6-311+G** level of theory for the pre-reacting complex and enamine. ^{*c*} Analyses performed with the wave functions generated at the MP2(full)/6-311+G**//mPW1PW91/6-31G* level of theory for **TS-IIi** ${}^{d}\rho(r_c)$ is the electron density at the BCP.

	TS-I	TS-Ia	TS-Ib	TS-Ic	TS-Id	TS-Ie	TS-If	TS-Ig	TS-Ih	TS -Ii	TS -Ij	TS -Ik	TS -I <i>l</i>	TS -Im
L1	25.4	13.3	7.9	3.2	-5.5	3.8	-4.9	-11.7	-24.4	4.9	-5.6	-21.8	-7.7	-19.0
L2	25.2	16.3	13.4	4.5	-1.3	9.6	1.3	-4.7	-17.6	9.2	-0.2	-14.9	-2.3	-13.7
L3	24.9	14.9	7.4	0.4	-6.9	0.4	-7.4	-16.5	-24.4	2.2	-6.7	-23.3	-10.1	-22.3
L4	-	-	-	-	-	-	-	-	-	-	-	-	-	-
L5	31.1	25.8	20.2	14.5	5.9	19.7	3.0	6.3	-7.5	19.3	9.2	-5.5	8.8	-3.4
<i>L6</i>	-	-	-	-	-	-	-	-	-	-	-	-	-	-
L7	21.6	11.5	7.97	-1.0	-6.1	1.7	-3.9	-15.8	-22.4	1.5	-5.4	-20.3	-9.9	-18.8
L8	22.1	16.4	12.9	-	-	-	-	-	-	-	-	-	-	-

Table S15. Computed Activation Energies (in kcal mol^{-1})^a for Carbinolamine Formation (Step-I) Obtained at Different Levels of Theories^b

Table S16. Computed Activation Energies (in kcal mol⁻¹)^a for Dehydration (step-II) Steps Obtained at Different Levels of Theories^b

	TS-II	TS-IIa	TS-IIb	TS-IIc	TS-IId	TS-IIe	TS-IIf	TS-IIg	TS-IIIg	TS-IIh	TS-IIi
Ll	47.0	31.6	22.1	38.0	20.6	18.2	-1.2	0.0	0.1	23.5	1.3
L2	35.7	25.3	16.0	29.7	15.6	15.3	-2.1	-1.5	-0.1	19.5	1.7 ^c
L3	49.9	33.9	19.9	40.5	19.2	15.2	-0.8	-4.8	0.2	21.5	-0.5^{d}
L4	-	-	-		-	-	-	-	-	-	-
L5	38.2	28.8	19.2	30.2	18.1	20.0	2.3	3.5	4.8	24.4	5.7
<i>L6</i>	-	-	-	-	-	-	-	-	-	-	-
L7	37.8	24.5	14.6	29.9	13.9	7.6	-4.9	-5.4	-3.3	13.1	-2.4^{e}
L8	36.2	28.5	15.9	-	-	-	-	-	-	-	-

L1 : mPW1PW91/6-31G* *L2* : mPW1PW91/6-311+G** *L3* : MP2(full)/6-31G* *L4* : PCM-mPW1PW91/6-31G* *L5* : B3LYP/6-311+G** *L6* : PCM-B3LYP/6-31G* *L7* : MP2(full)/6-311+G**//MP2(full)/6-31G* *L8* : CBS-QB3

^a Barriers with respect to separated reactants ^b All energies refer to the optimized geometries at respective levels of theories. ^c Single point energy obtained at the mPW1PW91/6-311+G**//mPW1PW91/6-311G** level of theory. ^d Single point energy obtained at the MP2(full)/6-31G*//mPW1PW91/6-31G* level of theory. ^e Single point energy obtained at the MP2(full)/6-311+G**//mPW1PW91/6-31G* level of theory. ^a Single point energy obtained at the MP2(full)/6-311+G**//mPW1PW91/6-31G* level of theory. ^a Single point energy obtained at the MP2(full)/6-311+G**//mPW1PW91/6-31G* level of theory. ^a Single point energy obtained at the MP2(full)/6-311+G**//mPW1PW91/6-31G* level of theory. ^b Single point energy obtained at the MP2(full)/6-311+G**//mPW1PW91/6-31G* level of theory. ^a Single point energy obtained at the MP2(full)/6-311+G**//mPW1PW91/6-31G* level of theory.

	TS-I	TS-Ia	TS-Ib	TS-Ic	TS-Id	TS-Ie	TS-If	TS-Ig	TS-Ih	TS -Ii	TS -Ij	TS -Ik	TS -I <i>l</i>	TS -Im
Ll	24.6	14.2	8.9	2.8	-5.1	6.3	-1.9	-9.5	-23.5	7.2	-2.9	-18.8	-6.3	-17.1
L2	24.6	17.3	14.6	4.1	-0.8	12.0	4.1	-2.9	-16.6	11.5	2.5	-12.1	-0.9	-11.7
L3	24.0	15.6	8.5	0.0	-6.5	2.9	-4.5	-14.5	-23.6	4.3	-4.1	-20.3	-8.6	-20.2
L4	-	-	-	-	-	-	-	-	-	-	-	-	-	-
L5	30.4	26.6	21.3	14.3	6.4	22.1	5.9	8.5	-21.6	21.5	11.9	-2.6	10.3	-1.3
L6	-	-	-	-	-	-	-	-	-	-	-		-	-
<i>L</i> 7	20.8	12.2	9.0	-1.4	-5.7	4.1	-0.9	-13.2	-6.4	3.6	-2.8	-17.3	-8.4	-16.8
L8	21.5	15.2	11.7	-	-	-	-	-	-	-	-	-	-	-

Table S17. Computed Activation Enthalpies (in kcal mol⁻¹)^a for Carbinolamine Formation (Step-I) Obtained at Different Levels of Theories^b

Table S18. Computed Activation Enthalpies (in kcal mol⁻¹)^a for Dehydration (step-II) Steps Obtained at Different Levels of Theories^b

	TS-II	TS-IIa	TS-IIb	TS-IIc	TS-IId	TS-IIe	TS-IIf	TS-IIg	TS-IIIg	TS-IIh	TS-IIi
Ll	44.8	31.3	21.6	34.9	20.7	20.8	0.6	2.0	0.3	24.5	3.6
L2	34.5	25.6	16.1	27.8	15.3	18.1	-0.4	0.0	0.4	21.1	$4.0^{\rm c}$
L3	47.7	33.4	20.6	37.5	19.4	16.8	0.2	-2.8	0.4	23.1	-0.4^{d}
<i>L4</i>	-	-	-	-	-	-	-	-	-	-	-
L5	37.0	29.3	19.6	30.4	17.9	23.0	4.1	4.8	5.8	26.1	7.8
<i>L6</i>	-	-	-	-	-	-	-	-	-	-	-
L7	35.6	24.1	15.2	26.9	14.0	9.2	-3.9	-3.5	-3.3	14.7	$-2.3^{\rm e}$
<i>L8</i>	35.6	27.3	14.7	-	-	-	-	-	-	-	-

L1 : mPW1PW91/6-31G* *L2* : mPW1PW91/6-311+G** *L3* : MP2(full)/6-31G* *L4* : PCM-mPW1PW91/6-31G* *L5* : B3LYP/6-311+G** *L6* : PCM-B3LYP/6-31G* *L7* : MP2(full)/6-311+G**//MP2(full)/6-31G* *L8* : CBS-QB3

^a Barriers with respect to separated reactants ^b All energies refer to the optimized geometries at respective levels of theories. ^c Single point energy obtained at the mPW1PW91/6-311+G**//mPW1PW91/6-311G** level of theory. Thermal correction to enthalpy is taken from mPW1PW91/6-31G** level of theory. ^d Single point energy obtained at the MP2(full)/6-31G*//mPW1PW91/6-31G* level of theory. Thermal correction to enthalpy is taken from mPW1PW91/6-31G* level of theory. ^e Single point energy obtained at the MP2(full)/6-311+G**//mPW1PW91/6-31G* level of theory. Thermal correction to enthalpy is taken from mPW1PW91/6-31G* level of theory. ^e Single point energy obtained at the MP2(full)/6-311+G**//mPW1PW91/6-31G* level of theory. Thermal correction to enthalpy is taken from mPW1PW91/6-31G* level of theory. ^e Single point energy obtained at the MP2(full)/6-311+G**//mPW1PW91/6-31G* level of theory. Thermal correction to enthalpy is taken from mPW1PW91/6-31G* level of theory. ^e Single point energy obtained at the MP2(full)/6-311+G**//mPW1PW91/6-31G* level of theory. Thermal correction to enthalpy is taken from mPW1PW91/6-31G* level of theory.

	TS-I	TS-Ia	TS-Ib	TS-Ic	TS-Id	TS-Ie	TS-If	TS-Ig	TS-Ih	TS -Ii	TS -Ij	TS -Ik	TS -I <i>l</i>	TS -Im
Ll	38.4	38.2	32.8	28.5	20.1	39.7	30.9	27.8	10.9	40.2	30.6	15.2	27.8	17.4
L2	38.4	40.7	37.6	29.8	24.3	44.6	35.3	33.9	18.9	44.2	35.3	21.7	33.2	22.9
L3	38.2	38.1	32.3	26.0	18.7	36.5	29.4	22.7	11.0	37.1	28.9	14.0	25.3	15.8
$L4^c$	24.4	19.0	13.3	4.1	-4.2	11.5	2.7	-5.6	-17.9	11.8	1.51	-15.0	-1.3 ^d	-14.5
L5	44.0	48.1	43.9	39.8	31.3	54.3	37.7	44.9	29.1	53.9	44.3	31.2	43.3	33.4
L6 ^c	30.3	25.7	19.0	12.1	2.0	18.9	7.8	3.2	-11.9	19.4	6.7	-9.6	8.2 ^e	-8.7
<i>L</i> 7	34.9	34.8	32.9	24.6	19.5	37.7	32.9	23.4	13.0	36.4	30.3	17.0	25.4	19.2
<i>L</i> 8	35.1	37.3	34.3	-	-	-	-	-	-	-	-	-	-	_

Table S19. Computed Gibbs Free Energies of Activation (in kcal mol⁻¹)^a for Carbinolamine Formation (Step-I) Obtained at Different Levels of Theories^b

Table S20. Computed Gibbs Free Energies of Activation (in kcal mol⁻¹)^a for Dehydration (step-II) Steps Obtained at Different Levels of Theories^b

	TS-	TS-	TS-								
	II	IIa	IIb	IIc	IId	IIe	IIf	IIg	IIIg	IIh	IIi
Ll	57.5	54.0	44.2	58.1	43.9	53.0	32.7	34.9	32.8	56.0	36.5
L2	46.7	47.8	38.6	51.0	37.4	49.8	31.1	32.9	33.0	51.5	36.5 ^f
L3	60.3	56.0	43.5	60.6	42.1	50.1	33.5	32.1	32.2	57.2	32.4 ^g
$L4^c$	47.3	36.3	26.8	39.4	24.2	24.7	5.7	6.0	7.5	30.8	6.4
L5	49.1	51.3	42.1	53.5	40.6	54.3	35.7	36.7	38.2	56.2	39.6
$L6^{c}$	49.0	38.8	28.3	43.3	22.8	27.8	6.6	3.9	9.2 ^e	35.3 ^e	9.0 ^e
L7	48.2	46.7	38.2	50.0	36.7	42.6	29.4	31.5	28.5	48.8	30.5 ^h
L8	48.1	50.5	37.5	-	-	-	-	-	-	-	-

L1 : mPW1PW91/6-31G* *L2* : mPW1PW91/6-311+G** *L3* : MP2(full)/6-31G* *L4* : PCM-mPW1PW91/6-31G* *L5* : B3LYP/6-311+G** *L6* : PCM-B3LYP/6-31G* *L7* : MP2(full)/6-311+G**//MP2(full)/6-31G* *L8* : CBS-QB3 ^{*a*} Barriers with respect to separated reactants ^{*b*} All energies refer to the optimized geometries at respective levels of theories ^{*c*} Activation energies in THF obtained using the PCM (Polarized Continuum Model) solvation model and UAKS radii. ^{*d*} Single point energy obtained at the PCM-mPW1PW91/6-31G* (*p*)/6-31G* (*p*/2)/6-31G* (

 $31G^*/mPW1PW91/6-31G^*$ level of theory. ^f Single point energy obtained at the mPW1PW91/6-311+G**//mPW1PW91/6-311G** level of theory. Thermal correction to free energy is taken from mPW1PW91/6-311G** level of theory. ^g Single point energy obtained at the MP2(full)/6-31G*/mPW1PW91/6-31G* level of theory. Thermal correction to free energy is taken from mPW1PW91/6-31G* level of theory. ^h Single point energy obtained at the MP2(full)/6-31G* level of theory. Thermal correction to free energy is taken from mPW1PW91/6-31G* level of theory. Thermal correction to free energy is taken from mPW1PW91/6-31G* level of theory. Thermal correction to free energy is taken from mPW1PW91/6-31G* level of theory.

Table S21. Selected Bond Distances and Angles (in Å and °) of Transition State TS-I Computed at the Various Levels of Theories

)		
Level of theory	N ₁ -C ₂	C ₂ -O ₃	O ₃ -H ₄	H_4-N_1	N ₁ -H ₄ -O ₃
mPW1PW91/6-31G*	1.594	1.338	1.384	1.202	114.8
mPW1PW91/6-311+G**	1.586	1.344	1.375	1.950	115.8
MP2/6-31G*	1.583	1.351	1.405	1.209	113.3
PCM-mPW1PW91/6-31G*	1.570	1.353	1.367	1.213	114.9
B3LYP/6-311+G**	1.607	1.353	1.363	1.214	116.4
PCM-B3LYP/6-31G*	1.592	1.359	1.364	1.227	115.3

Table S22. Selected Bond Distances and Angles (in Å and °) for Transition State TS-Ia Computed at the Various Levels of Theories

Table S23. Selected Bond Distances and Angles (in Å and °) for Transition State TS-Ib Computed at the Various Levels of Theories

Table S24. Selected Bond Distances and Angles (in Å and °) for Transition State TS-Ic Computed at the Various Levels of Theories

Table S25. Selected Bond Distances and Angles (in Å and °) for Transition State TS-Id Computed at the Various Levels of Theories

			the second se			-9					
Level of theory	N_1 - C_2	C ₂ -O ₃	O ₃ -H ₄	H_4-N_1	O ₃ -H ₇	H_7-N_8	O ₃ -H ₇	H ₉ -N ₁₀	N_1 - H_4 - O_3	O ₃ -H ₇ -N ₈	O ₃ -H ₉ -N ₁₀
mPW1PW91/6-31G*	1.548	1.378	1.331	1.235	1.994	1.024	1.993	1.024	115.8	157.4	161.3
mPW1PW91/6-311+G**	1.549	1.376	1.330	1.224	2.043	1.020	2.046	1.020	116.3	156.4	160.6
MP2/6-31G*	1.544	1.394	1.345	1.246	1.991	1.026	1.993	1.026	114.8	157.3	161.9
PCM-mPW1PW91/6-31G*	1.542	1.384	1.322	1.243	1.998	1.024	1.997	1.023	115.8	159.8	164.6
B3LYP/6-311+G**	1.567	1.385	1.330	1.238	2.080	1.021	2.080	1.022	116.4	157.4	160.9
PCM-B3LYP/6-31G*	1.560	1.392	1.325	1.254	2.037	1.025	2.029	1.251	115.9	164.4	160.3

Table S26. Selected Bond Distances and Angles (in Å and °) for Transition State TS-Ie Computed at the Various Levels of Theories

						9 10	Ð				
Level of theory	N_1 - C_2	C_2-O_3	O ₃ -H ₄	H_4-N_1	O ₃ -H ₇	H_7-O_8	O ₃ -H ₉	H9-O10	N_1 - H_4 - O_3	O ₃ -H ₇ -O ₈	O ₃ -H ₉ -O ₁₀
mPW1PW91/6-31G*	1.536	1.397	1.306	1.254	1.777	0.984	1.785	0.983	115.9	161.6	157.1
mPW1PW91/6-311+G**	1.535	1.395	1.305	1.245	1.776	0.978	1.781	0.977	116.1	162.6	158.5
MP2/6-31G*	1.532	1.410	1.318	1.268	1.801	0.988	1.807	0988	114.8	163.9	157.8
PCM-mPW1PW91/6-31G*	1.528	1.399	1.301	1.264	1.760	0.986	1.744	0.985	114.9	166.4	166.5
B3LYP/6-311+G**	1.552	1.403	1.306	1.258	1.809	0.980	1.808	0.980	116.7	162.0	158.5
PCM-B3LYP/6-31G*	1.545	1.411	1.298	1.275	1.799	0.987	1.790	0.987	115.9	164.7	160.7

Table S27. Selected Bond Distances and Angles (in Å and °) for Transition State TS-If Computed at the Various Levels of Theories

Level of theory	N_1-C_2	C_2-O_3	O ₃ -H ₇	H_7-N_8	N ₈ -H ₉	H9-N10	N ₁₀ -H ₄	H_4-N_1	O ₃ -H ₇ -N ₈	$N_{8}-H_{9}-N_{10}$	N_{10} -H ₄ -N ₁			
mPW1PW91/6-31G*	1.570	1.315	1.731	1.048	1.793	1.060	1.200	1.426	159.2	164.9	173.3			
mPW1PW91/6-311+G**	1.565	1.317	1.731	1.045	1.805	1.056	1.200	1.422	160.6	166.4	174.2			
MP2/6-31G*	1.564	1.327	1.770	1.045	1.835	1.054	1.214	1.403	158.6	164.1	172.5			
PCM-mPW1PW91/6-31G*	1.565	1.317	1.761	1.045	1.815	1.055	1.216	1.400	161.0	164.3	174.0			
B3LYP/6-311+G**	1.596	1.319	1.780	1.043	1.854	1.053	1.196	1.450	160.3	166.8	174.6			
PCM-B3LYP/6-31G*	1.594	1.319	1.801	1.044	1.861	1.054	1.216	1.422	161.2	163.8	174.1			

 Table S28.
 Selected Bond Distances and Angles (in Å and °) for Transition State TS-Ig Computed at the Various Levels of Theories

Table S29. Selected Bond Distances and Angles (in Å and °) for Transition State TS-Ih Computed at the Various Levels of Theories

 Table S30.
 Selected Bond Distances and Angles (in Å and °) for Transition State TS-Ii Computed at the Various Levels of Theories

			G	9 10 0			¢				
Level of theory	N_1-C_2	C_2-O_3	O ₃ -H ₄	H_4-N_1	O ₃ -H ₇	H_7-O_8	O ₈ -H ₉	H9-O10	O ₃ -H ₇ -O ₈	O ₈ -H ₉ -O ₁₀	N_1 - H_4 - O_3
mPW1PW91/6-31G*	1.559	1.375	1.332	1.232	1.635	1.001	1.711	0.988	176.7	169.6	115.4
mPW1PW91/6-311+G**	1.549	1.378	1.326	1.226	1.638	0.994	1.741	0.980	173.7	168.7	115.4
MP2/6-31G*	1.549	1.388	1.349	1.239	1.665	1.002	1.742	0.990	176.9	170.3	114.1
PCM-mPW1PW91/6-31G*	1.542	1.384	1.316	1.246	1.626	1.003	1.720	0.987	177.4	172.0	115.4
B3LYP/6-311+G**	1.566	1.387	1.324	1.241	1.672	0.994	1.774	0.981	173.2	168.3	116.1
PCM-B3LYP/6-31G*	1.559	1.392	1.319	1.257	1.649	1.004	1.742	0.990	177.9	172.0	115.5

Table S31. Selected Bond Distances and Angles (in Å and °) for Transition State TS-IJ Computed at the Various Levels of Theories

				10 0			Ĩ				
Level of theory	N_1-C_2	C ₂ -O ₃	O ₃ -H ₇	H ₇ -O ₈	O ₈ -H ₄	H_4-N_1	O ₈ -H ₉	H ₉ -O ₁₀	O ₃ -H ₇ -O ₈	O ₈ -H ₄ -N ₁	O ₈ -H ₉ -O ₁₀
mPW1PW91/6-31G*	1.606	1.328	1.235	1.184	1.727	1.050	1.737	0.986	162.6	150.6	157.6
mPW1PW91/6-311+G**	1.598	1.331	1.211	1.194	1.736	1.047	1.715	0.983	163.4	151.1	161.4
MP2/6-31G*	1.587	1.343	1.242	1.197	1.740	1.051	1.752	0.991	162.2	151.1	157.6
PCM-mPW1PW91/6-31G*	1.608	1.331	1.251	1.167	1.740	1.049	1.721	0.986	162.6	149.9	166.8
B3LYP/6-311+G**	1.621	1.340	1.180	1.243	1.738	1.050	1.732	0.987	162.7	151.3	161.6
PCM-B3LYP/6-31G*	1.632	1.339	1.215	1.213	1.745	1.052	1.727	0.991	162.4	149.9	166.9

 Table S32.
 Selected Bond Distances and Angles (in Å and °) for Transition State TS-Ik Computed at the Various Levels of Theories

			(€ ⁷ 2 5 € 6	10	₽				
Level of theory	N_1-C_2	C_2-O_3	O ₃ -H ₇	H_7-N_8	N_8 - H_4	H_4-N_1	O ₃ -H ₉	H9-N10	O ₃ -H ₇ -N ₈	N_8 - H_4 - N_1	O ₃ -H ₉ -N ₁₀
mPW1PW91/6-31G*	1.575	1.335	1.538	1.094	1.263	1.343	1.908	1.026	147.2	158.3	174.2
mPW1PW91/6-311+G**	1.571	1.336	1.527	1.092	1.271	1.326	1.935	1.023	148.7	159.4	177.2
MP2/6-31G*	1.565	1.348	1.578	1.086	1.262	1.348	1.916	1.027	144.9	158.4	174.4
PCM-mPW1PW91/6-31G* ^a	-	_	_	_	_	_	_	_	_	_	—
B3LYP/6-311+G**	1.599	1.339	1.574	1.084	1.256	1.363	1.963	1.024	147.1	159.4	178.0
PCM-B3LYP/6-31G* ^a	-	—	—	—	—	—	—	—	_	—	_

Table S33. Selected Bond Distances and Angles (in Å and °) for Transition State TS-II Computed at the Various Levels of Theories

Level of theory	N_1-C_2	C_2-O_3	O ₃ -H ₇	H_7-O_8	O ₈ -H ₄	H_4-N_1	O ₈ -H ₉	H9-O10	O ₃ -H ₇ -O ₈	O_8 -H ₄ -N ₁	O ₈ -H ₉ -O ₁₀		
mPW1PW91/6-31G*	1.555	1.360	1.193	1.230	1.400	1.148	1.790	0.981	157.4	155.7	166.8		
mPW1PW91/6-311+G**	1.555	1.360	1.172	1.237	1.419	1.128	1.777	0.977	158.4	156.5	165.7		
MP2/6-31G*	1.550	1.372	1.182	1.261	1.430	1.137	1.817	0.985	157.9	156.6	160.2		
PCM-mPW1PW91/6-31G*	1.549	1.369	1.148	1.281	1.427	1.135	1.773	0.983	158.3	156.8	165.4		
B3LYP/6-311+G**	1.568	1.376	1.133	1.321	1.453	1.131	1.812	0.984	157.8	156.7	164.6		
PCM-B3LYP/6-31G*	1.576	1.369	1.152	1.279	1.447	1.122	1.817	0.978	157.7	156.1	164.6		

Table S34. Selected Bond Distances and Angles (in Å and °) for Transition State TS-Im Computed at the Various Levels of Theories

Table S35. Selected Bond Distances and Angles (in Å and °) for Transition State TS-II Computed at the Various Levels of Theories

					4 6 5 5	Đ				
Level of theory	N_1-C_2	C_2-C_5	C5-H6	H_6-O_3	O_3-C_2	O ₃ -H ₇	H7-N8	O3-H4	C ₅ -H ₆ -O ₃	O ₃ -H ₇ -N ₈
mPW1PW91/6-31G*	1.310	1.443	1.200	1.564	2.381	1.767	1.042	0.966	139.1	171.3
mPW1PW91/6-311+G**	1.302	1.443	1.175	1.600	2.487	1.815	1.038	0.959	140.7	172.8
MP2/6-31G*	1.305	1.441	1.196	1.589	2.423	1.714	1.044	0.972	140.8	172.9
PCM-mPW1PW91/6-31G*	1.306	1.448	1.189	1.585	2.439	1.741	1.047	0.967	140.2	174.1
B3LYP/6-311+G**	1.306	1.449	1.171	1.622	2.564	1.849	1.038	0.963	141.8	172.9
PCM-B3LYP/6-31G*	1.311	1.450	1.186	1.600	2.495	1.765	1.047	0.972	140.7	174.7

 Table S36.
 Selected Bond Distances and Angles (in Å and °) for Transition State TS-IIa Computed at the Various Levels of Theories

			8		4 3 ⊕ 6 5	θ				
Level of theory	N_1-C_2	C_2-C_5	C ₅ -H ₆	H_6-O_3	O_3-C_2	O ₃ -H ₇	H_7-O_8	O ₃ -H ₄	C ₅ -H ₆ -O ₃	O ₃ -H ₇ -O ₈
mPW1PW91/6-31G*	1.302	1.449	1.176	1.592	2.518	1.445	1.058	0.965	140.9	173.4
mPW1PW91/6-311+G**	1.295	1.448	1.161	1.649	2.629	1.477	1.042	0.978	143.7	173.0
MP2/6-31G*	1.301	1.451	1.182	1.573	2.603	1.441	1.070	0.970	145.1	175.1
PCM-mPW1PW91/6-31G*	1.298	1.451	1.162	1.679	2.573	1.436	1.062	0.966	141.5	174.8
B3LYP/6-311+G**	1.300	1.453	1.160	1.667	2.694	1.516	1.035	0.962	144.8	172.9
PCM-B3LYP/6-31G*	1.303	1.456	1.165	1.679	2.612	1.475	1.056	0.971	142.1	174.4

 Table S37. Selected Bond Distances and Angles (in Å and °) for Transition State TS-IIb Computed at the Various Levels of Theories

						Ð				
Level of theory	N_1-C_2	C_2-C_5	C ₅ -H ₆	H_6-N_8	N_8-H_4	H_4-O_3	O ₃ -C ₂	O3-H7	$C_5-H_6-N_8$	O ₃ -H ₄ -N ₈
mPW1PW91/6-31G*	1.338	1.426	1.292	1.437	1.186	1.316	2.305	0.967	169.8	162.9
mPW1PW91/6-311+G**	1.314	1.425	1.249	1.523	1.111	1.448	2.576	0.958	174.7	163.7
MP2/6-31G*	1.343	1.419	1.318	1.394	1.142	1.402	2.244	0.974	169.3	159.0
PCM-mPW1PW91/6-31G*	1.315	1.425	1.264	1.526	1.141	1.422	2.695	0.967	169.2	169.1
B3LYP/6-311+G**	1.318	1.426	1.264	1.518	1.110	1.469	2.721	0.962	175.5	164.7
PCM-B3LYP/6-31G*	1.322	1.427	1.282	1.508	1.156	1.408	2.736	0.972	169.9	168.8

Table S38. Selected Bond Distances and Angles (in Å and °) for Transition State TS-IIc Computed at the Various Levels of Theories

					8 5 5 6	Đ				
Level of theory	N_1-C_2	C_2-C_5	C ₅ -H ₆	H_6-O_8	O_8 - H_4	H_4-O_3	O ₃ -C ₂	O3-H7	C ₅ -H ₆ -O ₈	O ₃ -H ₄ -O ₈
mPW1PW91/6-31G*	1.302	1.458	1.152	1.690	1.502	1.038	2.510	0.964	154.3	166.6
mPW1PW91/6-311+G**	1.291	1.467	1.120	1.896	1.397	1.073	2.516	0.956	149.0	167.7
MP2/6-31G*	1.295	1.479	1.107	2.048	1.418	1.077	2.421	0.970	142.5	169.5
PCM-mPW1PW91/6-31G*	1.305	1.449	1.175	1.602	1.566	1.020	2.700	0.965	161.1	168.1
B3LYP/6-311+G**	1.296	1.478	1.116	1.928	1.363	1.099	2.521	0.961	147.9	168.8
PCM-B3LYP/6-31G*	1.305	1.455	1.171	1.638	1.602	1.019	2.799	0.970	158.6	168.3

 Table S39.
 Selected Bond Distances and Angles (in Å and °) for Transition State TS-IId Computed at the Various Levels of Theories

Level of theory N_1-C_2 C_2-C_5 O₃-H₉ H₉-N₁₀ C_5-H_6 H_6-O_3 O_3-C_2 $O_3 - H_4$ O₃-H₇ H_7-N_8 O₃-H₇-N₈ O₃-H₉-N₁₀ mPW1PW91/6-31G* 1.469 1.119 1.833 0.968 1.801 178.9 1.300 2.450 1.778 1.046 1.042 168.6 mPW1PW91/6-311+G** 1.829 177.4 1.292 1.468 1.111 1.962 2.488 0.960 1.039 1.868 1.036 168.5 1.631 173.3 MP2/6-31G* 1.299 1.449 1.168 2.709 0.972 1.754 1.049 1.775 1.047 170.0 PCM-mPW1PW91/6-1.471 1.113 1.885 2.518 0.969 1.295 1.781 1.046 1.771 1.045 176.8 171.5 31G* B3LYP/6-311+G** 1.297 1.474 1.110 1.984 2.526 0.964 1.870 1.039 1.929 1.034 177.1 168.6 PCM-B3LYP/6-31G* 1.300 1.895 2.554 1.808 1.044 176.9 1.477 1.114 0.973 1.811 1.046 171.0

Table S40. Selected Bond Distances and Angles (in Å and °) for Transition State TS-IIe Computed at the Various Levels of Theories

Table S41. Selected Bond Distances and Angles (in Å and °) of Transition State TS-IIf Computed at the Various Levels of Theories

Level of theory	N_1-C_2	C_2-C_5	C ₅ -H ₆	H_6-O_8	O ₈ -H ₉	H9-O10	O ₁₀ -H ₄	H4-O3	O ₃ -C ₂	O ₃ -H ₇	O ₈ -H ₉ -O ₁₀	O ₁₀ -H ₄ -O ₃
mPW1PW91/6-31G*	1.289	1.480	1.106	2.125	1.035	1.514	1.513	1.034	2.561	0.964	170.1	170.6
mPW1PW91/6- 311+G**	1.291	1.484	1.099	2.175	1.009	1.579	1.339	1.097	2.362	0.957	169.8	171.8
MP2/6-31G*	1.300	1.489	1.095	2.241	1.006	1.671	1.352	1.107	2.228	0.973	171.1	173.3
PCM-mPW1PW91/6- 31G*	1.287	1.480	1.105	2.165	1.039	1.497	1.552	1.024	2.744	0.966	172.4	172.8
B3LYP/6-311+G**	1.296	1.492	1.100	2.219	1.000	1.619	1.311	1.125	2.375	0.962	169.1	172.1
PCM-B3LYP/6-31G*	1.307	1.503	1.096	2.410	1.023	1.601	1.510	1.051	2.213	0.979	163.8	161.6

 Table S42.
 Selected Bond Distances and Angles (in Å and °) for Transition State TS-IIg Computed at the Various Levels of Theories

Table S43. Selected Bond Distances and Angles (in Å and °) for Transition State **TS-IIIg** Computed at the Various Levels of Theories

				10		8 7 + 6 5						
Level of theory	N_1-C_2	C_2-C_5	C ₅ -H ₆	H_6-O_8	O ₈ -H ₉	H9-O10	O ₁₀ -H ₄	H_4-O_3	O_3-C_2	$O_3 - H_7$	O ₈ -H ₉ -O ₁₀	O ₁₀ -H ₄ -O ₃
mPW1PW91/6-31G*	1.293	1.464	1.136	1.796	1.291	1.137	1.654	1.001	2.921	0.963	171.9	170.2
mPW1PW91/6-311+G**	1.294	1.450	1.159	1.674	1.361	1.085	1.657	0.994	3.021	0.956	172.8	169.0
MP2/6-31G*	1.306	1.436	1.221	1.491	1.491	1.047	1.766	0.991	3.059	0.969	173.6	169.6
PCM-mPW1PW91/6- 31G*	1.302	1.440	1.202	1.542	1.464	1.048	1.719	0.991	3.057	0.965	173.2	172.2
B3LYP/6-311+G**	1.300	1.453	1.168	1.656	1.438	1.059	1.700	0.993	3.068	0.960	168.6	172.6
PCM-B3LYP/6-31G* ^a	—	—	_	_	—	—	_	—	_	—	—	_

	$\begin{array}{c} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & \bullet &$													
Level of theory	N_1-C_2	C_2-C_5	C ₅ -H ₆	H_6-O_3	O_3-C_2	O ₃ -H ₇	H7-N8	N ₈ -H ₉	H9-N10	O3-H4	O ₃ -H ₇ -N ₈	N ₈ -H ₉ -N ₁₀		
mPW1PW91/6-31G*	1.309	1.442	1.208	1.552	2.403	1.742	1.045	1.998	1.032	0.967	177.5	175.9		
mPW1PW91/6-311+G**	1.301	1.445	1.176	1.600	2.524	1.803	1.040	2.023	1.030	0.960	177.5	176.9		
MP2/6-31G*	1.298	1.454	1.163	1.628	2.557	1.739	1.053	2.164	1.025	0.973	173.2	160.0		
PCM-mPW1PW91/6-31G*	1.305	1.445	1.197	1.575	2.458	1.715	1.050	2.003	1.032	0.968	177.1	177.2		
B3LYP/6-311+G**	1.305	1.450	1.172	1.618	2.602	1.842	1.039	2.065	1.030	0.964	177.3	177.3		
PCM-B3LYP/6-31G* ^a	-	_	_	_	_	_	_	_	_	_	-	_		

 Table S44.
 Selected Bond Distances and Angles (in Å and °) for Transition State TS-IIh Computed at the Various Levels of Theories

Level of theory	N_1-C_2	C_2-C_5	C ₅ -H ₆	H_6-O_8	O ₈ -H ₄	H_4-O_3	O ₃ -C ₂	O ₈ -H ₉	H9-O10	O ₃ –H ₇	O ₈ -H ₄ -O ₃	O ₈ -H ₉ -O ₁₀
mPW1PW91/6-31G*	1.297	1.471	1.116	1.911	1.525	1.033	2.443	1.632	1.005	0.964	170.8	173.2
mPW1PW91/6-311G**	1.292	1.472	1.106	2.009	1.459	1.043	2.414	1.625	1.005	0.957	173.3	172.8
mPW1PW91/6-311+G** ^a	_	_	_	_	_	_	_	_	_	_	_	_
MP2/6-31G* ^a	_	_	_	_	_	_	_	_	_	_	_	_
PCM-mPW1PW91/6- 31G*	1.296	1.485	1.101	2.099	1.492	1.042	2.345	1.611	1.008	0.966	173.4	175.7
B3LYP/6-311+G**	1.292	1.482	1.101	2.246	1.463	1.053	2.554	1.631	1.006	0.961	173.6	172.8
PCM-B3LYP/6-31G* ^a	—	_	_	_	_	_	_	_	_	_	_	_

 Table S45.
 Selected Bond Distances and Angles (in Å and °) for Transition State TS-III Computed at the Various Levels of Theories

PRC of	n _N →σ*(C ₂ -O ₃)	$C_2 - O_3$
TS-II	16.96	1.433
TS-IIa	17.46	1.441
TS-IIb	18.67	1.448
TS-IIc	17.83	1.441
TS-IId	19.06	1.450
TS-IIe	15.75	1.426
TS-IIf	21.12	1.468
TS-IIg	19.86	1.467
TS-IIh	15.39	1.420
TS-IIi	19.86	1.467

Table S46. The Second-Order Perturbation Energy of Delocalization and C_2 - O_3 Bond Distances (in Å) for the Pre-reacting Complexes Computed at the NBO//mPW1PW91/6-311+G** level of theory.^{*a*}

^{*a*} The second order perturbation energies and bond distance are reported respectively in kcal mol⁻¹ and Å.

Table S47. Selected Bond Distances (in Å) for Pre-Reacting Complex Obtained through Intrinsic Reaction Coordinate (IRC) and *geomfreq* Calculations on **TS-IIg** Performed at the MP2(full)/6-31G* and mPW1PW91/6-311+G** Levels of Theories

	N_1 - C_2	C ₂ -C ₅	C ₅ -H ₆	H ₆ -O ₈	O ₈ -H ₉	H ₉ -O ₁₀	O ₁₀ -H ₄	H ₄ -O ₃	O ₃ -C ₂	O ₃ –H ₇
IRC ^a	1.388	1.511	1.092	2.299	0.984	1.771	0.999	1.562	1.653	0.976
Geomfreq ^a	1.435	1.516	1.092	2.436	0.983	1.834	0.984	1.809	1.462	0.974
IRC ^b	1.407	1.520	1.093	2.262	0.975	1.737	0.979	1.661	1.488	0.960
Geomfreq ^b	1.419	1.522	1.093	2.487	0.972	1.816	0.975	1.809	1.466	0.959

^a MP2(full)/6-31G* ^b mPW1PW91/6-311+G** (See computational section for further details)

Table S48. Selected Bond Distances (in Å) of Iminium Ion Intermediate Obtained through Intrinsic Reaction Coordinate (IRC) and *geomfreq* Calculation on **TS-IIg** Performed at the MP2(full)/6-31G* and mPW1PW91/6-311+G** Levels of Theories

	N_1-C_2	C_2-C_5	C ₅ -H ₆	H ₆ -O ₈	O ₈ -H ₉	H ₉ -O ₁₀	O ₁₀ -H ₄	H ₄ -O ₃	O_3-C_2	O ₃ –H ₇	
IRC ^a	1.289	1.485	1.099	2.167	1.017	1.613	1.559	1.029	2.567	0.969	
Geomfreq ^a	1.289	1.485	1.099	2.122	1.021	1.586	1.575	1.026	2.592	0.969	
IRC ^{b,c}	1.289	1.428	1.099	2.166	1.012	1.571	1.371	1.081	2.404	0.957	
Geomfreq ^b	1.284	1.479	1.104	2.096	1.021	1.532	1.471	1.041	2.611	0.957	

^a MP2(full)/6-31G*^b mPW1PW91/6-311+G**^c The IRC runs were normally terminated within eleven optimization steps in this case. (See computational section for further details) **Table S49**. Selected Bond Distances (in Å) of Iminium Ion Intermediate Obtained through Intrinsic Reaction Coordinate (IRC) and *geomfreq* Calculation on **TS-IIIg** Performed at the MP2(full)/6-31G* and mPW1PW91/6-311+G** Levels of Theories

^{*a*} MP2(full)/6-31G* ^{*b*} mPW1PW91/6-311+G** (See computational section for further details) ^{*c*} The IRC runs were normally terminated within five optimization steps in this case.
Table S50. Selected Bond Distances (in Å) of Enamine obtained by Intrinsic Reaction Coordinate (IRC) and *geomfreq* Calculation on **TS-IIIg** Performed at the MP2(full)/6-31G* and mPW1PW91/6-311+G** Level of Theories

^{*a*} MP2(full)/6-31G* ^{*b*} The IRC runs were normally terminated within fifteen optimization steps in this case. ^{*c*} mPW1PW91/6-311+G** (See computational section for further details) ^{*d*} The IRC runs were normally terminated within five optimization steps in this case.

	ΔE^{\dagger}	ΔH^{\dagger}	ΔG^{\dagger}		$\Delta \mathrm{E}^{\dagger}$	$\Delta \mathrm{H}^{\dagger}$	$\Delta \mathrm{G}^\dagger$
TS-I	27.9	26.0	32.6	TS-II	47.4	43.0	42.7
TS-Ia	22.0	20.2	28.1	TS-IIa	42.1	38.6	40.0
TS-Ib	22.4	20.7	26.3	TS-IIb	35.8	31.9	33.2
TS-Ic	15.1	11.9	19.9	TS-IIc	44.2	38.5	40.8
TS-Id	11.4	9.0	16.2	TS-IId	35.3	31.9	32.1
TS-Ie	23.8	22.1	27.9	TS-IIe	40.0	37.3	39.2
TS-If	19.5	16.8	15.5	TS-IIf	25.7	21.7	23.5
TS-Ig	9.6	7.2	17.1	TS-IIg	21.5	18.8	21.9
TS-Ih	6.5	2.9	11.0	TS-IIIg	1.6	0.05	1.9
TS-Ii	23.1	21.4	27.8	TS-IIh			
TS-Ij	22.7	20.7	24.9	TS-IIi	28.9	25.6	27.2
TS-Ik	8.0	6.2	11.8	_	_	_	_
TS-I <i>l</i>	12.3	9.5	19.0	_	_	_	_
TS-Im	4.0	0.4	2.3	_	_	_	_

Table S51. Computed Activation Parameters (in kcal mol⁻¹)^a with Respect to the Pre-Reacting Complexes for the Carbinolamine Formation (Step-I) and the Dehydration (step-II) Steps Obtained at the mPW1PW91/6-311+G** Level of Theory

TS-I	TS-Ia	TS-Ib		
Et = -328.1754406 NImag = 1(-1525.2)	Et = -463.3202378 NImag= 1(-1532.5)	Et = -443.8848394 NImag= 1(-1540.1)		
	6 1.093368 0.250350 0.876554	6 -0.675067 0.267303 -0.850450		
6 -0.313868 0.736043 -0.445833	6 0.924922 1.567186 0.134146	6 -0.630756 1.566384 -0.063799		
6 -1.586762 0.258456 0.239882	1 2.022486 0.304005 1.481759	1 -1.532870 0.302637 -1.549447		
1 -0.377260 0.469219 -1.526932	1 0.120992 1.477640 -0.603074	1 0.129330 1.506044 0.720267		
1 -1.481764 0.359689 1.324852	6 2.204003 2.103269 -0.499843	6 -1.980653 2.009061 0.490280		
6 -2.037251 -1.144497 -0.149837	1 2.583198 1.444997 -1.289052	1 -2.369067 1.314911 1.243306		
1 -1.324364 -1.912497 0.170545	1 2.037670 3.085514 -0.950983	1 -1.904346 2.990638 0.965898		
1 -3.002234 -1.390958 0.302171	1 2.998773 2.213322 0.245863	1 -2.730421 2.085163 -0.304851		
1 -2.149628 -1.235175 -1.235653	8 0.011980 -0.225535 1.546144	8 0.492223 -0.142623 -1.436485		
8 0.109090 1.972484 -0.160153	7 1.304191 -1.020987 -0.014576	7 -0.904529 -1.040204 -0.036198		
7 1.028188 0.001168 0.001639	6 0.719694 -0.986372 -1.359725	6 -0.410010 -1.040302 1.346029		
6 1.075624 -0.437803 1.394779	1 -0.309610 -0.618918 -1.291903	1 0.604147 -0.632674 1.355525		
1 0.683397 0.369364 2.014945	1 1.306599 -0.352278 -2.031433	1 -1.061437 -0.455907 2.002590		
1 0.490818 -1.348902 1.553245	1 0.708219 -2.003580 -1.759821	1 -0.383880 -2.072438 1.704256		
1 2.113628 -0.628945 1.679304	6 2.625385 -1.643221 0.033166	6 -2.198566 -1.699791 -0.195903		
6 1.642083 -0.934609 -0.935408	1 3.355225 -1.063611 -0.541299	1 -2.983337 -1.166188 0.349933		
1 1.104764 -1.888239 -0.949160	1 2.956691 -1.706250 1.071619	1 -2.458835 -1.732840 -1.255616		
1 1.621619 -0.500741 -1.937053	1 2.569360 -2.651578 -0.383878	1 -2.135458 -2.721372 0.185858		
1 2.680760 -1.118966 -0.648877	1 0.460774 -1.287055 0.822116	1 0.020468 -1.244198 -0.814851		
1 1.240617 1.183229 -0.048273	1 0.563131 2.272570 0.890466	1 1.795408 0.241677 -0.382754		
1 -2.349343 0.989336 -0.050859	1 -1.639414 0.019538 0.538202	8 2.386933 0.368625 0.402786		
	7 -2.344783 -0.016311 -0.205687	6 3.649875 -0.159976 0.102614		

Table S52. The mPW1PW91/6-31G* Optimized Geometries (in Cartesian coordinates), Total Electronic Energies (in hartree/particle), and Number of Imaginary Frequencies (in cm⁻¹) of Transition States for Carbinolamine Formation (**Step-I**)

	6 -3.174367 -1.188287 -0.022964	1 4.138997 0.364850 -0.731548
	1 -3.822371 -1.331791 -0.896276	1 4.284139 -0.044863 0.986760
	1 -2.541921 -2.075912 0.072890	1 3.617504 -1.231415 -0.150064
	1 -3.827633 -1.141619 0.867363	1 -0.260827 2.313315 -0.774902
	6 -3.120536 1.205133 -0.220219	
	1 -2.451249 2.068313 -0.281547	
	1 -3.771791 1.225861 -1.102504	
	1 -3.765639 1.337852 0.667492	
TS-Ic	TS-Id	TS-Ie
Et = -463.3363045 Nimag=1(-1191.3)	Et = -443.9062179 Nimag = 1(-872.9)	Et =-598.4607337 Nimag=1(-1549.4)
6 -0.798898 -0.759549 0.157861	6 0.408638 -0.728280 -0.137323	6 -0.178476 0.831069 -0.394853
6 -2.261421 -0.991974 -0.249495	6 1.870302 -1.071610 0.129745	6 0.878622 1.635386 -1.133369
1 -0.741018 -0.801512 1.276705	1 0.207942 -0.778124 -1.228904	1 -1.176162 1.228383 -0.651691
1 -2.346431 -0.841922 -1.331422	1 2.070607 -0.937378 1.197906	1 1.873661 1.384397 -0.754148
6 -3.350451 -0.226823 0.495397	6 2.934692 -0.387204 -0.720933	6 0.638623 3.141628 -1.121802
1 -3.416306 0.821348 0.188047	1 3.100080 0.656003 -0.434913	1 0.678322 3.560923 -0.111069
1 -4.332997 -0.672339 0.310085	1 3.895446 -0.898466 -0.611859	1 1.391292 3.663376 -1.719451
1 -3.184713 -0.245297 1.578617	1 2.675441 -0.406351 -1.785148	1 -0.343571 3.387072 -1.539662
8 0.024739 -1.560320 -0.496105	8 -0.405756 -1.459559 0.626155	8 -0.088700 -0.539475 -0.510845
7 -0.317979 0.742279 -0.074621	7 0.048120 0.795564 0.141722	7 -0.125368 0.861941 1.151927
6 -0.513096 1.156171 -1.458607	6 0.396971 1.204307 1.508517	6 1.142156 1.239375 1.784187
1 -0.256067 0.300925 -2.088169	1 0.115243 0.384495 2.169961	1 1.955747 0.667728 1.327540
1 -1.550922 1.453738 -1.652699	1 1.467668 1.407218 1.588664	1 1.333239 2.312906 1.690915
1 0.138912 2.002166 -1.701791	1 -0.165194 2.101357 1.776205	1 1.084343 0.986918 2.845809
6 -0.745126 1.747555 0.888719	6 0.429311 1.774776 -0.880868	6 -1.312749 1.423794 1.800589
1 -1.771969 2.085911 0.717679	1 1.493289 2.007086 -0.829573	1 -1.335554 2.514260 1.700523
1 -0.683052 1.328779 1.897113	1 0.197079 1.368411 -1.867202	1 -2.198953 0.982511 1.334724
1 -0.085671 2.621550 0.834038	1 -0.144347 2.693075 -0.732248	1 -1.294435 1.168774 2.863023
1 0.972715 0.487299 0.073921	1 -1.056671 0.666928 0.127428	1 -0.157569 -0.321761 0.800850
1 1.370726 -1.059991 -0.112200	1 -1.491907 -0.951775 0.500919	1 0.845475 1.265107 -2.163994
7 2.044985 -0.208076 0.128377	8 -2.319733 -0.075511 0.328673	1 1.822857 -1.093958 -0.392679

