Supporting Information

Sensitization of europium(III) luminescence by benzophenone-containing ligands: Regioisomers, rearrangements and chelate ring size, and their influence on quantum yields
A. J. Wilkinson, ${ }^{a}$ D. Maffeo, ${ }^{a}$ A. Beeby, ${ }^{a}$ C. E. Foster, ${ }^{b}$ and J. A. G. Williams ${ }^{a, *}$
(a) Department of Chemistry, University of Durham, South Road, Durham, DH1 3LE U.K. and (b) Fujifilm Imaging Colorants Ltd, Hexagon House, Blackley, Manchester, M9 8ZS U.K.

Table of Contents

Pages 2-4 Excitation spectra of the europium(III) complexes in $\mathbf{H}_{2} \mathrm{O}$ at 298 K , registered at the wavelengths indicated

Page 5 Emission $\left(\lambda_{\mathrm{ex}}=330 \mathrm{~nm}\right)$ and excitation $\left(\lambda_{\mathrm{em}}=547 \mathrm{~nm}\right)$ spectra of $\left[\mathrm{TbL}^{4}\right]$ in $\mathrm{H}_{2} \mathrm{O}$ at 298K

Pages 6-7 Details of synthesis and characterisation of the aromatic precursors

Pages 8 - $13{ }^{1}$ H NMR spectra of the new europium(III) and yttrium(III) complexes reported, recorded at 500 MHz in $\mathrm{D}_{2} \mathrm{O}$, 298K

[^0]
Excitation spectra of europium complexes in $\mathrm{D}_{2} \mathrm{O}$ solution at 298 K

Details of synthesis and characterisation of the aromatic precursors

N-(3-Benzoyl-phenyl)-2-bromo-acetamide, 2

Bromoacetyl bromide ($2.84 \mathrm{~g}, 14.1 \mathrm{mmol}$) was added dropwise to a solution of 3-aminobenzophenone $(2.19 \mathrm{~g}, 11.1 \mathrm{mmol})$ and triethylamine $(1.36 \mathrm{~g}, 13.4 \mathrm{mmol})$ in diethyl ether $(100 \mathrm{~mL})$ at $-10^{\circ} \mathrm{C}$, ensuring that the temperature did not rise above $0^{\circ} \mathrm{C}$. After warming to room temperature, the precipitated solid was isolated by filtration, redissolved in dichloromethane and washed with $\mathrm{HCl}\left(1 \mathrm{~mol} \mathrm{dm}^{-3}\right.$, $3 \times 50 \mathrm{~mL}$). Drying over MgSO_{4}, removal of solvent under reduced pressure and drying under vacuum gave the desired product 2 as a pale brown solid $(2.42 \mathrm{~g}, 68 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta=8.32$ $(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 7.94\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8, \mathrm{H}^{6}\right), 7.85\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}^{2}\right), 7.81\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.6, \mathrm{H}^{2^{\prime}}\right), 7.61(1 \mathrm{H}, \mathrm{tt}$, $\left.\mathrm{J}=7.4,1.4, \mathrm{H}^{4^{\prime}}\right), 7.57\left(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=7.7,1.3, \mathrm{H}^{4}\right), 7.46-7.53\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}^{5} \& \mathrm{H}^{3^{\prime}}\right), 4.03\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right)$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right) \delta=196.1(\mathrm{C}=\mathrm{O}), 163.8(\mathrm{C}=\mathrm{O}), 138.7\left(\mathrm{C}^{\mathrm{q}}\right), 137.3\left(\mathrm{C}^{\mathrm{q}}\right), 137.3\left(\mathrm{C}^{\mathrm{q}}\right)$, $132.9\left(\mathrm{C}^{4}\right), 130.2\left(\mathrm{C}^{2^{\prime}}\right), 129.3\left(\mathrm{C}^{5}\right), 128.6\left(\mathrm{C}^{3^{\prime}}\right), 126.9\left(\mathrm{C}^{4}\right), 124.1\left(\mathrm{C}^{6}\right), 121.4\left(\mathrm{C}^{2}\right), 29.4\left(\mathrm{CH}_{2}\right) . \mathrm{MS}(\mathrm{EI})$ $m / z=317 / 319\left(\mathrm{M}^{+}\right), 240 / 242\left(\mathrm{M}^{+}-\mathrm{Ph}\right), 238\left(\mathrm{M}^{+}-\mathrm{Br}\right), 197\left(\mathrm{PhCOC}_{6} \mathrm{H}_{4} \mathrm{NH}_{2}{ }^{+}\right), 105\left(\mathrm{PhCO}^{+}\right), 77$ $\left(\mathrm{Ph}^{+}\right)$. IR $(\mathrm{KBr} \mathrm{disc}) \bar{v}=1662 \mathrm{~cm}^{-1}$ (ketone, $\mathrm{C}=\mathrm{O}$ stretch), $1655 \mathrm{~cm}^{-1}$ (amide, $\mathrm{C}=\mathrm{O}$ stretch).