6 2.652858 -0.300425 1.446155	6 -3.144480 -0.331754 -0.768105	7 2.788838 -1.181359 -0.064992
1 3.406299 -1.096891 1.484996	1 -3.886128 -1.110160 -0.536166	6 2.904489 -2.347580 0.785431
1 3.137898 0.643254 1.720956	1 -3.702042 0.572093 -1.051827	1 3.890211 -2.365368 1.265493
1 1.880660 -0.524173 2.186193	1 -2.593037 -0.671337 -1.663524	1 2.149671 -2.304428 1.576324
1 -2.400172 -2.066913 -0.094447	1 1.910994 -2.152871 -0.036583	1 2.780953 -3.307179 0.251371
6 2.993100 0.040952 -0.945771		6 3.692105 -1.238736 -1.195093
1 2.464892 0.002995 -1.900799		1 3.518734 -0.381190 -1.851616
1 3.462057 1.025631 -0.837659		1 4.730605 -1.186920 -0.846992
1 3.786410 -0.716854 -0.962157		1 3.593800 -2.157354 -1.801551
		1 -2.040485 -0.941058 -0.502115
		7 -3.022960 -0.850689 -0.229299
		6 -3.842169 -0.628742 -1.402490
		1 -3.887163 -1.493205 -2.089529
		1 -4.870862 -0.397405 -1.101401
		1 -3.459891 0.228403 -1.964443
		6 -3.427874 -2.031689 0.504356
		1 -3.465689 -2.950798 -0.108257
		1 -2.734284 -2.207709 1.331821
		1 -4.426629 -1.882915 0.931768
TS-If	TS-Ig	TS-Ih
Et = -559.5866287 NImag=1(-1555.0)	Et = -598.4854992 NImag=1(-466.0)	Et = -559.6177063 NImag=1(-658.3)
6 0.040441 -0.657138 -0.540695	6 -1.080266 -0.686322 0.316022	6 0.921872 -0.344468 -0.630971
6 -1.206581 -1.148239 -1.251522	6 -2.372580 -1.533793 0.469760	6 2.392035 -0.535409 -1.001916
1 0.916893 -1.198717 -0.926373	1 -0.543013 -0.770666 1.301000	1 0.370817 -0.029938 -1.535646
1 -2.102320 -0.718361 -0.795350	1 -2.050302 -2.466221 0.949624	1 2.363531 -1.256280 -1.826197
6 -1.297029 -2.667420 -1.354726	6 -3.046790 -1.891178 -0.849396	6 3.286269 -1.095311 0.098576
1 -1.372407 -3.147943 -0.373828	1 -2.273985 -2.184636 -1.563743	1 2.797191 -1.945951 0.577927
1 -2.177878 -2.965020 -1.929911	1 -3.750973 -2.719836 -0.721257	1 4.236809 -1.436556 -0.321200
1 -0.417538 -3.083026 -1.857737	1 -3.603247 -1.054214 -1.281363	1 3.522329 -0.355755 0.869192
8 0.234911 0.725985 -0.543822	8 -0.357662 -0.975217 -0.744185	8 0.401980 -1.426226 -0.038118
7 0.098815 -0.805823 0.987135	7 -1.370057 0.856565 0.341560	7 0.668933 0.911011 0.290253

TS-Ii	TS-Ij	TS-Ik
	1 2.257280 1.721327 -1.927529	
	1 0.669725 2.528337 -1.922193	
	1 0.752327 0.744025 -2.035011	
	6 1.214564 1.634724 -1.606482	
	1 3.431133 -1.451160 1.860098	
	1 2.430728 -2.844854 1.412511	
	1 1.688299 -1.428311 2.184151	
	6 2.449855 -1.743663 1.466026	
1 3.754330 2.307051 -1.012827	1 2.733032 2.773420 0.353413	1 -3.704187 1.747277 -0.482182
1 4.735048 1.186553 -0.052497	1 1.593544 2.415169 1.670522	1 -2.382132 1.650796 -1.658541
1 3.361929 2.020553 0.697864	1 1.122309 3.525713 0.365189	1 -2.377305 2.914629 -0.407647
6 3.714447 1.538250 -0.227137	6 1.678540 2.614375 0.600378	6 -2.618410 1.861979 -0.603605
8 2.936222 0.430603 -0.596622	7 1.128023 1.485050 -0.148384	8 -1.921382 1.036350 0.289340
1 2.010475 0.734881 -0.726918	1 1.637885 0.589133 0.097139	1 -2.070713 -0.050358 -0.007364
1 -1.148627 -0.715131 -2.256091	1 -3.080633 -1.069694 1.170311	1 2.811208 0.385067 -1.424908
1 -1.708538 3.475497 0.884622	1 3.216549 -2.633995 -0.926675	1 -2.598884 -3.181315 0.056961
1 -3.431731 3.230823 0.546098	1 4.175980 -1.185362 -0.569336	1 -3.818496 -1.918892 0.291297
1 -2.317313 3.599050 -0.781956	1 2.891166 -1.120445 -1.792166	1 -2.490310 -2.093549 1.454468
6 -2.423283 3.048761 0.164421	6 3.167687 -1.537565 -0.820219	6 -2.746138 -2.142195 0.382293
8 -2.269459 1.663621 0.000418	7 2.213247 -1.106324 0.184419	8 -1.989506 -1.267817 -0.403156
1 -1.359302 1.481332 -0.327077	1 1.241503 -1.292738 -0.160260	1 -0.707461 -1.440453 -0.212559
1 0.353710 0.391141 0.712631	1 -0.020593 1.260200 0.118955	1 -0.425241 1.017935 0.245065
1 1.295854 -1.497446 2.559139	1 -1.847168 2.458218 1.619553	1 0.796319 3.006001 0.320895
1 2.107638 -1.356607 0.979370	1 -1.307280 0.967471 2.426853	1 0.998216 2.261851 -1.280708
1 0.977208 -2.712434 1.299162	1 -2.948205 1.074768 1.755559	1 2.319878 2.178580 -0.086795
6 1.185321 -1.653181 1.483608	6 -1.899976 1.363269 1.595967	6 1.236491 2.164999 -0.219343
1 -0.975873 -0.824933 2.771890	1 -2.024826 2.372042 -0.970763	1 0.355545 1.359110 2.313080
1 -1 605330 -1 951636 1 551176	1 -3.231208 -1.109349 -0.656772	1 2.025884 0.863176 1.921391
1 -1 862180 -0 183335 1 373012	1 -1 810119 0 739381 -1 672685	1 0712456 -0351076 1937553
6 -1 169838 -0 959900 1 705361	6 -2 158884 1 296533 -0 801192	6 0 970094 0 683768 1 714902

Et = -598.4590292 NImag=1(-1520.83)	Et = -559.587708 NImag=1(-1535.98)	Et =-559.6134955 NImag=1(-608.22)
6 1.789665 -0.957557 0.197104	6 1.318026 -0.887918 0.002022	6 1.470904 0.661238 -0.108324
6 1.357565 -0.314558 1.506352	6 0.709370 -0.595020 1.362637	6 2.859271 0.212034 -0.549410
1 2.726829 -1.523835 0.374726	1 2.228453 -1.498610 0.144468	1 1.518247 1.086932 0.916873
1 0.554970 0.405139 1.318481	1 -0.094460 0.141954 1.278090	1 2.767402 -0.336613 -1.492555
6 2.494068 0.306809 2.311156	6 1.727436 -0.184571 2.421858	6 3.711202 -0.554727 0.456347
1 2.965830 1.144355 1.786920	1 2.217520 0.764511 2.181242	1 3.384296 -1.589965 0.589437
1 2.133077 0.688689 3.270294	1 1.245120 -0.059302 3.394972	1 4.751725 -0.593820 0.121723
1 3.276152 -0.430420 2.523042	1 2.511536 -0.941226 2.536161	1 3.703842 -0.072788 1.440026
8 0.840283 -1.644944 -0.493831	8 0.479160 -1.392556 -0.963369	8 0.881064 1.423838 -1.021623
7 2.146255 0.029589 -0.966138	7 1.787197 0.332504 -0.835598	7 0.472097 -0.567671 0.158936
6 1.636849 1.403262 -0.895737	6 1.205420 1.644064 -0.526742	6 0.296091 -1.414339 -1.034892
1 0.584357 1.406935 -0.590767	1 0.124795 1.558706 -0.383726	1 0.288036 -0.747342 -1.897554
1 2.223781 2.006545 -0.195989	1 1.657081 2.074363 0.372224	1 1.120458 -2.125932 -1.108918
1 1.718390 1.850396 -1.890206	1 1.402412 2.311154 -1.369714	1 -0.660548 -1.930553 -0.951749
6 3.522454 -0.050423 -1.452305	6 3.221745 0.391759 -1.111753	6 0.615883 -1.339140 1.403618
1 4.215505 0.428800 -0.753162	1 3.781299 0.703187 -0.223712	1 1.413246 -2.075208 1.309600
1 3.800278 -1.099503 -1.571810	1 3.569242 -0.593359 -1.429019	1 0.847325 -0.654494 2.221660
1 3.597146 0.449540 -2.420986	1 3.406807 1.108769 -1.914794	1 -0.332090 -1.841129 1.606101
1 1.338574 -0.773287 -1.397673	1 1.070299 -0.359145 -1.561126	1 -0.405933 0.001135 0.251714
1 0.906179 -1.130558 2.082051	1 -1.142061 -1.210338 -0.856271	1 -0.288111 1.571766 -0.652719
1 -1.014205 -1.488199 -0.169523	8 -2.125811 -1.042476 -0.782787	8 -1.342642 1.397540 -0.142284
7 -2.031408 -1.364006 -0.083717	6 -2.707351 -2.120177 -0.092271	6 -1.641016 2.397067 0.791450
6 -2.668698 -1.877772 -1.280150	1 -2.329421 -2.220977 0.935667	1 -2.166438 3.243391 0.324966
1 -3.739427 -1.641681 -1.268571	1 -3.785894 -1.948588 -0.040482	1 -2.291293 2.000908 1.583057
1 -2.229140 -1.403495 -2.162108	1 -2.537490 -3.071265 -0.613231	1 -0.736663 2.800698 1.273230
1 -2.570747 -2.971198 -1.398575	1 0.231018 -1.533826 1.664813	1 3.358036 1.151488 -0.808069
6 -2.498572 -2.036979 1.111593	1 -2.122235 0.501182 -0.045530	1 -2.364457 -0.005312 -0.063221
1 -1.944379 -1.671861 1.981176	8 -1.941921 1.383513 0.360988	8 -2.630207 -0.929032 0.158228
1 -3.560324 -1.818466 1.276324	6 -3.021989 2.234384 0.081056	6 -3.918631 -1.173346 -0.342881
1 -2.388350 -3.135173 1.073670	1 -3.192395 2.363586 -0.997955	1 -4.178265 -2.210416 -0.111973

1 -1.888087 0.662611 -0.005307	1 -3.962105 1.882018 0.531014	1 -4.678763 -0.526553 0.119237
7 -1.666513 1.667744 -0.007218	1 -2.797268 3.216701 0.506604	1 -3.982673 -1.043978 -1.433427
6 -2.262097 2.285869 -1.173522		
1 -3.367287 2.300870 -1.158202		
1 -1.924699 3.325772 -1.263688		
1 -1.946054 1.753496 -2.075607		
6 -2.134695 2.269839 1.223634		
1 -1.725053 1.726589 2.080261		
1 -1.787825 3.308178 1.291212		
1 -3.235327 2.285083 1.325431		
TS-I/	TS-Im	
Et = -598.479191 NImag=1(-1101.58)	Et = -559.6090286 NImag=1(-1005.97)	
6 -0.206667 0.731226 -0.281242	6 0.093187 -0.375178 -0.270116	
6 0.519166 2.046029 0.034318	6 -0.640447 -1.691848 -0.051947	
1 -0.325629 0.663173 -1.391173	1 0.250016 -0.214801 -1.353956	
1 0.542692 2.178631 1.121972	1 -0.724442 -1.873567 1.024821	
6 0.038173 3.316922 -0.659042	6 -0.110544 -2.923563 -0.777792	
1 -0.890429 3.712295 -0.235151	1 0.807511 -3.321567 -0.334067	
1 0.788276 4.108819 -0.569488	1 -0.851187 -3.727273 -0.742998	
1 -0.129262 3.150553 -1.729385	1 0.089369 -2.714042 -1.834165	
8 0.392270 -0.313879 0.293304	8 -0.565050 0.644287 0.343425	
7 -1.716589 0.715862 0.165219	7 1.551518 -0.334610 0.268649	
6 -1.861806 1.027725 1.583099	6 1.641596 -0.726072 1.682889	
1 -1.053549 0.517956 2.111883	1 0.824745 -0.235888 2.212495	
1 -1.797352 2.106085 1.771652	1 1.565087 -1.810844 1.790810	
1 -2.828436 0.670115 1.953542	1 2.595789 -0.385137 2.089277	
6 -2.668686 1.434953 -0.672254	6 2.575410 -0.965926 -0.571474	
1 -2.641311 2.516738 -0.509342	1 2.532326 -2.053681 -0.504288	
1 -2.445032 1.237947 -1.724286	1 2.424196 -0.663513 -1.609219	
1 -3.685288 1.084487 -0.460797	1 3.561088 -0.626626 -0.244262	
1 -1.898770 -0.607569 0.028621	1 1.688791 0.804598 0.243795	

1	-0.560745	-1.487580	0.010134	1	0.193436	1.564828	0.326617	
7	-1.595759	-1.828312	-0.086944	8	1.280154	2.141674	0.325285	
6	-1.889896	-2.408948	-1.389780	6	1.463156	2.953907	-0.800571	
1	-1.394800	-3.378996	-1.515117	1	0.896048	3.889229	-0.702831	
1	-2.968292	-2.553012	-1.514600	1	2.522073	3.222732	-0.912134	
1	-1.532764	-1.736708	-2.173181	1	1.140131	2.474849	-1.740817	
1	1.556272	1.844941	-0.255656	1	-1.658202	-1.474468	-0.393570	
6	-1.987490	-2.662030	1.041184	1	-2.251050	0.676696	-0.257422	
1	-1.653665	-2.186172	1.965204	8	-3.147818	0.472038	-0.597155	
1	-3.075130	-2.784800	1.075255	6	-4.037369	0.561917	0.482761	
1	-1.528804	-3.655899	0.978780	1	-5.032011	0.285237	0.121007	
1	2.288186	-0.294650	0.082141	1	-3.779092	-0.118039	1.309385	
7	3.294641	-0.199525	-0.090263	1	-4.103484	1.580131	0.896043	
6	4.019025	-0.338967	1.150593					
1	3.992469	-1.358824	1.582602					
1	5.075611	-0.079354	1.004643					
1	3.607414	0.349963	1.894058					
6	3.712388	-1.159896	-1.083148					
1	3.669679	-2.214473	-0.745299					
1	3.081221	-1.067482	-1.972373					
1	4.747983	-0.963409	-1.389516					

Table S53. The mPW1PW91/6-31G* Optimized Geometries (in Cartesian coordinates), Total Electronic Energies (in hartree/particle), and Number of Imaginary Frequencies (in cm⁻¹) of Transition States for Dehydration of Carbinaolamine (**Step-II**)

TS-II	TS-IIa	TS-IIb	
Et = -328.1410795 NImag=1(-1337.4)	Et = -463.2911122 NImag=1(-637.9)	HF= -443.8622054 NImag=1(-406.1)	
6 .223289046226 .516977	6 1.820759 0.359330 -0.156200	6 1.280445 0.401922 -0.372819	
6 1.372778399330271991	6 1.905204 -0.998539 0.323652	6 1.899232 -0.544666 0.532581	

1 .374812 .588726 1.383848	1 2.317213 0.586708 -1.093798	1 1.486348 0.278307 -1.430672
1 1.239729 -1.252199936897	1 1.571637 -1.145385 1.351086	1 1.861288 -0.259484 1.584631
6 2.720489356978 .423290	6 3.173341 -1.760099 -0.023372	6 3.265650 -1.054814 0.097485
1 2.881819 -1.201637 1.103710	1 4.037619 -1.435692 0.566176	1 4.047655 -0.291419 0.167807
1 3.528622369803313244	1 3.031878 -2.828800 0.156875	1 3.565946 -1.897752 0.724660
1 2.832157 .564721 1.005072	1 3.423550 -1.641157 -1.082711	1 3.231665 -1.416085 -0.935243
8 .110400 1.689598854911	8 0.035211 -0.581463 -1.420177	8 -0.179406 -1.635461 -0.612613
7 -1.026222475188 .363555	7 1.126396 1.348136 0.349760	7 0.408748 1.325869 -0.088299
6 -1.386061 -1.220534830737	6 0.308376 1.196049 1.547786	6 -0.100442 1.564013 1.257417
1 -1.354424564505 -1.707503	1 -0.661519 0.740917 1.284455	1 -1.003093 0.950634 1.374112
1700637 -2.056113974007	1 0.830801 0.574447 2.274484	1 0.651399 1.306701 2.000548
1 -2.393952 -1.619636706515	1 0.155178 2.184750 1.984961	1 -0.346988 2.623540 1.350903
6 -2.054019 .435267 .838895	6 0.681146 2.369122 -0.586762	6 -0.411369 1.909596 -1.144830
1 -3.024749063180 .844261	1 0.302357 3.235495 -0.044392	1 -0.502448 2.986132 -0.983516
1 -1.818888 .758152 1.855443	1 1.512746 2.678779 -1.222827	1 0.050434 1.723139 -2.114122
1 -2.050197 1.312248 .175590	1 -0.096871 1.909124 -1.210951	1 -1.392459 1.423369 -1.095847
1 .402700 2.578154606660	1 -0.164886 -0.897391 -2.311319	1 -0.449549 -2.424297 -1.097999
1 1.124508 .661414887294	1 1.008949 -1.283726 -0.417849	1 1.083627 -1.363900 0.317796
	1 -1.467986 -0.456783 -0.499998	1 -1.364833 -0.914522 -0.209532
	7 -2.262403 -0.338491 0.164234	8 -2.162115 -0.286449 0.087792
	6 -3.334832 0.390688 -0.471772	6 -3.292790 -1.070174 0.304863
	1 -2.950633 1.329689 -0.883313	1 -3.655669 -1.564335 -0.613372
	1 -3.827826 -0.159231 -1.296503	1 -3.126797 -1.862998 1.053707
	1 -4.116027 0.642265 0.257655	1 -4.109954 -0.438097 0.674618
	6 -2.690990 -1.635229 0.636112	
	1 -1.829324 -2.187072 1.023781	
	1 -3.416963 -1.529027 1.453047	
	1 -3.167551 -2.261651 -0.142062	
TS-IIc	TS-IId	TS-IIe
Et =-463.280821 NImag=1(-1231.2)	Et =-443.8645012 NImag=1(-116.9)	Et =-598.4379001 NImag=1(-189.4)
6 -1.054862 .692591319680	6 .998650 .796812 .031817	6 -0.352593 1.304343 0.415439

6039400 1.279570 .491758	6103893 1.370492731244	6 0.104610 2.167857 -0.680918
1 -1.093123 .958319 -1.366759	1 1.366687 1.302559 .916382	1 -1.361336 0.903799 0.366626
6 .509032 2.612189004679	1 .124979 1.361931 -1.804674	1 1.052196 2.668222 -0.471251
1187473 3.445692 .145435	6543831 2.738837232973	6 -0.966368 3.148850 -1.154763
1 1.438661 2.861662 .515714	1 .230775 3.504232353642	1 -1.210606 3.899976 -0.396960
1 .741387 2.562838 -1.073660	1 -1.428080 3.071449781611	1 -0.619301 3.674036 -2.047948
8 .043253967923 -1.481156	1813555 2.676474 .824523	1 -1.885237 2.618770 -1.420939
7 -2.127026 .022017 .117532	8508493 .072435 1.903393	8 -0.119482 -0.408970 -1.319190
6 -2.220088448365 1.482167	7 1.600379315136281001	7 0.309556 0.976977 1.483566
1 -1.551026 -1.301216 1.658643	6 1.095969 -1.172545 -1.355422	6 1.706047 1.328160 1.723120
1 -1.966223 .348475 2.182385	1 1.109809626718 -2.301581	1 2.332232 0.600631 1.179090
1 -3.247056762676 1.678553	1 1.747929 -2.041620 -1.439711	1 1.906917 2.340590 1.375050
6 -2.928708709999841605	1 .053859 -1.450582 -1.096253	1 1.891525 1.281158 2.797338
1 -3.987210633889576049	6 2.545626920091 .640180	6 -0.242635 -0.028847 2.382599
1 -2.771485301742 -1.838559	1 3.420239 -1.279365 .093866	1 -0.275464 0.367026 3.401020
1 -2.640571 -1.767561864386	1 2.857634189510 1.385680	1 -1.241139 -0.306271 2.040907
1 1.139164872168758250	1 2.063414 -1.761503 1.146655	1 0.403694 -0.910537 2.360656
1290331 -1.857439 -1.302346	1339641625289 2.546996	1 -1.740685 -0.768977 -0.621749
7 1.944088523221 .039433	1 -1.030148400609 1.140329	1 0.265658 1.377630 -1.457287
1 .957223 .465715 .376148	8 -1.547262928953166915	1 1.528224 -0.716335 -0.726700
1252169 1.277230 1.563183	6 -2.876988 -1.288522186792	7 2.501391 -0.907163 -0.394874
6 3.168526016949534506	1 -3.515332642939 .449090	6 2.612270 -2.302993 -0.031221
1 3.770322 .535024 .202660	1 -3.316058 -1.247033 -1.203049	1 1.826853 -2.561618 0.686514
1 3.803545821715939131	1 -3.048207 -2.324577 .171189	1 2.521867 -2.997363 -0.887739
1 2.928840 .661719 -1.358149	1934109 .581299612406	1 3.580472 -2.503898 0.445182
6 2.154479 -1.468159 1.108014		6 3.431829 -0.551539 -1.444853
1 2.713652 -2.359658 .780342		1 3.262679 0.485216 -1.751042
1 2.710290 -1.024271 1.947069		1 4.466400 -0.631965 -1.087134
1 1.184247 -1.807790 1.488838		1 3.347994 -1.184310 -2.347684
		1 -0.154355 -1.271014 -1.758113
		7 -2.582228 -0.954677 -0.036277

		6 -3.787578 -0.594862 -0.750971
		1 -3.710709 0.434857 -1.114207
		1 -4.000542 -1.242050 -1.621454
		1 -4.658672 -0.648926 -0.085634
		6 -2.580343 -2.347153 0.358289
		1 -1.602043 -2.606002 0.774900
		1 -3.338849 -2.534245 1.129281
		1 -2.784382 -3.045494 -0.474429
TS-IIf	TS-IIg	TS-IIIg
Et =-559.5807507 NImag=1 (-25.0)	Et =-559.578852 NImag=1(-61.7)	Et =-559.5786109 NImag=1(-130.07)
6 1.258917 -0.748800 0.425721	6 1.704044 -0.414847 0.048249	6 -2.642154 1.254232 -1.529438
6 1.833421 -0.935485 -0.898331	6 1.935471 1.030708 -0.171372	6 -1.880004 1.002800 -0.235378
1 1.550507 0.153732 0.960245	1 2.050778 -0.880665 0.959884	6 -1.544767 -0.405099 -0.012649
1 1.735761 -1.947683 -1.297346	1 2.421405 1.179001 -1.145682	7 -1.041980 -0.868403 1.084325
6 3.235955 -0.361346 -1.053167	6 2.726656 1.674067 0.959245	6 -0.502249 -2.223505 1.148784
1 3.987843 -0.936481 -0.503500	1 3.731789 1.249472 1.050620	6 -0.758411 -0.000529 2.228659
1 3.523645 -0.356671 -2.107148	1 2.832410 2.747003 0.783814	8 0.847113 1.602085 0.341387
1 3.260647 0.672525 -0.697394	1 2.192436 1.528882 1.900690	6 1.706184 2.674855 0.175675
8 -0.265809 0.828489 -1.425797	8 0.184086 -0.156026 2.093094	8 1.662046 -0.590552 -0.285411
7 0.270399 -1.398607 0.950718	7 1.084100 -1.176710 -0.787284	6 3.047211 -0.683476 -0.421118
6 -0.379703 -2.546110 0.327006	6 0.552913 -0.671798 -2.056897	8 0.061511 -1.859094 -1.971310
1 -1.259747 -2.164820 -0.206234	1 1.384821 -0.377157 -2.702121	1 -1.557970 -1.102044 -0.850041
1 0.304625 -3.050689 -0.351430	1 -0.005767 -1.473946 -2.534297	1 -2.385454 1.439485 0.633899
1 -0.685579 -3.238764 1.113595	1 -0.113981 0.178993 -1.874483	1 -3.649615 0.826647 -1.509692
6 -0.454797 -0.842821 2.092387	6 0.654754 -2.515663 -0.395550	1 -2.738350 2.327725 -1.707427
1 -0.489696 -1.577882 2.899954	1 0.823790 -3.211901 -1.218560	1 -2.107945 0.824243 -2.381653
1 0.034782 0.072828 2.418940	1 1.212403 -2.836220 0.483968	1 -0.384719 -0.616261 3.045204
1 -1.461989 -0.604153 1.736671	1 -0.412306 -2.399227 -0.149906	1 -0.007011 0.739504 1.899020
1 -0.488574 1.385829 -2.180021	1 0.105728 -0.782685 2.821886	1 -1.672637 0.504429 2.548410
1 -1.496812 0.189546 -0.834926	1 -0.609156 -0.388428 1.471717	1 -0.913571 -2.735678 2.021287
8 -2.278469 -0.333041 -0.403728	8 -1.595442 -0.781291 0.394099	1 -0.745475 -2.758459 0.232408

6 -3.474417 0.113167 -0.968618	6 -2.880550 -0.999731 0.858322	1 0.584298 -2.132117 1.214177
1 -3.498472 -0.006387 -2.064288	1 -3.242155 -0.211257 1.547323	1 0.271304 -1.613067 -2.878803
1 -4.304766 -0.471984 -0.557102	1 -3.622341 -1.055016 0.039088	1 0.739164 -1.379417 -1.411527
1 -3.679262 1.174107 -0.749799	1 -2.973214 -1.953296 1.414297	1 3.441855 -0.076111 -1.253548
1 1.073308 -0.266806 -1.449766	1 0.930790 1.483285 -0.261331	1 3.575417 -0.361925 0.490904
1 0.333460 1.666037 -0.274775	1 -1.423707 0.576644 -0.252469	1 3.336699 -1.725345 -0.614603
8 0.787976 2.046896 0.562048	8 -1.141554 1.448935 -0.732294	1 -0.851932 1.486992 -0.230492
6 0.228271 3.289690 0.864611	6 -2.192826 2.370404 -0.701805	1 1.347944 0.471832 -0.030404
1 0.397053 4.036738 0.071697	1 -2.463708 2.665648 0.323343	1 2.019358 2.826878 -0.875103
1 -0.858467 3.237402 1.040878	1 -1.884642 3.275841 -1.236767	1 1.234627 3.618814 0.498489
1 0.693476 3.675299 1.778894	1 -3.103567 1.990216 -1.190368	1 2.637644 2.577513 0.764692
TS-IIh	TS-IIi	
Et =-598.4293531 NImag=1 (-726.40)	Et = -559.5767101 NImag=1(-61.65)	

6	2.628261 -0.340826 0.29	94640				
6	2.753302 0.400368 -0.92	35898				
1	3.154225 0.051855 1.15	58519				
1	2.351130 -0.092977 -1.82	20575				
6	4.081141 1.099423 -1.17	72749	6	1.696287	-0.026367	0.612523
1	4.882583 0.406564 -1.4	51600	6	0.651870	-0.754152	1.350747
1	3.982860 1.832826 -1.97	77236	1	2.682243	-0.469001	0.523888
1	4.403413 1.642593 -0.27	77899	6	1.188286	-1.984699	2.070216
8	1.031455 1.395364 0.75	51815	1	1.914201	-1.730233	2.849431
7	1.871273 -1.378323 0.54	46174	1	0.367318	-2.526652	2.544286
6	1.058128 -2.050891 -0.4	57514	1	1.670434	-2.666723	1.362954
1	0.020946 -1.677215 -0.4	53102	8	1.405600	-1.096677	-1.564084
1	1.499601 -1.914896 -1.4	43227	7	1.573889	1.154586	0.089829
1	1.049631 -3.119500 -0.2	26700	6	0.291631	1.843985	-0.022246
6	1.439787 -1.554463 1.92	25623	1	-0.222951	1.464166	-0.914083
1	0.996663 -2.542189 2.0	52918	1	-0.358871	1.618073	0.822555
1	2.293080 -1.453733 2.5	99517	1	0.480265	2.916121	-0.089145
1	0.714826 -0.759844 2.14	42009	6	2.636641	1.684659	-0.753801
1	1.220842 2.207138 1.24	42317	1	2.774990	2.746453	-0.540950
1	1.928512 1.163741 -0.49	93910	1	3.565660	1.148876	-0.564178
1	-0.681166 1.528108 0.4	39553	1	2.356087	1.544913	-1.800152
7	-1.697758 1.646790 0.2	231111	1	1.436216	-2.042648	-1.748712
6	-2.379281 2.088819 1.4	28593	1	0.399983	-0.892656	-1.447875
1	-2.169227 1.394320 2.2	247683	8	-1.043151	-0.619093	-1.037365
1	-2.083065 3.101555 1.7	761052	6	-1.880261	-1.453857	-1.759717
1	-3.465386 2.105024 1.2	272400	1	-2.264575	-0.984266	-2.685289
6	-1.840656 2.594732 -0.8	353261	1	-1.381955	-2.390711	-2.080676
1	-1.234189 2.270677 -1.7	703973	1	-2.767691	-1.765078	-1.179354
1	-2.885509 2.649644 -1.1	84316	1	0.116387	-0.083069	2.030930
1	-1.527109 3.621638 -0.5	588257	1	-0.109801	-1.023377	0.580216
1	-2.064731 -0.250884 -0.2	274606	8	-2.291898	0.464050	1.012422
7	-2.184219 -1.246788 -0.5	518845	1	-1.880802	0.041682	0.197551
6	-2 980193 -1 897596 0.4	199312	6	-3 430646	1 171604	0 614159
1	-3.008927 -2.980514 0.3	323905	1	-4.216830	0.517726	0.205641
1	-2.529443 -1.730624 1.4	182361	1	-3.846844	1.679242	1.491075
1	-4.027863 -1.546988 0.5	543974	1	-3.217943	1.941782	-0.145981
6	-2 788541 -1 350184 -1 8	829828		5.217915	1., 11,02	
1	-2 196402 -0 782932 -2 5	553943				

Table 54. The mPW1PW91/6-311+G** Optimized Geometries (in Cartesian coordinates), Total Electronic Energies (in hartree/particle), and Number of Imaginary Frequencies (cm⁻¹) of Pre-reacting Complexes, Transition States and Final Products for Carbinolamine Formation (**Step-I**)

Pre-reacting complex	TS-I	Carbinolamine		
Et = -328.3212375 NImag = 0	Et =-328.276655 NImag=1 (-1494.04)	Et = -328.3339205 NImag = 0		
6 1.906909 0.933770 0.023053	6 -0.301926 0.756115 -0.380673	6 -0.233320 0.615908 -0.484897		
6 2.116932 -0.469997 -0.456149	6 -1.587233 0.246657 0.250900	6 -1.492940 0.216647 0.278244		
1 2.586413 1.255889 0.842290	1 -0.352385 0.574930 -1.474992	1 -0.380026 0.380243 -1.549203		
1 1.480258 -0.647587 -1.324049	1 -1.493036 0.247095 1.339869	1 -1.350609 0.449942 1.337276		
6 1.827287 -1.476338 0.660234	6 -2.062350 -1.103272 -0.271419	6 -1.898428 -1.239177 0.097941		
1 0.768695 -1.447104 0.924697	1 -1.362772 -1.910844 -0.037371	1 -1.170474 -1.925519 0.535209		
1 2.073238 -2.487509 0.332260	1 -3.026231 -1.376681 0.162709	1 -2.858698 -1.433949 0.580157		
1 2.420442 -1.264697 1.554013	1 -2.186471 -1.082621 -1.357692	1 -2.005224 -1.497705 -0.959455		
8 1.070627 1.694359 -0.393629	8 0.119005 1.980059 -0.017070	8 -0.111808 2.015710 -0.310309		
7 -1.579785 -0.098832 0.023242	7 1.024661 -0.000690 0.045823	7 1.018024 -0.016477 -0.115350		
6 -2.361906 -0.662657 -1.057289	6 1.027415 -0.654825 1.352244	6 1.299682 -0.086036 1.302278		
1 -1.701926 -0.990082 -1.863209	1 0.600379 0.024949 2.088112	1 1.034903 0.860307 1.775311		
1 -2.906007 -1.541523 -0.698587	1 0.457639 -1.587126 1.338622	1 0.762761 -0.898359 1.818732		
1 -3.103307 0.034697 -1.483116	1 2.056925 -0.875530 1.639830	1 2.370251 -0.248668 1.451794		
6 -2.399575 0.423166 1.097368	6 1.700425 -0.770563 -0.994388	6 1.388711 -1.212296 -0.837135		
1 -2.940304 -0.396552 1.579932	1 1.181566 -1.713322 -1.187522	1 0.873054 -2.124173 -0.497370		
1 -1.766210 0.892351 1.852647	1 1.724905 -0.183940 -1.912771	1 1.181250 -1.083474 -1.901564		
1 -3.146575 1.165024 0.767890	1 2.724599 -0.988209 -0.686215	1 2.463509 -1.382562 -0.725798		
1 -0.973669 0.631433 -0.331766	1 1.221205 1.174130 0.142213	1 0.758929 2.248816 -0.642820		
1 3.164550 -0.555058 -0.769969	1 -2.328976 1.016862 0.021023	1 -2.293546 0.874485 -0.070928		
Pre-reacting complex	TS-Ia	Carbinolamine + amine		
Et = -463.4945295 NImag = 0	NImag = 0 Et = -463.4594453 NImag=1 (-1521.23) Et = -463.5075705 NImag			
6 0.40242 1.20613 0.73524	6 1.118579 0.249967 0.870852	6 -0.865942 -0.202545 -0.254708		
6 0.03795 1.60143 -0.6625	6 0.939926 1.565412 0.133076	6 -0.601114 1.193028 0.298874		

1	1.25914 1.76028 1.17072	1 2.038006 0.309102 1.484541 1	-0.726780 -0.179864 -1.344499
1	0.86494 1.24988 -1.2913	1 0.136940 1.471781 -0.602287 1	-0.738870 1.173753 1.383885
6	-0.10569 3.11544 -0.80619	6 2.214309 2.112285 -0.498219 6	-1.459107 2.280707 -0.332086
1	0.79845 3.63684 -0.48052	1 2.602450 1.458280 -1.283947 1	-2.518059 2.162832 -0.092740
1	-0.28555 3.3855 -1.84776	1 2.039099 3.090114 -0.951361 1	-1.152189 3.265856 0.024869
1	-0.94345 3.49278 -0.2156	1 3.004335 2.233659 0.248224 1	-1.362523 2.283888 -1.421526
8	-0.16503 0.36649 1.39332	8 0.034610 -0.235370 1.534298 8	0.118625 -1.046679 0.333634
7	2.70834 -0.72716 0.11776	7 1.337553 -1.017682 -0.017097 7	-2.169062 -0.795503 -0.036041
6	2.60277 -1.62999 -1.01149	6 0.768734 -0.978276 -1.367435 6	-2.708853 -0.663224 1.301229
1	1.55625 -1.73891 -1.30256	1 -0.258392 -0.610739 -1.311466 1	-1.929617 -0.870661 2.035627
1	3.14384 -1.21235 -1.86547	1 1.360948 -0.343151 -2.030976 1	-3.128921 0.333828 1.509083
1	3.01331 -2.63469 -0.81808	1 0.758313 -1.992287 -1.771168 1	-3.506582 -1.396705 1.442791
6	4.06549 -0.58863 0.60781	6 2.657307 -1.639729 0.046528 6	-3.156120 -0.602211 -1.075389
1	4.68347 -0.11064 -0.1575	1 3.395085 -1.059542 -0.514301 1	-3.632106 0.390418 -1.065271
1	4.07765 0.05298 1.49095	1 2.974003 -1.707146 1.087528 1	-2.697853 -0.748438 -2.055623
1	4.54394 -1.5464 0.87092	1 2.607383 -2.645334 -0.373853 1	-3.947720 -1.348460 -0.963420
1	2.10229 -1.04154 0.86486	1 0.489716 -1.282688 0.803615 1	-0.170064 -1.946542 0.157083
1	-0.86974 1.0714 -0.95948	1 0.573575 2.264137 0.890909 1	0.457571 1.406251 0.126422
1	-2.00094 -0.4824 0.51663	1 -1.705423 0.006600 0.550461 1	2.143896 -0.378089 0.096893
7	-2.76875 -0.66058 -0.1221	7 -2.405576 -0.021376 -0.193104 7	3.004965 0.117760 -0.107157
6	-2.78016 -2.05456 -0.50995	6 -3.237137 -1.195804 -0.036205 6	3.821385 0.210936 1.083237
1	-3.50881 -2.21066 -1.31142	1 -3.879863 -1.322869 -0.913695 1	4.668749 0.879527 0.901440
1	-1.7997 -2.34046 -0.89678	1 -2.610411 -2.086538 0.047887 1	3.236262 0.635080 1.901611
1	-3.03903 -2.74523 0.31128	1 -3.892135 -1.159870 0.851213 1	4.231782 -0.757040 1.421319
6	-4.01738 -0.23161 0.47093	6 -3.175859 1.203675 -0.206159 6	3.691635 -0.512436 -1.212864
1	-3.93343 0.80527 0.80269	1 -2.505769 2.064678 -0.256666 1	3.014167 -0.610074 -2.063841
1	-4.81704 -0.27643 -0.27488	1 -3.820337 1.233309 -1.090925 1	4.533011 0.110503 -1.532229
1	-4.33495 -0.84214 1.33388	1 -3.823397 1.329680 0.678666 1	4.094223 -1.513965 -0.978318
	Pre-reacting Complex	TS-Ib	Carbinolamine + Methanol
	Et = -444.0597423 NImag = 0	Et =-444.0240264 NImag=1 (-1538.82)	Et = -444.0728003 NImag = 0
6	0.200783 1.320982 0.957181	6 -0.617727 0.262481 -0.830241 6	0.674790 0.144865 0.789995

6 0.246601 1.882882 -0.434066	6 -0.387444 1.544041 -0.053133	6 0.295637 1.397263 0.007238
1 1.117617 1.454708 1.563097	1 -1.408018 0.434515 -1.582297	1 1.309810 0.435741 1.636993
1 -0.362911 1.249254 -1.082498	1 0.294462 1.358903 0.779743	1 -0.345034 1.112604 -0.831855
6 1.654565 2.084181 -0.970828	6 -1.666069 2.234933 0.403955	6 1.492778 2.202420 -0.477233
1 2.178300 1.129961 -1.037258	1 -2.234664 1.629733 1.115331	1 2.082621 1.654141 -1.214469
1 1.630955 2.535458 -1.963948	1 -1.441950 3.183036 0.896493	1 1.164939 3.130917 -0.948735
1 2.237349 2.744634 -0.323013	1 -2.324086 2.452525 -0.442090	1 2.157814 2.470830 0.348617
8 -0.782428 0.823691 1.461634	8 0.491607 -0.358378 -1.341640	8 -0.552950 -0.385475 1.296260
7 1.390328 -1.162139 0.271113	7 -1.115926 -0.968550 -0.024022	7 1.383184 -0.907356 0.100530
6 0.859357 -1.723530 -0.959777	6 -0.732032 -1.021245 1.390426	6 0.900466 -1.247179 -1.224199
1 -0.193319 -1.455750 -1.064823	1 0.329913 -0.793841 1.484618	1 -0.189378 -1.285097 -1.232427
1 1.406710 -1.313681 -1.814114	1 -1.319343 -0.321428 1.989811	1 1.230107 -0.541083 -2.002568
1 0.945230 -2.820827 -1.008541	1 -0.905808 -2.033007 1.759581	1 1.270851 -2.238424 -1.496574
6 2.745821 -1.592066 0.555365	6 -2.487157 -1.405226 -0.273365	6 2.825899 -0.896886 0.203376
1 3.420545 -1.209527 -0.215842	1 -3.208158 -0.736895 0.205154	1 3.318199 -0.168132 -0.458828
1 3.074053 -1.185886 1.514301	1 -2.671918 -1.418793 -1.347562	1 3.125521 -0.678713 1.230552
1 2.864989 -2.687136 0.584061	1 -2.625097 -2.412694 0.121560	1 3.211922 -1.887383 -0.052530
1 0.781923 -1.409797 1.041273	1 -0.194289 -1.338978 -0.730748	1 -0.345902 -1.273201 1.603944
1 -2.022531 0.036735 0.292473	1 1.859786 -0.252260 -0.293424	1 -2.057581 -0.439759 0.188816
8 -2.427905 -0.443845 -0.444592	8 2.468057 -0.239696 0.479207	8 -2.741876 -0.540824 -0.488685
6 -3.774618 -0.711559 -0.136815	6 3.783238 -0.027672 0.038280	6 -3.898188 0.144726 -0.076517
1 -4.357221 0.206078 0.013280	1 3.896595 0.927652 -0.491556	1 -3.719791 1.218789 0.064458
1 -4.206028 -1.250887 -0.981291	1 4.435861 -0.005878 0.913663	1 -4.648940 0.028163 -0.859573
1 -3.880374 -1.338194 0.757632	1 4.135030 -0.828399 -0.625541	1 -4.314748 -0.259880 0.854885
1 -0.279978 2.845724 -0.375276	1 0.158996 2.196375 -0.740647	1 -0.322386 2.011120 0.669028
Pre-reacting complex	TS-Ic	Carbinolamine + Amine
Et = -463.5023385 NImag = 0	Et =-463.4782552 NImag=1 (-1148.42)	Et = -463.5171733 NImag = 0
6 -1.180082 -1.435080 0.175521	6 -0.815616 -0.764695 0.192931	6 0.916476 -0.616256 -0.204294
6 -2.587758 -1.235355 -0.316903	6 -2.261234 -0.995119 -0.263048	6 2.315375 -1.113227 0.158940
1 -1.001629 -1.171827 1.236638	1 -0.796683 -0.797581 1.308895	1 0.795645 -0.688402 -1.297364
1 -2.533525 -0.858355 -1.341197	1 -2.302761 -0.875969 -1.349782	1 2.434628 -1.051413 1.244613

6 -3.433636 -0.344569 0.578521	6 -3.366503 -0.196775 0.418356	6 3.467947 -0.413779 -0.548120
1 -2.991882 0.649912 0.654413	1 -3.391689 0.848793 0.101377	1 3.594006 0.618220 -0.215412
1 -4.447330 -0.244686 0.186739	1 -4.346350 -0.620043 0.183894	1 4.408762 -0.932880 -0.351442
1 -3.510985 -0.755765 1.588630	1 -3.260247 -0.211551 1.507305	1 3.324515 -0.398114 -1.632502
8 -0.296321 -1.916223 -0.493892	8 0.031679 -1.590566 -0.405514	8 0.028246 -1.476202 0.453317
7 -0.359149 1.325134 0.005616	7 -0.320077 0.723531 -0.049905	7 0.586963 0.777447 0.119057
6 -0.594873 1.707449 -1.370972	6 -0.557611 1.170796 -1.418054	6 0.900554 1.174564 1.476590
1 -0.443729 0.845075 -2.023949	1 -0.310138 0.349705 -2.092118	1 0.579540 0.391793 2.164889
1 -1.628982 2.045896 -1.495568	1 -1.601567 1.461185 -1.574149	1 1.973137 1.367547 1.640674
1 0.061057 2.521406 -1.722934	1 0.076425 2.031234 -1.650679	1 0.359049 2.091854 1.725157
6 -0.469670 2.440511 0.922825	6 -0.710537 1.719230 0.940964	6 0.966356 1.772251 -0.861717
1 -1.495864 2.822199 0.930386	1 -1.749315 2.039171 0.828865	1 2.033779 2.039397 -0.850022
1 -0.231004 2.113326 1.937041	1 -0.584958 1.303114 1.942237	1 0.720594 1.416649 -1.865263
1 0.192402 3.286580 0.672428	1 -0.070283 2.602388 0.850765	1 0.399519 2.691852 -0.684553
1 0.567084 0.900924 0.085433	1 0.959218 0.476725 0.058240	1 -1.732624 0.585772 -0.064675
1 1.668834 -1.125099 -0.113120	1 1.379915 -1.047601 -0.131042	1 -0.884346 -1.198655 0.226614
7 2.305604 -0.360130 0.090133	7 2.056153 -0.197413 0.089553	7 -2.421323 -0.161804 -0.113513
6 2.982621 -0.602859 1.349305	6 2.681279 -0.305744 1.397484	6 -3.083816 -0.158649 -1.404388
1 3.680929 -1.455098 1.317421	1 3.441882 -1.094412 1.414636	1 -3.703620 -1.053930 -1.501394
1 3.556063 0.282840 1.638398	1 3.159822 0.636045 1.684903	1 -3.732756 0.717134 -1.561601
1 2.248898 -0.794378 2.134847	1 1.924026 -0.552023 2.143722	1 -2.339799 -0.182546 -2.202742
1 -3.025695 -2.239394 -0.390627	1 -2.418092 -2.062026 -0.083499	1 2.325893 -2.179859 -0.081018
6 3.227058 -0.179810 -1.015571	6 2.992588 0.064936 -0.990711	6 -3.344765 -0.070205 1.002791
1 2.669864 -0.067299 -1.947306	1 2.458618 0.060323 -1.941709	1 -2.786989 -0.037234 1.940149
1 3.813068 0.731612 -0.864615	1 3.476535 1.039080 -0.865439	1 -4.001062 0.812841 0.956073
1 3.935845 -1.014838 -1.138526	1 3.775483 -0.700622 -1.037382	1 -3.982086 -0.958104 1.025664
Pre-reacting Complex	TS-Id	Carbinolamine + methanol
Et = -444.0658042 NImag = 0	Et =-444.0475136 NImag=1 (-788.84)	Et = -444.0791438 NImag = 0
6 0.723172 -1.393912 -0.214365	6 0.442611 -0.727630 -0.189351	6 0.598878 -0.641886 -0.247248
6 2.143041 -1.412154 0.272277	6 1.888511 -1.086326 0.128467	6 2.091768 -0.905436 -0.063201
1 0.569974 -1.066042 -1.258652	1 0.287930 -0.744923 -1.287211	1 0.372160 -0.625779 -1.324554

1 2.139042 -1.164642 1.336573	1 2.040225 -0.996564 1.207642	1 2.312419 -0.923371 1.007853
6 3.084205 -0.524481 -0.526701	6 2.989480 -0.372784 -0.646248	6 3.034059 0.043296 -0.791382
1 2.773528 0.519034 -0.465777	1 3.137699 0.659559 -0.320677	1 3.042549 1.042718 -0.352929
1 4.106153 -0.604525 -0.152498	1 3.943692 -0.884739 -0.505799	1 4.058146 -0.333694 -0.748199
1 3.097055 -0.808706 -1.582145	1 2.784015 -0.359801 -1.720474	1 2.768778 0.144376 -1.847716
8 -0.213905 -1.788489 0.446347	8 -0.411806 -1.484063 0.504008	8 -0.047027 -1.714484 0.382429
7 0.118178 1.363274 0.015727	7 0.076236 0.784166 0.126145	7 0.056907 0.627905 0.270908
6 0.211873 1.650867 1.432832	6 0.426053 1.175981 1.498310	6 0.423646 0.916830 1.648531
1 -0.083615 0.770064 2.006514	1 0.132612 0.363977 2.161673	1 0.287674 0.019380 2.251937
1 1.246268 1.894378 1.695951	1 1.497656 1.363189 1.581549	1 1.462255 1.263555 1.752392
1 -0.417888 2.496573 1.754108	1 -0.123085 2.078391 1.768395	1 -0.232756 1.696143 2.042869
6 0.433901 2.507825 -0.815330	6 0.467394 1.778547 -0.879101	6 0.209512 1.781082 -0.599944
1 1.481238 2.793848 -0.676460	1 1.536060 1.981119 -0.839620	1 1.223247 2.201714 -0.609714
1 0.294710 2.251765 -1.867406	1 0.208889 1.404785 -1.869734	1 -0.056715 1.510683 -1.624091
1 -0.181134 3.395703 -0.594681	1 -0.078964 2.705730 -0.698424	1 -0.471607 2.571371 -0.272005
1 -0.817778 1.028815 -0.199402	1 -1.015793 0.671342 0.093615	1 -1.760675 0.186316 0.260992
1 -1.801120 -1.036455 -0.157189	1 -1.487278 -0.949264 0.394339	1 -1.004544 -1.592555 0.289425
8 -2.383981 -0.343255 -0.505983	8 -2.296658 -0.068128 0.272526	8 -2.538070 -0.413227 0.260497
6 -3.709315 -0.590084 -0.097620	6 -3.336864 -0.292256 -0.631703	6 -3.478600 -0.006693 -0.705645
1 -3.811071 -0.600619 0.994329	1 -4.082129 -0.983284 -0.216251	1 -4.290855 -0.734372 -0.705699
1 -4.331841 0.214557 -0.490827	1 -3.855640 0.646178 -0.863049	1 -3.904204 0.976957 -0.474073
1 -4.090520 -1.539437 -0.492157	1 -2.988710 -0.721917 -1.584556	1 -3.052211 0.026930 -1.716283
1 2.461577 -2.461652 0.210154	1 1.933776 -2.158603 -0.078946	1 2.253190 -1.927168 -0.416631
Pre-reacting complex	TS-Ie	Carbinolamine + amine + amine
Et = -598.6767673 NImag = 0	Et =-598.63878 NImag=1 (-1546.61)	Et = -598.684752 NImag = 0
6 0.097213 1.093386 -1.345451	6 -0.199108 0.825434 -0.385831	6 0.074294 1.171364 -0.056984
6 1.039498 2.173253 -0.893428	6 0.824259 1.620033 -1.175475	6 -0.198168 0.916286 1.420187
1 -0.887875 1.432266 -1.716386	1 -1.210966 1.179859 -0.644940	1 1.048324 1.666908 -0.152057
1 1.558547 1.814065 -0.000803	1 1.828966 1.409610 -0.801683	1 -1.169832 0.425043 1.522367
6 0.377165 3.523446 -0.674885	6 0.547145 3.117546 -1.226740	6 -0.136867 2.174313 2.274896
1 -0.380587 3.457416 0.106649	1 0.589205 3.582406 -0.238185	1 -0.916925 2.889148 2.005361

1	1.111613 4.274821 -0.380035	1 1.278267 3.629631 -1.855508	1 -0.269994 1.929277 3.330512
1	-0.110246 3.880404 -1.586242	1 -0.443819 3.320757 -1.642103	1 0.828379 2.677923 2.173911
8	0.399840 -0.079719 -1.404014	8 -0.072957 -0.544414 -0.431706	8 0.150568 -0.120607 -0.675219
7	-1.440285 1.039886 0.975033	7 -0.127750 0.932747 1.157305	7 -0.867678 1.978000 -0.796292
6	-0.501488 0.866527 2.065694	6 1.142604 1.360095 1.748085	6 -2.273772 1.738716 -0.531003
1	0.351714 0.270148 1.736015	1 1.958446 0.787326 1.302633	1 -2.463140 0.669808 -0.426074
1	-0.118732 1.841007 2.385977	1 1.312690 2.430197 1.604350	1 -2.635054 2.243235 0.379180
1	-0.942141 0.380372 2.951734	1 1.112105 1.153178 2.819072	1 -2.866377 2.108615 -1.371725
6	-2.613134 1.797282 1.362745	6 -1.310913 1.510266 1.796949	6 -0.544859 3.379349 -0.953404
1	-2.329295 2.819495 1.632915	1 -1.343837 2.594479 1.655716	1 -0.763499 3.991088 -0.064180
1	-3.312072 1.856714 0.525729	1 -2.200368 1.050855 1.360915	1 0.513799 3.495662 -1.193749
1	-3.148995 1.367426 2.225282	1 -1.281262 1.296767 2.866690	1 -1.122988 3.790423 -1.785659
1	-1.728011 0.127046 0.617302	1 -0.137694 -0.256114 0.865402	1 0.049404 0.052827 -1.616417
1	1.807115 2.243294 -1.675788	1 0.786142 1.202989 -2.186076	1 0.553108 0.200359 1.764578
1	2.162512 -0.746557 -0.283120	1 1.882779 -1.129201 -0.352263	1 -1.375827 -1.606774 -0.154167
7	2.925196 -0.852435 0.377805	7 2.857235 -1.193214 -0.055835	7 -2.263793 -2.074895 -0.006549
6	2.843564 -2.140602 1.032155	6 3.024050 -2.320175 0.837608	6 -2.689078 -2.728918 -1.225459
1	3.579019 -2.192612 1.840933	1 4.025879 -2.304743 1.278999	1 -3.711861 -3.100314 -1.109678
1	1.855765 -2.269490 1.479434	1 2.301456 -2.257903 1.654530	1 -2.692421 -2.013201 -2.050560
1	3.030031 -2.996682 0.360497	1 2.894453 -3.299460 0.345783	1 -2.057636 -3.586170 -1.517071
6	4.191452 -0.645832 -0.291963	6 3.726827 -1.270402 -1.210718	6 -2.172209 -2.983594 1.116269
1	4.183923 0.312812 -0.814862	1 3.517021 -0.442370 -1.891121	1 -1.791304 -2.454795 1.992380
1	4.999510 -0.612411 0.445327	1 4.773032 -1.186434 -0.899225	1 -3.167249 -3.363270 1.367864
1	4.443700 -1.432696 -1.023944	1 3.625465 -2.210686 -1.779395	1 -1.521631 -3.856193 0.932745
1	-1.239091 -1.445919 -0.988523	1 -2.062525 -1.023607 -0.447723	1 2.212710 -0.710553 -0.251991
7	-2.075800 -1.695776 -0.469786	7 -3.050200 -0.923723 -0.211856	7 3.200525 -0.649443 -0.029892
6	-3.214903 -1.738127 -1.366708	6 -3.831368 -0.728193 -1.415325	6 3.612963 -1.802133 0.741787
1	-3.167200 -2.558310 -2.101412	1 -3.859552 -1.612334 -2.074986	1 3.587710 -2.751169 0.178268
1	-4.135667 -1.864821 -0.789844	1 -4.865463 -0.480412 -1.154784	1 4.637352 -1.660852 1.099689
1	-3.292753 -0.796529 -1.913890	1 -3.426381 0.106739 -1.991352	1 2.971456 -1.912045 1.618574
6	-1.869481 -2.948958 0.230950	6 -3.488416 -2.073792 0.551111	6 3.971459 -0.479112 -1.242189

1 -1.767972 -3.817481 -0.439866	1 -3.508671 -3.010958 -0.031098 1 3.967531 -1.36	01774 -1.906048
1 -0.969759 -2.886753 0.845576	1 -2.828055 -2.225298 1.407837 1 3.590835 0.37	3326 -1.809280
1 -2.714866 -3.143247 0.897438	1 -4.499131 -1.905495 0.936873 1 5.014641 -0.26	64927 -0.990496
Pre-reacting Complex	TS-If Carbinolamine + me	thanol + methanol
Et = -559.803116 NImag = 0	Et =-559.7719551 NImag=1 (-1564.72) Et = -559.81329	67 NImag = 0
6 0.764087 -0.074200 -0.858914	6 -0.068556 -0.594879 0.467079 6 0.824860 -0.60	02020 -0.133620
6 1.546121 -1.375562 -0.702014	6 1.091951 -0.813097 1.415141 6 0.660540 -0.23	37049 1.335545
1 1.278087 0.602443 -1.571337	1 -0.971359 -1.072251 0.873104 1 0.877219 -1.69	02646 -0.226692
1 1.092552 -1.965189 0.099332	1 2.019861 -0.449360 0.968970 1 0.603050 0.85	0669 1.430684
6 3.058557 -1.282662 -0.545679	6 1.222168 -2.250134 1.905915 6 1.766532 -0.79	9009 2.218052
1 3.364132 -0.951949 0.449993	1 1.436251 -2.949809 1.093911 1 2.742577 -0.37	1.967728
1 3.517712 -2.260873 -0.703008	1 2.033271 -2.339982 2.630856 1 1.571925 -0.57	/0447 3.267504
1 3.497840 -0.597331 -1.276549	1 0.303928 -2.585462 2.395719 1 1.836815 -1.88	36246 2.126777
8 -0.515062 -0.221693 -1.048454	8 -0.304244 0.726705 0.089434 8 -0.383367 -0.1	56544 -0.793666
7 0.944477 0.881826 0.524795	7 0.071465 -1.123537 -0.967740 7 1.949943 -0.07	1244 -0.855474
6 0.729883 0.139648 1.776775	6 1.426967 -1.354848 -1.474231 6 2.299742 1.31	.3692 -0.597429
1 -0.152458 -0.492505 1.674448	1 2.047305 -0.483802 -1.263963 1 1.402982 1.93	2177 -0.549800
1 1.601277 -0.478754 1.990721	1 1.875424 -2.249550 -1.035510 1 2.868256 1.45	0.335243
1 0.581731 0.841889 2.599826	1 1.370068 -1.485986 -2.555482 1 2.916110 1.68	3507 -1.420145
6 2.126476 1.753234 0.560127	6 -0.892174 -2.156306 -1.349980 6 3.098845 -0.94	0782 -0.997234
1 3.025605 1.166786 0.733779	1 -0.643374 -3.117769 -0.891758 1 3.733060 -0.99	0141 -0.099107
1 2.212343 2.273932 -0.393036	1 -1.887983 -1.845397 -1.033042 1 2.773652 -1.95	3971 -1.240921
1 2.020120 2.491290 1.357811	1 -0.883858 -2.269737 -2.434688 1 3.720794 -0.58	32873 -1.821894
1 0.120572 1.492147 0.373857	1 -0.259956 0.073933 -1.039473 1 -0.158686 -0.13	31512 -1.730529
1 -1.329024 -1.301769 -0.037236	1 1.215984 1.617968 -0.133396 1 -0.997213 1.59	99795 -0.348644
8 -1.699061 -1.838690 0.702927	8 2.131630 1.853731 -0.383548 8 -1.112321 2.54	44651 -0.180628
6 -2.661906 -2.729736 0.206855	6 2.359189 3.213363 -0.112942 6 -2.381573 2.76	62339 0.387698
1 -2.248221 -3.416394 -0.543969	1 2.226648 3.454221 0.949910 1 -2.511823 2.22	25906 1.336177
1 -3.034030 -3.328903 1.040867	1 3.391595 3.442292 -0.383744 1 -2.473052 3.83	30409 0.588779
1 -3.518768 -2.210903 -0.243715	1 1.702419 3.870422 -0.697714 1 -3.196508 2.4	74285 -0.288476
1 1.312757 -1.914222 -1.625189	1 0.893766 -0.151790 2.263641 1 -0.306766 -0.6	31251 1.659788

1 -1.191648 1.271588 -0.933059	1 -2.083148 0.797111 0.143710	1 -1.774717 -1.416228 -0.381966
8 -1.253671 2.196293 -0.563730	8 -3.007338 0.484024 0.091654	8 -2.335115 -2.146179 -0.088369
6 -2.590696 2.514395 -0.253185	6 -3.879182 1.552688 0.357957	6 -3.679015 -1.826783 -0.355253
1 -3.043000 1.778157 0.421813	1 -3.780929 2.364255 -0.374987	1 -3.871811 -1.687436 -1.426925
1 -2.604898 3.488862 0.238371	1 -4.901476 1.173629 0.304528	1 -4.290264 -2.661639 -0.010201
1 -3.206796 2.580924 -1.157031	1 -3.727259 1.975424 1.359635	1 -4.008351 -0.924280 0.175683
Pre-reacting complex	TS-Ig	Carbinolamine + amine + amine
Et = -598.6828608 NImag = 0	Et =-598.6618454 NImag=1 (-459.05)	Et = -598.6622252 NImag = 0
6 1.774637 -0.962606 -0.886788	6 -1.102148 -0.689997 0.341028	6 -1.125278 -0.654473 0.358181
6 3.259258 -0.759621 -0.877435	6 -2.400184 -1.526055 0.484141	6 -2.406760 -1.526610 0.436738
1 1.225007 -0.360007 -1.632303	1 -0.588254 -0.760688 1.336373	1 -0.639219 -0.757289 1.363903
1 3.610014 -0.995196 -1.891699	1 -2.091749 -2.444572 0.994785	1 -2.097095 -2.450966 0.936289
6 4.002263 -1.566669 0.170903	6 -3.060073 -1.914242 -0.833014	6 -3.015675 -1.897061 -0.909771
1 3.828575 -2.635985 0.040880	1 -2.290348 -2.248415 -1.530634	1 -2.217708 -2.201917 -1.589016
1 5.076550 -1.383339 0.109630	1 -3.778767 -2.724553 -0.683707	1 -3.724153 -2.723186 -0.802356
1 3.667332 -1.303419 1.175269	1 -3.596942 -1.085619 -1.299680	1 -3.551888 -1.067333 -1.375015
8 1.187607 -1.745985 -0.177378	8 -0.349838 -1.011031 -0.690885	8 -0.329164 -0.953102 -0.660974
7 1.138144 1.702431 0.309330	7 -1.378639 0.850414 0.316928	7 -1.416209 0.860824 0.362051
6 1.355724 1.475863 1.722897	6 -2.160815 1.265671 -0.840384	6 -2.197938 1.293375 -0.785716
1 0.978944 0.489876 2.002074	1 -1.805844 0.703812 -1.704610	1 -1.828546 0.769473 -1.667920
1 2.427787 1.496325 1.945672	1 -3.231130 1.073834 -0.700632	1 -3.269107 1.078423 -0.668012
1 0.872902 2.226415 2.372131	1 -2.033844 2.338144 -1.023573	1 -2.093357 2.374189 -0.935214
6 1.582792 3.012396 -0.117558	6 -1.919865 1.389883 1.553313	6 -1.977188 1.361350 1.602381
1 2.669771 3.096099 -0.010757	1 -2.965900 1.099877 1.713576	1 -3.019260 1.046190 1.759456
1 1.341593 3.162231 -1.172290	1 -1.333354 1.025448 2.400372	1 -1.386189 0.999615 2.448082
1 1.134507 3.842837 0.454808	1 -1.875415 2.483785 1.543839	1 -1.960815 2.456433 1.612402
1 0.143477 1.592288 0.094944	1 -0.030971 1.249991 0.102375	1 0.132382 1.266877 0.081387
1 -0.888507 -1.844823 0.080938	1 1.274638 -1.284609 -0.157898	1 1.238961 -1.262816 -0.123348
7 -1.892126 -1.764690 0.226150	7 2.249754 -1.098593 0.170446	7 2.228313 -1.086244 0.190987
6 -2.204310 -2.089017 1.605846	6 3.191891 -1.540432 -0.841140	6 3.152855 -1.607074 -0.799859
1 -1.610625 -1.465082 2.276540	1 2.916699 -1.122972 -1.811614	1 2.879188 -1.239684 -1.790770

1 -3 260510 -1 885168 1 806354	1 4 205314 -1 201610 -0 599185	1 4 176526 -1 281294 -0 584300
1 -2 013919 -3 143667 1 862274	1 3 224028 -2 636053 -0 946144	1 3 155120 -2 706686 -0 841132
1 3.417417 0.317539 -0.760531	1 -3.115008 -1.038950 1.159406	1 -3.154422 -1.069395 1.097498
1 -1.992078 0.310268 -0.151948	1 1.631791 0.594454 0.080677	1 1.696546 0.541869 0.044783
7 -1.921261 1.314153 -0.341095	7 1.118903 1.488504 -0.146622	7 1.184936 1.454075 -0.190714
6 -2.227898 1.563397 -1.735876	6 1.655328 2.597752 0.640719	6 1.747546 2.578096 0.561012
1 -2.035480 2.612559 -1.981913	1 1.101815 3.513895 0.425181	1 1.201618 3.494626 0.331854
1 -1.586060 0.950886 -2.372788	1 1.557952 2.371343 1.702742	1 1.666775 2.375367 1.628661
1 -3.276596 1.349342 -2.002089	1 2.711316 2.766937 0.413799	1 2.799365 2.718712 0.305465
6 -2.587904 -2.622065 -0.715113	6 2.494068 -1.729252 1.454027	6 2.466712 -1.646409 1.508670
1 -2.275523 -2.385972 -1.734290	1 1.741572 -1.409440 2.177631	1 1.729030 -1.263667 2.216722
1 -2.412006 -3.696408 -0.543184	1 2.466789 -2.828953 1.404148	1 2.406073 -2.745138 1.521756
1 -3.666287 -2.449175 -0.649174	1 3.478101 -1.441283 1.840087	1 3.462157 -1.366157 1.870652
6 -2.799063 2.041907 0.554632	6 1.227621 1.684718 -1.596773	6 1.240712 1.614718 -1.651283
1 -2.574049 1.779113 1.590245	1 0.784513 0.811424 -2.074951	1 0.759309 0.737124 -2.082131
1 -2.639536 3.119060 0.443476	1 0.683439 2.583124 -1.894299	1 0.704717 2.517675 -1.947490
1 -3.869860 1.846518 0.377022	1 2.273201 1.789348 -1.897753	1 2.278120 1.687718 -1.982808
Pre-reacting Complex	TS-Ih	Carbinolamine + methanol +methanol
Et = -559.8125664 NImag = 0	Et =-559.8021286 NImag=1 (-519.93)	Et = -559.8251292 NImag = 0
6 1.320657 -0.865421 -0.880142	6 0.942197 -0.363754 -0.606835	6 1.049681 -0.351412 -0.589458
6 2.799699 -0.641432 -0.862902	6 2.410445 -0.568975 -0.973227	6 2.527497 -0.657825 -0.863912
1 0.760924 -0.293651 -1.638323	1 0.387616 -0.102936 -1.524016	1 0.568602 -0.198469 -1.566562
1 3.160474 -0.928728 -1.860658	1 2.377359 -1.306461 -1.780442	1 2.524485 -1.391533 -1.675835
6 3.541326 -1.388178 0.230311	6 3.309747 -1.104311 0.134198	6 3.335248 -1.228624 0.296914
1 3.380831 -2.464252 0.150767	1 2.825122 -1.940804 0.638840	1 2.805222 -2.063093 0.757315
1 4.613778 -1.195313 0.168702	1 4.253751 -1.458279 -0.285341	1 4.298391 -1.597386 -0.064174
1 3.194498 -1.079180 1.217391	1 3.555838 -0.349513 0.883795	1 3.541769 -0.490076 1.072441
8 0.750774 -1.669781 -0.172250	8 0.423013 -1.416079 0.038221	8 0.494855 -1.442781 0.065967
7 0.631165 1.669152 0.266991	7 0.686342 0.933310 0.248469	7 0.743136 0.901520 0.149971
6 0.984689 1.631578 1.672108	6 1.047664 0.802279 1.671283	6 1.172172 0.920903 1.543329

1 2.072100 1.690825 1.785923	1 2.111837 0.984396 1.813605	1 2.242692 1.137070 1.656008	
1 0.545830 2.455641 2.258066	1 0.470176 1.525505 2.247217	1 0.614586 1.692548 2.080873	
6 0.994498 2.920451 -0.365850	6 1.215233 2.162340 -0.355848	6 1.178823 2.092796 -0.558828	
1 2.083870 3.034354 -0.378184	1 2.300028 2.202050 -0.258739	1 2.270674 2.223569 -0.554430	
1 0.647592 2.928827 -1.401541	1 0.942235 2.190425 -1.411090	1 0.843313 2.052884 -1.598155	
1 0.579000 3.808282 0.139310	1 0.778401 3.027037 0.145082	1 0.739277 2.978047 -0.092399	
1 -0.371252 1.516662 0.167633	1 -0.399989 1.026202 0.221061	1 -1.027718 1.075043 0.249562	
1 -1.023480 -1.782316 -0.185528	1 -0.683184 -1.446462 -0.122478	1 -0.464505 -1.491805 -0.121154	
8 -1.997833 -1.722097 -0.171962	8 -1.955800 -1.293708 -0.336042	8 -2.199401 -1.452247 -0.440760	
6 -2.511083 -2.691142 0.718174	6 -2.789346 -2.209077 0.312493	6 -3.071675 -2.312807 0.260197	
1 -2.150135 -2.539642 1.741470	1 -2.712100 -2.148266 1.409093	1 -2.958655 -2.215962 1.345888	
1 -3.597802 -2.600794 0.718100	1 -3.839973 -2.038197 0.045224	1 -4.118069 -2.123912 -0.003170	
1 -2.250370 -3.705510 0.398662	1 -2.540667 -3.236725 0.019879	1 -2.827858 -3.337328 -0.022378	
1 2.951114 0.440580 -0.803001	1 2.828965 0.338387 -1.420053	1 3.013336 0.235045 -1.270175	
1 -2.309317 0.010471 -0.026946	1 -2.063855 -0.050375 -0.006079	1 -2.357243 -0.524086 -0.171651	
8 -2.321410 0.985116 0.029414	8 -1.907904 1.029024 0.245678	8 -2.019718 1.101842 0.316233	
6 -3.411237 1.480916 -0.710063	6 -2.751688 1.873337 -0.490620	6 -2.527754 2.266377 -0.294202	
1 -3.387081 2.570530 -0.653923	1 -2.437416 2.916045 -0.371649	1 -2.195652 3.172501 0.225277	
1 -3.362766 1.190437 -1.766800	1 -2.744399 1.635697 -1.563064	1 -2.240495 2.341312 -1.349809	
1 -4.372007 1.143062 -0.302627	1 -3.788052 1.801568 -0.138756	1 -3.616659 2.228069 -0.240427	
Pre-reacting Complex	TS-Ii	Carbinolamine + amine + amine	
Et =-598.6762355 NImag = 0	Et = -598.6394245 NImag=1 (-1515.74)	Et = -598.6880329 NImag = 0	
6 1.295960 -1.832725 0.599070	6 1.801485 -0.964337 0.193862	6 2.004528 -0.773567 -0.417554	
6 1.028496 -0.866331 1.720048	6 1.413043 -0.314193 1.510382	6 1.727432 -0.994645 1.065599	
1 2.335925 -2.204825 0.515378	1 2.715418 -1.567496 0.350096	1 2.826499 -1.435777 -0.722725	
1 0.520614 0.004064 1.291084	1 0.631144 0.429459 1.338585	1 0.922051 -0.323392 1.375979	
6 2.276961 -0.467110 2.489392	6 2.582062 0.267495 2.295667	6 2.952073 -0.810841 1.950854	
1 2.999444 0.009438 1.824255	1 3.073914 1.086983 1.765225	1 3.316092 0.218248 1.933457	
1 2.036502 0.237147 3.287529	1 2.249873 0.661494 3.258343	1 2.719163 -1.057040 2.988903	
1 2.760529 -1.333684 2.948678	1 3.339868 -0.494955 2.497324	1 3.774313 -1.459664 1.635942	
8 0.446569 -2.246073 -0.156942	8 0.812703 -1.619923 -0.479432	8 0.816333 -1.161511 -1.103750	

7 2.470503 0.208147 -1.060213	7 2.162849 0.006850 -0.973860	7 2.380983 0.553325 -0.848281
6 2.319758 1.622977 -0.771007	6 1.695943 1.393744 -0.888268	6 1.646871 1.660029 -0.262625
1 1.358162 1.796793 -0.283139	1 0.651301 1.424751 -0.567596	1 0.578638 1.441084 -0.209058
1 3.113782 1.942117 -0.089234	1 2.310518 1.975985 -0.196711	1 1.997466 1.923202 0.748516
1 2.380082 2.261467 -1.667789	1 1.771595 1.843966 -1.879974	1 1.773188 2.543718 -0.893594
6 3.678555 -0.101359 -1.799427	6 3.525637 -0.112917 -1.486746	6 3.797586 0.812943 -0.981095
1 4.552901 0.127494 -1.183478	1 4.245718 0.345880 -0.803518	1 4.310317 1.004822 -0.025265
1 3.707848 -1.167007 -2.035477	1 3.772144 -1.167546 -1.610962	1 4.290431 -0.031781 -1.467151
1 3.779201 0.464104 -2.740222	1 3.595483 0.383087 -2.456038	1 3.944262 1.692894 -1.613595
1 1.662078 -0.122310 -1.571575	1 1.323701 -0.764940 -1.384543	1 0.889116 -0.764560 -1.976556
1 0.295615 -1.348796 2.378573	1 0.946481 -1.116328 2.089894	1 1.341613 -2.012882 1.171496
1 -1.522979 -1.512351 -0.409335	1 -1.088537 -1.519837 -0.169512	1 -1.188835 -1.429778 -0.451872
7 -2.411049 -1.033058 -0.533444	7 -2.099313 -1.378315 -0.083107	7 -2.179960 -1.438297 -0.226548
6 -2.809530 -1.106614 -1.926507	6 -2.756188 -1.884885 -1.271783	6 -2.937971 -1.864875 -1.386733
1 -3.692305 -0.482348 -2.094455	1 -3.819755 -1.624689 -1.256017	1 -4.008751 -1.749004 -1.194261
1 -2.007615 -0.726656 -2.562460	1 -2.314546 -1.430645 -2.161171	1 -2.687445 -1.238530 -2.245338
1 -3.054850 -2.127978 -2.260000	1 -2.682979 -2.979841 -1.379670	1 -2.761955 -2.916800 -1.666251
6 -3.401242 -1.607996 0.357233	6 -2.579406 -2.020920 1.123530	6 -2.413051 -2.281261 0.929770
1 -3.031080 -1.591661 1.384312	1 -2.016512 -1.659351 1.986881	1 -1.779790 -1.958566 1.758467
1 -4.319675 -1.014151 0.325652	1 -3.633751 -1.775583 1.288340	1 -3.454401 -2.189140 1.252635
1 -3.667949 -2.647520 0.106007	1 -2.494287 -3.120235 1.098999	1 -2.216451 -3.350128 0.743201
1 -1.705062 0.901281 0.062526	1 -1.893609 0.704532 -0.011295	1 -2.174843 0.684574 0.149047
7 -1.268074 1.782754 0.339841	7 -1.664572 1.703608 -0.004876	7 -2.014778 1.682788 0.289977
6 -1.498816 2.781526 -0.683031	6 -2.243179 2.339952 -1.169981	6 -2.640150 2.437131 -0.774096
1 -2.556498 3.081789 -0.780457	1 -3.346459 2.365142 -1.159578	1 -3.743867 2.395478 -0.763453
1 -0.922349 3.686059 -0.462869	1 -1.894426 3.375397 -1.247798	1 -2.353774 3.491784 -0.705140
1 -1.165007 2.406037 -1.652766	1 -1.928837 1.815389 -2.075121	1 -2.298167 2.066900 -1.743213
6 -1.770801 2.194449 1.633822	6 -2.122726 2.301719 1.231734	6 -2.481117 2.078782 1.600685
1 -1.633255 1.390880 2.360750	1 -1.722719 1.748167 2.084121	1 -2.027401 1.443606 2.364694
1 -1.212307 3.064534 1.994044	1 -1.763486 3.333480 1.308659	1 -2.181189 3.110933 1.809732
1 -2.840015 2.468874 1.629171	1 -3.221658 2.328171 1.331015	1 -3.577857 2.024997 1.720525

Pre-reacting Complex	TS-Ij	Carbinolamine + methanol + methanol
Et = -559.8104737 - NImag = 0	Et = -559.7743539 NImag=1 (-1536.81)	Et = NImag = 0
6 -0.849235 -1.701433 0.328619	6 1.314183 -0.710541 0.554241	6 1.439074 -0.862234 0.072527
6 -0.939148 -1.578652 -1.167359	6 0.856331 0.420841 1.454483	6 0.968017 -0.264058 1.392201
1 -1.802333 -1.814697 0.873439	1 2.189186 -1.203548 1.010026	1 2.220198 -1.604848 0.277866
1 -0.443542 -0.645008 -1.449310	1 0.100836 1.023986 0.945420	1 0.207969 0.494604 1.188066
6 -2.363398 -1.638266 -1.695460	6 1.994426 1.279431 1.992936	6 2.099985 0.317610 2.227427
1 -2.970547 -0.839271 -1.266062	1 2.529730 1.805880 1.198330	1 2.575475 1.167837 1.734417
1 -2.382445 -1.528800 -2.780997	1 1.617664 2.036533 2.683233	1 1.725609 0.667513 3.191405
1 -2.841237 -2.591072 -1.452484	1 2.724798 0.673363 2.536699	1 2.875128 -0.427885 2.426772
8 0.199571 -1.773744 0.938268	8 0.348431 -1.604130 0.145826	8 0.307786 -1.545655 -0.489579
7 -1.494315 0.921211 0.767259	7 1.764439 -0.327104 -0.877216	7 1.976979 0.025927 -0.927278
6 -2.606239 1.721059 0.293363	6 1.300812 0.955410 -1.417811	6 1.305139 1.301667 -1.103087
1 -2.660461 1.675064 -0.796189	1 0.235013 1.083940 -1.225812	1 0.221829 1.184629 -1.061182
1 -3.546642 1.329649 0.694022	1 1.856194 1.790724 -0.984029	1 1.598496 2.049251 -0.349631
1 -2.539701 2.782234 0.585221	1 1.463780 0.951143 -2.496680	1 1.560833 1.704677 -2.086130
6 -1.306355 1.019130 2.201443	6 3.161706 -0.614640 -1.194129	6 3.418822 0.124950 -0.997262
1 -2.191458 0.634514 2.717841	1 3.830760 0.110109 -0.721887	1 3.859905 0.769285 -0.220717
1 -0.453039 0.409419 2.503120	1 3.413577 -1.615593 -0.843503	1 3.868612 -0.866536 -0.913611
1 -1.139759 2.050290 2.552386	1 3.304183 -0.572755 -2.274748	1 3.703475 0.539380 -1.968133
1 -0.642852 1.207185 0.288035	1 0.931622 -1.220735 -0.981071	1 0.496907 -1.611668 -1.430684
1 1.767517 -1.224076 0.297553	1 -1.246707 -1.323391 0.393573	1 -1.411681 -1.322487 -0.001642
8 2.538988 -0.733974 -0.045970	8 -2.206365 -1.075854 0.466804	8 -2.333226 -1.106291 0.226496
6 3.579344 -0.776167 0.908553	6 -3.000359 -2.165398 0.062594	6 -3.185766 -2.127808 -0.242899
1 3.904391 -1.803954 1.100102	1 -2.812961 -3.050033 0.681517	1 -2.930539 -3.098504 0.195748
1 4.425350 -0.219767 0.503676	1 -4.049447 -1.885900 0.177152	1 -4.203419 -1.875037 0.056159
1 3.283136 -0.317818 1.858705	1 -2.829130 -2.435042 -0.987096	1 -3.160641 -2.216517 -1.335420
1 -0.325563 -2.384371 -1.586892	1 0.338691 -0.067278 2.285450	1 0.466542 -1.060426 1.949681
1 1.704898 0.735282 -0.575603	1 -2.154876 0.483518 -0.306641	1 -2.379117 0.639344 -0.246155
8 1.064337 1.429908 -0.822952	8 -1.936847 1.352325 -0.703442	8 -2.201390 1.559413 -0.505048
6 1.702737 2.401862 -1.616468	6 -2.932778 2.280489 -0.355240	6 -2.994796 2.414101 0.278989

1 2.504159 2.917708 -1.073370	1 -3.912939 2.012721 -0.770625	1 -4.068301 2.266795 0.101458
1 2.124817 1.971831 -2.532610	1 -3.039557 2.388424 0.731780	1 -2.805462 2.291879 1.353444
1 0.956108 3.144464 -1.902304	1 -2.649175 3.251381 -0.766543	1 -2.748882 3.442129 0.006906
Pre-reacting Complex	TS-Ik	Carbinolamine + methanol + methanol
Et = -559.8106867 NImag = 0	Et = -559.7978817 NImag=1 (-550.64)	Et =-559.8192468 NImag = 0
6 1.092052 -1.328371 -0.069842	6 1.449593 0.687675 -0.172700	6 1.531223 0.062092 -0.707153
6 2.582020 -1.422837 0.104177	6 2.800825 0.259232 -0.727915	6 2.773824 -0.821396 -0.775286
1 0.728346 -0.987363 -1.054284	1 1.588269 1.220606 0.788931	1 1.815605 1.095485 -0.957941
1 2.845568 -0.820208 0.977417	1 2.633658 -0.330327 -1.633304	1 2.485662 -1.846942 -0.528478
6 3.371827 -1.004839 -1.125054	6 3.774900 -0.437170 0.214342	6 3.958940 -0.375561 0.070249
1 3.151358 0.028667 -1.396310	1 3.498339 -1.473461 0.421786	1 3.784070 -0.509519 1.139109
1 4.445377 -1.085174 -0.946467	1 4.773071 -0.463145 -0.227412	1 4.845235 -0.960269 -0.184663
1 3.134183 -1.636304 -1.985135	1 3.857924 0.086774 1.170831	1 4.203494 0.676882 -0.099371
8 0.307773 -1.705787 0.779187	8 0.728113 1.343752 -1.078759	8 0.652112 -0.459264 -1.669786
7 0.955071 1.355349 0.217846	7 0.550460 -0.539742 0.315410	7 0.828541 0.163677 0.585684
6 1.039496 1.499667 1.657145	6 0.378918 -1.569764 -0.725669	6 0.554757 -1.121043 1.219105
1 0.482820 0.695658 2.142512	1 0.250167 -1.058345 -1.678201	1 0.169998 -1.815721 0.473018
1 2.083938 1.427766 1.977892	1 1.260090 -2.210803 -0.754351	1 1.446782 -1.557680 1.688993
1 0.649307 2.461941 2.025201	1 -0.516930 -2.146482 -0.501343	1 -0.210970 -0.992311 1.986339
6 1.670991 2.396409 -0.493070	6 0.844461 -1.106190 1.641886	6 1.374252 1.135597 1.521881
1 2.743631 2.323282 -0.287193	1 1.737334 -1.725243 1.604279	1 2.295718 0.803462 2.015011
1 1.524700 2.279396 -1.568712	1 0.995514 -0.292644 2.350949	1 1.582237 2.074535 1.004342
1 1.352383 3.414478 -0.215628	1 -0.006536 -1.707991 1.961440	1 0.634001 1.334310 2.301074
1 -0.023617 1.365718 -0.068252	1 -0.357278 -0.024000 0.403130	1 -0.736893 0.801477 0.053464
1 -1.434641 -1.500737 0.546967	1 -0.384818 1.472110 -0.618780	1 -0.169873 0.049320 -1.644341
8 -2.359117 -1.266162 0.334100	8 -1.396876 1.303451 -0.008535	8 -1.545972 1.005497 -0.485946
6 -3.019953 -2.390740 -0.203743	6 -1.823606 2.424422 0.714782	6 -1.838393 2.388865 -0.442462
1 -3.034451 -3.224208 0.506380	1 -2.370897 3.130601 0.076490	1 -2.687947 2.571570 -1.100587
1 -4.050685 -2.103517 -0.414187	1 -2.493658 2.124600 1.529412	1 -2.109618 2.713565 0.567576
1 -2.559293 -2.732009 -1.138150	1 -0.981044 2.971185 1.162219	1 -0.995173 2.992876 -0.795686
1 2.797064 -2.460451 0.383786	1 3.238106 1.199407 -1.074102	1 3.061007 -0.839319 -1.829907

1 -2.212624 0.348285 -0.363492	1 -2.376881 -0.103386 0.009913	1 -2.837693 -0.105821 0.249843
8 -1.947857 1.236788 -0.669089	8 -2.672066 -1.031619 0.141514	8 -3.450725 -0.678839 0.734945
6 -2.989400 2.145974 -0.401486	6 -3.889491 -1.238082 -0.529074	6 -4.127811 -1.497123 -0.185499
1 -2.654839 3.139008 -0.706144	1 -4.184069 -2.279701 -0.385486	1 -4.800252 -2.145362 0.378921
1 -3.897684 1.906881 -0.967945	1 -4.693441 -0.603933 -0.133993	1 -4.734307 -0.918037 -0.894487
1 -3.244917 2.181169 0.664471	1 -3.807110 -1.053041 -1.607952	1 -3.444948 -2.135977 -0.760718
Pre-reacting Complex	TS-I/	Carbinolamine + aimne + amine
Et = -598.6774209 NImag = 0	Et = -598.6577677 NImag=1 (-1082.87)	Et = -598.6926595 NImag = 0
6 0.283103 1.077478 -1.008179	6 -0.296352 0.768197 -0.395744	6 0.478630 -0.923739 -0.333757
6 1.072370 2.128789 -0.293538	6 0.374540 2.106428 -0.067462	6 -0.305488 -2.213297 -0.095837
1 -0.602153 1.446065 -1.559581	1 -0.519737 0.756199 -1.487560	1 0.589105 -0.779441 -1.419884
1 0.426951 2.479267 0.519767	1 0.518644 2.166369 1.015718	1 -0.430970 -2.349040 0.982699
6 1.417289 3.299849 -1.212786	6 -0.271502 3.379366 -0.602050	6 0.293012 -3.464440 -0.724018
1 0.520732 3.736435 -1.660791	1 -1.179207 3.656731 -0.060431	1 1.228329 -3.761795 -0.246002
1 1.923418 4.087433 -0.652596	1 0.417822 4.222506 -0.514540	1 -0.398718 -4.304697 -0.632655
1 2.081817 2.988242 -2.021721	1 -0.531651 3.283467 -1.660605	1 0.493883 -3.322457 -1.789867
8 0.564496 -0.100564 -1.036972	8 0.429798 -0.269983 0.029270	8 -0.299797 0.107263 0.222993
7 -2.158365 1.063405 0.805561	7 -1.743867 0.628653 0.198722	7 1.840610 -0.846275 0.200552
6 -1.840738 0.992662 2.216416	6 -1.791042 0.933857 1.625396	6 1.976270 -1.257167 1.583292
1 -0.952130 0.375789 2.367028	1 -0.921313 0.478185 2.100124	1 1.169019 -0.819692 2.171969
1 -1.619393 1.993288 2.602387	1 -1.777328 2.012660 1.810827	1 1.956830 -2.350317 1.720311
1 -2.653983 0.576106 2.835014	1 -2.701631 0.520801 2.068406	1 2.926484 -0.891272 1.982565
6 -3.367848 1.815233 0.544229	6 -2.820951 1.272413 -0.545314	6 2.892512 -1.364720 -0.648499
1 -3.226218 2.863891 0.825119	1 -2.846442 2.354485 -0.396915	1 2.967270 -2.462248 -0.661723
1 -3.600246 1.787870 -0.522690	1 -2.694985 1.074410 -1.611270	1 2.740878 -1.026694 -1.676380
1 -4.249820 1.443747 1.093573	1 -3.784504 0.861793 -0.228231	1 3.857664 -0.976867 -0.307635
1 -2.245902 0.119889 0.424270	1 -1.847531 -0.687871 0.077111	1 2.093284 1.551131 0.079624
1 -1.127460 -1.459299 -0.921435	1 -0.483887 -1.489591 -0.072048	1 0.179012 0.957129 0.089689
7 -2.023120 -1.781971 -0.568201	7 -1.495347 -1.900482 -0.072167	7 1.425204 2.308555 -0.037575
6 -2.915918 -2.067787 -1.674830	6 -1.853069 -2.487436 -1.355283	6 1.650541 2.990770 -1.299584
1 -2.601799 -2.931216 -2.283725	1 -1.312478 -3.423377 -1.531442	1 0.835867 3.695220 -1.485857

1 -3.919760 -2.279481 -1.295171	1 -2.925846 -2.696235 -1.402366	1 2.595623 3.554275 -1.327984
1 -2.985740 -1.197541 -2.330463	1 -1.597408 -1.792255 -2.156221	1 1.656867 2.266587 -2.116143
1 1.964508 1.674115 0.142437	1 1.380025 2.003971 -0.484593	1 -1.308659 -2.041042 -0.495376
6 -1.822699 -2.927588 0.299180	6 -1.739472 -2.772719 1.066978	6 1.470289 3.199622 1.108888
1 -1.093647 -2.682988 1.073799	1 -1.386918 -2.285874 1.976650	1 1.337637 2.625131 2.027043
1 -2.763082 -3.185263 0.795167	1 -2.807333 -2.985754 1.173092	1 2.411221 3.765660 1.183514
1 -1.469715 -3.826003 -0.232759	1 -1.208740 -3.724892 0.961048	1 0.650862 3.920055 1.044759
1 2.469268 -0.671107 -0.077856	1 2.360185 -0.165155 -0.042165	1 -2.392550 0.099318 0.000806
7 3.356173 -0.627793 0.412509	7 3.376243 -0.073688 -0.115518	7 -3.389832 0.012716 -0.170670
6 3.267164 -1.344756 1.666390	6 3.977940 -0.153031 1.194305	6 -4.097249 -0.149136 1.079736
1 3.159338 -2.437388 1.550327	1 3.900130 -1.151532 1.664145	1 -4.083105 0.749418 1.722600
1 4.168866 -1.166210 2.260251	1 5.043517 0.096708 1.138779	1 -5.146384 -0.395117 0.886026
1 2.415301 -0.979128 2.243721	1 3.504438 0.568781 1.863518	1 -3.663940 -0.975898 1.646259
6 4.420834 -1.112782 -0.439390	6 3.897430 -1.063013 -1.028270	6 -3.860534 1.142167 -0.940144
1 4.368370 -2.195541 -0.647784	1 3.817650 -2.102195 -0.656909	1 -3.838565 2.100084 -0.389476
1 4.402424 -0.582823 -1.393844	1 3.364384 -1.005645 -1.979946	1 -3.253880 1.255806 -1.841114
1 5.389928 -0.915714 0.029295	1 4.957419 -0.872577 -1.230929	1 -4.894448 0.973320 -1.258321
Pre-reacting Complex	TS-Im	Carbinolamine + aimne + amine
Et ==-559.8023626 NImag = 0	Et = -559.7959323 NImag=1 (-814.85)	Et = -559.8193765 NImag = 0
6 0.660935 -0.055186 -0.812307	6 0.613054 -0.355560 -0.749425	6 -0.327712 0.698733 -0.697788
6 1.335921 -1.419330 -0.933558	6 0.484418 -1.869978 -0.824706	6 0.552205 1.944329 -0.743378
1 1.189322 0.694729 -1.437415	1 1.407069 -0.017293 -1.438019	1 -1.109681 0.785014 -1.465077
1 0.870985 -2.107748 -0.222914	1 -0.273332 -2.198735 -0.108996	1 1.338544 1.848870 0.010169
6 2.856348 -1.478925 -0.858873	6 1.764233 -2.685616 -0.688515	6 -0.181583 3.269857 -0.593567
1 3.235860 -1.379228 0.160889	1 2.146549 -2.706281 0.334769	1 -0.574949 3.416573 0.413930
1 3.215784 -2.440725 -1.230530	1 1.579924 -3.722989 -0.974373	1 0.496916 4.100804 -0.796877
1 3.323709 -0.700996 -1.470008	1 2.558998 -2.306138 -1.337317	1 -1.017144 3.351537 -1.294847
8 -0.635398 -0.078248 -0.932391	8 -0.581519 0.245496 -0.999011	8 0.527339 -0.382589 -1.012031
7 0.993524 0.636366 0.688787	7 1.120540 0.185443 0.617549	7 -1.043218 0.409381 0.553031
6 0.698329 -0.270931 1.809250	6 0.426109 -0.397123 1.779116	6 -0.235652 0.528683 1.760979
1 -0.246364 -0.780345 1.615506	1 -0.644469 -0.431958 1.578201	1 0.726433 0.035813 1.620441