N-(2-Benzoyl-phenyl)-2-bromo-acetamide, 3

Bromoacetyl bromide ($2.89 \mathrm{~g}, 14.3 \mathrm{mmol}$) was added dropwise to a solution of 2-aminobenzophenone $(2.19 \mathrm{~g}, 11.1 \mathrm{mmol})$ and triethylamine $(1.50 \mathrm{~g}, 14.8 \mathrm{mmol})$ in diethyl ether $(100 \mathrm{~mL})$ at $-10^{\circ} \mathrm{C}$, ensuring that the temperature did not rise above $0^{\circ} \mathrm{C}$. After warming to room temperature, the reaction mixture was washed with $\mathrm{HCl}\left(1 \mathrm{~mol} \mathrm{dm}^{-3}, 3 \times 50 \mathrm{~mL}\right)$ and dried over MgSO_{4}. Removal of solvent under reduced pressure and drying under vacuum gave the desired product, $\mathbf{3}$, as a pale brown solid $(3.30 \mathrm{~g}$, $93 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta=11.50(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 8.59\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.2, \mathrm{H}^{6}\right), 7.72(2 \mathrm{H}, \mathrm{d}$, $\left.\mathrm{J}=7.9, \mathrm{H}^{2^{\prime}}\right), 7.58-7.63\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}^{3}, \mathrm{H}^{5} \& \mathrm{H}^{4^{\prime}}\right), 7.49\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.6, \mathrm{H}^{3^{\prime}}\right), 7.16\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.6, \mathrm{H}^{4}\right), 4.03$ $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) \delta=199.4(\mathrm{C}=\mathrm{O}), 165.2(\mathrm{NHC}=\mathrm{O}), 139.6\left(\mathrm{C}^{\mathrm{q}}\right), 138.4$ $\left(C^{q}\right), 134.3\left(C^{3}\right.$ or C^{5} or $\left.C^{4^{\prime}}\right), 133.7\left(C^{3}\right.$ or C^{5} or $\left.C^{4^{\prime}}\right), 132.8\left(C^{3}\right.$ or C^{5} or $\left.C^{4^{\prime}}\right), 130.1\left(C^{2^{\prime}}\right), 128.5\left(C^{3^{\prime}}\right)$, $124.2\left(\mathrm{C}^{\mathrm{q}}\right), 123.2\left(\mathrm{C}^{4}\right), 121.7\left(\mathrm{C}^{6}\right), 29.6\left(\mathrm{CH}_{2}\right) . \mathrm{MS}(\mathrm{EI}) m / z=317 / 319\left(\mathrm{M}^{+}\right), 240 / 242\left(\mathrm{M}^{+}-\mathrm{Ph}\right), 238$ $\left(\mathrm{M}^{+}-\mathrm{Br}\right), 224\left(\mathrm{M}^{+}-\mathrm{CH}_{2} \mathrm{Br}\right), 212 / 214\left(\mathrm{M}^{+}-\mathrm{PhCO}\right), 196\left(\mathrm{M}^{+}-\mathrm{COCH}_{2} \mathrm{Br}\right), 105\left(\mathrm{PhCO}^{+}\right), 77\left(\mathrm{Ph}^{+}\right)$. $\operatorname{IR}\left(\mathrm{KBr}\right.$ disc) $\bar{v}=1684 \mathrm{~cm}^{-1}$ (ketone, $\mathrm{C}=\mathrm{O}$ stretch), $1630 \mathrm{~cm}^{-1}$ (amide, $\mathrm{C}=\mathrm{O}$ stretch).