1 1.497715 -1.005721 1.903866	1 0.796306 -1.404072 1.978293	1 -0.055884 1.573712 2.050016
1 0.624555 0.300360 2.736470	1 0.609756 0.233481 2.649520	1 -0.753801 0.035934 2.586987
6 2.280036 1.332634 0.825318	6 2.579536 0.210206 0.782291	6 -2.339171 1.056061 0.687709
1 3.092962 0.616031 0.910020	1 2.983606 -0.793246 0.905313	1 -2.279800 2.126042 0.924933
1 2.442057 1.957810 -0.052670	1 3.032632 0.676531 -0.092273	1 -2.909953 0.942224 -0.236433
1 2.266286 1.965554 1.714944	1 2.824731 0.803730 1.664072	1 -2.898729 0.571095 1.492113
1 0.258018 1.363268 0.667223	1 0.767385 1.250992 0.507529	1 -1.398650 -1.418453 0.293767
1 -1.239409 1.364946 -0.465486	1 -0.458274 1.355717 -0.643882	1 0.011090 -1.206451 -0.965641
8 -1.247147 2.195189 0.089068	8 -0.053598 2.307692 0.034045	8 -1.253702 -2.288121 -0.137985
6 -1.694196 3.302470 -0.654493	6 0.363251 3.463253 -0.632728	6 -2.480759 -2.895481 -0.473327
1 -2.744053 3.191934 -0.949023	1 -0.497825 4.047964 -0.979880	1 -2.258410 -3.827225 -0.994009
1 -1.611109 4.192530 -0.028013	1 0.946969 4.107474 0.036212	1 -3.071200 -3.136241 0.417995
1 -1.097506 3.462615 -1.561426	1 0.987917 3.246641 -1.513932	1 -3.088262 -2.268798 -1.137819
1 1.010445 -1.764177 -1.919386	1 0.045886 -2.045715 -1.810620	1 1.060982 1.914150 -1.710714
1 -1.431097 -1.377613 -0.161109	1 -1.989492 -0.515530 -0.227822	1 2.184657 -0.468384 -0.156725
8 -1.756419 -2.086955 0.439832	8 -2.603371 -0.982969 0.371793	8 2.948398 -0.417173 0.437557
6 -3.130504 -2.279100 0.231242	6 -3.894686 -0.448671 0.220745	6 3.826040 -1.477034 0.147564
1 -3.472049 -3.061612 0.912434	1 -4.556300 -0.967753 0.916796	1 4.671429 -1.404327 0.833565
1 -3.715709 -1.372670 0.437410	1 -3.931272 0.623700 0.451685	1 3.356543 -2.458836 0.290752
1 -3.354568 -2.603192 -0.793839	1 -4.288137 -0.595457 -0.793398	1 4.215910 -1.426555 -0.877218

Table S55. The mPW1PW91/6-311+G** Optimized Geometries (in Cartesian coordinates), Total Electronic Energies (in hartree/particle), and Number of Imaginary Frequencies (in cm⁻¹) of Pre-Reacting Complexes, Transition States and Final Products for the Dehydration step (**Step-II**) [Only in the case of **TS-IIi**, geometry (in Cartesian coordinates), Total Electronic Energies (in hartree/particle) are at the mPW1PW91/6-311g** level of theory]

Pre-reacting Complex	TS-II	Enamine
Et = -328.3353946 NImag = 0	Et =-328.2598271 NImag=1 (-667.13)	Et = -328.3225422 NImag = 0
6 0.232998 -0.338721 -0.172224	6 0.212150 -0.150276 0.535579	6 -0.290655 -0.612194 -0.484364
6 1.368811 0.669492 -0.215463	6 1.362433 -0.379820 -0.295229	6 -1.372020 -0.487124 0.308401
1 0.385306 -1.074297 -0.973706	1 0.354285 0.397989 1.459672	1 -0.431517 -0.637531 -1.562984
1 1.205078 1.322374 -1.076706	1 1.229065 -1.145431 -1.058024	1 -1.251996 -0.452853 1.386934
6 2.735471 0.004118 -0.297167	6 2.704322 -0.444025 0.411588	6 -2.773756 -0.498223 -0.218881
1 2.831890 -0.594405 -1.207707	1 2.844332 -1.374612 0.969048	1 -3.318630 -1.395108 0.095984
1 3.532780 0.750367 -0.307371	1 3.515296 -0.367471 -0.314484	1 -3.351686 0.359695 0.139591
1 2.896827 -0.653493 0.558303	1 2.815512 0.390903 1.107615	1 -2.787722 -0.475029 -1.311409
8 0.339968 -1.007250 1.090208	8 0.214754 1.851443 -0.661375	8 0.035081 2.489380 0.145880
7 -1.058640 0.252380 -0.422832	7 -1.030002 -0.494013 0.282182	7 1.024947 -0.745645 -0.107800
6 -1.463752 1.283359 0.515731	6 -1.396587 -1.070177 -1.000912	6 1.344566 -0.657855 1.296726
1 -1.602166 0.904676 1.539293	1 -1.370836 -0.290847 -1.767746	1 1.178720 0.350108 1.703993
1 -0.727854 2.086606 0.542630	1 -0.708120 -1.869072 -1.268839	1 0.735634 -1.367817 1.860370
1 -2.408909 1.714282 0.178692	1 -2.400443 -1.485840 -0.925757	1 2.393445 -0.920313 1.440427
6 -2.103526 -0.730598 -0.616359	6 -2.073153 0.284919 0.926741	6 2.025307 -0.208273 -1.008862

1 -2.997288 -0.243626 -1.013021	1 -3.013914 -0.264393 0.911204	1 2.989074 -0.681294 -0.809092
1 -1.779758 -1.477048 -1.346183	1 -1.795090 0.491847 1.959159	1 1.745525 -0.433578 -2.039402
1 -2.400758 -1.253227 0.310178	1 -2.159519 1.235744 0.386695	1 2.135179 0.879819 -0.909499
1 -0.186333 -1.807607 1.063500	1 0.121267 2.795924 -0.804813	1 -0.615726 3.191527 0.129428
1 1.321906 1.290842 0.683144	1 1.205162 0.688075 -0.804608	1 -0.476224 1.668862 0.105101
Pre-reacting Complex	TS-IIa	Enamine + amine
Et = -463.5121862 NImag = 0	Et =-463.4450588 Nimag=1(-479.42)	Et = -463.5011936 NImag = 0
6 -1.261951 0.295139 -0.682981	6 1.728638 0.372387 -0.229590	6 -2.180027 0.263603 0.086072
6 -0.758468 1.557741 -0.002054	6 1.975471 -0.910897 0.383504	6 -2.114643 -0.931079 -0.536082
1 -1.957118 0.580938 -1.482850	1 2.132047 0.530128 -1.223155	1 -2.844920 0.370127 0.941303
1 0.020984 1.294902 0.718286	1 1.719462 -0.965871 1.440229	1 -1.453224 -1.061822 -1.386896
6 -1.863324 2.369119 0.656845	6 3.312450 -1.552105 0.047379	6 -3.020124 -2.075344 -0.193394
1 -2.358635 1.801531 1.446200	1 4.156214 -1.048626 0.527369	1 -3.741857 -2.275491 -0.993268
1 -1.459922 3.284950 1.094098	1 3.317669 -2.593530 0.372471	1 -2.465637 -3.006700 -0.037181
1 -2.629982 2.657101 -0.067986	1 3.482806 -1.550598 -1.032048	1 -3.592475 -1.872122 0.715569
8 -0.102950 -0.310238 -1.287319	8 0.054967 -1.057709 -1.387829	8 0.303736 -1.414295 1.511579
7 -1.998433 -0.579814 0.186762	7 1.005291 1.351571 0.232293	7 -1.530874 1.425976 -0.238623
6 -1.264679 -1.108273 1.321426	6 0.288884 1.294117 1.500528	6 -0.580468 1.421347 -1.328457
1 -0.483849 -1.827171 1.032329	1 -0.709139 0.867086 1.320590	1 0.352102 0.892548 -1.084105
1 -0.791315 -0.303747 1.882971	1 0.838674 0.686834 2.215080	1 -1.034363 0.958084 -2.207106
1 -1.964183 -1.615393 1.989840	1 0.201481 2.308131 1.891910	1 -0.332935 2.453573 -1.582695
6 -2.732312 -1.614673 -0.508809	6 0.558740 2.398554 -0.672015	6 -1.266933 2.369840 0.824835
1 -3.442812 -2.084520 0.175305	1 0.587763 3.363120 -0.163937	1 -1.155922 3.373010 0.407266
1 -3.302038 -1.178182 -1.332635	1 1.200274 2.427367 -1.550037	1 -2.107492 2.383055 1.520801
1 -2.093042 -2.419716 -0.914010	1 -0.463620 2.177257 -0.987829	1 -0.356365 2.127494 1.390432
1 -0.389908 -1.007790 -1.879320	1 -0.180754 -1.497423 -2.207169	1 0.136640 -2.278900 1.887746
1 -0.262021 2.151036 -0.774355	1 1.125734 -1.413140 -0.253871	1 -0.472722 -1.216864 0.962592
1 1.822780 -0.193509 -0.295671	1 -1.447834 -0.621121 -0.468562	1 1.953607 -0.664974 0.463466
7 2.656833 -0.029524 0.257532	7 -2.228186 -0.314337 0.143330	7 2.588728 -0.170551 -0.155401
6 3.326005 -1.281306 0.535164	6 -3.286090 0.253089 -0.663089	6 3.470958 0.677312 0.617094
1 2.625468 -1.985096 0.989604	1 -2.884596 1.038323 -1.308680	1 2.883824 1.324707 1.271668

1 3.765859 -1.762351 -0.350	6677 1 -3.789270 -0.484451 -1.313229	1 4.189156 0.120937 1.244449
1 4.137907 -1.117535 1.250	0640 1 -4.056869 0.704929 -0.027913	1 4.051259 1.320343 -0.052276
6 3.511463 0.927732 -0.410	0559 6 -2.690017 -1.437848 0.929611	6 3.303408 -1.113445 -0.988038
1 2.942858 1.828509 -0.649	9750 1 -1.848712 -1.890070 1.460106	1 2.594494 -1.764060 -1.504544
1 4.330873 1.220930 0.253	3219 1 -3.422212 -1.110771 1.677075	1 3.876563 -0.577498 -1.751201
1 3.962492 0.549508 -1.344	4938 1 -3.167037 -2.230322 0.326904	1 4.012368 -1.752477 -0.432666
Pre-reacting Complex	TS-IIb	Enamine + methanol
Et = -444.0770958 NImag =	0 Et =-444.0200153 NImag=1(-296.21)	Et = -444.0667471 NImag = 0
6 -0.805005 0.210353 -0.71	0464 6 1.269636 0.386580 -0.383183	6 1.501699 0.294949 -0.565320
6 -0.418240 1.573408 -0.16	6 1.908073 -0.546908 0.520367	6 2.164078 -0.635679 0.155806
1 -1.434040 0.351412 -1.59	1 1.449703 0.242666 -1.443480	1 1.390274 0.141022 -1.636609
1 0.297643 1.444042 0.655	5248 1 1.874959 -0.252910 1.568396	1 2.294342 -0.497258 1.225219
6 -1.612237 2.400750 0.28	9471 6 3.279498 -1.033872 0.076601	6 2.886047 -1.788680 -0.475475
1 -2.155436 1.908355 1.09	1 4.045698 -0.256913 0.144260	1 3.973238 -1.679085 -0.393617
1 -1.289091 3.382718 0.64	1182 1 3.596260 -1.869685 0.701787	1 2.631435 -2.743766 -0.005133
1 -2.318067 2.558048 -0.53	0716 1 3.247965 -1.395642 -0.953915	1 2.646228 -1.872630 -1.538311
8 0.435562 -0.397026 -1.140	6049 8 -0.220793 -1.773195 -0.536761	8 -0.688969 -1.957892 0.478606
7 -1.566035 -0.593463 0.19	8216 7 0.408985 1.311829 -0.098160	7 0.953376 1.468673 -0.128595
6 -0.927946 -0.904875 1.46	6 -0.059619 1.595598 1.252507	6 0.979903 1.765496 1.281144
1 -0.051684 -1.559954 1.36	2969 1 -0.991701 1.040518 1.398754	1 0.323759 1.103626 1.865124
1 -0.610257 0.007114 1.97	0266 1 0.685021 1.298630 1.985128	1 1.998782 1.670052 1.663436
1 -1.655101 -1.402913 2.11	0558 1 -0.241585 2.667218 1.336618	1 0.650909 2.793343 1.436476
6 -2.160756 -1.763286 -0.41	2662 6 -0.385825 1.934458 -1.151887	6 -0.146400 2.041478 -0.884155
1 -2.916106 -2.182834 0.25	5546 1 -0.402056 3.015119 -1.003441	1 -0.163895 3.123675 -0.735252
1 -2.658226 -1.483945 -1.34	4598 1 0.047155 1.701971 -2.122366	1 0.010631 1.851378 -1.947294
1 -1.437644 -2.569502 -0.62	29368 1 -1.395021 1.518071 -1.087887	1 -1.117381 1.622988 -0.592028
1 0.236787 -1.205200 -1.62	3180 1 -0.468452 -2.582323 -0.985764	1 -0.567372 -2.477289 1.274451
1 0.124245 2.089689 -0.957	7219 1 1.120421 -1.380305 0.337806	1 0.163827 -1.512647 0.325377
1 1.952780 -0.460323 -0.044	4666 1 -1.402812 -0.957586 -0.193026	1 -2.066196 -0.733675 0.360464
8 2.707190 -0.513258 0.558	8701 8 -2.154254 -0.288261 0.070279	8 -2.714273 -0.019513 0.258295
6 3.813795 0.106479 -0.047	7487 6 -3.340228 -0.991534 0.294427	6 -3.881541 -0.547984 -0.321263

1 4.1	18625 -0.394169	-0.975842	1	-3.702708	-1.501953	-0.610473	1	-3.692737	-0.996917	-1.304759
1 3.6	29793 1.165052	-0.273131	1	-3.233555	-1.751558	1.082305	1	-4.357604	-1.304468	0.315925
1 4.6	48330 0.051941	0.653342	1	-4.121023	-0.292396	0.611280	1	-4.588641	0.272694	-0.452938
	Pre-reacting complex				TS-IIc			Enamine	e + amine + a	amine
Et	= -463.508619 NIn	nag = 0	Et =	-463.43813	19 NImag	=1(-501.39)		Et = -463.5	5028615 NI	mag = 0
6 -1.4	30965 0.545005	-0.290657	6	-1.137863	0.781391	-0.312455	6	-1.501864	0.853197	-0.456056
6 -0.8	38141 1.486432	0.744083	6	-0.083471	1.390699	0.428032	6	-0.882987	1.762355	0.321637
1 -2.1	55917 1.098136	-0.901638	1	-1.171984	0.941244	-1.382944	1	-1.511382	1.007934	-1.533388
6 -0.4	26134 2.824521	0.145634	6	0.459087	2.692342	-0.145101	6	-0.305157	3.035302	-0.217507
1 -1.2	87076 3.357309	-0.268524	1	-0.217955	3.537448	0.009393	1	-0.856829	3.915111	0.132826
1 0.0	25662 3.466934	0.904241	1	1.413876	2.944168	0.320752	1	0.736260	3.179507	0.090586
1 0.3	01141 2.686392	-0.656236	1	0.638147	2.599202	-1.219277	1	-0.331110	3.050892	-1.310282
8 -0.3	38858 0.149156	-1.144530	8	-0.011778	-1.277482	-1.374792	8	0.753441	-2.712451	0.014745
7 -2.1	56106 -0.554772	0.286347	7	-2.092862	0.004570	0.147004	7	-2.192247	-0.266762	-0.067540
6 -1.3	94327 -1.419219	1.169260	6	-2.122151	-0.451088	1.522587	6	-2.198451	-0.620250	1.329721
1 -0.6	15544 -1.992472	0.644872	1	-1.460756	-1.312469	1.653729	1	-1.213035	-0.953614	1.685798
1 -0.9	-0.838862	1.957980	1	-1.811120	0.345130	2.196159	1	-2.518592	0.235805	1.928237
1 -2.0	077540 -2.127392	1.643168	1	-3.140133	-0.743754	1.777505	1	-2.907854	-1.433288	1.488842
6 -2.9	10823 -1.315849	-0.686428	6	-2.854474	-0.790367	-0.808368	6	-2.262892	-1.378582	-0.997813
1 -3.6	04119 -1.984306	-0.171089	1	-3.781360	-1.125610	-0.343164	1	-3.157261	-1.970643	-0.788446
1 -3.5	00942 -0.640233	-1.310870	1	-3.094400	-0.179939	-1.678358	1	-2.347954	-0.991926	-2.015167
1 -2.2	83273 -1.942628	-1.344718	1	-2.217276	-1.621894	-1.126464	1	-1.383254	-2.030961	-0.934426
1 1.6	32208 -0.243063	-0.322648	1	1.179453	-0.968127	-0.611572	1	1.263768	-1.870265	0.014845
1 -0.6	94249 -0.246409	-1.941994	1	0.153100	-1.609693	-2.258487	1	1.399621	-3.407380	-0.108254
7 2.4	89486 -0.382818	0.200889	7	1.908639	-0.502282	0.085291	7	2.001697	-0.184479	0.021149
1 0.0	31814 1.007274	1.201587	1	0.843701	0.560159	0.325106	1	1.139851	0.358114	0.037716
1 -1.5	86000 1.632467	1.527645	1	-0.256185	1.436310	1.504253	1	-0.858832	1.627000	1.398715
6 3.4	77575 0.599316	-0.188811	6	3.102399	-0.061571	-0.600868	6	2.736644	0.114569	-1.196678
1 4.3	40514 0.543234	0.482061	1	3.725411	0.570270	0.043982	1	3.107125	1.149858	-1.237283
1 3.8	52759 0.472657	-1.219790	1	3.726345	-0.902907	-0.939898	1	3.599662	-0.551918	-1.278578
1 3.0	57956 1.603380	-0.101675	1	2.823520	0.520155	-1.482252	1	2.097665	-0.058457	-2.064075

6	2.956405 -1.742016 0.038745	6 2.182970 -1.330216 1.236332	6 2.768523 0.091754 1.224622
1	3.305556 -1.977319 -0.982503	1 2.733990 -2.246097 0.975259	1 3.631203 -0.578247 1.273534
1	3.791470 -1.931526 0.720328	1 2.775483 -0.789902 1.985590	1 3.142919 1.125393 1.273150
1	2.158974 -2.442836 0.294434	1 1.242942 -1.637002 1.702000	1 2.151453 -0.094690 2.104864
	Pre-reacting Complex	TS-IId	Enamine + methanol
	Et = -444.0768526 NImag = 0	Et =-444.0205492 NImag=(-139.37)	Et = -444.0638594 NImag = 0
6	-0.958788 0.577667 -0.333448	6 1.122150 0.664447 0.069924	6 -0.771674 -1.087235 0.493976
6	-0.380985 1.539250 0.690733	6 0.185395 1.430840 -0.760189	6 -0.000168 -1.811697 -0.345364
1	-1.562996 1.143501 -1.053316	1 1.514438 1.096445 0.982268	1 -0.592493 -1.163824 1.564594
1	-1.191150 1.826028 1.365860	1 0.534171 1.429298 -1.800501	1 -0.165820 -1.754313 -1.417020
6	0.242038 2.771893 0.049687	6 -0.067401 2.836696 -0.239847	6 0.983150 -2.836572 0.136015
1	-0.500049 3.345841 -0.512538	1 0.837396 3.451222 -0.241590	1 0.646734 -3.855824 -0.084799
1	0.663906 3.432671 0.809605	1 -0.810189 3.338795 -0.860962	1 1.962923 -2.723620 -0.339018
1	1.042523 2.492451 -0.636965	1 -0.458932 2.785620 0.777160	1 1.128952 -2.771593 1.217500
8	0.174592 0.033880 -1.056209	8 -0.641228 0.227668 1.811463	8 0.263659 2.992329 -0.056388
7	-1.826354 -0.414287 0.230211	7 1.523150 -0.530094 -0.212054	7 -1.814328 -0.261221 0.179682
6	-1.247385 -1.256851 1.263681	6 0.965359 -1.282799 -1.337261	6 -2.125738 -0.033549 -1.208767
1	-0.842954 -0.648015 2.071142	1 1.072558 -0.707145 -2.256913	1 -2.241427 -0.988517 -1.726488
1	-2.036349 -1.882493 1.686024	1 1.514592 -2.216877 -1.433696	1 -3.068215 0.510434 -1.278421
1	-0.447122 -1.913209 0.894091	1 -0.108352 -1.445620 -1.118108	1 -1.351754 0.552952 -1.724118
6	-2.533604 -1.191696 -0.765886	6 2.320490 -1.288035 0.738269	6 -2.147493 0.815846 1.094324
1	-3.341068 -1.751467 -0.289029	1 3.184076 -1.721193 0.231910	1 -3.211455 1.049711 1.008200
1	-2.983203 -0.525847 -1.507069	1 2.651130 -0.639025 1.545683	1 -1.957295 0.490420 2.118446
1	-1.896972 -1.924467 -1.291994	1 1.702751 -2.086429 1.153995	1 -1.564996 1.723402 0.896352
1	-0.143607 -0.419894 -1.838788	1 -0.882038 -0.206886 2.628466	1 0.416332 3.627189 -0.755891
1	1.621932 -0.755651 -0.159029	1 -1.173472 -0.253501 1.014277	1 0.868220 2.252680 -0.243361
8	2.343990 -1.157990 0.343841	8 -1.656446 -0.755727 -0.196324	8 1.849937 0.745938 -0.489575
6	3.567139 -0.723568 -0.195634	6 -3.002295 -1.064723 -0.232007	6 3.008809 0.536474 0.293075
1	3.678701 0.367800 -0.155777	1 -3.628242 -0.321096 0.296829	1 2.766141 0.363967 1.347075
1	4.367087 -1.165709 0.400263	1 -3.390784 -1.115572 -1.264468	1 3.598274 -0.307516 -0.079852
1	3.704655 -1.045208 -1.236511	1 -3.233388 -2.043421 0.230204	1 3.617734 1.437840 0.224549

1 0.372006 1.016381 1.286708	1 -0.748562 0.811970 -0.754615	1 1.258360 -0.020584 -0.397366
Carbinolamine	TS-IIe	Enamine + amine + amine
Et = -598.6935384 NImag = 0	Et =-598.6297169 NImag=1 (-111.28)	Et = -598.6759049 NImag = 0
6 -0.772246 -1.229440 -0.356470	6 -0.363159 1.236762 0.446420	6 -0.655403 1.863058 0.420857
6 -2.000822 -1.098137 -1.246904	6 0.137134 2.110877 -0.621508	6 -0.209789 2.444925 -0.714495
1 -0.197289 -2.104964 -0.688946	1 -1.370417 0.836249 0.358519	1 -1.702098 1.574341 0.487127
1 -2.521426 -0.167720 -1.001677	1 1.083924 2.588819 -0.369746	1 0.835078 2.725567 -0.805687
6 -2.948394 -2.285249 -1.170609	6 -0.901568 3.121254 -1.101489	6 -1.131820 2.880560 -1.814647
1 -3.341334 -2.416301 -0.161272	1 -1.148222 3.858197 -0.333187	1 -1.208332 3.972298 -1.872524
1 -3.790365 -2.156195 -1.854904	1 -0.520929 3.658898 -1.970938	1 -0.791645 2.543251 -2.799887
1 -2.439312 -3.214388 -1.442750	1 -1.822900 2.618993 -1.402037	1 -2.142720 2.493913 -1.661628
8 0.024877 -0.063939 -0.556956	8 -0.087618 -0.563688 -1.248527	8 0.018978 -0.591830 -1.552482
7 -1.106176 -1.484728 1.025611	7 0.272650 0.887059 1.515765	7 0.050225 1.586189 1.558045
6 -1.886822 -0.440960 1.669552	6 1.661478 1.242618 1.796164	6 1.467748 1.859130 1.602579
1 -1.362069 0.522737 1.723514	1 2.312060 0.564174 1.222709	1 2.052418 1.140718 1.010107
1 -2.828520 -0.287034 1.141036	1 1.851104 2.276156 1.514746	1 1.661521 2.870104 1.237642
1 -2.131899 -0.761406 2.684721	1 1.832387 1.131789 2.866063	1 1.804770 1.803840 2.639356
6 0.042808 -1.853759 1.822800	6 -0.307656 -0.123330 2.391587	6 -0.414894 0.522003 2.420151
1 -0.288374 -2.200494 2.804714	1 -0.314404 0.243536 3.419348	1 -0.196046 0.764425 3.463664
1 0.577110 -2.676689 1.340749	1 -1.318385 -0.349354 2.056250	1 -1.491164 0.397405 2.303212
1 0.752298 -1.023926 1.981007	1 0.301930 -1.027222 2.333595	1 0.062188 -0.438591 2.182886
1 2.923511 -0.421562 -1.741340	1 -1.824677 -0.845819 -0.622786	1 -1.808150 -1.267248 -0.481662
1 -1.631554 -0.968429 -2.267577	1 0.319718 1.348890 -1.408747	1 -0.045743 0.333896 -1.250265
1 -0.433687 1.934495 -0.026224	1 1.658388 -0.774702 -0.747924	1 1.964230 -1.074330 -0.738007
7 -0.676795 2.878007 0.260881	7 2.641538 -0.869559 -0.424398	7 2.878107 -1.080813 -0.296488
6 0.518158 3.651130 0.507420	6 2.895511 -2.246173 -0.058116	6 3.111841 -2.356917 0.345029
1 1.156903 3.130273 1.224299	1 2.146198 -2.584808 0.661738	1 2.287191 -2.589330 1.021973
1 1.115269 3.859285 -0.399821	1 2.870651 -2.941891 -0.915137	1 3.221423 -3.198435 -0.361021
1 0.253074 4.617624 0.948059	1 3.880572 -2.345646 0.412220	1 4.027294 -2.310387 0.943084
6 -1.545039 3.485707 -0.722630	6 3.538150 -0.411927 -1.464508	6 3.896869 -0.746815 -1.268491
1 -2.399833 2.834589 -0.915660	1 3.267383 0.601519 -1.770050	1 3.645728 0.194793 -1.761644
1 -1.933576 4.435621 -0.341356	1 4.571327 -0.386707 -1.099209	1 4.859313 -0.608947 -0.766004
---------------------------------	------------------------------------	---------------------------------
1 -1.050980 3.694482 -1.688468	1 3.523807 -1.046077 -2.367670	1 4.040334 -1.514822 -2.048791
1 0.973870 -0.308135 -0.547016	1 -0.162099 -1.398487 -1.717002	1 -0.055359 -0.552077 -2.507140
7 2.826421 -0.584626 -0.745806	7 -2.723952 -0.893045 -0.110835	7 -2.681048 -1.347999 0.029764
6 3.368993 -1.896357 -0.422287	6 -3.810953 -0.462770 -0.964642	6 -3.795666 -1.269400 -0.891083
1 2.876209 -2.661018 -1.024851	1 -3.578697 0.510245 -1.403303	1 -3.715231 -0.364424 -1.497072
1 4.454176 -1.968247 -0.586416	1 -4.020143 -1.160495 -1.793355	1 -3.872513 -2.133325 -1.574009
1 3.173733 -2.119255 0.628816	1 -4.734525 -0.356178 -0.384992	1 -4.734968 -1.209461 -0.332869
6 3.493303 0.490863 -0.023249	6 -2.929335 -2.231894 0.399312	6 -2.686599 -2.569078 0.807935
1 3.087669 1.453329 -0.337032	1 -2.044437 -2.561543 0.948922	1 -1.798153 -2.610706 1.441182
1 3.300922 0.380320 1.046254	1 -3.781803 -2.255271 1.087561	1 -3.561905 -2.586472 1.464646
1 4.582679 0.501156 -0.172754	1 -3.126134 -2.977435 -0.390417	1 -2.713997 -3.487793 0.196925
Pre-reacting Complex	TS-IIf	Enamine + methanol + methanol
HF=-559.8122648 NImag= 0	Et =-559.7774586 NImag=1 (-143.57)	Et = -559.8050149 NImag = 0
6 1.790985 2.647049 -0.549440	6 1.109585 -0.946720 0.400227	6 1.771723 0.081707 0.445496
6 2.229086 1.189421 -0.487375	6 1.609136 -1.052731 -0.944722	6 2.365915 0.184348 -0.766741
6 1.260400 0.299094 0.279842	1 1.517435 -0.145441 1.012817	1 1.562189 0.992635 1.002002
7 1.808813 -0.965754 0.639529	1 1.311828 -1.957874 -1.473808	1 2.581316 -0.712138 -1.340599
6 1.023479 -1.697123 1.617859	6 3.073669 -0.687348 -1.131140	6 2.930709 1.477528 -1.278933
6 2.244416 -1.817680 -0.452440	1 3.748568 -1.454372 -0.742099	1 4.026163 1.481554 -1.248763
8 -0.006693 0.208392 -0.454891	1 3.292719 -0.557766 -2.191925	1 2.650163 1.668599 -2.320115
8 -1.644527 -2.129611 -0.877047	1 3.299808 0.257143 -0.631940	1 2.585071 2.325262 -0.682202
6 -2.979174 -2.174258 -0.430143	8 -0.108694 1.035773 -1.466902	8 -0.566634 0.672044 -1.570873
8 -1.677086 2.409881 0.334284	7 0.081752 -1.552676 0.909509	7 1.388646 -1.052280 1.098725
6 -3.026722 2.068583 0.535053	6 -0.678678 -2.585278 0.216883	6 1.558088 -2.332983 0.457361
1 0.969215 0.797682 1.206999	1 -1.517031 -2.104137 -0.296024	1 0.841762 -2.489544 -0.360487
1 3.202640 1.106398 0.001957	1 -0.045142 -3.110950 -0.492666	1 2.573341 -2.421147 0.064539
1 1.708649 3.075700 0.451917	1 -1.050502 -3.293083 0.958119	1 1.406851 -3.122309 1.194865
1 2.516462 3.241495 -1.108291	6 -0.538447 -1.055309 2.132340	6 0.328355 -0.969319 2.084673
1 0.818802 2.764725 -1.030905	1 -0.628909 -1.866835 2.856622	1 0.508919 -1.695290 2.881846
1 1.412347 -2.211291 -1.055610	1 0.061427 -0.244946 2.539379	1 0.317177 0.029022 2.522153

1 2.937170 -1.285135 -1.104624	1 -1.525627 -0.670246 1.868222	1 -0.654563 -1.169788 1.641679
1 2.782697 -2.672209 -0.037771	1 -0.167975 1.558993 -2.267015	1 -0.534260 0.964998 -2.483399
1 1.633371 -2.499553 2.039429	1 -1.462033 0.409225 -0.949618	1 -1.537368 -0.862459 -1.019029
1 0.737977 -1.029231 2.433152	8 -2.253852 -0.062096 -0.535357	8 -1.902329 -1.658937 -0.609017
1 0.114526 -2.148644 1.196356	6 -3.423494 0.631279 -0.870080	6 -3.239702 -1.811751 -1.018358
1 0.190975 0.157355 -1.394535	1 -3.589524 0.671656 -1.955828	1 -3.332070 -1.939544 -2.104625
1 -1.219560 -1.331627 -0.539329	1 -4.278635 0.116520 -0.423034	1 -3.631057 -2.710816 -0.540461
1 -3.573087 -1.330062 -0.801727	1 -3.418899 1.663305 -0.492653	1 -3.868773 -0.965171 -0.714706
1 -3.421693 -3.093581 -0.815094	1 0.937038 -0.180792 -1.379322	1 0.362721 0.475999 -1.316772
1 -3.052342 -2.195098 0.664565	1 0.546449 1.729669 -0.176260	1 -0.934760 1.955918 -0.164364
1 2.360376 0.798847 -1.504081	8 0.992315 1.956769 0.695660	8 -0.952478 2.520972 0.618821
1 -1.195471 1.629324 0.030468	6 0.737377 3.294949 1.020995	6 -2.276307 2.600578 1.089798
1 -3.518537 1.741367 -0.390206	1 1.142408 3.990427 0.272854	1 -2.951777 3.065316 0.359998
1 -3.152458 1.282396 1.290827	1 -0.336622 3.501524 1.126597	1 -2.682408 1.617875 1.360981
1 -3.542122 2.961597 0.890903	1 1.217906 3.520085 1.976789	1 -2.270307 3.223698 1.985158
Pre-reacting complex	TS-IIg	Iminium ion + methanol + methanol
Et = -559.8175044 NImag = 0	Et =-559.7747494 NImag=1 (-85.46)	Et = -559.7767279 NImag = 0
6 -1.748110 0.295580 -0.346100	6 1.764907 -0.084557 0.066300	6 1.712535 -0.355725 0.050746
6 -1.024728 1.627486 -0.482890	6 1.654196 1.368289 -0.214127	6 1.897128 1.081067 -0.249073
1 -2.728799 0.370679 -0.832821	1 2.348762 -0.418899 0.912653	1 2.096002 -0.756746 0.980488
1 -1.566426 2.349877 0.134282	1 2.135043 1.563710 -1.181405	1 2.374650 1.184466 -1.230752
6 -0.965482 2.119612 -1.923787	6 2.287229 2.223444 0.873501	6 2.697193 1.802685 0.825886
1 -1.963181 2.199447 -2.367474	1 3.357361 2.025916 0.976831	1 3.713560 1.410158 0.913048
1 -0.503108 3.106768 -1.973695	1 2.166159 3.281909 0.640005	1 2.770638 2.865273 0.591702
1 -0.361545 1.460723 -2.554644	1 1.811487 2.031994 1.835935	1 2.206974 1.703967 1.795552
8 -1.018898 -0.757711 -1.060538	8 0.300213 -0.345032 1.901467	8 0.110889 -0.494206 2.108029
7 -1.990807 -0.097761 0.995945	7 1.331548 -1.013609 -0.718159	7 1.101133 -1.195482 -0.704714
6 -0.834500 -0.238694 1.865809	6 0.521581 -0.773003 -1.907916	6 0.430043 -0.840193 -1.950714
1 -1.182992 -0.306754 2.899065	1 0.969794 -1.311231 -2.745439	1 0.789248 -1.503603 -2.739462
1 0 220000 1 126776 1 649400	1 -0.483738 -1.140456 -1.694114	1 -0.639240 -0.974506 -1.775118
1 -0.239098 -1.130//0 1.048400		

6 -2.901997 -1.218673 1.120930	6 1.402690 -2.412056 -0.316309	6 0.830827 -2.555177 -0.248860
1 -3 224119 -1 306276 2 161121	1 1 788041 -3 009907 -1 143685	1 110488 -3 260223 -1 032766
1 -3 788884 -1 044725 0 507302	1 2 045579 -2 514802 0 554403	1 1 386099 -2 756335 0 663378
1 -2.454336 -2.175950 0.817025	1 0.389713 -2.727480 -0.059263	1 -0.241183 -2.599999 -0.042677
1 -1.126528 -0.612737 -2.002935	1 -0.016592 0.343637 2.486767	1 -0.207777 0.079090 2.804521
1 0.679026 -1.218383 -0.639749	1 -0.551952 -0.634511 1.273490	1 -0.672352 -0.583573 1.427189
8 1.611037 -1.402953 -0.422624	8 -1.477281 -0.953142 0.359360	8 -1.610171 -0.698930 0.300090
6 2.179919 -2.198565 -1.438872	6 -2.605559 -1.595168 0.853390	6 -2.897551 -1.119728 0.598278
1 2.184673 -1.688082 -2.409544	1 -3.177718 -0.975757 1.566707	1 -3.413872 -0.460940 1.320281
1 3.212938 -2.407157 -1.159250	1 -3.303639 -1.867656 0.046127	1 -3.541164 -1.159521 -0.297329
1 1.654775 -3.154188 -1.544453	1 -2.355896 -2.529785 1.383841	1 -2.916616 -2.132028 1.039796
1 -0.009929 1.552371 -0.085356	1 0.590258 1.608536 -0.347333	1 0.885759 1.509536 -0.358670
1 2.225616 0.203448 0.158890	1 -1.608093 0.446326 -0.360481	1 -1.433924 0.677685 -0.348477
8 2.374244 1.111619 0.471546	8 -1.513000 1.335594 -0.828735	8 -1.163201 1.554423 -0.797375
6 3.389632 1.098572 1.443362	6 -2.620809 2.139992 -0.533255	6 -2.062280 2.563619 -0.433173
1 4.354262 0.769985 1.034558	1 -2.727107 2.330255 0.544353	1 -2.097118 2.723323 0.654288
1 3.512485 2.118414 1.811973	1 -2.496472 3.105240 -1.031617	1 -1.748640 3.502902 -0.898066
1 3.142383 0.455375 2.297939	1 -3.562240 1.700072 -0.890008	1 -3.085835 2.351718 -0.772068
Pre-reacting Complex	TS-IIIg	Enamine + methanol + methanol
Et = -559.776878 NImag = 0	Et =-559.7742756 NImag=1 (-78.71)	Et = -559.8117115 NImag = 0
6 -1.457877 -0.426408 0.001724	6 1.535428 -0.465958 0.105765	6 1.521233 1.816171 1.915208
6 -2.010846 0.889570 -0.370665	6 1.884913 0.938715 0.196120	6 1.880441 1.021525 0.693989
1 -1.321946 -1.195903 -0.762004	1 1.520708 -1.081006 1.002581	6 1.529522 -0.275432 0.545682
1 -2.664103 1.271293 0.421092	1 2.391878 1.291802 -0.706961	7 1.943099 -1.143667 -0.429075
6 -2.712026 0.883979 -1.721917	6 2.612309 1.336144 1.470241	6 1.090996 -2.269898 -0.750557
1 -3.594559 0.240138 -1.720211	1 3.622145 0.920478 1.523485	6 2.789142 -0.660031 -1.487500
1 -3.035454 1.892374 -1.982631	1 2.698032 2.421950 1.529564	8 -0.861914 1.442225 -0.812814
1 -2.038720 0.534601 -2.506351	1 2.062031 1.003861 2.353129	6 -1.001277 2.840368 -0.975054
8 0.172730 -2.122567 -1.698624	8 -0.334745 -1.771440 2.086515	8 -2.753579 -0.218377 0.266251
7 -0.999863 -0.711298 1.167290	7 1.066063 -1.033859 -0.957675	6 -3.562588 -0.762961 -0.754078
6 -0.948410 0.271405 2.249321	6 0.864495 -0.283916 -2.196976	8 -1.181795 -1.852028 1.838900

1 -0.682953 -0.241853 3.170167	1 0.471976 -0.961813 -2.950914	1 0.851125 -0.730675 1.264573
1 -0.192626 1.020199 1.987398	1 0.155953 0.530747 -1.992963	1 2.555490 1.489086 -0.017301
1 -1.920033 0.749498 2.370730	1 1.814731 0.125370 -2.544399	1 2.396738 2.002102 2.547748
6 -0.320131 -1.981471 1.415771	6 0.531115 -2.389680 -0.917501	1 1.106305 2.798010 1.664723
1 -0.782919 -2.466244 2.277198	1 1.018867 -2.994448 -1.683936	1 0.784245 1.289214 2.525725
1 -0.378306 -2.604722 0.526512	1 0.687293 -2.815694 0.070372	1 3.150307 -1.505930 -2.073873
1 0.729624 -1.760243 1.608392	1 -0.542560 -2.333278 -1.101460	1 2.264991 0.031496 -2.165710
1 0.483742 -2.315219 -2.581831	1 -0.665994 -1.665456 2.977508	1 3.653787 -0.139227 -1.069789
1 0.848510 -1.456264 -1.268386	1 -0.959341 -1.268835 1.499065	1 1.701223 -3.116944 -1.074702
8 1.625974 -0.501132 -0.472305	8 -1.768436 -0.451361 0.305886	1 0.520948 -2.560218 0.131691
6 2.954196 -0.851733 -0.288602	6 -3.160222 -0.493991 0.163797	1 0.378160 -2.032161 -1.553440
1 3.606422 -0.529823 -1.120510	1 -3.673563 0.194539 0.850143	1 -1.599768 -1.993556 2.687920
1 3.382305 -0.408692 0.628217	1 -3.473284 -0.238121 -0.857721	1 -1.804870 -1.299208 1.328613
1 3.087333 -1.944523 -0.196895	1 -3.521986 -1.505521 0.377827	1 -4.169054 0.008248 -1.241637
1 -1.126492 1.554085 -0.372334	1 0.835530 1.423411 0.105499	1 -2.969469 -1.278818 -1.517473
1 1.262403 0.844081 -0.059102	1 -1.373130 0.511337 -0.000614	1 -4.236871 -1.486732 -0.294952
8 0.899585 1.762214 0.278457	8 -0.735839 1.633866 -0.433018	1 -0.007721 1.247474 -0.384037
6 1.777399 2.786446 -0.095356	6 -1.423790 2.827638 -0.275622	1 -2.122445 0.414257 -0.128727
1 1.982409 2.782911 -1.174897	1 -1.820135 2.965691 0.746189	1 -1.073857 3.357910 -0.012692
1 1.331419 3.754082 0.156410	1 -0.779794 3.698461 -0.481892	1 -0.166804 3.261305 -1.544488
1 2.742844 2.720470 0.426119	1 -2.285131 2.911303 -0.960776	1 -1.920670 3.017027 -1.533482
Carbinolamine	TS-IIh	Enamine + amine + amine
Et = -598.6995998 NImag = 0	Et =-598.6229451 NImag=1 (-490.14)	Et = -598.677986 NImag $= 1(-10.42)$
6 -1.841595 -0.128515 0.408607	6 2.519035 -0.474832 0.325457	6 -3.046990 -0.106285 0.148554
6 -2.398215 -1.497316 0.775056	6 2.891690 0.345418 -0.803928	6 -2.778785 -0.795526 -0.978882
1 -1.896542 0.516224 1.296812	1 2.949837 -0.203529 1.282044	1 -3.683441 -0.566525 0.902619
1 -3.484388 -1.410561 0.864792	1 2.573615 -0.033919 -1.773091	1 -2.136483 -0.360015 -1.737916
6 -1.798498 -2.044115 2.062649	6 4.329980 0.841562 -0.793193	6 -3.436563 -2.101557 -1.307499
1 -2.025232 -1.394452 2.913264	1 5.054791 0.047566 -0.993327	1 -4.138510 -2.003626 -2.143221
1 -2.194955 -3.036127 2.290808	1 4.462091 1.613046 -1.553252	1 -2.709596 -2.865681 -1.602335
1 -0.713035 -2.123943 1.980584	1 4.575545 1.293460 0.171144	1 -4.002539 -2.487745 -0.455310

8 -0.477881 -0.297875 0.050579	8 1.247523 1.658744 0.773590	8 -0.454222 -2.150008 0.784137
7 -2.640546 0.537015 -0.600618	7 1.661568 -1.451814 0.370401	7 -2.655384 1.164326 0.477716
6 -2.712169 -0.154000 -1.874518	6 0.922832 -1.965225 -0.774984	6 -1.803300 1.899798 -0.430121
1 -1.735152 -0.238765 -2.374475	1 -0.143008 -1.720472 -0.663495	1 -0.764806 1.538352 -0.452373
1 -3.121036 -1.156301 -1.745159	1 1.309580 -1.542772 -1.696538	1 -2.217772 1.848442 -1.439193
1 -3.388055 0.392940 -2.535877	1 1.038891 -3.051332 -0.802878	1 -1.789616 2.948028 -0.125285
6 -2.266103 1.924499 -0.779031	6 1.194436 -1.950821 1.654309	6 -2.517630 1.488708 1.879410
1 -3.006907 2.425393 -1.407157	1 1.174400 -3.041629 1.639041	1 -2.646020 2.563952 2.023237
1 -2.250877 2.430475 0.189551	1 1.853461 -1.605579 2.447527	1 -3.290284 0.974263 2.453624
1 -1.278429 2.055165 -1.251127	1 0.186564 -1.572595 1.835281	1 -1.538301 1.200188 2.286908
1 0.052402 0.499552 0.280575	1 1.368011 2.434959 1.325068	1 -0.821284 -3.032692 0.844681
1 -2.190914 -2.192578 -0.043657	1 2.189046 1.216238 -0.442322	1 -1.130280 -1.627366 0.322435
1 1.360336 -1.225725 -0.539731	1 -0.512514 1.674191 0.381755	1 1.525065 -1.657305 0.490857
7 2.367767 -1.135061 -0.640685	7 -1.525737 1.727572 0.154720	7 2.483894 -1.361871 0.328325
6 3.034613 -2.174466 0.120402	6 -2.225934 2.303673 1.284669	6 3.238649 -1.465001 1.561504
1 2.682072 -2.161981 1.153453	1 -2.003797 1.732334 2.188800	1 2.730776 -0.911670 2.353556
1 2.874268 -3.187003 -0.284360	1 -1.952837 3.355670 1.477033	1 3.380252 -2.503114 1.906153
1 4.113080 -1.991324 0.133325	1 -3.309886 2.272400 1.125222	1 4.231438 -1.023927 1.429645
6 2.722857 -1.157544 -2.047191	6 -1.693397 2.524911 -1.043438	6 3.058768 -2.150373 -0.743523
1 2.142131 -0.407832 -2.587730	1 -1.084573 2.112478 -1.851157	1 2.422413 -2.092180 -1.628738
1 3.782138 -0.911573 -2.166917	1 -2.739233 2.514333 -1.371506	1 4.042066 -1.753187 -1.013640
1 2.552177 -2.134473 -2.528046	1 -1.399792 3.579978 -0.909704	1 3.191344 -3.214733 -0.486009
1 2.088107 0.794198 0.260070	1 -2.078142 -0.190721 -0.170786	1 2.079853 0.659334 -0.262121
7 1.518741 1.555251 0.640252	7 -2.307698 -1.178980 -0.348958	7 1.840170 1.612957 -0.540062
6 1.803941 1.721480 2.054890	6 -3.108740 -1.699039 0.739000	6 2.286744 2.544682 0.472507
1 1.111047 2.446257 2.491705	1 -3.233009 -2.782905 0.637247	1 1.912269 3.549701 0.250420
1 1.664090 0.771350 2.573500	1 -2.611307 -1.509282 1.693017	1 1.889710 2.252994 1.447467
1 2.827145 2.076268 2.252672	1 -4.118641 -1.257642 0.795035	1 3.385435 2.616965 0.560320
6 1.746981 2.769107 -0.123577	6 -2.975791 -1.301450 -1.628007	6 2.400471 1.900544 -1.842350
1 1.579268 2.575409 -1.184399	1 -2.371758 -0.835071 -2.409622	1 2.086646 1.138135 -2.558671
1 1.043113 3.545162 0.189949	1 -3.103906 -2.357375 -1.890715	1 2.032415 2.865996 -2.205465

1 2.764583 3.172027 -0.003418	1 -3.975217 -0.834410 -1.650995	1 3.504076 1.945650 -1.854194
Carbinolamine	TS-IIi	Enamine + amine + amine
Et = -559.8175047 NImag = 0	Et =-559.7563776 NImag=1(-76.14)	Et = -559.8073767 NImag = 0
6 -1.748021 0.295140 -0.346219	6 1.716375 0.104061 -0.583495	6 2.138311 -0.033204 0.016465
6 -1.024426 1.626722 -0.485351	6 0.674678 0.849213 -1.310329	6 1.869561 1.014549 -0.797577
1 -2.729000 0.369805 -0.832409	1 2.682089 0.568484 -0.427593	1 2.688507 0.153248 0.936804
6 -0.965329 2.116455 -1.927077	6 1.190858 2.146453 -1.913739	6 2.461889 2.376646 -0.581492
1 -1.963090 2.195628 -2.370761	1 1.961350 1.976517 -2.670189	1 3.238658 2.603102 -1.320660
1 -0.502904 3.103498 -1.978712	1 0.372798 2.688703 -2.387858	1 1.715729 3.173662 -0.663420
1 -0.361546 1.456467 -2.556929	1 1.608783 2.791569 -1.137548	1 2.924237 2.456913 0.406079
8 -1.019544 -0.759404 -1.059550	8 1.321492 1.018810 1.616062	8 -1.510800 -1.411458 1.844695
7 -1.989968 -0.096172 0.996547	7 1.616804 -1.114010 -0.162640	7 1.833763 -1.346987 -0.171825
6 -0.833057 -0.237167 1.865634	6 0.358034 -1.852623 -0.159888	6 1.073912 -1.738255 -1.335116
1 -0.239208 -1.136515 1.649266	1 -0.198981 -1.570059 0.740838	1 0.024513 -1.418353 -1.286343
1 -0.178330 0.629118 1.787619	1 -0.267217 -1.573646 -1.005041	1 1.528366 -1.314364 -2.233914
1 -1.180682 -0.302929 2.899331	1 0.583018 -2.917806 -0.180102	1 1.095301 -2.825041 -1.422929
6 -2.901961 -1.216180 1.123740	6 2.670530 -1.677468 0.669657	6 1.757074 -2.227150 0.979456
1 -3.223178 -1.302279 2.164339	1 2.850441 -2.712300 0.377922	1 2.048430 -3.238511 0.685343
1 -3.789308 -1.042263 0.510769	1 3.583374 -1.098298 0.553544	1 2.457444 -1.883879 1.742695
1 -2.455332 -2.174184 0.820592	1 2.353811 -1.631515 1.712355	1 0.749927 -2.256191 1.412038
1 -1.127861 -0.615900 -2.002092	1 1.330409 1.940854 1.874026	1 -2.020913 -1.519693 1.032700
1 0.678594 -1.219596 -0.638312	1 0.312555 0.784971 1.475549	1 -1.227854 -0.492849 1.780226
8 1.610771 -1.403634 -0.421494	8 -1.065554 0.470363 1.113142	8 -0.860936 1.253134 0.642915
6 2.179740 -2.198966 -1.437909	6 -1.926490 1.120906 1.985403	6 -1.050677 2.566883 1.138358
1 1.655356 -3.155062 -1.543002	1 -2.371613 0.444226 2.735933	1 -2.032558 2.600822 1.610199
1 2.183497 -1.688671 -2.408685	1 -1.422001 1.920373 2.559609	1 -0.297457 2.823878 1.888960
1 3.213097 -2.406636 -1.158843	1 -2.769267 1.605671 1.463692	1 -1.022599 3.310087 0.335093
1 -1.565905 2.350206 0.130722	1 0.198813 0.210183 -2.059761	1 1.336244 0.849861 -1.729154
1 -0.009610 1.552139 -0.087810	1 -0.121935 1.040815 -0.566662	1 0.038726 1.165318 0.270032
8 2.372881 1.111601 0.471851	8 -2.239363 -0.397085 -1.064039	8 -2.495303 -0.547520 -0.756316
1 2.224922 0.203092 0.159832	1 -1.861453 -0.059106 -0.201488	1 -2.039294 0.225586 -0.388718

6 3.389403 1.100355 1.442501	6 -3.478724 -0.996463 -0.814303	6 -3.731507 -0.151208 -1.306087
1 4.353948 0.772653 1.032792	1 -4.223140 -0.284288 -0.430520	1 -3.605325 0.568215 -2.123829
1 3.511474 2.120576 1.810320	1 -3.866210 -1.400744 -1.753718	1 -4.213421 -1.041979 -1.709770
1 3.143886 0.457413 2.297768	1 -3.417421 -1.827706 -0.095668	1 -4.398051 0.286250 -0.553056

Table S56. The MP2(full)/6-31G* Optimized Geometries (in Cartesian coordinates), Total Electronic Energies (in hartree/particle), and Number of Imaginary Frequencies (in cm⁻¹) of Transition States for Carbinolamine Formation (**Step-I**)

TS-I	TS-Ia	TS-Ib
Et =-327.1671155 NImag=1 (-1535.61)	Et =-461.8653952 NImag=1 (-1529.85)	Et = -442.5482354 Nimag = 1(-1535.63)
6 -0.311110 0.721665 -0.478092	6 1.079650 0.266468 0.882826	6 0.678960 0.264523 0.857976
6 -1.575369 0.270482 0.232335	6 0.822659 1.554633 0.122626	6 0.641007 1.557881 0.067859
1 -0.385893 0.434126 -1.552479	1 2.005133 0.385177 1.484283	1 1.531798 0.296996 1.563712
1 -1.460256 0.425270 1.308882	1 0.008121 1.400467 -0.589948	1 -0.124695 1.496725 -0.709383
6 -2.003725 -1.157288 -0.089540	6 2.062145 2.134978 -0.551003	6 1.995850 1.969828 -0.499427
1 -1.281648 -1.893285 0.276785	1 2.449351 1.475945 -1.333448	1 2.360819 1.259631 -1.247024
1 -2.969168 -1.392193 0.366424	1 1.840251 3.099097 -1.015959	1 1.933820 2.948461 -0.982031
1 -2.103649 -1.299007 -1.170070	1 2.863195 2.293539 0.177657	1 2.748008 2.036719 0.292851
8 0.117425 1.978208 -0.226368	8 0.021029 -0.263486 1.575836	8 -0.504568 -0.138350 1.446383
7 1.021776 -0.001046 -0.022119	7 1.354738 -0.998276 0.008329	7 0.902297 -1.039885 0.045559
6 1.079548 -0.334614 1.406637	6 0.747126 -1.012156 -1.334109	6 0.386518 -1.032763 -1.335612
1 0.716717 0.533034 1.957675	1 -0.291864 -0.683089 -1.255027	1 -0.624327 -0.622092 -1.325513
1 0.474731 -1.215116 1.637552	1 1.301992 -0.367432 -2.020919	1 1.033202 -0.446805 -1.993570
1 2.118389 -0.528623 1.683476	1 0.777246 -2.038070 -1.708987	1 0.357512 -2.065149 -1.691310
6 1.589444 -1.030674 -0.897070	6 2.724369 -1.523247 0.032591	6 2.214067 -1.683459 0.176471
1 1.020844 -1.961649 -0.819414	1 3.393837 -0.885047 -0.551496	1 2.976107 -1.125809 -0.375575
1 1.558409 -0.672836 -1.927360	1 3.070698 -1.563738 1.066561	1 2.486610 -1.724496 1.232209
1 2.627081 -1.218903 -0.611822	1 2.730676 -2.530510 -0.389233	1 2.155219 -2.699145 -0.219857

1 1.268118 1.177008 -0.139047	1 0.537244 -1.322365 0.860734	1 -0.021081 -1.261381 0.832177
1 -2.348234 0.976401 -0.090442	1 0.443989 2.256916 0.873706	1 -1.807389 0.303655 0.371563
	1 -1.619026 -0.027730 0.533160	8 -2.412566 0.443662 -0.405235
	7 -2.314104 -0.038601 -0.223623	6 -3.638504 -0.202135 -0.107880
	6 -3.127536 -1.238135 -0.090978	1 -4.142439 0.247126 0.757364
	1 -3.778517 -1.343247 -0.965486	1 -4.288479 -0.091436 -0.978314
	1 -2.475216 -2.114441 -0.044883	1 -3.509352 -1.274716 0.091750
	1 -3.768709 -1.241108 0.806566	1 0.288270 2.315164 0.776534
	6 -3.127524 1.165823 -0.156710	
	1 -2.478309 2.045047 -0.170073	
	1 -3.784703 1.216203 -1.031392	
	1 -3.763394 1.220230 0.743106	
TS-Ic	TS-Id	TS-Ie
Et =-461.884261 NImag=1(-1173.07)	Et =-442.5711418 NImag=1 (-985.43)	Et =-596.5623004 NImag=1 (-1533.26)
6 0.796431 -0.753677 -0.220822	6 0.388108 -0.725215 -0.128432	6 -0.196489 0.771236 -0.397460
6 2.258502 -1.016622 0.152011	6 1.846666 -1.083619 0.109911	6 0.854461 1.581825 -1.130231
1 0.721468 -0.721384 -1.339560	1 0.156104 -0.789129 -1.212979	1 -1.200001 1.139162 -0.675032
1 2.337900 -0.980371 1.243324	1 2.058452 -0.960708 1.176425	1 1.846866 1.336573 -0.743733
6 3.334550 -0.159613 -0.507882	6 2.897538 -0.387619 -0.749532	6 0.591946 3.084759 -1.108458
1 3.387528 0.844449 -0.080480	1 3.081081 0.642224 -0.434270	1 0.625550 3.492107 -0.094270
1 4.321344 -0.614095 -0.378452	1 3.852327 -0.915479 -0.680085	1 1.337496 3.620063 -1.702272
1 3.158535 -0.059673 -1.583949	1 2.606335 -0.373926 -1.804473	1 -0.393592 3.312813 -1.525814
8 -0.022232 -1.607597 0.394851	8 -0.417531 -1.455244 0.670478	8 -0.074356 -0.613476 -0.501483
7 0.326857 0.719634 0.125364	7 0.052369 0.789269 0.153194	7 -0.162770 0.819635 1.144978
6 0.539946 1.020463 1.541164	6 0.433177 1.190761 1.519223	6 1.106762 1.208255 1.781706
1 0.279688 0.117236 2.096408	1 0.148545 0.372459 2.179995	1 1.921364 0.639371 1.327793
1 1.581491 1.295252 1.745014	1 1.507654 1.377306 1.574925	1 1.285650 2.282358 1.682789
1 -0.105794 1.848960 1.851093	1 -0.112536 2.096383 1.791036	1 1.037685 0.958827 2.843031
6 0.752036 1.802611 -0.761148	6 0.431758 1.771974 -0.875701	6 -1.351826 1.419479 1.770380
1 1.773646 2.135561 -0.559768	1 1.494095 2.005516 -0.823415	1 -1.347127 2.506344 1.639869
1 0.692284 1.457909 -1.796992	1 0.194531 1.362530 -1.859131	1 -2.235277 0.978691 1.302878

1 0.080435 2.659625 -0.637133	1 -0.147108 2.685114 -0.718867	1 -1.341176 1.188834 2.838040
1 -0.978145 0.484390 -0.036918	1 -1.055722 0.681548 0.155288	1 -0.185566 -0.383035 0.819360
1 -1.404712 -1.074596 0.011952	1 -1.512125 -0.935806 0.545814	1 0.827400 1.216076 -2.162829
7 -2.048594 -0.194808 -0.146096	8 -2.336841 -0.048967 0.349019	1 1.866033 -1.051190 -0.381563
6 -2.676815 -0.151712 -1.463848	6 -3.089282 -0.327579 -0.813665	7 2.839292 -1.089336 -0.059143
1 -3.439814 -0.931623 -1.564691	1 -3.804847 -1.139848 -0.633227	6 2.996686 -2.246924 0.809473
1 -3.148652 0.821719 -1.631396	1 -3.661204 0.558831 -1.113787	1 3.988405 -2.228189 1.273352
1 -1.912046 -0.311349 -2.227179	1 -2.462736 -0.627928 -1.670443	1 2.248278 -2.206897 1.605651
1 2.407325 -2.067231 -0.117908	1 1.877759 -2.162503 -0.071960	1 2.889458 -3.211658 0.285693
6 -2.983060 -0.031594 0.964898		6 3.730126 -1.159925 -1.207842
1 -2.436577 -0.174131 1.898890		1 3.524714 -0.322728 -1.879745
1 -3.426113 0.969233 0.953355		1 4.769277 -1.078612 -0.872407
1 -3.789317 -0.772024 0.914472		1 3.636268 -2.096239 -1.783348
		1 -2.035141 -0.956893 -0.497717
		7 -3.017441 -0.830247 -0.230075
		6 -3.824607 -0.644267 -1.426939
		1 -3.863938 -1.533742 -2.077967
		1 -4.852055 -0.395633 -1.141528
		1 -3.424129 0.189143 -2.010093
		6 -3.448073 -1.995821 0.528705
		1 -3.486398 -2.923392 -0.066926
		1 -2.763618 -2.155928 1.365996
		1 -4.449067 -1.820491 0.936333
TS-If	Ts-Ig	TS-Ih
Et =-557.9252496 NImag=1(-1541.11)	Et =-596.5893588 NImag=1 (-630.66)	Et=-557.9523427 NImag=1 (-696.20)
6 0.242719 0.236080 0.387730	6 -1.029333 -0.679305 0.270782	6 0.897183 -0.333510 -0.637172
6 -0.807256 0.528206 1.438146	6 -2.246844 -1.605232 0.489945	6 2.354265 -0.517982 -1.041370
1 1.246080 0.365743 0.819692	1 -0.431112 -0.724623 1.224004	1 0.319679 0.000949 -1.518595
1 -1.799786 0.518698 0.983502	1 -1.821845 -2.539739 0.876789	1 2.308270 -1.244765 -1.859244
6 -0.540319 1.812422 2.217406	6 -3.017930 -1.927562 -0.784117	6 3.267439 -1.067809 0.048394
1 -0.574545 2.697263 1.576326	1 -2.296918 -2.147024 -1.573020	1 2.779293 -1.905062 0.549260

1 -1.284801 1.949212 3.005763	1	-3.668914 -2.795114 -0.638126	1 4.204055	-1.423723 -0.388832
1 0.445602 1.781917 2.691067	1	-3.647073 -1.098186 -1.114237	1 3.526530	-0.314657 0.795946
8 0.112061 -1.005062 -0.269209	8	-0.342959 -0.929493 -0.836728	8 0.391218	-1.452023 -0.065665
7 0.222847 1.081135 -0.890483	7	-1.403937 0.838939 0.303359	7 0.667616	0.872435 0.330129
6 -1.029164 1.779978 -1.226193	6	-2.184149 1.250539 -0.863069	6 0.982156	0.591104 1.747882
1 -1.859684 1.077035 -1.154525	1	-1.806775 0.679844 -1.712626	1 0.710324	-0.445554 1.937411
1 -1.194079 2.638918 -0.570509	1	-3.254144 1.052932 -0.727301	1 2.041415	0.752165 1.945162
1 -0.946542 2.130959 -2.256670	1	-2.055486 2.324591 -1.042392	1 0.380579	1.259792 2.366245
6 1.435084 1.885314 -1.110455	6	-1.993003 1.306617 1.553264	6 1.244317	2.144806 -0.138357
1 1.462728 2.739423 -0.426350	1	-3.030849 0.971131 1.672933	1 2.327887	2.140741 -0.012443
1 2.301094 1.240692 -0.952481	1	-1.403497 0.922740 2.391468	1 0.994454	2.281098 -1.192324
1 1.431386 2.250183 -2.139349	1	-1.981943 2.401925 1.585932	1 0.810755	2.961783 0.442029
1 0.217829 -0.133669 -1.252993	1	-0.082768 1.281312 0.136368	1 -0.424158	0.997533 0.300382
1 -1.644537 -1.245590 -0.585601	1	1.276469 -1.272792 -0.209739	1 -0.716725	-1.448795 -0.251455
8 -2.602803 -1.101015 -0.779250	7	2.228185 -1.087810 0.179354	8 -2.016486	-1.236076 -0.429751
6 -3.343211 -2.016047 0.012640	6	3.217904 -1.429796 -0.835803	6 -2.747901	-2.100689 0.416173
1 -3.170981 -1.871860 1.087632	1	2.955791 -0.937484 -1.775327	1 -2.232131	-2.290142 1.370686
1 -4.400950 -1.841714 -0.192057	1	4.210761 -1.084708 -0.526530	1 -3.731176	-1.672619 0.648855
1 -3.110293 -3.058469 -0.237337	1	3.281421 -2.512954 -1.024213	1 -2.909860	-3.069180 -0.072532
1 -0.775287 -0.329161 2.119982	1	-2.909880 -1.225287 1.278813	1 2.760931	0.402886 -1.474526
1 1.878256 -1.333526 -0.462960	1	1.600355 0.636485 0.158581	1 -2.076991	-0.013637 0.011483
8 2.845552 -1.137802 -0.506114	7	1.087063 1.525258 -0.079788	8 -1.928598	1.070501 0.322439
6 3.453814 -1.782567 0.601733	6	1.593525 2.646058 0.720294	6 -2.532474	1.876068 -0.677019
1 3.336687 -2.872425 0.560225	1	1.020898 3.548092 0.491315	1 -2.235093	2.920690 -0.534683
1 4.519607 -1.550188 0.567960	1	1.478329 2.409161 1.779611	1 -2.244895	1.567019 -1.691897
1 3.053811 -1.430677 1.562620	1	2.650469 2.832378 0.508002	1 -3.625430	1.825293 -0.609201
	6	2.442313 -1.845869 1.405756		
	1	1.653635 -1.609335 2.123562		
	1	2.445332 -2.935032 1.242201		
	1	3.406482 -1.572803 1.848999		
	6	1.223606 1.720075 -1.533268		

	1 0.793427 0.832475 -1.997574	
	1 0.670497 2.612695 -1.835860	
	1 2.275298 1.837405 -1.810995	
TS-Ii	Ts-Ij	TS-Ik
Et =-596.559578 NImag=1(-1512.58)	Et =-557.9241477 NImag=1 (-1533.24)	Et=-557.9505096 NImag=1 (-739.17)
6 1.734337 -0.956688 0.309857	6 1.320002 -0.889224 -0.023857	6 1.434085 0.657932 -0.126217
6 1.163742 -0.187117 1.487200	6 0.674602 -0.613357 1.319745	6 2.825255 0.195422 -0.527344
1 2.650815 -1.488156 0.637469	1 2.219461 -1.514462 0.130067	1 1.462631 1.123706 0.881897
1 0.371541 0.479363 1.136432	1 -0.130994 0.117085 1.215074	1 2.749750 -0.315450 -1.492114
6 2.209310 0.554439 2.314339	6 1.670999 -0.195256 2.397137	6 3.611507 -0.634171 0.482860
1 2.709870 1.337239 1.738325	1 2.151239 0.758651 2.162322	1 3.256946 -1.665579 0.543525
1 1.751089 1.032090 3.184486	1 1.170881 -0.079176 3.361844	1 4.665909 -0.676751 0.197615
1 2.977655 -0.134501 2.679307	1 2.458165 -0.946363 2.516910	1 3.559877 -0.197410 1.485027
8 0.849099 -1.741120 -0.392430	8 0.493278 -1.372778 -1.027869	8 0.871676 1.406148 -1.089756
7 2.182767 -0.091826 -0.913282	7 1.818590 0.341356 -0.821766	7 0.434219 -0.543916 0.145937
6 1.722681 1.304042 -1.008895	6 1.193309 1.640832 -0.518562	6 0.303487 -1.437396 -1.023746
1 0.665142 1.374077 -0.741308	1 0.113688 1.523564 -0.417509	1 0.292814 -0.799072 -1.906812
1 2.314164 1.952826 -0.357083	1 1.602245 2.064673 0.402310	1 1.147947 -2.127354 -1.054145
1 1.859390 1.629083 -2.043471	1 1.411504 2.317508 -1.347892	1 -0.637623 -1.977739 -0.929568
6 3.593428 -0.256215 -1.284129	6 3.272106 0.431866 -1.003229	6 0.529365 -1.273908 1.427698
1 4.243700 0.258676 -0.570653	1 3.761321 0.725948 -0.069899	1 1.317280 -2.022740 1.382134
1 3.831163 -1.321216 -1.294901	1 3.651275 -0.539560 -1.324424	1 0.744321 -0.558900 2.223534
1 3.754085 0.159590 -2.281122	1 3.489984 1.175532 -1.772329	1 -0.437262 -1.746527 1.608083
1 1.397243 -0.927704 -1.340862	1 1.137465 -0.336753 -1.603682	1 -0.450559 0.021205 0.190268
1 0.677776 -0.948602 2.108142	1 -1.157530 -1.188745 -0.912030	1 -0.300400 1.590939 -0.723477
1 -1.010953 -1.507234 -0.123732	8 -2.143588 -1.048428 -0.798796	8 -1.362216 1.453794 -0.187499
7 -2.023701 -1.334515 -0.049554	6 -2.641289 -2.157258 -0.063148	6 -1.539100 2.455005 0.797441
6 -2.669808 -1.876927 -1.237134	1 -2.206845 -2.218358 0.942709	1 -2.066050 3.327228 0.389155
1 -3.731038 -1.606286 -1.239534	1 -3.721145 -2.031604 0.033583	1 -2.133137 2.064291 1.632748
1 -2.205105 -1.446805 -2.128062	1 -2.443854 -3.099799 -0.585333	1 -0.577377 2.806918 1.198226
1 -2.601101 -2.974813 -1.308886	1 0.200757 -1.558654 1.607895	1 3.356885 1.130253 -0.731122

6	-2.521654 -	-1.967459	1.163524	1	-2.136218	0.505318	-0.010129	1	-2.372931	0.041995	0.046841	_
1	-1.959458 -	-1.594506	2.023665	8	-1.968308	1.389819	0.402531	8	-2.604646	-0.887308	0.301370	
1	-3.576379 -	-1.711247	1.309413	6	-3.048324	2.238736	0.047222	6	-3.766770	-1.267820	-0.420223	
1	-2.440810 -	-3.066879	1.147990	1	-3.154821	2.342086	-1.040042	1	-3.987741	-2.304841	-0.160763	
1	-1.801778	0.677894	-0.068907	1	-4.003254	1.882563	0.454285	1	-4.635016	-0.653593	-0.152150	
7	-1.547611	1.675342	-0.117846	1	-2.842939	3.224124	0.469850	1	-3.621275	-1.204619	-1.506184	
6	-2.132482	2.244604	-1.323607									
1	-3.235554	2.263829	-1.313934									
1	-1.784665	3.275145	-1.454153									
1	-1.809322	1.664307	-2.192213									
6	-2.040232	2.344951	1.077220									
1	-1.646417	1.841372	1.964143									
1	-1.689071	3.382372	1.092268									
1	-3.140891	2.364271	1.151150									
]	ГS-I <i>l</i>				Ts-Im						
Et =	-596.579139	5 NImag=1	(-1100.26)	Et =	= -557.94890	14 NImag=	1(-957.65)					

_					
-	6	-0.161103 0.716110 -0.226333			
	6	0.560550 2.028830 0.085866			
	1	-0.189149 0.589686 -1.337783			
	1	0.552143 2.164324 1.172710			
	6	0.089067 3.292086 -0.628548	6	0.822490 0.032509 -	0.766056
	1	-0.843260 3.685862 -0.216022	6	1.679108 -1.217816 -	-0.870546
	1	0.838866 4.083163 -0.536072	1	1.296002 0.860797 -	1.326597
	1	-0.063499 3.111057 -1.697608	1	1.207415 -2.010454 -	-0.281582
	8	0.382868 -0.312271 0.454297	6	3.157650 -1.073925 -	-0.524011
	7	-1.691408 0.741495 0.102212	1	3.327722 -0.975805	0.550793
	6	-1.928116 1.115518 1.498060	1	3.708246 -1.958526 -	-0.853931
	1	-1.168719 0.607784 2.095046	1	3.601621 -0.205660 -	1.020899
	1	-1.852749 2.198972 1.644925	8	-0.451425 -0.235434 -	-1.199387
	1	-2.926926 0.789862 1.806563	7	0.722700 0.618339	0.665241
	6	-2.573148 1.444265 -0.831911	6	0.443253 -0.395301	1.706005
	1	-2.555011 2.528129 -0.693980	1	-0.332790 -1.070770	1.342886
	1	-2.263734 1.214378 -1.854774	1	1.352079 -0.952149	1.943622
	1	-3.601623 1.095185 -0.688465	1	0.092383 0.124024	2.600223
	1	-1.889793 -0.587582 -0.001227	6	1.806972 1.541281	1.049748
	1	-0.571957 -1.515048 0.091864	1	2.738133 1.004204	1.226875
	7	-1.604968 -1.816171 -0.055174	1	1.950825 2.273626	0.253815
	6	-1.851821 -2.450703 -1.349178	1	1.509417 2.060080	1.963381
	1	-1.378402 -3.436850 -1.401766	1	-0.231218 1.224044	0.537082
	1	-2.926870 -2.568125 -1.514376	1	-1.112332 0.661977 -	-0.806782
	1	-1.436910 -1.820071 -2.138272	8	-1.494958 1.578832 -	-0.030773
	1	1.602255 1.822358 -0.180924	6	-1.566474 2.831401 -	-0.683762
	6	-2.082366 -2.588546 1.091502	1	-2.438717 2.874296 -	-1.347111
	1	-1.769345 -2.078289 2.003879	1	-1.666498 3.637592	0.052779
	1	-3.173471 -2.664755 1.073241	1	-0.675245 3.044591 -	-1.297309
	1	-1.658534 -3.598465 1.089347	1	1.574737 -1.522431 -	-1.916713
	1	2.270378 -0.294587 0.124327	1	-1.280547 -1.693145 -	-0.500596
	7	3.264229 -0.217655 -0.125518	8	-1.746427 -2.273921	0.144841
	6	4.064364 -0.319105 1.081528	6	-3.018644 -1.668205	0.359384
	1	4.026689 -1.313498 1.562449	1	-3.460201 -2.140773	1.238926
	1	5.114507 -0.104821 0.852464	1	-2.931501 -0.589997	0.534602
	1	3.717542 0.422161 1.806114	1	-3.692078 -1.829382 -	-0.492179
	6	3.591947 -1.265979 -1.073960			
	1	3 536677 -2 286655 -0 652570			

TS-II	TS-IIa	TS-IIb
Et =-327.1273192 NImag=1(-1072.23)	Et =-461.830923 NImag=1 (-618.18)	Et =-442.5211865 NImag=1(-456.07)
	6 1.868441 0.335319 -0.120473	6 1.287999 0.426185 -0.375645
	6 1.840227 -1.042108 0.302586	6 1.908470 -0.523540 0.520416
6 0 23/033 -0 118506 0 550/79	1 2.391353 0.560196 -1.046358	1 1.476389 0.296272 -1.438492
6 1 372134 -0 377735 -0 286154	1 1.472719 -1.204774 1.315828	1 1.902027 -0.229656 1.570481
1 0 384082 0 462615 1 456323	6 3.064289 -1.870697 -0.047532	6 3.258835 -1.043517 0.049136
1 0.384982 0.402013 1.450323 1 1.260965 -1.210182 -0.969499	1 3.929487 -1.629710 0.577605	1 4.046174 -0.284579 0.090055
6 - 2 - 724765 = 0.315556 - 0.401708	1 2.846528 -2.933779 0.079092	1 3.570955 -1.883674 0.673593
1 2909344 -1172026 1058178	1 3.345830 -1.717704 -1.093781	1 3.184928 -1.411708 -0.978201
1 2.505544 -1.172020 1.058178 $1 3.525670 0.286004 0.341344$	8 0.002201 -0.419091 -1.468181	8 -0.186430 -1.713058 -0.537648
1 2.80/370 0.507288 0.000708	7 1.177484 1.325378 0.374444	7 0.390385 1.321812 -0.085851
8 0 070/52 1 686035 -0 767559	6 0.328789 1.177004 1.559577	6 -0.100045 1.563975 1.273798
7 _1 008/12 _0 526027 _0 353/08	1 -0.635891 0.736159 1.268406	1 -0.986601 0.935510 1.402265
6 -1.362048 -1.110015 -0.938383	1 0.834577 0.547760 2.290367	1 0.674203 1.326299 1.998916
1 -1.264064 -0.320602 -1.600018	1 0.183317 2.169002 1.989652	1 -0.361409 2.620214 1.352930
1 -0.704272 -1.947844 -1.165817	6 0.781437 2.376549 -0.562841	6 -0.430298 1.924485 -1.141735
1 -2.388387 -1.73661 -0.885232	1 0.422693 3.245734 -0.012601	1 -0.486710 3.002337 -0.978429
6 - 2.036249 - 0.346420 - 0.00024	1 1.636828 2.657424 -1.178796	1 0.022873 1.717693 -2.110563
1 3 0.05510 0.152258 0.877556	1 0.007011 1.920823 -1.194053	1 -1.416262 1.456456 -1.072871
1 - 3.003310 - 0.132238 0.877330 1 - 1.788163 - 0.502256 - 1.041520	1 -0.263439 -0.762320 -2.338309	1 -0.483274 -2.598314 -0.801707
1 - 1.788105 0.392250 1.941520 1 - 2.012270 - 1.260480 - 0.207624	1 0.942699 -1.218978 -0.467492	1 1.074156 -1.337430 0.325686
1 - 2.015270 1.200469 0.297034 1 0.042215 2.657206 0.820727	1 -1.473132 -0.369990 -0.483534	1 -1.341540 -0.919141 -0.201597
1 0.042313 2.037290 -0.039737 $1 1 120069 0.664197 0.977701$	7 -2.264908 -0.301801 0.193085	8 -2.141505 -0.262499 0.068786
1 1.130700 0.00410/ -0.0///91	6 -3.368606 0.401714 -0.435772	6 -3.282879 -1.063624 0.265175
	1 -3.016214 1.367330 -0.810004	1 -3.620744 -1.549726 -0.663314
	1 -3.819841 -0.146524 -1.282160	1 -3.113139 -1.856781 1.008855

Table S57. The MP2(full)/6-31G* Optimized Geometries (in Cartesian coordinates), Total Electronic Energies (in hartree/particle), and Number of Imaginary Frequencies (in cm⁻¹) of Transition States for Dehydration step (**Step-II**)

	1 -4.165094 0.590620 0.293596	1 -4.103720 -0.435782 0.627376
	6 -2.648591 -1.644483 0.592531	
	1 -1.766772 -2.175846 0.961556	
	1 -3.387178 -1.605448 1.401857	
	1 -3.087036 -2.242062 -0.226594	
TS-IIc	TS-IId	TS-IIe
Et = -461.8203221 NImag=1(-1402.65)	Et =-442.5294246 NIMag=1(-136.36)	Et = -596.5387742 NImag = 1 (-208.0)
6 -1.047421 0.718147 -0.278835	6 1.148077 0.601303 0.081771	6 -0.502090 1.455762 0.511140
6 -0.023576 1.246167 0.550278	6 0.320129 1.444704 -0.808246	6 -0.394267 2.290043 -0.669294
1 -1.111404 1.068675 -1.301787	1 1.563871 1.016288 0.991617	1 -1.405527 0.856501 0.618978
6 0.564267 2.572834 0.087907	1 0.779163 1.484551 -1.805785	1 0.457386 2.971975 -0.673171
1 -0.104279 3.423869 0.260351	6 0.101180 2.838667 -0.235727	6 -1.700427 2.967077 -1.066510
1 1.503782 2.779875 0.609921	1 1.040934 3.388721 -0.124425	1 -2.002878 3.749835 -0.364392
1 0.790156 2.537540 -0.982716	1 -0.548048 3.416520 -0.897295	1 -1.596225 3.422252 -2.054116
8 -0.057661 -0.910528 -1.463219	1 -0.382699 2.750896 0.737867	1 -2.503440 2.227655 -1.128744
7 -2.140736 0.064347 0.145995	8 -0.627731 0.432145 1.718602	8 -0.219518 -0.227358 -1.592263
6 -2.148652 -0.565838 1.453391	7 1.453080 -0.628193 -0.187367	7 0.425035 1.171586 1.376081
1 -1.448993 -1.411722 1.479649	6 0.904250 -1.336019 -1.356208	6 1.766305 1.753728 1.387073
1 -1.872466 0.151394 2.226319	1 1.054060 -0.723982 -2.245549	1 2.423961 1.016533 0.916697
1 -3.157040 -0.927988 1.660235	1 1.451312 -2.272057 -1.464501	1 1.774944 2.696609 0.846423
6 -2.968481 -0.595897 -0.851107	1 -0.175480 -1.475894 -1.152878	1 2.051274 1.924736 2.427096
1 -4.012815 -0.569003 -0.529237	6 2.051670 -1.469440 0.845362	6 0.248060 0.042547 2.295327
1 -2.864205 -0.081006 -1.804583	1 2.858893 -2.062170 0.413452	1 0.314434 0.400156 3.325643
1 -2.653674 -1.634930 -0.990251	1 2.432013 -0.844458 1.651766	1 -0.715917 -0.425055 2.092631
1 1.165626 -0.849651 -0.780438	1 1.266739 -2.124788 1.229694	1 1.053764 -0.663987 2.086626
1 -0.395103 -1.802779 -1.267214	1 -0.753152 -0.096325 2.522412	1 -1.424464 -0.982331 -0.530249
7 1.938471 -0.524828 -0.004966	1 -1.141337 -0.115608 0.946426	1 -0.202146 1.390257 -1.387934
1 0.985580 0.412887 0.390030	8 -1.611617 -0.776178 -0.217188	1 1.284373 -0.688230 -0.817009
1 -0.230848 1.213153 1.621111	6 -2.993618 -0.934476 -0.197524	7 2.232089 -0.863054 -0.403457
6 3.164285 0.011218 -0.571435	1 -3.503838 -0.172376 0.422497	6 2.390397 -2.292257 -0.180021
1 3.758215 0.531553 0.190505	1 -3.441193 -0.858820 -1.205604	1 1.594711 -2.650972 0.479197

1 3.792751 -0.776984 -1.010643	1 -3.316350 -1.916486 0.203470	1 2.353990 -2.888897 -1.108208
1 2.907647 0.722055 -1.360665	1 -0.631788 0.887176 -0.899473	1 3.351991 -2.498254 0.304850
6 2.159707 -1.532404 1.015485		6 3.199869 -0.389880 -1.383859
1 2.721237 -2.396574 0.632405		1 2.982798 0.653479 -1.629778
1 2.713807 -1.119755 1.867773		1 4.217272 -0.445720 -0.978837
1 1.188391 -1.888384 1.373676		1 3.185694 -0.965665 -2.325387
		1 -0.232451 -0.694786 -2.444226
		7 -2.123361 -1.273158 0.192329
		6 -3.456723 -1.097246 -0.363330
		1 -3.565002 -0.072334 -0.729515
		1 -3.676496 -1.780276 -1.201867
		1 -4.216578 -1.266794 0.408247
		6 -1.888408 -2.663648 0.549696
		1 -0.848949 -2.787284 0.865948
		1 -2.537470 -2.957649 1.382920
		$1 \qquad 0.75545 \qquad 0.267272 \qquad 0.270725$
		1 -2.0/3343 -3.30/2/2 -0.2/9/33
TS-IIf	TS-IIg	TS-IIIg
TS-IIf Et =-557.9146889 NImag=1 (-585.87)	TS-IIg Et =-557.9209705 NImag=1 (-276.5)	$\frac{\mathbf{TS-IIIg}}{\text{Et} = -557.913067 \text{ NImag} = 1(-438.80)}$
TS-IIf Et =-557.9146889 NImag=1 (-585.87) 6 1.536540 -0.234590 0.489469	TS-IIg Et =-557.9209705 NImag=1 (-276.5) 6 -1.628030 -0.373089 -0.232614	$\begin{array}{c} \mathbf{T} = -2.073343 + -3.367272 + 0.279733 \\ \hline \mathbf{TS-IIIg} \\ \text{Et} = -557.913067 \text{NImag} = 1(-438.80) \\ 6 1.430218 + 0.640989 0.133377 \end{array}$
TS-IIf Et =-557.9146889 NImag=1 (-585.87) 6 1.536540 -0.234590 0.489469 6 2.149740 -0.126151 -0.798596	TS-IIg Et =-557.9209705 NImag=1 (-276.5) 6 -1.628030 -0.373089 -0.232614 6 -1.859827 0.993353 0.312270	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
TS-IIf Et =-557.9146889 NImag=1 (-585.87) 6 1.536540 -0.234590 0.489469 6 2.149740 -0.126151 -0.798596 1 1.523137 0.656175 1.113033	TS-IIg Et =-557.9209705 NImag=1 (-276.5) 6 -1.628030 -0.373089 -0.232614 6 -1.859827 0.993353 0.312270 1 -2.122277 -0.662784 -1.153005	T -2.0/3343 -3.36/2/2 -0.2/9/33 TS-IIIg Et =-557.913067 NImag=1(-438.80) 6 1.430218 -0.640989 0.133377 6 1.956406 0.694526 0.114539 1 1.317546 -1.167108 1.079721
TS-IIf Et =-557.9146889 NImag=1 (-585.87) 6 1.536540 -0.234590 0.489469 6 2.149740 -0.126151 -0.798596 1 1.523137 0.656175 1.113033 1 2.345092 -1.071032 -1.308295	TS-IIg Et =-557.9209705 NImag=1 (-276.5) 6 -1.628030 -0.373089 -0.232614 6 -1.859827 0.993353 0.312270 1 -2.122277 -0.662784 -1.153005 1 -2.510495 0.900628 1.193151	I -2.073343 -5.367272 -0.279733 TS-IIIg Et =-557.913067 NImag=1(-438.80) 6 1.430218 -0.640989 0.133377 6 1.956406 0.694526 0.114539 1 1.317546 -1.167108 1.079721 1 2.474711 0.941924 -0.817079
TS-IIfEt =-557.9146889NImag=1 (-585.87)61.536540-0.2345900.48946962.149740-0.126151-0.79859611.5231370.6561751.11303312.345092-1.071032-1.30829563.2929690.871701-0.894239	TS-IIg Et =-557.9209705 NImag=1 (-276.5) 6 -1.628030 -0.373089 -0.232614 6 -1.859827 0.993353 0.312270 1 -2.122277 -0.662784 -1.153005 1 -2.510495 0.900628 1.193151 6 -2.488067 1.922018 -0.717826	TS-IIIg TS-IIIg Et =-557.913067 NImag=1(-438.80) 6 1.430218 -0.640989 0.133377 6 1.956406 0.694526 0.114539 1 1.317546 -1.167108 1.079721 1 2.474711 0.941924 -0.817079 6 2.733161 1.098130 1.357312
TS-IIfEt =-557.9146889NImag=1 (-585.87)61.536540-0.2345900.48946962.149740-0.126151-0.79859611.5231370.6561751.11303312.345092-1.071032-1.30829563.2929690.871701-0.89423914.2114750.511626-0.420488	TS-IIg Et =-557.9209705 NImag=1 (-276.5) 6 -1.628030 -0.373089 -0.232614 6 -1.859827 0.993353 0.312270 1 -2.122277 -0.662784 -1.153005 1 -2.510495 0.900628 1.193151 6 -2.488067 1.922018 -0.717826 1 -3.452597 1.542093 -1.069452	T -2.0/3343 -5.367272 -0.279733 TS-IIIg Et =-557.913067 NImag=1(-438.80) 6 1.430218 -0.640989 0.133377 6 1.956406 0.694526 0.114539 1 1.317546 -1.167108 1.079721 1 2.474711 0.941924 -0.817079 6 2.733161 1.098130 1.357312 1 3.713678 0.615465 1.421128
TS-IIfEt =-557.9146889NImag=1 (-585.87)61.536540-0.2345900.48946962.149740-0.126151-0.79859611.5231370.6561751.11303312.345092-1.071032-1.30829563.2929690.871701-0.89423914.2114750.511626-0.42048813.5188161.082065-1.942504	TS-IIg Et =-557.9209705 NImag=1 (-276.5) 6 -1.628030 -0.373089 -0.232614 6 -1.859827 0.993353 0.312270 1 -2.122277 -0.662784 -1.153005 1 -2.510495 0.900628 1.193151 6 -2.488067 1.922018 -0.717826 1 -3.452597 1.542093 -1.069452 1 -2.659843 2.907253 -0.278137	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
TS-IIfEt =-557.9146889NImag=1 (-585.87)61.536540-0.2345900.48946962.149740-0.126151-0.79859611.5231370.6561751.11303312.345092-1.071032-1.30829563.2929690.871701-0.89423914.2114750.511626-0.42048813.5188161.082065-1.94250413.0122421.818467-0.423635	TS-IIgEt =-557.9209705 NImag=1 (-276.5)6 -1.628030 -0.373089 -0.232614 6 -1.859827 0.993353 0.312270 1 -2.122277 -0.662784 -1.153005 1 -2.510495 0.900628 1.193151 6 -2.488067 1.922018 -0.717826 1 -3.452597 1.542093 -1.069452 1 -2.659843 2.907253 -0.278137 1 -1.812469 2.027695 -1.566206	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	TS-IIgEt =-557.9209705 NImag=1 (-276.5)6 -1.628030 -0.373089 -0.232614 6 -1.859827 0.993353 0.312270 1 -2.122277 -0.662784 -1.153005 1 -2.510495 0.900628 1.193151 6 -2.488067 1.922018 -0.717826 1 -3.452597 1.542093 -1.069452 1 -2.659843 2.907253 -0.278137 1 -1.812469 2.027695 -1.566206 8 -0.036884 0.321074 -1.629600	TS-IIIgTS-IIIgEt =-557.913067 NImag=1(-438.80)6 1.430218 -0.640989 0.133377 6 1.956406 0.694526 0.114539 1 1.317546 -1.167108 1.079721 1 2.474711 0.941924 -0.817079 6 2.733161 1.098130 1.357312 1 3.713678 0.615465 1.421128 1 2.893677 2.179022 1.364416 1 2.171239 0.845197 2.260989 8 -0.567168 -1.615320 2.234974
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	TS-IIgEt =-557.9209705 NImag=1 (-276.5)6 -1.628030 -0.373089 -0.232614 6 -1.859827 0.993353 0.312270 1 -2.122277 -0.662784 -1.153005 1 -2.510495 0.900628 1.193151 6 -2.488067 1.922018 -0.717826 1 -3.452597 1.542093 -1.069452 1 -2.659843 2.907253 -0.278137 1 -1.812469 2.027695 -1.566206 8 -0.036884 0.321074 -1.629600 7 -1.112084 -1.346289 0.458317	TS-IIIgTS-IIIgEt =-557.913067 NImag=1(-438.80)6 1.430218 -0.640989 0.133377 6 1.956406 0.694526 0.114539 1 1.317546 -1.167108 1.079721 1 2.474711 0.941924 -0.817079 6 2.733161 1.098130 1.357312 1 3.713678 0.615465 1.421128 1 2.893677 2.179022 1.364416 1 2.171239 0.845197 2.260989 8 -0.567168 -1.615320 2.234974 7 0.870426 -1.228621 -0.890568
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	TS-IIgEt =-557.9209705 NImag=1 (-276.5)6 -1.628030 -0.373089 -0.232614 6 -1.859827 0.993353 0.312270 1 -2.122277 -0.662784 -1.153005 1 -2.510495 0.900628 1.193151 6 -2.488067 1.922018 -0.717826 1 -3.452597 1.542093 -1.069452 1 -2.659843 2.907253 -0.278137 1 -1.812469 2.027695 -1.566206 8 -0.036884 0.321074 -1.629600 7 -1.112084 -1.346289 0.458317 6 -0.474426 -1.184604 1.769357	TS-IIIgTS-IIIgEt =-557.913067 NImag=1(-438.80)6 1.430218 -0.640989 0.133377 6 1.956406 0.694526 0.114539 1 1.317546 -1.167108 1.079721 1 2.474711 0.941924 -0.817079 6 2.733161 1.098130 1.357312 1 3.713678 0.615465 1.421128 1 2.893677 2.179022 1.364416 1 2.171239 0.845197 2.260989 8 -0.567168 -1.615320 2.234974 7 0.870426 -1.228621 -0.890568 6 0.776120 -0.553707 -2.190119
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	TS-IIgEt =-557.9209705 NImag=1 (-276.5)6 -1.628030 -0.373089 -0.232614 6 -1.859827 0.993353 0.312270 1 -2.122277 -0.662784 -1.153005 1 -2.510495 0.900628 1.193151 6 -2.488067 1.922018 -0.717826 1 -3.452597 1.542093 -1.069452 1 -2.659843 2.907253 -0.278137 1 -1.812469 2.027695 -1.566206 8 -0.036884 0.321074 -1.629600 7 -1.112084 -1.346289 0.458317 6 -0.474426 -1.184604 1.769357 1 -0.977287 -1.852558 2.473358	TS-IIIgTS-IIIgEt =-557.913067 NImag=1(-438.80)6 1.430218 -0.640989 0.133377 6 1.956406 0.694526 0.114539 1 1.317546 -1.167108 1.079721 1 2.474711 0.941924 -0.817079 6 2.733161 1.098130 1.357312 1 3.713678 0.615465 1.421128 1 2.893677 2.179022 1.364416 1 2.171239 0.845197 2.260989 8 -0.567168 -1.615320 2.234974 7 0.870426 -1.228621 -0.890568 6 0.776120 -0.553707 -2.190119 1 0.245698 -1.211540 -2.876801