\mathbf{N}-(2-Acetyl-phenyl)-2-bromo-acetamide

Bromoacetyl bromide ($2.89 \mathrm{~g}, 14.3 \mathrm{mmol}$) was added dropwise to a solution of 2-aminoacetophenone $(1.34 \mathrm{~g}, 11.1 \mathrm{mmol})$ and triethylamine $(1.50 \mathrm{~g}, 14.8 \mathrm{mmol})$ in diethyl ether $(100 \mathrm{~mL})$ at $-10^{\circ} \mathrm{C}$, ensuring
that the temperature did not rise above $0^{\circ} \mathrm{C}$. After warming to room temperature, the precipitated solid was removed by filtration and washed with diethyl ether (100 mL). The combined filtrates were washed with HCl solution ($1 \mathrm{~mol} \mathrm{dm}{ }^{-3}, 3 \times 50 \mathrm{~mL}$) and dried over MgSO_{4}. Removal of solvent under reduced pressure and drying under vacuum gave the desired product as a pale brown oil that solidified upon standing ($2.26 \mathrm{~g}, 79 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta=12.37(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 8.71(1 \mathrm{H}, \mathrm{dd}$, $\mathrm{J}=8.5,1.0$, arom $), 7.94(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.0,1.6$, arom $), 7.59(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=8.4,7.4,1.6$, arom $), 7.20(1 \mathrm{H}$, ddd, $\mathrm{J}=7.8,6.8,1.1$, arom $), 4.03\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 2.70\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$ $\delta=202.8(\mathrm{C}=\mathrm{O}), 165.7(\mathrm{CONH}), 140.1\left(\mathrm{C}^{\mathrm{q}}\right), 135.2(\mathrm{CH}), 131.8(\mathrm{CH}), 123.6(\mathrm{CH}), 122.7\left(\mathrm{C}^{\mathrm{q}}\right), 121.0$ $(\mathrm{CH}), 29.7\left(\mathrm{CH}_{2}\right)$, $28.6\left(\mathrm{CH}_{3}\right) . \mathrm{MS}(\mathrm{EI}) m / z=255 / 257\left(\mathrm{M}^{+}\right), 240 / 242\left(\mathrm{M}^{+}-\mathrm{CH}_{3}\right), 212 / 214$ $\left(\mathrm{M}^{+}-\mathrm{COCH}_{3}\right), 176\left(\mathrm{M}^{+}-\mathrm{Br}\right), 162\left(\mathrm{M}^{+}-\mathrm{CH}_{2} \mathrm{Br}\right), 135\left(\mathrm{H}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{COCH}_{3}{ }^{+}\right), 133\left(\mathrm{M}^{+}-\mathrm{COCH}_{3}, \mathrm{Br}\right)$, $120\left(\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{COCH}_{3}{ }^{+}\right), 77\left(\mathrm{C}_{6} \mathrm{H}_{5}{ }^{+}\right), 65\left(\mathrm{C}_{5} \mathrm{H}_{5}{ }^{+}\right), 43\left(\mathrm{CH}_{3} \mathrm{CO}^{+}\right)$. IR (KBr disc) $\bar{v}=1670 \mathrm{~cm}^{-1}$ (ketone, $\mathrm{C}=\mathrm{O}$ stretch), $1655 \mathrm{~cm}^{-1}$ (amide, $\mathrm{C}=\mathrm{O}$ stretch).

N-(4-Benzoylphenyl)acrylamide, 4

A solution of triethylamine $(2.02 \mathrm{~g}, 19.7 \mathrm{mmol})$ and 4 -aminobenzophenone $(2.65 \mathrm{~g}, 13.2 \mathrm{mmol})$ in dichloromethane (50 mL) was stirred at 0° and a solution of acryloyl chloride ($1.11 \mathrm{~mL}, 13.2 \mathrm{mmol}$) in dichloromethane (25 mL) was added dropwise. After 24 h , the solution was washed twice with water $(50 \mathrm{~mL})$ and the solvent was removed under vacuum to give the desired compound $4(3.03 \mathrm{~g}, 92 \%)$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta=10.48(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 8.02(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.7$, $\operatorname{arom}), 7.74(4 \mathrm{H}, \mathrm{td}, \mathrm{J}=8.7$, 7.8 , arom $), 7.55(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.8$, arom $), 7.45(2 \mathrm{H}, \mathrm{t}, 7.8$, arom $), 6.81\left(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=16.4,10.4, \mathrm{CH}_{2}=\underline{\mathrm{CH}}\right)$, $6.42(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=16.9, \mathrm{HCH}=\underline{\mathrm{CH}}$ trans $), 6.68(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.4, \mathrm{HCH}=\underline{\mathrm{CH}} \mathrm{cis}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $126 \mathrm{MHz}) \quad \delta=195.5,164.4,143.1,137.6,131.9,131.8,131.5,130.9,129.4,128.0,127.1,118.9$. $\operatorname{MS}(\mathrm{ES}-): m / z=250\left(\mathrm{M}^{-}\right), 286\left(\mathrm{M}+\mathrm{Cl}^{-}\right)$.
$\begin{array}{llllll}30 & 20 & 10 & 0 & -10 & -20\end{array}$
10
-10
-20
PDM

- 10 -

30
20
10

EuL5

- 11 -

0

[^0]: * Corresponding author: E-mail: j.a.g.williams@durham.ac.uk