1 0.420217 -3.251449 0.923195	1 -0.534544 -0.153456 2.102189	1 1.778602 -0.358330 -2.578282
6 -0.126781 -0.995382 2.058292	6 -0.851110 -2.639153 -0.174764	6 0.150060 -2.494353 -0.743196
1 0.056667 -1.761554 2.815142	1 -1.091941 -3.437428 0.529518	1 0.555618 -3.220666 -1.450945
1 0.036971 0.001270 2.462307	1 -1.466877 -2.738979 -1.068930	1 0.254981 -2.850024 0.279977
1 -1.145447 -1.065474 1.671032	1 0.212326 -2.639764 -0.427307	1 -0.904289 -2.299600 -0.940721
1 -0.405545 1.329964 -2.365533	1 -0.040075 -0.109720 -2.501556	1 -0.780263 -1.188949 3.078260
1 -1.314128 -0.164097 -0.994699	1 0.757804 -0.197369 -1.057943	1 -1.103784 -1.123651 1.561941
8 -1.950444 -0.834672 -0.570116	8 1.619238 -0.854179 -0.248245	8 -1.809713 -0.298510 0.168941
6 -3.169564 -0.753582 -1.284680	6 2.904651 -0.854511 -0.815471	6 -3.193399 0.004194 0.119686
1 -3.039563 -0.975387 -2.352924	1 2.936485 -0.315608 -1.778865	1 -3.485891 0.743581 0.877709
1 -3.858963 -1.490941 -0.866213	1 3.647670 -0.372335 -0.160025	1 -3.481864 0.395350 -0.863903
1 -3.635703 0.237187 -1.197656	1 3.268989 -1.876522 -1.009914	1 -3.756225 -0.914775 0.303834
1 1.144008 0.349096 -1.330082	1 -0.895001 1.380381 0.656690	1 0.909423 1.306877 -0.023894
1 -0.225101 1.760723 -0.147991	1 1.476353 0.482903 0.743977	1 -1.285035 0.567962 -0.095629
8 -0.232058 2.084883 0.805864	8 1.263237 1.320738 1.258035	8 -0.428945 1.701354 -0.548015
6 -1.596792 2.282267 1.137088	6 1.745941 2.399644 0.470270	6 -0.899703 2.983687 -0.239779
1 -2.022359 3.158770 0.628509	1 1.372122 2.348116 -0.558953	1 -1.277146 3.071168 0.795056
1 -2.203537 1.405316 0.882889	1 1.397045 3.329335 0.927208	1 -0.109726 3.744744 -0.352508
1 -1.662848 2.457380 2.214515	1 2.843812 2.426765 0.442597	1 -1.726016 3.287411 -0.903950
TS-IIh		
Et =-596.528754 NImag=1 (-364.52)		

6	-2.192662 -0.890912	-0.127177
6	-2.831846 0.409152	-0.000162
1	-2.418374 -1.479421	-1.012509
1	-2.834040 0.800901	1.018469
6	-4.199082 0.485126	-0.666180
1	-4.952763 -0.131368	-0.166368
1	-4.556436 1.517428	-0.663553
1	-4.130031 0.167101	-1.710628
8	-0.671460 0.647986	-1.489988
7	-1.303436 -1.406956	0.664833
6	-0.765724 -0.693255	1.826836
1	0.011346 -0.006272	1.478892
1	-1.561992 -0.150677	2.333212
1	-0.339021 -1.430447	2.506803
6	-0.565177 -2.619879	0.298810
1	-0.718589 -3.372019	1.076853
1	-0.935723 -2.989925	-0.656386
1	0.494160 -2.344422	0.225302
1	-0.515323 1.048206	-2.362618
1	-2.027634 0.951456	-0.642012
1	0.454940 1.425668	-0.417448
7	1.101780 1.812705	0.317304
6	2.247532 2.429802	-0.336703
1	2.731822 1.702431	-0.992984
1	1.979722 3.311404	-0.944578
1	2.980715 2.755940	0.410379
6	0.372000 2.801699	1.095864
1	-0.544332 2.355893	1.492886
1	0.978809 3.145072	1.942138
1	0.084186 3.692077	0.510621
1	1.982337 -0.163913	0.291487
7	2.254660 -1.092795	-0.044589
6	2.104487 -1.102420	-1.498826
1	2.160470 -2.134185	-1.866290
1	1.127548 -0.668710	-1.738274
1	2.891115 -0.526904	-2.016223
6	3.617045 -1 387331	0.372630
1	3 697340 -1 300714	1 459802

TS-I	TS-Ia	TS-Ib
Et =-328.1850755 NImag=1(-1553.29)	Et =-463.3252738 NImag=1 (-1573.29)	Et =-443.8885164 NImag=1(-1582.90)
	6 1.096090 0.252715 0.866175	6 -0.251328 -0.048488 -0.310367
	6 0.926965 1.567160 0.120671	6 -0.078664 1.336812 0.289167
6 -0.294638 0.734533 -0.427230	1 2.008581 0.317674 1.491703	1 -0.247534 0.037330 -1.413590
6 -1.580473 0.264927 0.239057	1 0.131389 1.472221 -0.625048	1 -0.250269 1.300245 1.369657
1 -0.361528 0.503824 -1.513581	6 2.210160 2.106688 -0.502373	6 -0.929835 2.416135 -0.369905
1 -1.482268 0.337294 1.327060	1 2.601143 1.446425 -1.283540	1 -2.002256 2.236352 -0.239270
6 -2.049342 -1.122033 -0.186099	1 2.041771 3.085528 -0.959936	1 -0.711610 3.399556 0.055168
1 -1.346583 -1.906700 0.113560	1 2.995840 2.224993 0.251407	1 -0.734638 2.470768 -1.446115
1 -3.016789 -1.365378 0.262062	8 -0.001173 -0.224090 1.531091	8 0.582088 -1.025982 0.179739
1 -2.164423 -1.183138 -1.273562	7 1.317954 -1.014736 -0.004745	7 -1.558060 -0.805943 0.018678
8 0.131738 1.980684 -0.118909	6 0.758413 -0.990503 -1.361042	6 -2.225600 -0.451804 1.273650
7 1.020864 -0.000323 0.014667	1 -0.271514 -0.624966 -1.317296	1 -1.482573 -0.421229 2.071073
6 1.048601 -0.508653 1.386919	1 1.356238 -0.361712 -2.027717	1 -2.736014 0.513002 1.203775
1 0.657403 0.265003 2.048783	1 0.756945 -2.011032 -1.751535	1 -2.959794 -1.225089 1.509093
1 0.457844 -1.423041 1.493096	6 2.641495 -1.633992 0.064822	6 -2.488352 -1.021120 -1.090146
1 2.083072 -0.721035 1.666652	1 3.377177 -1.056586 -0.504002	1 -3.023654 -0.099690 -1.339769
6 1.647643 -0.899233 -0.953323	1 2.959498 -1.691172 1.107690	1 -1.931912 -1.361677 -1.965102
1 1.102139 -1.845488 -1.022271	1 2.590513 -2.644177 -0.347327	1 -3.213696 -1.787635 -0.809440
1 1.656684 -0.419645 -1.933957	1 0.451112 -1.276618 0.826357	1 -0.621378 -1.583056 0.233078
1 2.676107 -1.105466 -0.647993	1 0.555327 2.275602 0.869737	1 2.154450 -0.473685 0.565378
1 1.240610 1.192306 0.013514	1 -1.636709 0.011842 0.482451	8 3.048045 -0.061063 0.657693
1 -2.332962 1.011010 -0.040690	7 -2.370599 -0.015014 -0.233655	6 3.758645 -0.375900 -0.507837
	6 -3.181198 -1.199058 -0.041454	1 3.254925 -0.032109 -1.424684
	1 -3.870340 -1.325825 -0.885369	1 4.732703 0.121651 -0.459164

Table S58. The PCM-mPW1PW91/6-31G* Optimized Geometries (in Cartesian coordinates), Total Electronic Energies (in hartree/particle), and Number of Imaginary Frequencies (in cm⁻¹) of Transition States for Carbinolamine Formation (**Step-I**)

	1 -2.538401 -2.083527 -0.000965	1 3.943290 -1.456356 -0.618930
	1 -3.792422 -1.181332 0.879897	1 0.986121 1.565777 0.171262
	6 -3.156663 1.199277 -0.184783	
	1 -2.498362 2.069991 -0.258218	
	1 -3.849331 1.233205 -1.034611	
	1 -3.762127 1.306717 0.734301	
TS-Ic	TS-Id	TS-Ie
Et =-463.3463921 NImag=1(-1112.20)	Et =-443.9165019 Nimag=1	Et =-598.4634916 NImag=1 (-1579.76)
6 -0.814632 -0.759195 0.168203	6 0.399401 -0.720731 -0.132947	6 -0.185479 0.831195 -0.389076
6 -2.285673 -0.971251 -0.231464	6 1.858677 -1.077091 0.124460	6 0.855208 1.619688 -1.165933
1 -0.761191 -0.786986 1.287734	1 0.187979 -0.779764 -1.219665	1 -1.189495 1.204135 -0.654175
1 -2.371514 -0.835183 -1.315666	1 2.069246 -0.946413 1.191235	1 1.856887 1.391740 -0.789471
6 -3.360593 -0.175196 0.501993	6 2.921885 -0.398248 -0.732307	6 0.600491 3.123119 -1.200537
1 -3.410221 0.867321 0.174398	1 3.095925 0.642974 -0.445573	1 0.647196 3.575691 -0.204838
1 -4.350615 -0.609024 0.328233	1 3.878896 -0.916940 -0.627174	1 1.342008 3.630756 -1.823604
1 -3.190728 -0.174993 1.584686	1 2.656475 -0.415380 -1.794762	1 -0.388289 3.345223 -1.615709
8 -0.009553 -1.600588 -0.467357	8 -0.419202 -1.456719 0.638815	8 -0.081281 -0.546788 -0.462031
7 -0.312849 0.716898 -0.089769	7 0.050741 0.793019 0.150505	7 -0.121122 0.910156 1.149967
6 -0.504552 1.120459 -1.477709	6 0.448132 1.219351 1.501681	6 1.146605 1.322243 1.760823
1 -0.253109 0.260582 -2.102862	1 0.173607 0.420390 2.190356	1 1.963937 0.746135 1.318548
1 -1.539226 1.426373 -1.676656	1 1.523363 1.404183 1.544141	1 1.325578 2.393995 1.631743
1 0.154716 1.958849 -1.725758	1 -0.087699 2.133437 1.764341	1 1.097850 1.103476 2.830057
6 -0.719833 1.744992 0.860426	6 0.410291 1.763701 -0.894372	6 -1.306290 1.485674 1.792056
1 -1.741495 2.099067 0.689709	1 1.478451 1.977348 -0.879758	1 -1.333969 2.572814 1.663020
1 -0.657001 1.343878 1.875846	1 0.134854 1.357675 -1.869249	1 -2.194776 1.030765 1.345308
1 -0.046098 2.605857 0.784791	1 -0.142060 2.690554 -0.724329	1 -1.278758 1.258869 2.860378
1 0.998666 0.454112 0.060943	1 -1.040104 0.682974 0.165359	1 -0.142537 -0.291611 0.833216
1 1.428248 -1.079781 -0.087865	1 -1.485897 -0.953467 0.520297	1 0.815835 1.217190 -2.184437
7 2.056454 -0.220787 0.126929	8 -2.350808 -0.083625 0.361330	1 1.842531 -1.072103 -0.331925
6 2.659558 -0.267155 1.453505	6 -3.117535 -0.321073 -0.779980	7 2.819115 -1.179723 -0.044291
1 3.431619 -1.042894 1.512653	1 -3.877424 -1.099543 -0.604645	6 2.935069 -2.324059 0.835878

1 3.117041 0.696182 1.699585	1 -3.656127 0.587854 -1.086376	1 3.942957 -2.366042 1.265901
1 1.887555 -0.488148 2.194097	1 -2.521854 -0.651600 -1.650540	1 2.224606 -2.228152 1.662357
1 -2.447557 -2.040950 -0.058061	1 1.892159 -2.158106 -0.047551	1 2.750032 -3.294188 0.339168
6 3.005523 0.035844 -0.949460		6 3.664176 -1.303384 -1.213828
1 2.481713 -0.019767 -1.905724		1 3.489679 -0.459815 -1.888023
1 3.447904 1.031236 -0.843367		1 4.719774 -1.280168 -0.917553
1 3.813707 -0.704798 -0.950941		1 3.505364 -2.235790 -1.786214
		1 -2.036764 -0.951083 -0.438982
		7 -3.031169 -0.872840 -0.210013
		6 -3.803272 -0.708380 -1.423895
		1 -3.801995 -1.596069 -2.083001
		1 -4.848859 -0.490629 -1.175145
		1 -3.415621 0.138161 -1.998307
		6 -3.443962 -2.035376 0.548249
		1 -3.434429 -2.977338 -0.030569
		1 -2.786780 -2.164487 1.413249
		1 -4.464751 -1.894635 0.923186
TS-If	TS-Ig	1 -4.464751 -1.894635 0.923186 TS-Ih
TS-If Et =-559.5911508 NImag=1(-1598.48)	TS-Ig Et =-598.4907174 NImag=1 (-682.16)	<u>1 -4.464751 -1.894635 0.923186</u> TS-Ih Et =-559.6240534 NImag=1 (-355.30)
TS-If Et =-559.5911508 NImag=1(-1598.48) 6 -0.013820 -0.711446 -0.393912	TS-Ig Et =-598.4907174 NImag=1 (-682.16) 6 -1.083972 -0.681591 0.275888	1 -4.464751 -1.894635 0.923186 TS-Ih Et =-559.6240534 NImag=1 (-355.30) 6 0.918698 -0.321966 -0.637506
TS-If Et =-559.5911508 NImag=1(-1598.48) 6 -0.013820 -0.711446 -0.393912 6 -1.090939 -0.883700 -1.446253	TS-Ig Et =-598.4907174 NImag=1 (-682.16) 6 -1.083972 -0.681591 0.275888 6 -2.378510 -1.504113 0.516319	1 -4.464751 -1.894635 0.923186 TS-Ih Et =-559.6240534 NImag=1 (-355.30) 6 0.918698 -0.321966 -0.637506 6 2.384758 -0.517357 -1.016241
TS-IfEt =-559.5911508NImag=1(-1598.48)6-0.013820-0.711446-0.013820-0.711446-0.3939126-1.090939-0.883700-1.44625310.779424-1.457164-0.554127	TS-Ig Et =-598.4907174 NImag=1 (-682.16) 6 -1.083972 -0.681591 0.275888 6 -2.378510 -1.504113 0.516319 1 -0.507575 -0.752192 1.239220	1 -4.464751 -1.894635 0.923186 TS-Ih Et =-559.6240534 NImag=1 (-355.30) 6 0.918698 -0.321966 -0.637506 6 2.384758 -0.517357 -1.016241 1 0.370758 0.014921 -1.533942
TS-If Et =-559.5911508 NImag=1(-1598.48) 6 -0.013820 -0.711446 -0.393912 6 -1.090939 -0.883700 -1.446253 1 0.779424 -1.457164 -0.554127 1 -1.926050 -0.205871 -1.247346	TS-Ig Et =-598.4907174 NImag=1 (-682.16) 6 -1.083972 -0.681591 0.275888 6 -2.378510 -1.504113 0.516319 1 -0.507575 -0.752192 1.239220 1 -2.031413 -2.458968 0.931316	1 -4.464751 -1.894635 0.923186 TS-Ih Et =-559.6240534 NImag=1 (-355.30) 6 0.918698 -0.321966 -0.637506 6 2.384758 -0.517357 -1.016241 1 0.370758 0.014921 -1.533942 1 2.348156 -1.220229 -1.855767
TS-If Et =-559.5911508 NImag=1(-1598.48) 6 -0.013820 -0.711446 -0.393912 6 -1.090939 -0.883700 -1.446253 1 0.779424 -1.457164 -0.554127 1 -1.926050 -0.205871 -1.247346 6 -1.565775 -2.324161 -1.609204	TS-Ig Et =-598.4907174 NImag=1 (-682.16) 6 -1.083972 -0.681591 0.275888 6 -2.378510 -1.504113 0.516319 1 -0.507575 -0.752192 1.239220 1 -2.031413 -2.458968 0.931316 6 -3.186093 -1.800152 -0.741436	1 -4.464751 -1.894635 0.923186 TS-Ih Et =-559.6240534 NImag=1 (-355.30) 6 0.918698 -0.321966 -0.637506 6 2.384758 -0.517357 -1.016241 1 0.370758 0.014921 -1.533942 1 2.348156 -1.220229 -1.855767 6 3.287199 -1.100086 0.066095
TS-If Et =-559.5911508 NImag=1(-1598.48) 6 -0.013820 -0.711446 -0.393912 6 -1.090939 -0.883700 -1.446253 1 0.779424 -1.457164 -0.554127 1 -1.926050 -0.205871 -1.247346 6 -1.565775 -2.324161 -1.609204 1 -2.066048 -2.700968 -0.711423	TS-IgEt =-598.4907174 NImag=1 (-682.16)6 -1.083972 -0.681591 0.275888 6 -2.378510 -1.504113 0.516319 1 -0.507575 -0.752192 1.239220 1 -2.031413 -2.458968 0.931316 6 -3.186093 -1.800152 -0.741436 1 -2.492689 -2.077613 -1.539660	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
TS-If Et =-559.5911508 NImag=1(-1598.48) 6 -0.013820 -0.711446 -0.393912 6 -1.090939 -0.883700 -1.446253 1 0.779424 -1.457164 -0.554127 1 -1.926050 -0.205871 -1.247346 6 -1.565775 -2.324161 -1.609204 1 -2.066048 -2.700968 -0.711423 1 -2.277622 -2.404456 -2.434795	TS-IgEt =-598.4907174 NImag=1 (-682.16)6 -1.083972 -0.681591 0.275888 6 -2.378510 -1.504113 0.516319 1 -0.507575 -0.752192 1.239220 1 -2.031413 -2.458968 0.931316 6 -3.186093 -1.800152 -0.741436 1 -2.492689 -2.077613 -1.539660 1 -3.889025 -2.623949 -0.578633	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
TS-IfEt =-559.5911508 NImag=1(-1598.48)6 -0.013820 -0.711446 -0.393912 6 -1.090939 -0.883700 -1.446253 1 0.779424 -1.457164 -0.554127 1 -1.926050 -0.205871 -1.247346 6 -1.565775 -2.324161 -1.609204 1 -2.066048 -2.700968 -0.711423 1 -2.277622 -2.404456 -2.434795 1 -0.728085 -2.994489 -1.827910	TS-IgEt =-598.4907174 NImag=1 (-682.16)6 -1.083972 -0.681591 0.275888 6 -2.378510 -1.504113 0.516319 1 -0.507575 -0.752192 1.239220 1 -2.031413 -2.458968 0.931316 6 -3.186093 -1.800152 -0.741436 1 -2.492689 -2.077613 -1.539660 1 -3.889025 -2.623949 -0.578633 1 -3.766876 -0.938847 -1.083648	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
TS-IfEt =-559.5911508 NImag=1(-1598.48)6 -0.013820 -0.711446 -0.393912 6 -1.090939 -0.883700 -1.446253 1 0.779424 -1.457164 -0.554127 1 -1.926050 -0.205871 -1.247346 6 -1.565775 -2.324161 -1.609204 1 -2.066048 -2.700968 -0.711423 1 -2.277622 -2.404456 -2.434795 1 -0.728085 -2.994489 -1.827910 8 0.511619 0.578477 -0.266260	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
TS-IfEt =-559.5911508 NImag=1(-1598.48)6 -0.013820 -0.711446 -0.393912 6 -1.090939 -0.883700 -1.446253 1 0.779424 -1.457164 -0.554127 1 -1.926050 -0.205871 -1.247346 6 -1.565775 -2.324161 -1.609204 1 -2.066048 -2.700968 -0.711423 1 -2.277622 -2.404456 -2.434795 1 -0.728085 -2.994489 -1.827910 8 0.511619 0.578477 -0.266260 7 -0.415557 -0.841360 1.074863	TS-IgEt =-598.4907174NImag=1 (-682.16)6 -1.083972 -0.681591 0.275888 6 -2.378510 -1.504113 0.516319 1 -0.507575 -0.752192 1.239220 1 -2.031413 -2.458968 0.931316 6 -3.186093 -1.800152 -0.741436 1 -2.492689 -2.077613 -1.539660 1 -3.889025 -2.623949 -0.578633 1 -3.766876 -0.938847 -1.083648 8 -0.410721 -1.017798 -0.804904 7 -1.343388 0.862276 0.275904	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
TS-IfEt =-559.5911508 NImag=1(-1598.48)6 -0.013820 -0.711446 -0.393912 6 -1.090939 -0.883700 -1.446253 1 0.779424 -1.457164 -0.554127 1 -1.926050 -0.205871 -1.247346 6 -1.565775 -2.324161 -1.609204 1 -2.066048 -2.700968 -0.711423 1 -2.277622 -2.404456 -2.434795 1 -0.728085 -2.994489 -1.827910 8 0.511619 0.578477 -0.266260 7 -0.415557 -0.841360 1.074863 6 -1.807822 -0.505790 1.400919	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

1 -2.496300 -1.295056 1.085299	1 -3.165223 1.191568 -0.772813	1 2.055228 0.784792 1.925546
1 -1.885581 -0.383341 2.483242	1 -1.885827 2.380106 -1.082058	1 0.407506 1.311660 2.355583
6 0.079710 -2.021619 1.784460	6 -1.891072 1.397800 1.512461	6 1.238722 2.162825 -0.161565
1 -0.471284 -2.920157 1.489176	1 -2.954832 1.155219 1.638021	1 2.322742 2.168325 -0.038909
1 1.139282 -2.160818 1.562559	1 -1.340762 0.982743 2.362823	1 0.988832 2.291968 -1.216536
1 -0.041232 -1.869638 2.858792	1 -1.790522 2.488826 1.532016	1 0.807272 2.985602 0.411762
1 0.269216 0.214252 0.958836	1 -0.008362 1.253527 0.115703	1 -0.411981 1.002574 0.284578
1 -0.753781 1.778888 -0.503058	1 1.219648 -1.324940 -0.214059	1 -0.683835 -1.436329 -0.250009
8 -1.573999 2.324546 -0.473956	7 2.185007 -1.163087 0.151481	8 -2.035565 -1.274498 -0.435963
6 -1.294931 3.482289 0.272425	6 3.154256 -1.554880 -0.855050	6 -2.747096 -2.108433 0.426189
1 -0.532219 4.116156 -0.203342	1 2.906251 -1.082126 -1.809251	1 -2.380922 -2.076323 1.468177
1 -2.216884 4.066044 0.345209	1 4.160393 -1.229114 -0.564799	1 -3.814413 -1.838740 0.453757
1 -0.956914 3.260057 1.295793	1 3.194167 -2.645462 -1.017943	1 -2.689403 -3.158075 0.099141
1 -0.639776 -0.538023 -2.383034	1 -3.004675 -1.051128 1.296666	1 2.804141 0.409170 -1.423563
1 2.184363 0.415362 -0.732593	1 1.653317 0.572502 0.132274	1 -2.091323 -0.036423 -0.032358
8 3.107212 0.114762 -0.897732	7 1.168491 1.483894 -0.086540	8 -1.943297 1.030603 0.285541
6 3.856369 0.436247 0.242352	6 1.694730 2.561913 0.753141	6 -2.578886 1.878028 -0.634593
1 3.475333 -0.042999 1.158607	1 1.157217 3.490930 0.546622	1 -2.340900 2.923650 -0.404472
1 4.879670 0.081213 0.087099	1 1.558436 2.300873 1.804451	1 -2.277031 1.685339 -1.676155
1 3.905392 1.519898 0.432391	1 2.760567 2.723161 0.563292	1 -3.671608 1.770819 -0.585027
	6 2.396425 -1.858608 1.406934	
	1 1.629038 -1.565750 2.128331	
	1 2.368490 -2.956932 1.306163	
	1 3.374673 -1.593118 1.825893	
	6 1.330460 1.719218 -1.526203	
	1 0.885557 0.865023 -2.038083	
	1 0.810333 2.636019 -1.814864	
	1 2.388142 1.812347 -1.791518	
TS-Ii	TS-Ij	TS-Ik
Et =-598.4628613 NImag=1(-1563.68)	Et = -559.5930319 NImag=1 (-1587.95)	Et = -559.619361 NImag=1 (-561.23)
6 1.832290 -0.922269 0.225077	6 1.337902 -0.857668 -0.197358	6 1.374661 0.629825 -0.358275

6	1.362733 -0.263079 1.512958	6 0.791776 -0.882150 1.219719	6 2.664480 0.081324 -0.959228
1	2.784241 -1.451664 0.426942	1 2.257337 -1.467288 -0.235380	1 1.610418 1.372826 0.431561
1	0.531688 0.416618 1.300814	1 -0.032015 -0.170132 1.325382	1 2.413544 -0.736926 -1.642537
6	2.466807 0.431272 2.303826	6 1.852017 -0.664947 2.294962	6 3.789903 -0.318322 -0.010507
1	2.903642 1.272475 1.756492	1 2.306922 0.328625 2.233518	1 3.610466 -1.277897 0.482489
1	2.083054 0.824274 3.249546	1 1.416826 -0.760932 3.293301	1 4.728764 -0.420587 -0.561873
1	3.279299 -0.264214 2.540340	1 2.656931 -1.402868 2.211965	1 3.949737 0.435592 0.767747
8	0.908796 -1.676672 -0.449057	8 0.448467 -1.173353 -1.209818	8 0.525546 1.040096 -1.297427
7	2.149374 0.033287 -0.961148	7 1.733854 0.515877 -0.775658	7 0.583554 -0.457971 0.522659
6	1.599347 1.393158 -0.931042	6 1.138173 1.711797 -0.167679	6 0.256397 -1.670915 -0.251165
1	0.548463 1.377702 -0.624598	1 0.070508 1.558362 0.006929	1 0.018568 -1.347272 -1.264731
1	2.169877 2.034795 -0.252336	1 1.629463 1.961717 0.777472	1 1.111583 -2.348294 -0.255439
1	1.668166 1.809739 -1.939244	1 1.270356 2.546316 -0.860245	1 -0.617683 -2.149148 0.191319
6	3.529128 -0.013161 -1.446416	6 3.152333 0.685519 -1.094509	6 1.098583 -0.747050 1.872350
1	4.204294 0.511980 -0.763167	1 3.746888 0.827006 -0.186243	1 1.971493 -1.394366 1.815984
1	3.845141 -1.054500 -1.534931	1 3.511874 -0.197202 -1.626680	1 1.369984 0.190980 2.359781
1	3.583723 0.459745 -2.429512	1 3.274295 1.560735 -1.736067	1 0.318630 -1.243877 2.453070
1	1.362952 -0.818495 -1.368296	1 0.982448 -0.036534 -1.602233	1 -0.310750 0.079122 0.634126
1	0.943802 -1.079727 2.112122	1 -1.153976 -1.057574 -0.959693	1 -0.550037 1.291480 -0.710524
1	-0.958612 -1.497643 -0.145813	8 -2.140855 -0.944398 -0.823003	8 -1.442002 1.260898 0.041218
7	-1.979285 -1.398112 -0.068468	6 -2.648613 -2.131096 -0.261246	6 -1.696738 2.500972 0.641126
6	-2.597079 -1.940663 -1.262101	1 -2.210574 -2.356580 0.721323	1 -2.305184 3.149518 -0.006439
1	-3.673565 -1.732351 -1.258213	1 -3.727477 -2.011815 -0.131020	1 -2.247178 2.362216 1.579869
1	-2.166198 -1.464576 -2.147473	1 -2.477372 -2.994351 -0.917670	1 -0.769924 3.046337 0.875422
1	-2.472608 -3.033280 -1.368390	1 0.352261 -1.878995 1.340523	1 3.007931 0.899743 -1.600794
6	-2.437830 -2.065662 1.133047	1 -2.196671 0.451934 0.179797	1 -2.494899 -0.088126 0.226028
1	-1.898879 -1.674849 2.000927	8 -2.096263 1.269223 0.724291	8 -2.905655 -0.972218 0.376185
1	-3.505887 -1.871921 1.287519	6 -2.949212 2.249437 0.189686	6 -3.624329 -1.307407 -0.782540
1	-2.301380 -3.161871 1.111740	1 -2.725479 2.482325 -0.861892	1 -4.068540 -2.295813 -0.631642
1	-1.917357 0.641341 -0.015068	1 -4.009515 1.962620 0.252026	1 -4.442455 -0.601737 -0.991659
7	-1.731801 1.652670 -0.030015	1 -2.817062 3.166361 0.771287	1 -2.990200 -1.358734 -1.680739

6 -2.337795 2.235098 -1.208849	
1 -3.443457 2.214309 -1.202827	
1 -2.034205 3.284304 -1.310058	
1 -1.996335 1.702492 -2.101487	
6 -2.224308 2.256712 1.189813	
1 -1.799704 1.740746 2.056005	
1 -1.912633 3.307015 1.242568	
1 -3.325662 2.237576 1.288391	
TS-Ij	
Et =-559.6186291 NImag=1(-773.28)	

(6	0.829531	-0.003537	-0.756257
	6	1.683138	-1.261901	-0.833261
	1	1.298183	0.799213	-1.351843
	1	1.230819	-2.036298	-0.204501
	6	3.170454	-1.113957	-0.530806
	1	3.371629	-0.961425	0.533557
	1	3.705587	-2.020197	-0.826950
	1	3.613363	-0.277345	-1.081253
8	3	-0.448273	-0.270927	-1.167489
	7	0.744836	0.635063	0.652288
	6	0.479543	-0.331653	1.734086
•	1	-0.314095	-1.011641	1.417043
	1	1.383898	-0.895406	1.974190
	1	0.155886	0.218772	2.619704
	6	1.834518	1.567822	0.983251
	1	2.772447	1.037869	1.149930
	1	1.961042	2.279703	0.165901
	1	1.565987	2.112479	1.890787
	1	-0.208363	1.235217	0.510526
	1	-1.079850	0.620912	-0.815053
8	8	-1.474379	1.573066	-0.054579
(6	-1.581924	2.810990	-0.693720
	1	-2.496160	2.865704	-1.303094
	1	-1.633231	3.627939	0.040433
	1	-0.734375	3.031552	-1.366909
	1	1.555481	-1.606903	-1.864625
	1	-1.301815	-1.635640	-0.425055
8	8	-1.802948	-2.231653	0.175269
(6	-3.075589	-1.649323	0.350028
	1	-3.555680	-2.134737	1.204918
	1	-3.013876	-0.571502	0.547805
	1	-3.723961	-1.798243	-0.527062

TS-II	TS-IIa	TS-IIb
Et =-328.1487344 NImag=1 (-1230.89)	Et =-463.2950976 NImag=1(-534.44)	Et =-443.8669675 NImag=1 (-288.80)
	6 1.829248 0.336154 -0.181369	6 1.381865 0.489886 -0.306137
6 0.211466 -0.059875 0.506806	6 1.908014 -1.014874 0.324481	6 1.851462 -0.658462 0.445762
6 1.365611 -0.403765 -0.283246	1 2.308576 0.539131 -1.133908	1 1.745010 0.604837 -1.323705
1 0.363257 0.571287 1.376806	1 1.601446 -1.131798 1.364553	1 1.668386 -0.591180 1.519455
1 1.222201 -1.229879 -0.979859	6 3.173059 -1.783299 -0.023309	6 3.258499 -1.129209 0.107802
6 2.702733 -0.425308 0.435127	1 4.043651 -1.440468 0.545579	1 4.027743 -0.443723 0.477039
1 2.829285 -1.304112 1.078121	1 3.037445 -2.847300 0.187632	1 3.442529 -2.108554 0.556145
1 3.522769 -0.426988 -0.288472	1 3.408593 -1.689714 -1.088536	1 3.389982 -1.234775 -0.973885
1 2.827025 0.464833 1.061705	8 -0.031021 -0.675329 -1.392462	8 -0.326553 -1.309448 -0.987461
8 0.175349 1.785591 -0.845074	7 1.154583 1.337598 0.315803	7 0.471143 1.341807 0.052627
7 -1.037534 -0.458417 0.332167	6 0.361634 1.227662 1.534685	6 -0.220389 1.260454 1.337449
6 -1.410374 -1.225169 -0.844042	1 -0.624901 0.800132 1.295486	1 -0.998731 0.482863 1.273896
1 -1.408774 -0.583130 -1.731929	1 0.878192 0.598346 2.258674	1 0.490428 1.019570 2.127668
1 -0.714900 -2.051356 -0.992060	1 0.247469 2.226294 1.960437	1 -0.664771 2.233227 1.550550
1 -2.409983 -1.635784 -0.695203	6 0.748993 2.391663 -0.602395	6 -0.193230 2.141360 -0.967869
6 -2.065668 0.433008 0.844700	1 0.476154 3.288247 -0.045559	1 -0.485796 3.105886 -0.551540
1 -3.034794 -0.067371 0.837208	1 1.568122 2.625782 -1.284343	1 0.478377 2.296851 -1.812352
1 -1.824401 0.723903 1.869168	1 -0.101342 2.010543 -1.180790	1 -1.074630 1.587612 -1.306146
1 -2.070458 1.330755 0.211451	1 -0.277768 -1.035452 -2.255462	1 -0.537573 -2.001951 -1.626487
1 0.584868 2.547216 -0.408824	1 1.001731 -1.324242 -0.379572	1 1.038516 -1.352219 -0.011385
1 1.151248 0.671465 -0.858756	1 -1.483404 -0.446760 -0.460631	1 -1.419656 -1.250546 -0.057591
	7 -2.293127 -0.299273 0.186058	8 -2.205906 -1.113827 0.643423

Table S59. The PCM-mPW1PW91/6-31G* Optimized Geometries (in Cartesian coordinates), Total Electronic Energies (in hartree/particle), and Number of Imaginary Frequencies (cm⁻¹) of Transition States for Dehydration Step (**Step-II**)

	6 -3.346634 0.408350 -0.502729	6 -3.290238 -0.603121 -0.062113
	1 -2.950016 1.332536 -0.935497	1 -3.149958 0.442061 -0.398645
	1 -3.818515 -0.169092 -1.322245	1 -3.531477 -1.191425 -0.964465
	1 -4.149623 0.685534 0.193776	1 -4.184527 -0.610436 0.575993
	6 -2.737464 -1.579745 0.684700	
	1 -1.887142 -2.122333 1.109097	
	1 -3.484386 -1.451676 1.480030	
	1 -3.197411 -2.228811 -0.086433	
TS-IIc	TS-IId	TS-IIe
Et =-463.2900721 NIMag=1 (-725.22)	Et =-443.8758943 NImag=1(-96.26)	Et =-598.4424055 NImag=1(-129.41)
6 -1.042774 0.626850 -0.430930	6 0.953913 0.841225 0.065404	6 -0.295953 1.317623 0.374437
6 -0.141000 1.485919 0.261046	6 -0.207113 1.303357 -0.667611	6 0.179344 2.131074 -0.755380
1 -0.796559 0.358320 -1.454477	1 1.259448 1.341591 0.978171	1 -1.309693 0.927688 0.332808
6 0.452697 2.634172 -0.544579	1 -0.023166 1.290770 -1.748695	1 1.153147 2.589859 -0.573846
1 -0.253275 3.461066 -0.677095	6 -0.772904 2.627434 -0.177750	6 -0.853720 3.162560 -1.210149
1 1.340096 3.031878 -0.044359	1 -0.091661 3.468756 -0.344889	1 -1.032060 3.931793 -0.452661
1 0.758892 2.293816 -1.538881	1 -1.708957 2.851144 -0.695627	1 -0.505022 3.660232 -2.118417
8 0.375979 -1.328103 -1.624948	1 -0.994291 2.569581 0.891813	1 -1.808958 2.682196 -1.441076
7 -2.042766 -0.062045 0.072737	8 -0.567537 -0.188990 2.044435	8 -0.166859 -0.489513 -1.374243
6 -2.531807 0.098970 1.428956	7 1.660175 -0.198909 -0.273199	7 0.354610 1.026569 1.456180
1 -2.027382 -0.593205 2.112423	6 1.258737 -1.043398 -1.399280	6 1.753065 1.376072 1.693942
1 -2.371009 1.120799 1.771971	1 1.332569 -0.481394 -2.334229	1 2.371882 0.625538 1.178228
1 -3.602989 -0.111945 1.444854	1 1.932109 -1.898445 -1.449522	1 1.965301 2.374734 1.314269
6 -2.577531 -1.176084 -0.704035	1 0.219366 -1.365191 -1.228376	1 1.931800 1.361593 2.769727
1 -3.489421 -0.881797 -1.232452	6 2.741423 -0.686314 0.568033	6 -0.231187 0.104162 2.423034
1 -1.779127 -1.488345 -1.389098	1 3.647292 -0.809614 -0.030136	1 -0.279029 0.585284 3.403118
1 -2.815633 -1.998860 -0.024910	1 2.932410 0.023165 1.372645	1 -1.226646 -0.185500 2.084531
1 1.290143 -0.905213 -0.621803	1 2.462784 -1.652915 0.997352	1 0.403547 -0.783187 2.491247
1 0.343253 -2.289892 -1.532102	1 -0.160123 -0.953933 2.469284	1 -1.733562 -0.777730 -0.599454
7 1.861425 -0.438962 0.249113	1 -1.039892 -0.589125 1.233889	1 0.287859 1.333936 -1.524938
1 0.807102 0.656895 0.371115	8 -1.543873 -1.037784 -0.179475	1 1.467637 -0.769491 -0.724439

1 -0.432131 1.769053 1.274976	6 -2.898588 -1.228774 -0.311883	7 2.435432 -0.974830 -0.384711
6 3.194796 -0.012788 -0.110343	1 -3.501776 -0.709293 0.462151	6 2.499673 -2.354602 0.045033
1 3.654321 0.592108 0.683916	1 -3.296798 -0.878096 -1.287178	1 1.711255 -2.550338 0.778842
1 3.870947 -0.862106 -0.306761	1 -3.189606 -2.298604 -0.243357	1 2.379389 -3.086323 -0.776892
1 3.150889 0.595390 -1.018505	1 -0.962470 0.416978 -0.512060	1 3.463730 -2.567269 0.525091
6 1.837236 -1.314771 1.398276		6 3.370943 -0.703715 -1.454328
1 2.466494 -2.210283 1.261611		1 3.240627 0.324072 -1.806691
1 2.186833 -0.805080 2.306783		1 4.404619 -0.807833 -1.099642
1 0.810405 -1.654337 1.569079		1 3.258281 -1.374333 -2.327372
		1 -0.179520 -1.390772 -1.728745
		7 -2.586636 -0.909634 -0.009875
		6 -3.772316 -0.566869 -0.763691
		1 -3.663687 0.435220 -1.190717
		1 -3.990311 -1.263562 -1.594910
		1 -4.655693 -0.557065 -0.111975
		6 -2.624831 -2.274612 0.468213
		1 -1.662005 -2.530218 0.921339
		1 -3.402289 -2.398619 1.233404
		1 -2.829681 -3.018688 -0.324713
TS IIIf	TS-IIg	TS IIIa
Ft = 550 5863022 $NImag = 1(-71.84)$	Et =-559.5858266 NImag=2(-31.59, -	13-111g Et = 559 583/682 NImag=1(-1/2.83)
Et -557.5005722 Windg 1(-71.04)	4.39)	Et -557.5654662 Trilling T(-142.65)
6 1.489449 -0.098440 0.385102	6 1.687700 -0.405024 0.098850	6 1.502476 -0.395630 0.217090
6 2.342434 -0.356256 -0.791378	6 1.969281 1.029313 -0.131874	6 1.752936 1.022805 0.219421
1 1.390146 0.929843 0.726676	1 1.892261 -0.838348 1.069601	1 1.382936 -0.925055 1.161486
1 2.675426 -1.394768 -0.855601	1 2.539085 1.151485 -1.062909	1 2.311076 1.360333 -0.660208
6 3.517067 0.612715 -0.889088	6 2.675385 1.680164 1.050490	6 2.301689 1.585202 1.521610
1 4.226015 0.479443 -0.066739	1 3.666277 1.247655 1.219908	1 3.346345 1.305619 1.693848
1 4.056201 0.451523 -1.825352	1 2.803520 2.750422 0.873069	1 2.247939 2.676802 1.514511
1 3.169417 1.649683 -0.878003	1 2.075641 1.547168 1.954029	1 1.714982 1.234954 2.376767
8 -0 388339 0 549874 -1 450709	8 0.011830 -0.208703 2.262896	8 -0.420123 -1.579446 2.278724

7	0.749153 -0.946521 1.007499	7 1.131967 -1.176684 -0.768525	7	1.192826 -1.086975 -0.842050
6	0.584331 -2.346508 0.627411	6 0.737033 -0.694215 -2.094836	6	1.110073 -0.455808 -2.157676
1	-0.382617 -2.411817 0.115512	1 1.611483 -0.288377 -2.608173	1	0.814000 -1.208122 -2.887537
1	1.390484 -2.673395 -0.023880	1 0.347747 -1.536099 -2.664071	1	0.366853 0.350501 -2.107805
1	0.575996 -2.953549 1.534572	1 -0.031313 0.079272 -1.986283	1	2.084379 -0.050279 -2.442551
6	-0.179307 -0.501768 2.048743	6 0.646634 -2.501056 -0.386411	6	0.704766 -2.455531 -0.735555
1	0.043848 -1.034283 2.975976	1 0.853537 -3.210510 -1.188537	1	1.280707 -3.103029 -1.400812
1	-0.082178 0.574424 2.175659	1 1.143262 -2.820227 0.529419	1	0.796296 -2.795020 0.294841
1	-1.186536 -0.736023 1.694181	1 -0.430068 -2.364169 -0.206991	1	-0.351385 -2.465460 -1.013933
1	-0.782871 0.949636 -2.235472	1 -0.036617 -0.980340 2.841129	1	-0.561730 -0.972235 3.015626
1	-1.374073 -0.376095 -0.862950	1 -0.700233 -0.397164 1.551282	1	-0.976590 -1.207901 1.547727
8	-2.019641 -1.042433 -0.376837	8 -1.632160 -0.748013 0.360998	8	-1.747065 -0.571177 0.148669
6	-3.184684 -1.158795 -1.133596	6 -2.945895 -0.941219 0.734921	6	-3.145032 -0.589932 0.067302
1	-3.003154 -1.562288 -2.144734	1 -3.340185 -0.153690 1.409960	1	-3.622995 0.132108 0.748004
1	-3.877034 -1.845017 -0.630808	1 -3.638513 -0.970866 -0.130053	1	-3.499361 -0.370238 -0.950498
1	-3.711368 -0.197607 -1.258306	1 -3.098775 -1.898916 1.272163	1	-3.505144 -1.588694 0.337189
1	1.609336 -0.171649 -1.600392	1 0.982928 1.493313 -0.315492	1	0.646468 1.419627 -0.029655
1	-0.333092 1.651430 -0.434239	1 -1.400704 0.553622 -0.340737	1	-1.389138 0.357883 -0.179343
8	-0.282105 2.310920 0.366063	8 -1.113021 1.411189 -0.852475	8	-0.742549 1.571654 -0.681078
6	-1.601502 2.617378 0.713730	6 -2.119109 2.373976 -0.744845	6	-1.431263 2.746812 -0.453116
1	-2.070622 3.330304 0.013136	1 -2.320473 2.663227 0.298921	1	-1.800761 2.854361 0.586577
1	-2.243604 1.723947 0.748293	1 -1.807335 3.277817 -1.281589	1	-0.809523 3.640397 -0.650727
1	-1.619832 3.085064 1.706308	1 -3.074668 2.044102 -1.184092	1	-2.321119 2.846515 -1.104141
TS-IIh TS-IIi				
Et =	= -598.4325752 NImag=1(-608.96)	Et =-559.5852625 NImag=2(-74.02,-51.7)		

6	2.623864 -0.342625 0.29	93459				
6	2.765748 0.438514 -0.92	13490				
1	3.132853 0.025689 1.17	78242				
1	2.386468 -0.035953 -1.8	18792				
6	4.107589 1.127364 -1.10	05240	6	1.628795	0.720880	0.040419
1	4.906324 0.429375 -1.37	78094	6	0.390179	1.534137	0.138837
1	4.036793 1.876231 -1.89	98553	1	2.483581	0.981700	0.653755
1	4.414816 1.648478 -0.19	92208	6	0.527999	2.667331	1.148417
8	1.013957 1.454777 0.75	59508	1	1.320086	3.369788	0.871170
7	1.872081 -1.390196 0.49	96395	1	-0.406734	3.228154	1.218319
6	1.076519 -2.037880 -0.5.	37784	1	0.755855	2.272348	2.142858
1	0.031295 -1.691566 -0.50	06846	8	1.117171	-0.716147	1.821906
1	1.506745 -1.840157 -1.5	17842	7	1.844108	-0.183871	-0.862551
1	1.099814 -3.115835 -0.3	58099	6	0.778526	-0.715408	-1.709909
6	1.471244 -1.680012 1.86	66183	1	0.186556	-1.421868	-1.114214
1	1.132404 -2.713404 1.94	42709	1	0.101614	0.076526	-2.026007
1	2.314767 -1.526258 2.54	41290	1	1.232499	-1.192219	-2.578656
1	0.667332 -0.984977 2.13	32397	6	3.085551	-0.946263	-0.859565
1	1.223843 2.264308 1.24	46344	1	3.496600	-0.974100	-1.870885
1	1.946360 1.197656 -0.48	82908	1	3.803990	-0.486275	-0.182772
1	-0.671125 1.548726 0.4	57382	1	2.878112	-1.965347	-0.523508
7	-1.693343 1.648405 0.2	40458	1	0.839525	-0.290811	2.643394
6	-2.389530 2.092896 1.4	27330	1	0.221585	-0.958386	1.347210
1	-2.175040 1.410200 2.2	55306	8	-1.070420	-1.139472	0.623545
1	-2.110275 3.113843 1.7	52054	6	-1.950820	-1.855723	1.411376
1	-3.475493 2.093274 1.2	65770	1	-2.050210	-2.917567	1.105326
6	-1.841707 2.582514 -0.8	53632	1	-1.649601	-1.880444	2.477775
1	-1.222607 2.259287 -1.6	95667	1	-2.977223	-1.442058	1.396562
1	-2.884287 2.620848 -1.1	95692	1	0.138387	1.922148	-0.855106
1	-1.545551 3.617697 -0.5	97079	1	-0.424464	0.847117	0.417919
1	-2.059896 -0.255557 -0.2	262056	8	-2.263655	0.019685	-1.397996
7	-2.201445 -1.247684 -0.5	08687	1	-1.845465	-0.443768	-0.605810
6	-2.968250 -1.896385 0.5	32437	6	-3.242011	0.893445	-0.916151
1	-3.015852 -2.977665 0.3	51260	1	-2.851240	1.625777	-0.189718
1	-2.481136 -1.742112 1.4	99984	1	-3.652410	1.460196	-1.759806
1	-4.010290 -1.534495 0.6	16520	1	-4.083882	0.373255	-0.430122
6	-2.852079 -1.334616 -1.7	97858				
1	-2 278178 -0 770932 -2 5	39359				

Table S60. The B3LYP/6-311+G** Optimized Geometries (in Cartesian coordinates), Total Electronic Energies (in hartree/particle	;),
and Number of Imaginary Frequencies (cm ⁻¹) of Transition States for Carbinolamine Formation (Step-I)	

TS-I	TS-Ia	TS-Ib		
Et =-328.3659407 NImag=1(-1573.11)	Et =-463.5849549 NImag=1 (-1584.56)	Et =-444.1483177 NImag=1(-1594.02)		
	6 1.141954 0.255276 0.871288	6 -0.636074 0.276605 -0.829699		
	6 0.982725 1.584638 0.139113	6 -0.423563 1.567813 -0.048916		
6 _0 311719 _0 766445 _0 353631	1 2.059202 0.294252 1.488366	1 -1.431002 0.433084 -1.579296		
6 -1 607498 0 237930 0 257686	1 0.183743 1.508496 -0.602853	1 0.256775 1.394314 0.787869		
1 -0.352373 -0.625893 -1.452882	6 2.272382 2.128574 -0.484725	6 -1.717218 2.250745 0.407338		
1 -0.552575 -0.025075 -1.452002 1 -1.514928 -0.188309 -1.346172	1 2.656089 1.479966 -1.278133	1 -2.280143 1.641653 1.121023		
6 -2 103306 -1 089649 -0 324762	1 2.106406 3.114571 -0.925903	1 -1.500717 3.203305 0.896961		
1 -1.417010 -1.917557 -0.121385	1 3.061620 2.233460 0.266319	1 -2.376910 2.459683 -0.440697		
1 -3.073744 -1.363763 -0.096692	8 0.041876 -0.222185 1.531672	8 0.489475 -0.328692 -1.348252		
1 -2 224499 -1 022160 -1 410366	7 1.340170 -1.031777 -0.027543	7 -1.108701 -0.985466 -0.019897		
8 0 111926 1 983690 0 059580	6 0.801219 -0.980706 -1.400616	6 -0.747307 -1.035098 1.411188		
7 1 036835 -0 003386 0 063455	1 -0.218102 -0.591586 -1.370899	1 0.304426 -0.773782 1.527650		
6 1 034005 -0 760348 1 324508	1 1.424144 -0.360822 -2.051550	1 -1.369907 -0.359929 2.004555		
1 0570514 - 0155296 2102792	1 0.777067 -1.995943 -1.802715	1 -0.894171 -2.055741 1.769741		
1 0496407 - 1707642 1226724	6 2.648387 -1.697325 0.065216	6 -2.469899 -1.469903 -0.295986		
1 2065283 -0970419 1617007	1 3.415406 -1.143359 -0.484747	1 -3.222335 -0.829834 0.174897		
6 1 755987 -0 684577 -1 023089	1 2.942246 -1.768660 1.113269	1 -2.636056 -1.483103 -1.373857		
1 1 268251 -1 626580 -1 291724	1 2.575116 -2.704200 -0.350888	1 -2.579066 -2.484971 0.090701		
1 1780099 -0.033218 -1.897563	1 0.463978 -1.272463 0.795770	1 -0.159524 -1.326229 -0.731982		
1 2.781426 - 0.894953 - 0.710853	1 0.620961 2.282249 0.901364	1 1.894763 -0.214632 -0.290041		
$1 \ 2.04863 \ 1.187742 \ 0.229420$	1 -1.746098 0.016620 0.537329	8 2.505456 -0.206301 0.482149		
1 -2.342362 -1.025014 -0.060869	7 -2.455485 -0.019182 -0.197928	6 3.836732 -0.036951 0.033527		
1 2.3 12302 1.020011 0.00000)	6 -3.297726 -1.193054 -0.010895	1 3.972754 0.906196 -0.513443		
	1 -3.949071 -1.331382 -0.881152	1 4.486851 -0.017497 0.911426		
	1 -2.672918 -2.084992 0.083578	1 4.163726 -0.860712 -0.615578		

	1 -3.944595 -1.136652 0.882732	1 0.115975 2.227134 -0.736538
	6 -3.218547 1.221138 -0.223434	
	1 -2.537784 2.073428 -0.292853	
	1 -3.870394 1.242724 -1.103881	
	1 -3.857194 1.367249 0.666079	
TS-Ic	TS-Id	TS-Ie
Et =-463.6019163 NImag=1 (-1163.19)	Et =-444.1711245 NImag=1(-813.40)	Et =-598.8032174 NImag=1(-1597.45)
6 -0.833756 -0.778991 0.189938	6 0.462426 -0.734085 -0.184744	6 -0.199184 0.868474 -0.386458
6 -2.286971 -0.992838 -0.279621	6 1.913645 -1.087470 0.146256	6 0.820009 1.641532 -1.216110
1 -0.821749 -0.804319 1.305999	1 0.308132 -0.756741 -1.280687	1 -1.212789 1.225274 -0.632093
1 -2.328577 -0.845763 -1.363320	1 2.068111 -0.969883 1.222742	1 1.831032 1.432870 -0.858569
6 -3.397049 -0.202689 0.422503	6 3.020431 -0.388579 -0.650243	6 0.556563 3.148907 -1.298645
1 -3.405576 0.855015 0.145706	1 3.158218 0.656088 -0.359499	1 0.626808 3.637468 -0.322389
1 -4.379089 -0.606986 0.160264	1 3.977186 -0.890306 -0.485273	1 1.280844 3.635140 -1.956895
1 -3.303590 -0.260383 1.512126	1 2.821175 -0.414352 -1.726135	1 -0.441438 3.354084 -1.698126
8 0.015743 -1.611895 -0.400247	8 -0.398641 -1.494396 0.512251	8 -0.083771 -0.511272 -0.406697
7 -0.314001 0.737591 -0.048928	7 0.075508 0.798625 0.122541	7 -0.097665 0.996087 1.171611
6 -0.546233 1.204915 -1.420544	6 0.406574 1.213970 1.504157	6 1.184210 1.446279 1.745853
1 -0.303048 0.392885 -2.107637	1 0.112109 0.409893 2.176587	1 2.000676 0.877476 1.297956
1 -1.587608 1.507056 -1.580255	1 1.475228 1.414344 1.598557	1 1.341025 2.517505 1.590165
1 0.094876 2.064929 -1.641980	1 -0.156261 2.114916 1.753102	1 1.168657 1.248904 2.819704
6 -0.701840 1.734872 0.954348	6 0.469362 1.794311 -0.896297	6 -1.283351 1.574024 1.830040
1 -1.737275 2.069677 0.840371	1 1.536191 2.007325 -0.848536	1 -1.327225 2.657737 1.681451
1 -0.587542 1.309377 1.953906	1 0.221915 1.408697 -1.885745	1 -2.177542 1.105990 1.413743
1 -0.051680 2.613791 0.876884	1 -0.088710 2.717671 -0.728059	1 -1.234535 1.368276 2.901339
1 1.006735 0.462390 0.060881	1 -1.014554 0.677518 0.075981	1 -0.110821 -0.209298 0.887847
1 1.416767 -1.070451 -0.122696	1 -1.456308 -0.993340 0.384390	1 0.758245 1.203319 -2.217411
7 2.072031 -0.214844 0.088866	8 -2.303009 -0.085707 0.243104	1 1.896443 -1.161127 -0.333961
6 2.702088 -0.308744 1.408488	6 -3.391304 -0.308281 -0.616483	7 2.872155 -1.254681 -0.046533
1 3.467284 -1.092757 1.428964	1 -4.132105 -0.976347 -0.154310	6 3.013605 -2.392288 0.852813
1 3.172679 0.640502 1.684377	1 -3.903167 0.635826 -0.847967	1 4.019402 -2.404353 1.286941

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 -3.091436 -0.765326 -1.574684 1 1.962124 -2.164736 -0.036971	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1 3.483104 1.032224 -0.882099 1 3.797340 -0.708049 -1.047970		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
		1 -4.3331/4 -1.3/3//0 0.33/020
TS-If	TS-Ig	TS-Ih
TS-If Et =-559.9406447 NImag=1(-111.99)	TS-Ig Et =-598.8245672 NImag=1(-682.1)	$\frac{\mathbf{TS-Ih}}{\text{Et} = -559.9574335} \text{ NImag} = 1 (-507.45)$
TS-If Et =-559.9406447 NImag=1(-111.99) 6 0.179717 0.909631 0.782323	TS-Ig Et =-598.8245672 NImag=1(-682.1) 6 -1.113203 -0.713985 0.344277	$\begin{array}{c} \textbf{TS-Ih} \\ \textbf{Et} = -559.9574335 \text{NImag} = 1 \ (-507.45) \\ \textbf{6} \ 0.967927 \ -0.377572 \ -0.607435 \end{array}$
TS-If Et =-559.9406447 NImag=1(-111.99) 6 0.179717 0.909631 0.782323 6 -0.603963 0.250201 1.861836	TS-Ig Et =-598.8245672 NImag=1(-682.1) 6 -1.113203 -0.713985 0.344277 6 -2.414693 -1.560687 0.486953	$\begin{array}{r} \textbf{TS-Ih} \\ \hline \textbf{Et} = -559.9574335 \textbf{NImag} = 1 \ (-507.45) \\ \hline \textbf{6} 0.967927 -0.377572 -0.607435 \\ \hline \textbf{6} 2.446251 -0.577323 -0.964147 \\ \hline \textbf{6} 0.462542 \ (-507.45) \ (-507.45$
TS-If Et =-559.9406447 NImag=1(-111.99) 6 0.179717 0.909631 0.782323 6 -0.603963 0.250201 1.861836 1 1.241239 0.689955 0.680754 1 0.944(61) 1.012521 2.61(725)	TS-Ig Et =-598.8245672 NImag=1(-682.1) 6 -1.113203 -0.713985 0.344277 6 -2.414693 -1.560687 0.486953 1 -0.607313 -0.768735 1.344808 1 -2.101244 -2.47(000) 1.002226	$\begin{array}{c} \textbf{TS-Ih} \\ \hline \textbf{Et} = -559.9574335 \textbf{NImag} = 1 \ (-507.45) \\ \hline \textbf{6} 0.967927 -0.377572 -0.607435 \\ \hline \textbf{6} 2.446251 -0.577323 -0.964147 \\ \hline \textbf{1} 0.410540 -0.138961 -1.526726 \\ \hline \textbf{1} 2.425226 -1.216696 -1.771128 \\ \hline \textbf{1} 0.245226 -1.771128 \\ \hline \textbf{1} 0.245226 -1.216696 -1.771128 \\ \hline \textbf{1} 0.24526 -1.756726$
TS-If Et =-559.9406447 NImag=1(-111.99) 6 0.179717 0.909631 0.782323 6 -0.603963 0.250201 1.861836 1 1.241239 0.689955 0.680754 1 -0.846681 1.013521 2.616735 6 0.158080 0.010408 2.402257	TS-Ig Et =-598.8245672 NImag=1(-682.1) 6 -1.113203 -0.713985 0.344277 6 -2.414693 -1.560687 0.486953 1 -0.607313 -0.768735 1.344808 1 -2.101344 -2.476098 1.002226 (-2.081010 -0.61450 0.822002	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
TS-IfEt =-559.9406447 NImag=1(-111.99)6 0.179717 0.909631 0.782323 6 -0.603963 0.250201 1.861836 1 1.241239 0.689955 0.680754 1 -0.846681 1.013521 2.616735 6 0.158989 -0.919408 2.492257 1 1.009640 0.501871 2.042305	TS-IgEt =-598.8245672NImag=1(-682.1)6 -1.113203 -0.713985 0.344277 6 -2.414693 -1.560687 0.486953 1 -0.607313 -0.768735 1.344808 1 -2.101344 -2.476098 1.002226 6 -3.081010 -1.961459 -0.832902 1 -2.317952 -2.314044 1.528022	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
TS-IfEt =-559.9406447 NImag=1(-111.99)6 0.179717 0.909631 0.782323 6 -0.603963 0.250201 1.861836 1 1.241239 0.689955 0.680754 1 -0.846681 1.013521 2.616735 6 0.158989 -0.919408 2.492257 1 1.099649 -0.591871 2.943305 1 -0.446916 -1.384752 3.272353	TS-Ig Et =-598.8245672 NImag=1(-682.1) 6 -1.113203 -0.713985 0.344277 6 -2.414693 -1.560687 0.486953 1 -0.607313 -0.768735 1.344808 1 -2.101344 -2.476098 1.002226 6 -3.081010 -1.961459 -0.832902 1 -2.317952 -2.314944 -1.528922 1 -3.809345 -2.762093 -0.670389	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
TS-IfEt =-559.9406447 NImag=1(-111.99)6 0.179717 0.909631 0.782323 6 -0.603963 0.250201 1.861836 1 1.241239 0.689955 0.680754 1 -0.846681 1.013521 2.616735 6 0.158989 -0.919408 2.492257 1 1.099649 -0.591871 2.943305 1 -0.446916 -1.384752 3.272353 1 0.380960 -1.666051 1.728125	TS-IgEt =-598.8245672 NImag=1(-682.1)6 -1.113203 -0.713985 0.344277 6 -2.414693 -1.560687 0.486953 1 -0.607313 -0.768735 1.344808 1 -2.101344 -2.476098 1.002226 6 -3.081010 -1.961459 -0.832902 1 -2.317952 -2.314944 -1.528922 1 -3.809345 -2.762093 -0.670389 1 -3.609782 -1.31962 -1.309167	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
TS-IfEt =-559.9406447NImag=1(-111.99)6 0.179717 0.909631 0.782323 6 -0.603963 0.250201 1.861836 1 1.241239 0.689955 0.680754 1 -0.846681 1.013521 2.616735 6 0.158989 -0.919408 2.492257 1 1.099649 -0.591871 2.943305 1 -0.446916 -1.384752 3.272353 1 0.380960 -1.666051 1.728125 8 0.342475 -1.165754 -0.900895	TS-Ig $Et = -598.8245672$ NImag=1(-682.1)6 -1.113203 -0.713985 0.344277 6 -2.414693 -1.560687 0.486953 1 -0.607313 -0.768735 1.344808 1 -2.101344 -2.476098 1.002226 6 -3.081010 -1.961459 -0.832902 1 -2.317952 -2.314944 -1.528922 1 -3.809345 -2.762093 -0.670389 1 -3.609782 -1.131962 -1.309167 8 -0.348792 -1.031804 -0.681963	TS-IhTS-IhEt =-559.9574335NImag=1 (-507.45)6 0.967927 -0.377572 -0.607435 6 2.446251 -0.577323 -0.964147 1 0.410540 -0.138961 -1.526726 1 2.425236 -1.316686 -1.771138 6 3.352370 -1.105245 0.153017 1 2.885079 -1.957581 0.648341 1 4.307760 -1.433004 -0.264636 1 3.575038 -0.350196 0.910799 8 0.453469 -1.429480 0.059175
TS-IfEt =-559.9406447 NImag=1(-111.99)6 0.179717 0.909631 0.782323 6 -0.603963 0.250201 1.861836 1 1.241239 0.689955 0.680754 1 -0.846681 1.013521 2.616735 6 0.158989 -0.919408 2.492257 1 1.099649 -0.591871 2.943305 1 -0.446916 -1.384752 3.272353 1 0.380960 -1.666051 1.728125 8 0.342475 -1.165754 -0.900895 7 -0.304181 1.772806 -0.045825	TS-IgEt =-598.8245672NImag=1(-682.1) 6 -1.113203-0.7139850.344277 6 -2.414693-1.5606870.486953 1 -0.607313-0.7687351.344808 1 -2.101344-2.4760981.002226 6 -3.081010-1.961459-0.832902 1 -2.317952-2.314944-1.528922 1 -3.809345-2.762093-0.670389 1 -3.609782-1.131962-1.309167 8 -0.348792-1.031804-0.681963 7 -1.4058270.8542630.313114	TS-IhTS-IhEt =-559.9574335NImag=1 (-507.45)6 0.967927 -0.377572 -0.607435 6 2.446251 -0.577323 -0.964147 1 0.410540 -0.138961 -1.526726 1 2.425236 -1.316686 -1.771138 6 3.352370 -1.105245 0.153017 1 2.885079 -1.957581 0.648341 1 4.307760 -1.433004 -0.264636 1 3.575038 -0.350196 0.910799 8 0.453469 -1.429480 0.059175 7 0.690104 0.949689 0.234785
TS-IfEt =-559.9406447 NImag=1(-111.99)6 0.179717 0.909631 0.782323 6 -0.603963 0.250201 1.861836 1 1.241239 0.689955 0.680754 1 -0.846681 1.013521 2.616735 6 0.158989 -0.919408 2.492257 1 1.099649 -0.591871 2.943305 1 -0.446916 -1.384752 3.272353 1 0.380960 -1.666051 1.728125 8 0.342475 -1.165754 -0.900895 7 -0.304181 1.772806 -0.045825 6 -1.736463 2.114379 -0.087464	TS-IgEt =-598.8245672NImag=1(-682.1) 6 -1.113203-0.7139850.344277 6 -2.414693-1.5606870.486953 1 -0.607313-0.7687351.344808 1 -2.101344-2.4760981.002226 6 -3.081010-1.961459-0.832902 1 -2.317952-2.314944-1.528922 1 -3.809345-2.762093-0.670389 1 -3.609782-1.131962-1.309167 8 -0.348792-1.031804-0.681963 7 -1.4058270.8542630.313114 6 -2.1924551.267158-0.853849	TS-IhTS-IhEt =-559.9574335NImag=1 (-507.45)6 0.967927 -0.377572 -0.607435 6 2.446251 -0.577323 -0.964147 1 0.410540 -0.138961 -1.526726 1 2.425236 -1.316686 -1.771138 6 3.352370 -1.105245 0.153017 1 2.885079 -1.957581 0.648341 1 4.307760 -1.433004 -0.264636 1 3.575038 -0.350196 0.910799 8 0.453469 -1.429480 0.059175 7 0.690104 0.949689 0.234785 6 1.055757 0.854559 1.670875
TS-IfEt =-559.9406447 NImag=1(-111.99)6 0.179717 0.909631 0.782323 6 -0.603963 0.250201 1.861836 1 1.241239 0.689955 0.680754 1 -0.846681 1.013521 2.616735 6 0.158989 -0.919408 2.492257 1 1.099649 -0.591871 2.943305 1 -0.446916 -1.384752 3.272353 1 0.380960 -1.666051 1.728125 8 0.342475 -1.165754 -0.900895 7 -0.304181 1.772806 -0.045825 6 -1.736463 2.114379 -0.087464 1 -2.281183 1.268767 -0.520617	TS-IgEt =-598.8245672NImag=1(-682.1) 6 -1.113203-0.7139850.344277 6 -2.414693-1.5606870.486953 1 -0.607313-0.7687351.344808 1 -2.101344-2.4760981.002226 6 -3.081010-1.961459-0.832902 1 -2.317952-2.314944-1.528922 1 -3.809345-2.762093-0.670389 1 -3.609782-1.131962-1.309167 8 -0.348792-1.031804-0.681963 7 -1.4058270.8542630.313114 6 -2.1924551.267158-0.853849 1 -1.8311520.712471-1.720225	TS-IhTS-IhEt =-559.9574335NImag=1 (-507.45) 6 0.967927 -0.377572 -0.607435 6 2.446251 -0.577323 -0.964147 1 0.410540 -0.138961 -1.526726 1 2.425236 -1.316686 -1.771138 6 3.352370 -1.105245 0.153017 1 2.885079 -1.957581 0.648341 1 4.307760 -1.433004 -0.264636 1 3.575038 -0.350196 0.910799 8 0.453469 -1.429480 0.059175 7 0.690104 0.949689 0.234785 6 1.055757 0.854559 1.670875 1 0.143752 2.016993

1 1.0(00(0 2.010110 0.002250	1 0.074004 0.040000 1.004050	1 0 401557 1 5072(0 2 205005
1 -1.860068 3.010112 -0.693359	1 -2.0/4024 2.342320 -1.034359	1 0.481557 1.597368 2.225905
6 0.520947 2.272048 -1.155644	6 -1.956571 1.398070 1.554626	6 1.199399 2.185438 -0.399667
1 0.527643 3.363874 -1.139615	1 -3.002185 1.103036 1.715021	1 2.283826 2.247250 -0.306778
1 1.528393 1.868999 -1.068325	1 -1.369322 1.040098 2.404716	1 0.921271 2.188298 -1.454316
1 0.079296 1.920259 -2.090302	1 -1.918237 2.493432 1.542320	1 0.746128 3.050340 0.087478
1 0.387729 -1.412094 -1.830908	1 -0.033287 1.266381 0.094805	1 -0.394867 1.029101 0.206815
1 -1.208204 -1.092575 -0.712232	1 1.329556 -1.299040 -0.154502	1 -0.631201 -1.471593 -0.094266
8 -2.211272 -0.944658 -0.575571	7 2.301138 -1.099608 0.167675	8 -1.956478 -1.314414 -0.322562
6 -2.915960 -2.109763 -0.948449	6 3.249740 -1.534392 -0.854834	6 -2.825865 -2.230922 0.297204
1 -2.569521 -2.994743 -0.396662	1 2.965493 -1.116296 -1.823362	1 -2.798238 -2.161191 1.396713
1 -3.977501 -1.964505 -0.726101	1 4.260789 -1.185682 -0.614489	1 -3.864304 -2.062808 -0.020101
1 -2.823724 -2.325233 -2.023156	1 3.291068 -2.630441 -0.961828	1 -2.561711 -3.260756 0.022905
1 -1 550561 -0 098551 1 436048	1 -3 132826 -1 073123 1 159274	1 2 860840 0 333553 -1 408394
1 1 797852 -0 678459 -0 666945	1 1 632752 0 627282 0 075651	1 -2.077326 -0.076520 -0.008143
8 2 668473 -0 180209 -0 457984	7 1 110792 1 513655 -0 148542	8 -1 927194 1 023252 0 237668
6 3 756125 -1 078341 -0 405670	6 1 630816 2 627964 0 663143	6 -2 812218 1 865630 -0 469997
1 3 599616 -1 876495 0 333853	1 1064781 3538425 0454073	1 -2 499884 2 911794 -0 366728
1 3 945550 -1 552974 -1 379068	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 -2.845563 - 1.623429 - 1.542021
1 4 655485 -0 523551 -0 122291	1 - 2.586535 - 1.721104 1 - 2.686634 - 2.811924 - 0.445286	1 -3.833644 - 1.786621 - 0.075156
1 4.033403 -0.323531 -0.122271	6 - 2.553447 = 1.732510 - 1.450776	1 - 5.05500 + 1.700021 - 0.075150
	1 1 700572 1 425380 2 179061	
	1 - 1.790372 - 1.423300 - 2.179001 1 - 2.544866 - 2.823223 - 1.407522	
	1 2.544800 -2.855525 1.407522 $1 2.521276 1.427067 1.840521$	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	1 0.805204 0.855598 -2.098850	
	1 0.6/3634 2.621631 -1.89/262	
	1 2.27/520 1.851315 -1.894641	
TS-li	TS-Ij	TS-Ik
Et =-598.8039785 NImag=1(-1582.00)	Et = -559.9307369 NImag=1(-1589.25)	Et = -559.9541741 NImag = 1(-654.23)
6 1.842393 -0.957819 0.193353	6 1.338724 -0.720222 0.549051	6 1.481590 0.686322 -0.166438
6 1.461790 -0.324594 1.528448	6 0.886563 0.392149 1.487356	6 2.840268 0.265721 -0.726623

1	2.763425 -1.553916 0.327129	1	2.220344 -1.223450 0.978409	1	1.609867 1.206431 0.801588
1	0.671765 0.415066 1.376839	1	0.122796 1.006098 1.004320	1	2.679929 -0.338800 -1.623744
6	2.638502 0.262646 2.314947	6	2.031163 1.248807 2.039517	6	3.829256 -0.412058 0.227384
1	3.114855 1.096577 1.791311	1	2.553156 1.801804 1.253097	1	3.553936 -1.443153 0.462995
1	2.308922 0.637997 3.287044	1	1.654319 1.983565 2.755079	1	4.823161 -0.447140 -0.225440
1	3.407764 -0.494091 2.498664	1	2.772645 0.633566 2.559235	1	3.921257 0.135570 1.170574
8	0.844425 -1.619032 -0.479232	8	0.362506 -1.611338 0.128949	8	0.757322 1.358569 -1.071087
7	2.175984 0.034506 -0.988635	7	1.767668 -0.304572 -0.898711	7	0.563020 -0.561867 0.309534
6	1.705747 1.430099 -0.885973	6	1.315831 1.006455 -1.408840	6	0.377726 -1.587402 -0.750043
1	0.666243 1.456654 -0.551237	1	0.256689 1.150874 -1.194300	1	0.254684 -1.067713 -1.698821
1	2.330448 2.009646 -0.199980	1	1.897159 1.822569 -0.970579	1	1.250522 -2.240278 -0.783855
1	1.765657 1.885961 -1.876991	1	1.458193 1.018714 -2.491352	1	-0.527250 -2.153093 -0.532106
6	3.536229 -0.078471 -1.538077	6	3.162309 -0.612587 -1.253950	6	0.856799 -1.149957 1.638514
1	4.271662 0.384608 -0.872802	1	3.855772 0.092257 -0.784633	1	1.745337 -1.775747 1.592062
1	3.785090 -1.132339 -1.669252	1	3.403453 -1.624613 -0.926477	1	1.013973 -0.345536 2.357431
1	3.578363 0.418664 -2.509282	1	3.280632 -0.554200 -2.337505	1	0.001131 -1.749715 1.951743
1	1.321717 -0.753897 -1.386571	1	0.915005 -1.199919 -1.002303	1	-0.341948 -0.037310 0.405914
1	1.009463 -1.138492 2.104419	1	-1.268208 -1.341734 0.383819	1	-0.327817 1.485545 -0.626024
1	-1.093909 -1.541106 -0.169542	8	-2.229761 -1.098716 0.451274	8	-1.382140 1.295614 0.003788
7	-2.107562 -1.415953 -0.085297	6	-3.024552 -2.204152 0.051728	6	-1.847121 2.405274 0.738028
6	-2.755785 -1.925257 -1.288978	1	-2.832773 -3.081576 0.680590	1	-2.407523 3.103571 0.100184
1	-3.823557 -1.679842 -1.275235	1	-4.074431 -1.924276 0.162820	1	-2.516855 2.082570 1.546313
1	-2.314683 -1.455677 -2.171667	1	-2.847644 -2.480248 -0.995926	1	-1.021713 2.970804 1.197681
1	-2.665638 -3.019100 -1.405464	1	0.382142 -0.119560 2.313375	1	3.269388 1.206480 -1.083560
6	-2.581308 -2.079074 1.124106	1	-2.170620 0.512313 -0.289039	1	-2.385248 -0.115751 -0.053074
1	-2.019189 -1.716735 1.988646	8	-1.943740 1.394335 -0.654661	8	-2.695716 -1.048309 0.035156
1	-3.638883 -1.847138 1.291975	6	-2.988486 2.304247 -0.357554	6	-4.013315 -1.165521 -0.470251
1	-2.482225 -3.177985 1.089487	1	-3.932064 2.021718 -0.843385	1	-4.315100 -2.212081 -0.384304
1	-1.927298 0.722981 -0.002078	1	-3.167510 2.389530 0.722448	1	-4.729557 -0.557623 0.098873
7	-1.718834 1.726929 0.005300	1	-2.694093 3.286140 -0.735056	1	-4.078266 -0.875234 -1.527461
6	-2.326754 2.357456 -1.159694				

1 -3.431085 2.363430 -1.134578		
1 -1.995455 3.398981 -1.241099		
1 -2.013831 1.835708 -2.067826		
6 -2.175762 2.313124 1.258955		
1 -1.753835 1.759934 2.101908		
1 -1.833861 3.351367 1.336642		
1 -3.274752 2.317963 1.371295		
TS-I <i>l</i>	TS-Im	
Et = -598.8205906 NImag=1 (-1101.14)	Et = -559.9508999 NImag=1(-730.99)	
_		
---	---------------------------------	---------------------------------
	6 -0.315405 0.793310 -0.393408	
	6 0.306521 2.160465 -0.044359	
	1 -0.543895 0.787779 -1.484117	
	1 0.425535 2.225061 1.041949	
	6 -0.373117 3.420248 -0.593085	6 0.628859 -0.369128 -0.756318
	1 -1.305626 3.662489 -0.075906	6 0.502967 -1.890924 -0.828249
	1 0.285215 4.286421 -0.481762	1 1.424855 -0.026472 -1.438498
	1 -0.600053 3.321277 -1.659875	1 -0.246313 -2.223710 -0.105439
	8 0.448256 -0.227661 0.016750	6 1.793537 -2.707216 -0.701131
	7 -1.784934 0.590576 0.204234	1 2.190861 -2.715910 0.317212
	6 -1.858401 0.881761 1.641894	1 1.605059 -3.748166 -0.974522
	1 -0.976491 0.459008 2.125142	1 2.578489 -2.332768 -1.365908
	1 -1.894131 1.958592 1.840735	8 -0.572465 0.232349 -1.016800
	1 -2.756304 0.426400 2.072407	7 1.132606 0.190003 0.628074
	6 -2.887773 1.204694 -0.545367	6 0.427964 -0.380650 1.804106
	1 -2.956827 2.284605 -0.386434	1 -0.642254 -0.412613 1.602955
	1 -2.747800 1.023260 -1.613248	1 0.794724 -1.386521 2.016321
	1 -3.838669 0.754852 -0.239322	1 0.614498 0.261914 2.665894
	1 -1.834205 -0.765169 0.068085	6 2.601944 0.218451 0.801202
	1 -0.438413 -1.523815 -0.090910	1 3.005286 -0.783761 0.938743
	7 -1.436926 -1.946255 -0.085961	1 3.058018 0.675500 -0.077257
	6 -1.789660 -2.539560 -1.380536	1 2.840439 0.824104 1.677294
	1 -1.225562 -3.460664 -1.561871	1 0.787893 1.250700 0.506951
	1 -2.857806 -2.773249 -1.419586	1 -0.454897 1.331446 -0.693292
	1 -1.554657 -1.831482 -2.177072	8 -0.041907 2.322900 0.000500
	1 1.322945 2.095935 -0.443034	6 0.330150 3.522012 -0.632211
	6 -1.657197 -2.833258 1.061369	1 -0.555177 4.088334 -0.952531
	1 -1.313618 -2.336378 1.969550	1 0.898151 4.164629 0.054114
	1 -2.720017 -3.071210 1.167159	1 0.955015 3.357501 -1.526207
	1 -1.101719 -3.770657 0.949336	1 0.059163 -2.071234 -1.811740
	1 2.406318 -0.097146 -0.037871	1 -2.022978 -0.521545 -0.223130
	7 3.424605 -0.007115 -0.094316	8 -2.629078 -0.986134 0.388409
	6 4.014168 -0.165225 1.223701	6 -3.943648 -0.482610 0.220940
	1 3.932745 -1.191892 1.630945	1 -4.591085 -1.004961 0.928487
	1 5.080293 0.090091 1.196237	1 -4.003426 0.593748 0.429085
	1 3.527846 0.514585 1.927960	1 -4.327611 -0.662781 -0.791958
	6 3.954977 -0.944599 -1.068415	
	1 3 871731 -2 005609 -0 761326	

Table S61. The B3LYP/6-311+G** Optimized Geometries (in Cartesian coordinates), Total Electronic Energies (in hartree/particle), and Number of Imaginary Frequencies (cm⁻¹) of Transition States for Dehydration step (**Step-II**)

TS-II	TS-IIa	TS-IIb
Et =-328.3547369 NImag=1(-572.60)	Et =-463.5791845 NImag=1(-409.35)	Et =-444.1498509 NImag=1(-258.08)
6 0.209019 -0.210006 0.536602	6 1.752677 0.368763 -0.231914	6 1.289869 0.396770 -0.385720
6 1.365828 -0.366834 -0.311785	6 1.987797 -0.916991 0.393881	6 1.924492 -0.554731 0.511072
1 0.352107 0.263564 1.501346	1 2.154564 0.509847 -1.228918	1 1.470478 0.262183 -1.447524
1 1.237557 -1.076223 -1.129240	1 1.742151 -0.954676 1.454739	1 1.908109 -0.260384 1.560368
6 2.711819 -0.495422 0.397942	6 3.329892 -1.572639 0.063471	6 3.298006 -1.052662 0.054949
1 2.846235 -1.471827 0.874350	1 4.176740 -1.064025 0.534647	1 4.069947 -0.279785 0.120101
1 3.526419 -0.359351 -0.316702	1 3.330044 -2.609178 0.406969	1 3.612481 -1.892193 0.678036
1 2.821674 0.277148 1.164107	1 3.497971 -1.589697 -1.017013	1 3.257780 -1.412401 -0.976914
8 0.247021 1.929315 -0.572325	8 0.036648 -1.156814 -1.373113	8 -0.232069 -1.823671 -0.498645
7 -1.039614 -0.508732 0.247230	7 1.031138 1.360993 0.216917	7 0.427768 1.324756 -0.092530
6 -1.417053 -0.974160 -1.088745	6 0.304261 1.324142 1.492797	6 -0.047337 1.599155 1.269700
1 -1.395149 -0.128523 -1.782696	1 -0.694989 0.899759 1.315193	1 -0.982836 1.048340 1.408886
1 -0.728613 -1.745118 -1.430074	1 0.848186 0.721941 2.216727	1 0.693778 1.289897 2.001360

1 -2.420947 -1.395543 -1.042969	1 0.221524 2.344463 1.870098	1 -0.223241 2.671675 1.363580
6 -2.090212 0.208503 0.970775	6 0.607228 2.421945 -0.699319	6 -0.367358 1.966732 -1.149690
1 -3.024539 -0.351058 0.922149	1 0.670790 3.389067 -0.197750	1 -0.382387 3.045879 -0.986321
1 -1.799583 0.335111 2.013106	1 1.243475 2.423756 -1.582295	1 0.071354 1.746725 -2.121199
1 -2.198736 1.198065 0.509764	1 -0.425033 2.232540 -1.005532	1 -1.377912 1.551893 -1.096486
1 0.177921 2.880400 -0.710136	1 -0.214380 -1.652057 -2.160201	1 -0.482260 -2.660032 -0.902660
1 1.230373 0.727469 -0.753748	1 1.140105 -1.442808 -0.219134	1 1.137194 -1.389673 0.347484
	1 -1.484031 -0.647233 -0.452279	1 -1.441207 -0.965009 -0.179978
	7 -2.258896 -0.306083 0.148157	8 -2.183434 -0.283668 0.059288
	6 -3.292837 0.293534 -0.682796	6 -3.394321 -0.972839 0.267726
	1 -2.852740 1.057341 -1.330318	1 -3.738972 -1.492168 -0.639389
	1 -3.812876 -0.433771 -1.332705	1 -3.313598 -1.720307 1.071032
	1 -4.055007 0.778471 -0.060630	1 -4.169167 -0.253778 0.553965
	6 -2.768580 -1.412280 0.946937	
	1 -1.944726 -1.888108 1.485423	
	1 -3.493223 -1.051435 1.68/196	
	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
TS-IIc	1 -3.493223 -1.051435 1.687196 1 -3.270058 -2.192905 0.346823 TS-IId	TS-IIe
TS-IIc Et =-463.5736391 NImag=1(-597.10)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	TS-IIe Et =-598.8027708 NImag=1 (-88.80)
TS-IIc Et =-463.5736391 NImag=1(-597.10) 6 -1.143932 0.798510 -0.351039	$\begin{array}{r} 1 & -3.493223 & -1.051435 & 1.687196 \\ 1 & -3.270058 & -2.192905 & 0.346823 \\ \hline $	TS-IIe Et =-598.8027708 NImag=1 (-88.80) 6 -0.403909 1.278776 0.448256
TS-IIc Et =-463.5736391 NImag=1(-597.10) 6 -1.143932 0.798510 -0.351039 6 -0.084582 1.435907 0.360679	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	TS-IIe Et =-598.8027708 NImag=1 (-88.80) 6 -0.403909 1.278776 0.448256 6 0.025721 2.160473 -0.652654
TS-IIc Et =-463.5736391 NImag=1(-597.10) 6 -1.143932 0.798510 -0.351039 6 -0.084582 1.435907 0.360679 1 -1.154450 0.885460 -1.431502	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	TS-IIe Et =-598.8027708 NImag=1 (-88.80) 6 -0.403909 1.278776 0.448256 6 0.025721 2.160473 -0.652654 1 -1.396105 0.839185 0.394632
TS-IIc Et =-463.5736391 NImag=1(-597.10) 6 -1.143932 0.798510 -0.351039 6 -0.084582 1.435907 0.360679 1 -1.154450 0.885460 -1.431502 6 0.477123 2.713688 -0.267445	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	TS-IIe Et =-598.8027708 NImag=1 (-88.80) 6 -0.403909 1.278776 0.448256 6 0.025721 2.160473 -0.652654 1 -1.396105 0.839185 0.394632 1 0.937251 2.714092 -0.423371
TS-IIc Et =-463.5736391 NImag=1(-597.10) 6 -1.143932 0.798510 -0.351039 6 -0.084582 1.435907 0.360679 1 -1.154450 0.885460 -1.431502 6 0.477123 2.713688 -0.267445 1 -0.184289 3.575491 -0.132462	1 -3.493223 -1.051435 1.687196 1 -3.270058 -2.192905 0.346823 TS-IId Et =-444.1515521 NImag=1(-120.37) 6 1.181479 .553242 .123271 6 .367604 1.525201 635786 1 1.628022 .845694 1.065182 1 .704630 1.548805 -1.680022 6 .366867 2.924268 018058	TS-IIe Et =-598.8027708 NImag=1 (-88.80) 6 -0.403909 1.278776 0.448256 6 0.025721 2.160473 -0.652654 1 -1.396105 0.839185 0.394632 1 0.937251 2.714092 -0.423371 6 -1.090480 3.091480 -1.147153
TS-IIc Et =-463.5736391 NImag=1(-597.10) 6 -1.143932 0.798510 -0.351039 6 -0.084582 1.435907 0.360679 1 -1.154450 0.885460 -1.431502 6 0.477123 2.713688 -0.267445 1 -0.184289 3.575491 -0.132462 1 1.442202 2.964554 0.179718	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	TS-IIe Et =-598.8027708 NImag=1 (-88.80) 6 -0.403909 1.278776 0.448256 6 0.025721 2.160473 -0.652654 1 -1.396105 0.839185 0.394632 1 0.937251 2.714092 -0.423371 6 -1.090480 3.091480 -1.147153 1 -1.383132 3.825067 -0.390433
TS-IIc Et =-463.5736391 NImag=1(-597.10) 6 -1.143932 0.798510 -0.351039 6 -0.084582 1.435907 0.360679 1 -1.154450 0.885460 -1.431502 6 0.477123 2.713688 -0.267445 1 -0.184289 3.575491 -0.132462 1 1.442202 2.964554 0.179718 1 0.640661 2.582356 -1.341044	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	TS-IIe Et =-598.8027708 NImag=1 (-88.80) 6 -0.403909 1.278776 0.448256 6 0.025721 2.160473 -0.652654 1 -1.396105 0.839185 0.394632 1 0.937251 2.714092 -0.423371 6 -1.090480 3.091480 -1.147153 1 -1.383132 3.825067 -0.390433 1 -0.752252 3.637496 -2.030100
TS-IIc Et =-463.5736391 NImag=1(-597.10) 6 -1.143932 0.798510 -0.351039 6 -0.084582 1.435907 0.360679 1 -1.154450 0.885460 -1.431502 6 0.477123 2.713688 -0.267445 1 -0.184289 3.575491 -0.132462 1 1.442202 2.964554 0.179718 1 0.640661 2.582356 -1.341044 8 -0.000185 -1.484932 -1.290211	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	TS-IIeEt =-598.8027708 NImag=1 (-88.80)6 -0.403909 1.278776 0.448256 6 0.025721 2.160473 -0.652654 1 -1.396105 0.839185 0.394632 1 0.937251 2.714092 -0.423371 6 -1.090480 3.091480 -1.147153 1 -1.383132 3.825067 -0.390433 1 -0.752252 3.637496 -2.030100 1 -1.976592 2.519430 -1.431632
TS-IIcEt =-463.5736391NImag=1(-597.10)6 -1.143932 0.798510 -0.351039 6 -0.084582 1.435907 0.360679 1 -1.154450 0.885460 -1.431502 6 0.477123 2.713688 -0.267445 1 -0.184289 3.575491 -0.132462 1 1.442202 2.964554 0.179718 1 0.640661 2.582356 -1.341044 8 -0.000185 -1.484932 -1.290211 7 -2.098328 0.030166 0.134440	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	TS-IIeEt =-598.8027708NImag=1 (-88.80)6 -0.403909 1.278776 0.448256 6 0.025721 2.160473 -0.652654 1 -1.396105 0.839185 0.394632 1 0.937251 2.714092 -0.423371 6 -1.090480 3.091480 -1.147153 1 -1.383132 3.825067 -0.390433 1 -0.752252 3.637496 -2.030100 1 -1.976592 2.519430 -1.431632 8 -0.062805 -0.550379 -1.259903
TS-IIcEt =-463.5736391 NImag=1(-597.10)6 -1.143932 0.798510 -0.351039 6 -0.084582 1.435907 0.360679 1 -1.154450 0.885460 -1.431502 6 0.477123 2.713688 -0.267445 1 -0.184289 3.575491 -0.132462 1 1.442202 2.964554 0.179718 1 0.640661 2.582356 -1.341044 8 -0.000185 -1.484932 -1.290211 7 -2.098328 0.030166 0.134440 6 -2.149985 -0.346412 1.543969	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	TS-IIeEt =-598.8027708 NImag=1 (-88.80)6 -0.403909 1.278776 0.448256 6 0.025721 2.160473 -0.652654 1 -1.396105 0.839185 0.394632 1 0.937251 2.714092 -0.423371 6 -1.090480 3.091480 -1.147153 1 -1.383132 3.825067 -0.390433 1 -0.752252 3.637496 -2.030100 1 -1.976592 2.519430 -1.431632 8 -0.062805 -0.550379 -1.259903 7 0.282606 0.961736 1.501908
TS-IIcEt =-463.5736391NImag=1(-597.10)6 -1.143932 0.798510 -0.351039 6 -0.084582 1.435907 0.360679 1 -1.154450 0.885460 -1.431502 6 0.477123 2.713688 -0.267445 1 -0.184289 3.575491 -0.132462 1 1.442202 2.964554 0.179718 1 0.640661 2.582356 -1.341044 8 -0.000185 -1.484932 -1.290211 7 -2.098328 0.030166 0.134440 6 -2.149985 -0.346412 1.543969 1 -1.470565 -1.182290 1.738630	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	TS-IIeEt =-598.8027708NImag=1 (-88.80)6 -0.403909 1.278776 0.448256 6 0.025721 2.160473 -0.652654 1 -1.396105 0.839185 0.394632 1 0.937251 2.714092 -0.423371 6 -1.090480 3.091480 -1.147153 1 -1.383132 3.825067 -0.390433 1 -0.752252 3.637496 -2.030100 1 -1.976592 2.519430 -1.431632 8 -0.062805 -0.550379 -1.259903 7 0.282606 0.961736 1.501908 6 1.678508 1.364847 1.733229

1 -3.166888 -0.649664 1.792503	1 1.212123 -2.219143 -1.642034	1 1.840469 2.383307 1.386861
6 -2.844904 -0.830110 -0.794246	1298298 -1.277132 -1.264683	1 1.873336 1.319579 2.804624
1 -3.770576 -1.155520 -0.318670	6 2.115889 -1.599784 .619758	6 -0.229975 -0.070249 2.412176
1 -3.086254 -0.265052 -1.694887	1 2.897944 -2.121660 .065336	1 -0.198650 0.300835 3.438529
1 -2.186420 -1.664558 -1.062683	1 2.547799 -1.063697 1.461651	1 -1.248448 -0.327087 2.127379
1 1.185581 -1.044065 -0.542194	1 1.382035 -2.312523 .999342	1 0.403670 -0.956067 2.326006
1 0.175180 -2.008397 -2.078072	1 -1.023094 .108107 2.532015	1 -1.839165 -0.899540 -0.593250
7 1.898564 -0.494793 0.107642	1 -1.179700363105 .946190	1 0.254637 1.401006 -1.429699
1 0.845032 0.583357 0.284802	8 -1.801965414177265216	1 1.721195 -0.776425 -0.747346
1 -0.246242 1.525915 1.436223	6 -3.165073696393237149	7 2.704098 -0.865890 -0.424101
6 3.088092 -0.093018 -0.630791	1 -3.710369111712 .529446	6 2.957918 -2.243275 -0.025032
1 3.708651 0.596102 -0.044314	1 -3.649289468818 -1.202529	1 2.206868 -2.562679 0.703010
1 3.716945 -0.953639 -0.907612	1 -3.378371 -1.761085022902	1 2.930596 -2.957954 -0.867490
1 2.789395 0.410695 -1.553395	1658043 1.086663660299	1 3.943846 -2.332406 0.446996
6 2.196192 -1.226646 1.329309		6 3.602370 -0.425686 -1.483274
1 2.759034 -2.152210 1.134966		1 3.323897 0.579810 -1.809893
1 2.786046 -0.617005 2.026125		1 4.636450 -0.388100 -1.119704
1 1.262190 -1.508289 1.823565		1 3.587669 -1.081227 -2.372288
		1 -0.146133 -1.381833 -1.740428
		7 -2.732229 -0.970447 -0.076606
		6 -3.843343 -0.594814 -0.941325
		1 -3.645261 0.378239 -1.398121
		1 -4.028154 -1.316440 -1.756531
		1 -4.768488 -0.511173 -0.359321
		6 -2.883454 -2.314300 0.465396
		1 -1.984187 -2.593732 1.020762
		1 -3.734530 -2.355546 1.155361
		1 -3.049929 -3.084260 -0.308959
TS-IIIf	TS-IIg	TS-IIIg
Et =-559.9417843 NImag=1 (-193.92)	Et =-559.9398519 NImag=1 (-187.01)	Et =-559.9377426 NImag=1 (-63.33)
6 0.975055 -1.126030 0.386943	6 1.789698 0.031594 0.056873	6 1.563511 -0.438975 0.120883

6 1.426423 -1.228775 -0.973914	6 1.558355 1.486984 -0.173375	6 1.859367 0.978911 0.232125
1 1.505287 -0.424464 1.026514	1 2.413724 -0.277804 0.883245	1 1.553701 -1.057112 1.015044
1 0.995519 -2.053558 -1.542320	1 2.021086 1.754117 -1.133422	1 2.365820 1.366981 -0.657442
6 2.928568 -1.051077 -1.198437	6 2.130832 2.359477 0.945716	6 2.553482 1.394548 1.528953
1 3.504536 -1.927291 -0.884990	1 3.213099 2.234431 1.047060	1 3.582718 1.027627 1.590902
1 3.128971 -0.882638 -2.258683	1 1.936044 3.413367 0.737884	1 2.585033 2.483379 1.603869
1 3.300109 -0.180679 -0.651890	1 1.667650 2.110837 1.901971	1 2.007871 1.022991 2.400276
8 0.035054 1.069400 -1.479886	8 0.354965 -0.431934 1.892580	8 -0.342675 -1.815802 2.092026
7 -0.123275 -1.611913 0.899656	7 1.427698 -0.909337 -0.756961	7 1.131606 -1.023927 -0.957505
6 -1.038924 -2.498253 0.171333	6 0.568103 -0.703132 -1.932159	6 0.920531 -0.275467 -2.208673
1 -1.797268 -1.882477 -0.321584	1 1.035919 -1.190338 -2.790646	1 0.582899 -0.970724 -2.974239
1 -0.490748 -3.088863 -0.559196	1 -0.403424 -1.146635 -1.707074	1 0.168564 0.502870 -2.021645
1 -1.512121 -3.168539 0.890384	1 0.422597 0.353853 -2.127163	1 1.857185 0.183947 -2.530767
6 -0.653428 -1.083108 2.162614	6 1.638747 -2.317953 -0.404007	6 0.635969 -2.406157 -0.926470
1 -0.867022 -1.907490 2.846517	1 2.066016 -2.846224 -1.258730	1 1.159829 -2.996198 -1.681537
1 0.070541 -0.402158 2.604660	1 2.304258 -2.388530 0.453374	1 0.785933 -2.826434 0.065126
1 -1.570281 -0.532670 1.937909	1 0.667930 -2.744300 -0.144344	1 -0.435124 -2.387977 -1.135531
1 0.075136 1.563085 -2.304567	1 0.037047 0.188675 2.554848	1 -0.688313 -1.742749 2.985220
1 -1.441965 0.629726 -0.944552	1 -0.528500 -0.721516 1.258327	1 -0.977596 -1.323093 1.508550
8 -2.282599 0.269456 -0.526780	8 -1.447722 -1.034210 0.377864	8 -1.816812 -0.501016 0.279961
6 -3.355459 1.137329 -0.828220	6 -2.506856 -1.797670 0.883034	6 -3.221941 -0.528112 0.134419
1 -3.529158 1.222282 -1.910515	1 -3.229900 -1.197388 1.463954	1 -3.723288 0.174903 0.814647
1 -4.264874 0.735113 -0.372452	1 -3.075418 -2.281716 0.072874	1 -3.526131 -0.280023 -0.891557
1 -3.194021 2.148672 -0.429306	1 -2.154352 -2.601319 1.551952	1 -3.587107 -1.535232 0.360639
1 0.863308 -0.238761 -1.367736	1 0.480560 1.654149 -0.296527	1 0.789983 1.435804 0.128008
1 0.788449 1.679382 -0.131124	1 -1.686626 0.390727 -0.351444	1 -1.430988 0.444633 -0.002083
8 1.252815 1.815330 0.744959	8 -1.644360 1.282858 -0.817128	8 -0.754118 1.637738 -0.434806
6 1.279439 3.191976 1.060534	6 -2.821327 2.014127 -0.544369	6 -1.437846 2.847758 -0.306741
1 1.820719 3.779732 0.305649	1 -2.955678 2.202745 0.530735	1 -1.843975 3.008814 0.709274
1 0.269519 3.613623 1.161928	1 -2.752903 2.981082 -1.050923	1 -0.785468 3.711363 -0.525411
1 1.796076 3.315503 2.016308	1 -3.721384 1.502876 -0.914039	1 -2.292395 2.921325 -1.003222

TS-IIh	TS-IIi	
Et = -598.7958519 NImag=1 (-413.60)	Et = -559.9364032 NImag=1 (-43.93)	
6 -2.521113 -0.514165 -0.315836	6 -1.706916 0.691111 -0.021195	
6 -2.903198 0.393914 0.748242	6 -0.599834 1.613899 -0.365319	
1 -2.936554 -0.306461 -1.295215	1 -2.591991 0.686068 -0.646065	
1 -2.599822 0.082247 1.746743	6 -1.007162 2.667024 -1.398513	
6 -4.353944 0.880605 0.690878	1 -1.800798 3.322170 -1.027133	
1 -5.074990 0.095880 0.940143	1 -0.149861 3.294244 -1.648883	
1 -4.495804 1.701856 1.396454	1 -1.353883 2.195075 -2.321414	
1 -4.593650 1.263827 -0.304994	8 -1.224875 -1.224501 -1.640755	
8 -1.254724 1.689117 -0.875717	7 -1.731633 -0.120060 0.983860	
7 -1.664110 -1.498045 -0.281712	6 -0.574018 -0.355715 1.862762	
6 -0.929965 -1.931842 0.912591	1 0.066901 -1.096551 1.369165	
1 0.137197 -1.709842 0.778571	1 0.015856 0.548654 1.986235	
1 -1.310726 -1.429966 1.796329	1 -0.939533 -0.709042 2.826078	
1 -1.060989 -3.011262 1.026744	6 -2.829047 -1.085313 1.126544	
6 -1.202751 -2.119582 -1.526040	1 -3.194868 -1.065728 2.154337	
1 -1.256401 -3.206581 -1.434666	1 -3.632230 -0.837816 0.436618	
1 -1.822403 -1.787868 -2.356512	1 -2.448012 -2.078117 0.882827	
1 -0.167065 -1.824256 -1.707189	1 -1.155600 -1.391632 -2.584453	
1 -1.346700 2.461006 -1.445212	1 -0.240133 -1.207347 -1.266745	
1 -2.213247 1.254783 0.353958	8 1.068417 -1.095204 -0.622422	
1 0.524097 1.707777 -0.396571	6 1.926559 -2.100823 -1.081864	
7 1.525493 1.767506 -0.125641	1 2.595088 -2.473211 -0.285879	
6 2.267553 2.380108 -1.221533	1 1.373780 -2.979738 -1.459354	
1 2.086384 1.823759 -2.144760	1 2.579242 -1.761312 -1.907268	
1 1.987771 3.433364 -1.402298	1 -0.190872 2.073171 0.539432	
1 3.345041 2.357322 -1.018502	1 0.215093 0.979110 -0.745995	
6 1.631754 2.542889 1.104830	8 2.238167 0.599759 1.016846	
1 0.995011 2.100559 1.875507	1 1.861968 -0.063370 0.360332	
1 2.663981 2.537991 1.475451	6 3.565199 0.920482 0.660902	

1	1.327286	3.597386	0.983431	1	3.637669	1.331710	-0.356995
1	2.094143	-0.197224	0.161540	1	3.935522	1.678521	1.357380
7	2.331148	-1.189396	0.306374	1	4.235732	0.051142	0.721515
6	3.062115	-1.689610	-0.850891				
1	3.185128	-2.776970	-0.783629				
1	2.503695	-1.470528	-1.765013				
1	4.069576	-1.250566	-0.960349				
6	3.084255	-1.336975	1.545803				
1	2.532810	-0.878101	2.370621				
1	3.221270	-2.398426	1.783049				
1	4.086809	-0.875149	1.510697				

Table S62. The PCM-B3LYP/6-31G* Optimized Geometries (in Cartesian coordinates), Total Electronic Energies (in hartree/particle), and Number of Imaginary Frequencies (cm⁻¹) of Transition States for Carbinolamine Formation (**Step-I**)

TS-I	TS-Ia	TS-Ib		
Et =-328.2646744 NImag=1 (-1592.18)	Et =-463.4175539 NImag=1 (-480.75)	Et =-444.0003013 NImag=1(-1605.69)		
6 -0.306445 0.743664 -0.416740	6 1.850130 0.335283 -0.180640	6 -0.269602 -0.040859 -0.353908		
6 -1.598540 0.256421 0.240661	6 1.919232 -1.021910 0.326139	6 -0.061587 1.346741 0.247616		
1 -0.364438 0.530464 -1.507553	1 2.327479 0.531314 -1.136795	1 -0.319392 0.048056 -1.456154		
1 -1.502670 0.307803 1.331277	1 1.618628 -1.133379 1.370198	1 -0.201949 1.308193 1.333751		
6 -2.069421 -1.129965 -0.211665	6 3.191273 -1.797421 -0.017393	6 -0.922736 2.446946 -0.381508		
1 -1.364778 -1.920163 0.074452	1 4.062213 -1.452703 0.553049	1 -1.994201 2.281323 -0.215552		
1 -3.038091 -1.380824 0.233846	1 3.053040 -2.861861 0.198575	1 -0.674854 3.425958 0.041882		
1 -2.185359 -1.171731 -1.301546	1 3.429727 -1.707953 -1.084060	1 -0.762285 2.504101 -1.464982		
8 0.117276 1.990668 -0.081839	8 -0.043066 -0.737827 -1.400273	8 0.585734 -1.030309 0.093983		
7 1.032476 0.004299 0.023818	7 1.172819 1.344263 0.309844	7 -1.574862 -0.807982 0.041965		
6 1.058413 -0.558388 1.385073	6 0.374220 1.247704 1.538684	6 -2.223788 -0.425828 1.309851		
1 0.648226 0.182853 2.073857	1 -0.618470 0.833152 1.301092	1 -1.466030 -0.371041 2.093514		
1 0.482083 -1.487415 1.451874	1 0.883660 0.610921 2.262896	1 -2.742483 0.535115 1.226744		

1 2.095809 -0.764271 1.664861	1 0.275202 2.250680 1.961619	1 -2.949476 -1.198977 1.576747
6 1.685926 -0.856132 -0.975808	6 0.775231 2.408062 -0.616523	6 -2.535885 -1.063339 -1.045382
1 1.158091 -1.811169 -1.080311	1 0.520229 3.311771 -0.060048	1 -3.089662 -0.153778 -1.305273
1 1.691575 -0.342809 -1.940794	1 1.595158 2.625378 -1.305216	1 -1.994706 -1.419475 -1.925342
1 2.717533 -1.053748 -0.669749	1 -0.086850 2.040433 -1.188548	1 -3.245219 -1.832298 -0.727027
1 1.230244 1.214970 0.055898	1 -0.329875 -1.130511 -2.242310	1 -0.615507 -1.580992 0.234856
1 -2.353363 1.007003 -0.027255	1 1.015356 -1.351668 -0.368037	1 2.156072 -0.465571 0.556807
	1 -1.506122 -0.474419 -0.449715	8 3.048145 -0.049070 0.669856
	7 -2.316860 -0.290642 0.187586	6 3.804803 -0.406973 -0.465441
	6 -3.353900 0.421568 -0.538141	1 3.325143 -0.108881 -1.412493
	1 -2.925976 1.314004 -1.010008	1 4.772204 0.105741 -0.405406
	1 -3.841834 -0.177404 -1.335032	1 4.004996 -1.490747 -0.523292
	1 -4.151067 0.753539 0.143496	1 1.003118 1.564058 0.099387
	6 -2.791726 -1.552392 0.728365	
	1 -1.951178 -2.099684 1.170014	
	1 -3.536874 -1.383506 1.519884	
	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
TS-Ic	1 -3.536874 -1.383506 1.519884 1 -3.266379 -2.216207 -0.023828 TS-Id	TS-Ie
TS-Ic Et =-463.4601171 NImag=1(-1121.86)	$\begin{array}{r} 1 & -3.536874 & -1.383506 & 1.519884 \\ 1 & -3.266379 & -2.216207 & -0.023828 \\ \hline \textbf{TS-Id} \\ \text{Et} = -444.0273752 & \text{NImag} = 1(-766.37) \end{array}$	TS-Ie Et =-598.615733 NImag=1 (-1601.36)
TS-Ic Et =-463.4601171 NImag=1(-1121.86) 6 -0.828986 -0.771837 0.151475	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	TS-Ie Et =-598.615733 NImag=1 (-1601.36) 6 -0.177439 0.866122 -0.396821
TS-Ic Et =-463.4601171 NImag=1(-1121.86) 6 -0.828986 -0.771837 0.151475 6 -2.309328 -0.964939 -0.256995	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	TS-Ie Et =-598.615733 NImag=1 (-1601.36) 6 -0.177439 0.866122 -0.396821 6 0.878320 1.644790 -1.177382
TS-Ic Et =-463.4601171 NImag=1(-1121.86) 6 -0.828986 -0.771837 0.151475 6 -2.309328 -0.964939 -0.256995 1 -0.776783 -0.808125 1.272032	1 -3.536874 -1.383506 1.519884 1 -3.266379 -2.216207 -0.023828 TS-Id Et =-444.0273752 NImag=1(-766.37) 6 0.413536 -0.727169 -0.122490 6 1.880216 -1.075560 0.143193 1 0.199811 -0.796191 -1.207640	TS-Ie Et =-598.615733 NImag=1 (-1601.36) 6 -0.177439 0.866122 -0.396821 6 0.878320 1.644790 -1.177382 1 -1.176914 1.255445 -0.656101
TS-Ic Et =-463.4601171 NImag=1(-1121.86) 6 -0.828986 -0.771837 0.151475 6 -2.309328 -0.964939 -0.256995 1 -0.776783 -0.808125 1.272032 1 -2.401674 -0.780257 -1.334666	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	TS-Ie Et =-598.615733 NImag=1 (-1601.36) 6 -0.177439 0.866122 -0.396821 6 0.878320 1.644790 -1.177382 1 -1.176914 1.255445 -0.656101 1 1.878598 1.400603 -0.804880
TS-Ic Et =-463.4601171 NImag=1(-1121.86) 6 -0.828986 -0.771837 0.151475 6 -2.309328 -0.964939 -0.256995 1 -0.776783 -0.808125 1.272032 1 -2.401674 -0.780257 -1.334666 6 -3.387379 -0.198356 0.518241	1 -3.536874 -1.383506 1.519884 1 -3.266379 -2.216207 -0.023828 TS-Id Et =-444.0273752 NImag=1(-766.37) 6 0.413536 -0.727169 -0.122490 6 1.880216 -1.075560 0.143193 1 0.199811 -0.796191 -1.207640 1 2.097736 -0.910501 1.205069 6 2.943651 -0.417929 -0.743330	TS-Ie Et =-598.615733 NImag=1 (-1601.36) 6 -0.177439 0.866122 -0.396821 6 0.878320 1.644790 -1.177382 1 -1.176914 1.255445 -0.656101 1 1.878598 1.400603 -0.804880 6 0.650324 3.160627 -1.210211
TS-Ic Et =-463.4601171 NImag=1(-1121.86) 6 -0.828986 -0.771837 0.151475 6 -2.309328 -0.964939 -0.256995 1 -0.776783 -0.808125 1.272032 1 -2.401674 -0.780257 -1.334666 6 -3.387379 -0.198356 0.518241 1 -3.425999 0.862924 0.250574	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	TS-Ie Et =-598.615733 NImag=1 (-1601.36) 6 -0.177439 0.866122 -0.396821 6 0.878320 1.644790 -1.177382 1 -1.176914 1.255445 -0.656101 1 1.878598 1.400603 -0.804880 6 0.650324 3.160627 -1.210211 1 0.713724 3.612351 -0.213343
TS-IcEt =-463.4601171NImag=1(-1121.86)6 -0.828986 -0.771837 0.151475 6 -2.309328 -0.964939 -0.256995 1 -0.776783 -0.808125 1.272032 1 -2.401674 -0.780257 -1.334666 6 -3.387379 -0.198356 0.518241 1 -3.425999 0.862924 0.250574 1 -4.381055 -0.614945 0.314332	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	TS-Ie Et =-598.615733 NImag=1 (-1601.36) 6 -0.177439 0.866122 -0.396821 6 0.878320 1.644790 -1.177382 1 -1.176914 1.255445 -0.656101 1 1.878598 1.400603 -0.804880 6 0.650324 3.160627 -1.210211 1 0.713724 3.612351 -0.213343 1 1.398443 3.653488 -1.840228
TS-IcEt =-463.4601171NImag=1(-1121.86)6 -0.828986 -0.771837 0.151475 6 -2.309328 -0.964939 -0.256995 1 -0.776783 -0.808125 1.272032 1 -2.401674 -0.780257 -1.334666 6 -3.387379 -0.198356 0.518241 1 -3.425999 0.862924 0.250574 1 -4.381055 -0.614945 0.314332 1 -3.223138 -0.261415 1.601575	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	TS-Ie Et =-598.615733 NImag=1 (-1601.36) 6 -0.177439 0.866122 -0.396821 6 0.878320 1.644790 -1.177382 1 -1.176914 1.255445 -0.656101 1 1.878598 1.400603 -0.804880 6 0.650324 3.160627 -1.210211 1 0.713724 3.612351 -0.213343 1 1.398443 3.653488 -1.840228 1 -0.338461 3.402077 -1.618826
TS-IcEt =-463.4601171NImag=1(-1121.86)6 -0.828986 -0.771837 0.151475 6 -2.309328 -0.964939 -0.256995 1 -0.776783 -0.808125 1.272032 1 -2.401674 -0.780257 -1.334666 6 -3.387379 -0.198356 0.518241 1 -3.425999 0.862924 0.250574 1 -4.381055 -0.614945 0.314332 1 -3.223138 -0.261415 1.601575 8 -0.022877 -1.606291 -0.494135	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	TS-IeEt =-598.615733NImag=1 (-1601.36)6 -0.177439 0.866122 -0.396821 6 0.878320 1.644790 -1.177382 1 -1.176914 1.255445 -0.656101 1 1.878598 1.400603 -0.804880 6 0.650324 3.160627 -1.210211 1 0.713724 3.612351 -0.213343 1 1.398443 3.653488 -1.840228 1 -0.338461 3.402077 -1.618826 8 -0.092961 -0.520612 -0.475994
TS-IcEt =-463.4601171NImag=1(-1121.86)6 -0.828986 -0.771837 0.151475 6 -2.309328 -0.964939 -0.256995 1 -0.776783 -0.808125 1.272032 1 -2.401674 -0.780257 -1.334666 6 -3.387379 -0.198356 0.518241 1 -3.425999 0.862924 0.250574 1 -4.381055 -0.614945 0.314332 1 -3.223138 -0.261415 1.601575 8 -0.022877 -1.606291 -0.494135 7 -0.308238 0.734677 -0.084380	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	TS-Ie Et =-598.615733 NImag=1 (-1601.36) 6 -0.177439 0.866122 -0.396821 6 0.878320 1.644790 -1.177382 1 -1.176914 1.255445 -0.656101 1 1.878598 1.400603 -0.804880 6 0.650324 3.160627 -1.210211 1 0.713724 3.612351 -0.213343 1 1.398443 3.653488 -1.840228 1 -0.338461 3.402077 -1.618826 8 -0.092961 -0.520612 -0.475994 7 -0.107890 0.930044 1.159869
TS-IcEt =-463.4601171NImag=1(-1121.86)6 -0.828986 -0.771837 0.151475 6 -2.309328 -0.964939 -0.256995 1 -0.776783 -0.808125 1.272032 1 -2.401674 -0.780257 -1.334666 6 -3.387379 -0.198356 0.518241 1 -3.425999 0.862924 0.250574 1 -4.381055 -0.614945 0.314332 1 -3.223138 -0.261415 1.601575 8 -0.022877 -1.606291 -0.494135 7 -0.308238 0.734677 -0.084380 6 -0.490234 1.164830 -1.474880	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	TS-IeEt =-598.615733NImag=1 (-1601.36)6 -0.177439 0.866122 -0.396821 6 0.878320 1.644790 -1.177382 1 -1.176914 1.255445 -0.656101 1 1.878598 1.400603 -0.804880 6 0.650324 3.160627 -1.210211 1 0.713724 3.612351 -0.213343 1 1.398443 3.653488 -1.840228 1 -0.338461 3.402077 -1.618826 8 -0.092961 -0.520612 -0.475994 7 -0.107890 0.930044 1.159869 6 1.166179 1.342698 1.781479

1 -1.523516 1.479039 -1.677954	1 1.504231 1.456543 1.554156	1 1.345545 2.416367 1.657082
1 0.174127 2.006672 -1.705319	1 -0.118534 2.172928 1.747812	1 1.112310 1.119293 2.850971
6 -0.723604 1.755454 0.883221	6 0.408450 1.775193 -0.915772	6 -1.302282 1.500261 1.813263
1 -1.743505 2.117865 0.706977	1 1.476353 1.996352 -0.896258	1 -1.334599 2.589830 1.692976
1 -0.674271 1.337426 1.894070	1 0.141179 1.354087 -1.887947	1 -2.190849 1.045045 1.365288
1 -0.045494 2.617015 0.830051	1 -0.153101 2.700660 -0.759451	1 -1.270383 1.264644 2.881063
1 1.028972 0.449428 0.073022	1 -1.044796 0.687668 0.152608	1 -0.136789 -0.278122 0.826133
1 1.453784 -1.092370 -0.089085	1 -1.464165 -0.981779 0.528885	1 0.829009 1.245642 -2.198467
7 2.071902 -0.232985 0.131228	8 -2.362366 -0.093730 0.352664	1 1.854604 -1.100430 -0.333720
6 2.680349 -0.290951 1.466845	6 -3.145149 -0.345205 -0.782852	7 2.828577 -1.226390 -0.039823
1 3.450794 -1.070378 1.517502	1 -3.893484 -1.136001 -0.596838	6 2.920849 -2.392087 0.829364
1 3.140521 0.671267 1.717344	1 -3.703703 0.555892 -1.086461	1 3.924961 -2.453311 1.269749
1 1.905520 -0.515417 2.205370	1 -2.557928 -0.669883 -1.664859	1 2.200877 -2.297746 1.649795
1 -2.474292 -2.042145 -0.128787	1 1.917114 -2.162535 0.002751	1 2.728480 -3.353913 0.315518
6 3.025156 0.033046 -0.954047		6 3.683482 -1.342566 -1.213740
1 2.495194 -0.015866 -1.908729		1 3.520263 -0.484994 -1.875507
1 3.467491 1.028778 -0.839563		1 4.739106 -1.336130 -0.911035
1 3.832751 -0.709760 -0.961375		1 3.516775 -2.265510 -1.802468
		1 -2.078662 -0.936766 -0.442323
		7 -3.074345 -0.873570 -0.206712
		6 -3.855971 -0.697382 -1.423319
		1 -3.847141 -1.576110 -2.097278
		1 -4.904586 -0.494148 -1.168154
		1 -3.476219 0.163088 -1.985194
		6 -3.468699 -2.061338 0.538947
		1 -3.450659 -2.994795 -0.056701
		1 -2.801329 -2.195292 1.397378
		1 -4.490081 -1.940318 0.923585
TS-If	TS-Ig	TS-Ih
Et =-559.735774 NImag= 1(-1603.67)	Et =-598.6407093 NImag=1(-727.93)	Et =-559.7671932 NImag=1(-441.61)
6 -0.123254 -0.745637 -0.536563	6 -1.092856 -0.704904 0.277267	6 0.947764 -0.328773 -0.644634

6 -1.451156 -1.043013 -1.221290	6	-2.396539 -1.531847 0.507707	6 2.42790	9 -0.521232 -0.997269
1 0.626886 -1.482541 -0.857757	1	-0.524557 -0.771569 1.246355	1 0.40820	9 -0.010379 -1.552475
1 -2.241242 -0.402494 -0.817470	1	-2.053016 -2.487772 0.928122	1 2.41151	5 -1.217853 -1.844711
6 -1.855837 -2.521846 -1.185491	6	-3.203548 -1.832765 -0.758522	6 3.32021	4 -1.112203 0.100354
1 -2.041186 -2.879655 -0.166171	1	-2.512099 -2.130647 -1.552558	1 2.84230	6 -1.987195 0.549409
1 -2.774000 -2.683032 -1.759716	1	-3.920956 -2.644911 -0.588336	1 4.27907	2 -1.425715 -0.326101
1 -1.075099 -3.155970 -1.622424	1	-3.770394 -0.965338 -1.113722	1 3.54136	03 -0.395433 0.897845
8 0.346301 0.577844 -0.676563	8	-0.409706 -1.032760 -0.802197	8 0.41557	4 -1.438990 -0.073869
7 -0.079661 -0.740627 1.007824	7	-1.360886 0.866878 0.285087	7 0.67100	03 0.913018 0.298569
6 -1.356669 -0.586085 1.732886	6	-2.111166 1.328320 -0.887555	6 0.99512	0.686839 1.731823
1 -1.901655 0.260404 1.308812	1	-1.766675 0.746019 -1.745162	1 0.73019	9 -0.342399 1.972088
1 -1.964866 -1.495380 1.682322	1	-3.194749 1.191291 -0.764882	1 2.05645	64 0.859280 1.917739
1 -1.128914 -0.373234 2.780927	1	-1.925619 2.395810 -1.066333	1 0.39876	0 1.378002 2.332414
6 0.841286 -1.725823 1.606185	6	-1.910433 1.397831 1.533647	6 1.21311	6 2.195657 -0.210787
1 0.437957 -2.742831 1.534353	1	-2.973175 1.146522 1.664644	1 2.29790	1 2.228292 -0.089380
1 1.797406 -1.664276 1.079939	1	-1.352032 0.983891 2.380926	1 0.95824	4 2.298329 -1.268694
1 0.991332 -1.477749 2.660481	1	-1.818422 2.491395 1.557019	1 0.76139	06 3.018921 0.348728
1 0.401628 0.368310 0.603058	1	-0.008051 1.269817 0.116364	1 -0.4173	47 1.002741 0.262814
1 -1.058468 1.696521 -0.573558	1	1.265582 -1.331060 -0.211313	1 -0.6440	3 -1.453936 -0.246073
8 -1.883398 2.166797 -0.303461	7	2.228258 -1.164024 0.156023	8 -2.04388	38 -1.294753 -0.442107
6 -1.509939 3.409562 0.261489	6	3.206619 -1.558010 -0.853999	6 -2.7630	50 -2.136196 0.420592
1 -1.020439 4.074151 -0.468314	1	2.962348 -1.080174 -1.808486	1 -2.3824	53 -2.128095 1.460018
1 -2.421794 3.906255 0.609695	1	4.213299 -1.234792 -0.557450	1 -3.8277.	38 -1.850501 0.467067
1 -0.834092 3.300273 1.125116	1	3.245070 -2.649860 -1.020627	1 -2.72502	22 -3.181976 0.073355
1 -1.311674 -0.729049 -2.263399	1	-3.029393 -1.076307 1.283110	1 2.85201	3 0.411743 -1.387827
1 2.097687 0.272117 -0.885871	1	1.662496 0.608697 0.134580	1 -2.10330	67 -0.076219 -0.037789
8 2.996547 -0.117215 -0.764688	7	1.165651 1.509646 -0.092586	8 -1.9596	48 1.013395 0.291808
6 3.811775 0.873254 -0.167871	6	1.682764 2.608853 0.743848	6 -2.6324	54 1.865605 -0.608824
1 3.411048 1.235289 0.793080	1	1.131283 3.529177 0.528776	1 -2.3895	01 2.914505 -0.387701
1 4.793357 0.427374 0.025067	1	1.549537 2.352187 1.798152	1 -2.3679	00 1.674856 -1.663333
1 3.960930 1.748034 -0.821313	1	2.747517 2.781152 0.550422	1 -3.7250	56 1.756514 -0.521565

	6 2.431495 -1.866357 1.419748	
	1 1.652305 -1.578096 2.132540	
	1 2.410892 -2.966378 1.316139	
	1 3.404942 -1.595710 1.850264	
	6 1.324736 1.733158 -1.545693	
	1 0.889146 0.866882 -2.046986	
	1 0.792059 2.641969 -1.841348	
	1 2.382718 1.836705 -1.810991	
TS-Ii	TS-Ij	TS-Ik
Et =-598.6148138 NImag=1(-1591.67)	Et = -559.7374909 NImag=1(-1605.91)	Et = -559.7635751 NImag=1 (-734.05)
6 1.848396 -0.924484 0.219423	6 1.343400 -0.869871 -0.163710	6 1.382583 0.622781 -0.368909
6 1.372817 -0.280033 1.520782	6 0.770459 -0.852992 1.250680	6 2.671069 0.068024 -0.981729
1 2.800312 -1.457700 0.413556	1 2.261526 -1.483673 -0.171594	1 1.618124 1.372327 0.413541
1 0.544411 0.406526 1.315760	1 -0.051198 -0.133299 1.324144	1 2.421347 -0.781730 -1.628062
6 2.477484 0.403234 2.335394	6 1.815795 -0.612366 2.346751	6 3.825528 -0.280191 -0.035355
1 2.916336 1.256897 1.806102	1 2.274214 0.380370 2.270875	1 3.654569 -1.206933 0.521967
1 2.086121 0.777001 3.287738	1 1.359218 -0.684973 3.339387	1 4.749653 -0.420202 -0.606141
1 3.290775 -0.296730 2.563304	1 2.621712 -1.354581 2.296435	1 4.007587 0.520876 0.691358
8 0.920496 -1.670275 -0.472216	8 0.463880 -1.210297 -1.187538	8 0.516557 1.025005 -1.307214
7 2.170781 0.053243 -0.971387	7 1.758077 0.497710 -0.786312	7 0.584506 -0.470124 0.543016
6 1.632390 1.428064 -0.924689	6 1.174222 1.727826 -0.211079	6 0.226493 -1.694590 -0.220155
1 0.581125 1.417259 -0.619330	1 0.102784 1.594147 -0.040016	1 -0.010037 -1.380235 -1.237762
1 2.210268 2.055841 -0.236767	1 1.665153 1.995086 0.731224	1 1.068155 -2.390575 -0.218378
1 1.706568 1.856274 -1.929239	1 1.325502 2.541315 -0.926707	1 -0.657856 -2.146143 0.232742
6 3.556576 -0.002086 -1.468222	6 3.188712 0.640923 -1.109809	6 1.121211 -0.756536 1.895933
1 4.241677 0.514990 -0.786151	1 3.784871 0.805182 -0.204513	1 1.984664 -1.418001 1.829653
1 3.863117 -1.047029 -1.563438	1 3.537737 -0.264608 -1.612562	1 1.413659 0.183209 2.370643
1 3.608342 0.475918 -2.450680	1 3.321458 1.494469 -1.780283	1 0.342561 -1.237731 2.494114
1 1.369714 -0.800186 -1.384552	1 1.001416 -0.080883 -1.607153	1 -0.303086 0.081812 0.662742
1 0.947805 -1.105677 2.106201	1 -1.165238 -1.078827 -0.965652	1 -0.520462 1.283080 -0.729164
1 -0.977163 -1.502938 -0.174173	8 -2.154798 -0.963168 -0.838554	8 -1.439202 1.263010 0.062943

Et = -559.7620837 NImag=1(-628.11)		
TS-Im		
1 -3.343682 2.249469 1.323703		
1 -1.933907 3.327485 1.270196		
1 -1.803869 1.751429 2.069622		
6 -2.241845 2.274793 1.212616		
1 -2.053294 1.733581 -2.099927		
1 -2.087405 3.317352 -1.304557		
1 -3.492970 2.239716 -1.180266		
6 -2.385814 2.265319 -1.201557		
7 -1.757398 1.679553 -0.025157	1 -2.842994 3.189935 0.742736	1 -2.981225 -1.339388 -1.699342
1 -1.939359 0.666640 -0.013343	1 -4.037580 1.953704 0.297593	1 -4.439830 -0.573491 -1.025863
1 -2.270394 -3.203134 1.100499	1 -2.824279 2.490564 -0.890403	1 -4.088168 -2.278124 -0.675790
1 -3.492177 -1.931180 1.312734	6 -2.987354 2.264082 0.175393	6 -3.631312 -1.291095 -0.810006
1 -1.868788 -1.713423 1.991271	8 -2.079160 1.301462 0.675674	8 -2.924550 -0.972877 0.371565
6 -2.423510 -2.107535 1.132839	1 -2.191954 0.473561 0.145026	1 -2.504626 -0.085116 0.236851
1 -2.484838 -3.062907 -1.389759	1 0.322784 -1.845617 1.390149	1 2.993172 0.866864 -1.660509
1 -2.218940 -1.481376 -2.164811	1 -2.494526 -3.023749 -0.890751	1 -0.789836 3.092383 0.838776
1 -3.710175 -1.783853 -1.253380	1 -3.743710 -2.023492 -0.116777	1 -2.228348 2.388950 1.608214
6 -2.628585 -1.971627 -1.275086	1 -2.220315 -2.353919 0.737652	1 -2.356298 3.136198 0.003785
7 -1.999244 -1.420213 -0.080824	6 -2.663984 -2.147377 -0.248440	6 -1.710186 2.515228 0.646413

6	0.863918 0.002667	-0.762219
6	1.768400 -1.228391	-0.832989
1	1.306884 0.826964	-1.347895
1	1.347154 -2.018286	-0.200157
6	3.256700 -1.022571	-0.529735
1	3.450861 -0.845792	0.533672
1	3.823207 -1.915977	-0.812264
1	3.671209 -0.178414	-1.093674
8	-0.404816 -0.313097	-1.192465
7	0.733499 0.644470	0.662087
6	0.486193 -0.334525	1.752709
1	-0.289384 -1.034497	1.433057
1	1 405693 -0 872623	1 998522
1	0 144054 0 212777	2 635013
6	1.791882 1.624045	1.008452
1	2 745167 1 125853	1 192898
1	1 905755 2 336210	0 187923
1	1 487686 2 162716	1 909860
1	-0 234459 1 209734	0.508057
1	-1 064048 0 548976	-0.867718
8	-1527088 1507434	-0.086113
6	-1.707015 - 2.75/331	_0 705200
1	-1.707013 2.734331 -2.5800/1 2.7746176	-0.705200
1 1	1 882220 2 5/5206	
1 1	-1.003337 3.343300 0.820172 2.07 $/070$	1 21/100
1	-0.0391/2 $3.0/40/91 656251 1 592770$	-1.314190 1.964494
1	1.030231 -1.382//9	-1.004404
1	-1.288528 -1.089/42	-0.413803
8	-1.802946 -2.260116	0.2019/2
0	-3.080440 -1.651/62	0.343968
1	-3.566660 -2.092676	1.221291
l	-3.0040/3 -0.565343	0.487013
1	-3.726823 -1.840444	-0.529172

TS-II	TS-IIa	TS-IIb
Et =-328.2348707 NImag=1(-1104.19)	Et =-463.4175539 NImag=1(Et =-443.9854632 NImag=1(-281.89)
6 0.209574 -0.101244 0.519864 6 1.369601 -0.393376 -0.292605 1 0.359927 0.499808 1.412258 1 1.230075 -1.187903 -1.028286 6 2.711761 -0.460153 0.431323	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Et = -443.3834632Nillag=1(-281.39)6 1.393777 0.486965 -0.317948 6 1.871096 -0.655685 0.447547 1 1.742022 0.580315 -1.344066 1 1.709839 -0.566885 1.524691 6 3.279803 -1.137712 0.095702 1 4.057292 -0.447702 0.443881 1 2.467693 2.111085 0.557608
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1 0.619947 2.584559 -0.333658 1 1.177895 0.694143 -0.829082	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table S63. The PCM-B3LYP/6-31G* Optimized Geometries (in Cartesian coordinates), Total Electronic Energies (in hartree/particle), and Number of Imaginary Frequencies (cm⁻¹) of Transition States for Dehydration Step (**Step-II**)

		1 0 1 5 40 1 5 0 0 000 5 1 0 5 5 0 0 0 0
	1 -2.925976 1.314004 -1.010008	1 -3.154215 0.382351 -0.558002
	1 -3.841834 -0.177404 -1.335032	1 -3.597368 -1.298633 -0.909491
	1 -4.151067 0.753539 0.143496	1 -4.216714 -0.503452 0.551029
	6 -2.791726 -1.552392 0.728365	
	1 -1.951178 -2.099684 1.170014	
	1 -3.536874 -1.383506 1.519884	
	1 -3.266379 -2.216207 -0.023828	
TS-IIc	TS-IId	TS-IIe
Et = -463.4104 NImag=1(-920.97)	Et =-443.9941529 NImag=1(-61.73)	HF = -598.6014211 $NImag = 1 (-119.3)$
6 -1.053673 0.642241 -0.435531	6 0.983717 0.847552 0.130598	6 -0.335766 1.362016 0.371845
6 -0.130419 1.481479 0.256184	6 -0.176524 1.455234 -0.502478	6 0.075974 2.174872 -0.790624
1 -0.831793 0.398917 -1.469663	1 1.318537 1.206738 1.099497	1 -1.333814 0.932692 0.362121
6 0.473270 2.639731 -0.542446	1 -0.045947 1.533147 -1.589728	1 1.019086 2.704165 -0.631679
1 -0 222586 3 480795 -0 652990	6 -0.626518 2.774593 0.126683	6 -1 031365 3 130626 -1 263593
1 1 373822 3 017364 -0 046208	1 0.098904 3.583637 -0.022514	1 -1 250971 3 909274 -0 524305
1 0.762459 2.311826 -1.547895	1 -1 576466 3 095126 -0 312470	1 - 0.723928 - 3.624143 - 2.190907
8 0 384186 -1 358937 -1 624000	1 - 0.787103 - 2.654081 - 1.203979	1 - 1.957257 - 2.582125 - 1.469100
7 -2 060830 -0 047917 0 072548	8 -0 423493 -0 647486 2 033720	8 -0 153379 -0 478295 -1 390180
6 -2.527086 = 0.095305 = 1.448289	7 1 630247 -0 183835 -0 340793	7 0 357700 1 107422 1 442242
1 -2.010478 -0.607479 -2.114738	6 1 168837 -0 880419 -1 555115	6 1 760397 1 505589 1 637012
1 -2.357500 -1.113403 -1.802175	1 1200494 = 0.198155 = 2.409986	1 2 390214 0 748974 1 144804
1 -2.557500 -1.115405 -1.002175 1 -3.599468 -0.114914 -1.481339	1 1.200494 -0.190195 -2.409900 1 1.837532 -1.720128 -1.748114	$1 \ 2.590214 \ 0.740974 \ 1.144004$ 1 1 939736 2 $491355 \ 1.206908$
6 - 2.621321 - 1.15/3/2 - 0.71/805	1 0.133252 1.720120 -1.740114	1 1.55750 2.471555 1.200700 1 1.050438 1.544506 2.710157
1 3 535447 0 842500 1 232071	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 1 & 1.557456 \\ 6 & 0.168305 \\ 0 & 168504 \\ \end{array} \begin{array}{c} 2.710157 \\ 2.472640 \\ \end{array}$
1 -5.555447 -0.642509 -1.252971 1 -1.929540 -1.475429 -1.412267	0 2.042592 -0.007200 0.400220 1 2 522686 1 076251 0 147419	1 0.201834 0.650061 2.442049
1 -1.636340 -1.473436 -1.412307 1 -2.866005 -1.080740 -0.040100	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 - 0.201834 - 0.039001 - 3.420302 1 - 1.162460 - 0.160120 - 2.128015
1 -2.800095 -1.980749 -0.040190 1 -1.202485 -0.020077 -0.627602	1 2.92/009 - 0.240420 1.512240 1 2.226262 1.808575 0.840002	1 -1.103409 -0.100120 2.138913 1 0.501048 0.605841 2.408224
1 1.293485 -0.929977 -0.037003	1 2.220202 - 1.8085/5 0.840902 $1 0.120524 1.527(41 - 2.2820(8))$	1 0.301048 -0.093841 2.498334
1 0.308099 -2.310323 -1.4/3113	1 -0.130334 -1.337041 -2.282908	1 -1./33233 -0.821892 -0.3/9//0
/ 1.8/012/ -0.44/83/ 0.2406/9	1 -0.9/0131 -0.80/8// 1.19263/	1 0.2280/5 1.3/0858 -1.546684
1 0.8290/2 0.636908 0.356569	8 -1.601/56 -0.899266 -0.2/89/5	1 1.508267 -0.762400 -0.728381
1 -0.406654 1.756986 1.277621	6 -2.959114 -1.128952 -0.384832	7 2.477150 -0.962112 -0.388161

6	3.210672 -0.014395 -0.119917	1 -3.558974 -0.675212 0.435407	6 2.531760 -2.332853 0.097072
1	3.667655 0.597289 0.672952	1 -3.397417 -0.735583 -1.328871	1 1.743982 -2.490952 0.843206
1	3 890131 -0 864044 -0 310833	1 -3 216348 -2 212239 -0 371577	1 2 399121 -3 096308 -0 696070
1	3 164437 0 589052 -1 033018	1 - 0.982279 = 0.611970 - 0.398097	1 3 498002 -2 536006 0 580349
6	1 842596 -1 316965 1 406175		$6 \ 3 \ 407338 \ -0 \ 736871 \ -1 \ 484537$
1	2 474406 2 213515 1 278007		$1 \ 3 \ 271000 \ 0 \ 276712 \ 1 \ 878332$
1	2.474490 - 2.215515 1.278907 2.199052 0.707907 2.212964		1 3.271900 0.270712 -1.878332 1 4446071 0.927209 1.126225
1	2.188055 -0.797807 2.512804		1 4.4400/1 -0.82/308 -1.130223
1	0.813451 -1.656330 1.573935		1 3.28450/ -1.445008 -2.328458
			1 -0.157815 -1.383344 -1.748595
			7 -2.565229 -0.993397 0.027958
			6 -3.788214 -0.703441 -0.704735
			1 -3.733813 0.305468 -1.130399
			1 -3.991217 -1.408561 -1.535045
			1 -4.658184 -0.736767 -0.033501
			6 -2 522735 -2 367797 0 505285
			$\begin{array}{cccccccccccccccccccccccccccccccccccc$
			1 - 1.555075 - 2.575775 - 0.525005 1 - 2.575775 - 0.525005
			1 -5.2/2308 -2.531440 1.292045
			1 -2./12/61 -3.121062 -0.285162
	TS-IIf	TS-IIh	
Et =	=-559.7376971 NImag=1(-80.00)	Et =-559.741987 NImag=1 (-90.32)	

	6	1.518941 -0.098784 0.392084	6	-1.720075	-0.286447	-0.222558
	6	2.386610 -0.363149 -0.783599	6	-2.015323	1.086198	0.312787
	1	1.429854 0.927996 0.740624	1	-2.179451	-0.580623	-1.159114
	1	2.759430 -1.391797 -0.804614	1	-2.703309	0.970039	1.163350
	6	3.536211 0.644989 -0.903080	6	-2.644145	2.000672	-0.743261
	1	4.238263 0.566127 -0.065577	1	-3.601379	1.601812	-1.098475
	1	4.094414 0.466573 -1.826914	1	-2.831124	2.992898	-0.321572
	1	3.152671 1.670503 -0.934898	1	-1.980325	2.109718	-1.605356
2	8	-0.374523 0.532874 -1.456288	8	-0.075638	0.314388	-1.575440
	7	0.769696 -0.948197 1.010068	7	-1.268410	-1.268912	0.511470
	6	0.586960 -2.350952 0.607881	6	-0.619842	-1.080223	1.816518
	1	-0.388921 -2.400055 0.110162	1	-0.975556	-1.860061	2.496425
	1	1.380985 -2.671620 -0.062879	1	0.459612 -	-1.165375	1.655974
	1	0.588878 -2.973079 1.506602	1	-0.860499	-0.101953	2.227044
(6	-0.157470 -0.504790 2.068408	6	-1.027888	-2.588490	-0.085139
	1	0.070051 -1.049700 2.989126	1	-1.346870	-3.365467	0.615631
	1	-0.051656 0.570130 2.205441	1	-1.592272 -	-2.681127	-1.014964
	1	-1.169163 -0.729836 1.719012	1	0.047493 -	-2.658463	-0.281411
	1	-0.755635 0.942263 -2.248542	1	0.249700	1.132449	-1.147223
	1	-1.406072 -0.365460 -0.854129	1	0.641591 -	-0.342481	-1.176245
8	8	-2.069189 -1.005811 -0.354073	8	1.652381 -	-0.964736	-0.244591
(6	-3.214423 -1.169191 -1.149060	6	2.868510 -	-1.292453	-0.831925
	1	-2.994393 -1.620872 -2.133631	1	3.223890 -	-0.541746	-1.570778
	1	-3.919335 -1.836231 -0.634651	1	3.685600 -	-1.396105	-0.088874
	1	-3.742384 -0.217462 -1.338772	1	2.833618 -	-2.257894	-1.378062
	1	1.665039 -0.233532 -1.611051	1	-1.090808	1.522899	0.706308
	1	-0.334750 1.658940 -0.425869	1	1.589330	0.525852	0.336954
	8	-0.305848 2.315748 0.376670	8	1.313387	1.489273	0.544418
	6	-1.646047 2.596767 0.707194	6	2.466142	2.280203	0.734847
	1	-2.110487 3.323642 0.014848	1	3.135495	2.275763	-0.140945
	1	-2.273591 1.691140 0.702947	1	2.151993	3.316082	0.910003
	1	-1.689287 3.037888 1.712851	1	3.056832	1.957999	1.608332