1	Supporting Information
2	for
3	Current and Historical Deposition of PBDEs, Pesticides,
4	PCBs, and PAHs to Rocky Mountain National Park,
5	USA
6	SASCHA USENKO, † DIXON H. LANDERS, $^{\$}$ PETER G. APPLEBY, $^{\perp}$
7	AND STACI L. SIMONICH *,†,‡
8 9 10 11 12 13 14 15	[†] Department of Chemistry, [‡] Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331-7301 [§] United States Environmental Protection Agency-Western Ecology Division, Corvallis, OR 97330, USA [⊥] Environmental Radioactivity Research Centre, University of Liverpool [†] , Liverpool L69 3BX, UK
	[†] Department of Chemistry
	[‡] Department of Environmental and Molecular Toxicology
	[§] United States Environmental Protection Agency-Western Ecology Division, Corvallis, OR 97330, USA
	[⊥] Environmental Radioactivity Research Centre, University of Liverpool ^f , Liverpool L69 3BX, UK
	* Corresponding author phone: +541-737-9194: fax: +541-737-0497: e-mail: Staci.Simonich@orst.edu

2 Chemicals.

3 All semi-volatile organic compound (SOC) standards were acquired from the EPA repository or 4 purchased from Chem Services Inc. (West Chester, PA), Restek (Bellefonte, PA), Sigma-Aldrich Corp. 5 (St. Louis, MO), or AccuStandard (New Haven, CT). Standard Reference Material (SRM) #1941b was 6 acquired from the National Institute of standards and Technology (NIST) (Gaithersburg, MD). Solvents 7 were Fisher Scientific (Fairlawn, NJ) Optima grade and the anhydrous sodium sulfate was Mallinckrodt 8 Baker (Phillipsburg, NJ) pesticide grade. Isotopically labeled standards were purchased from CDN 9 Isotopes (Pointe-Claire, Quebec, Canada) or Cambridge Isotope Labs (Andover, MA). The isotopically-10 labeled recovery surrogates were d_{10} -fluorene, d_{10} -phenanthrene, d_{10} -pyrene, d_{12} -triphenylene, d_{12} -11 benzo[a]pyrene, d_{12} -benzo[ghi]perylene, d_{14} -EPTC, d_5 -atrazine, d_{10} -diazinon, d_7 -malathion, d_{10} parathion, d_{8} -p,p'-DDE, d_{8} -p,p'-DDT, d_{6} -methyl parathion, d_{13} -alachlor, d_{11} -acetochlor, ¹³C₁₂-PCB 101 12 (2,2',4,5,5'-pentachlorobiphenyl), ¹³C₁₂-PCB 180 (2,2', 3,4,4',5,5'-heptachlorobiphenyl), d_{10} -13 chlorpyrifos, ${}^{13}C_6$ -HCB, d_6 - γ -HCH, d_4 -endosulfan I, d_4 -endosulfan II, d_{14} -trifluralin, ${}^{13}C_{12}$ -BDE 28 14 (2,4,4)-tribromodiphenyl ether), ¹³C₁₂-BDE 47 (2,2',4,4'-tetrabromodiphenyl ether), ¹³C₁₂-BDE 99 15 (2.2',4.4',5-tetrabromodiphenvl ether), ¹³C₁₂-BDE 100 (2.2',4.4',6-tetrabromodiphenvl ether), ¹³C₁₂-16 BDE 118 (2,3',4,4',5-tetrabromodiphenyl ether), ${}^{13}C_{12}$ -BDE 138 (2,2',3,4,4',5'-tetrabromodiphenyl 17 ether), ¹³C₁₂-BDE 153 (2,2',4,4',5,5'-tetrabromodiphenyl ether), and ¹³C₁₂-BDE 183 (2,2',3,4,4',5',6-18 19 tetrabromodiphenyl ether). The isotopically-labeled internal standards were d_{10} -acenaphthene, d_{12} benzo[k]fluoranthene, d_{10} -fluoranthene, and ${}^{13}C_{12}$ -PCB 138 (2,2',3,4,4',5'-hexachlorobiphenyl). All 20 21 standards were stored at 4°C and remade, as needed, to insure stability. The organophosphate standards 22 were stored separately from other chemical classes in ethyl acetate (EA) to minimize degradation.

23 Sample Collection.

24 Sediment cores were collected from the deepest point in the lake during the ice-free summer 25 season using a pontoon raft equipped with an Uwitec gravity corer with an 86 mm internal diameter. 26 Vertically-planed sediment cores (25-50 cm in depth), with an intact surface layer, were sectioned in the 27 field with a clean stainless steel blade. The first 10 cm of each core was sectioned into 0.5 cm 28 increments (12-18 g wet wt increment) and the remainder of the core was sectioned into 1.0 cm increments (30-40 g wet wt increment). Each sediment slice was stored in a 250 mL solvent rinsed glass 29 30 jar. A pre-baked piece of aluminum foil was placed over the mouth of the jar to separate the sample 31 from the cap. Sediment samples were shipped overnight in ~50-L coolers with cold packs to the laboratory where they were stored at 4 °C for physical and elemental analysis. 32 33 **Physical and Elemental Analysis.**

1 Aliquots of the freeze-dried sediment were used for the analyses of total carbon (TC), total organic carbon (TOC), ²¹⁰Pb, ¹³⁷Cs, ²²⁶Ra, and ²⁴¹Am. Destructive carbon analysis (TC and TOC) was 2 3 preformed using flash combustion and a Carlo Erba 1108A CN analyzer. Carbonate was removed, 4 using HCl fumes for 18hrs, prior to combustion for TOC analysis. Freeze-dried sediment sample aliquots were analyzed for ²¹⁰Pb, ²²⁶Ra, ¹³⁷Cs, and ²⁴¹Am by direct gamma assay at the Liverpool 5 University Environmental Radioactivity Laboratory, using an Ortec HPGe GWL series well-type coaxial 6 low background intrinsic germanium detector (1). Radiodating of 210 Pb and 226 Ra was determined by the 7 gamma emissions at 46.5 keV and 295 keV, respectively. ¹³⁷Cs and ²⁴¹Am were measured by their 8 9 emissions at 662 keV and 59.5 keV, respectively.

10 SOC Extraction and Isolation.

11 Samples were allowed to thaw in sealed grass jars in the dark for ~ 15 minutes and were ground with 12 sodium sulfate (1:15 ratio), that had been baked at 400 °C for 3 hrs and cooled, to remove excess water. 13 The sample was packed into three or four 66-mL Accelerated Solvent Extractor (ASE) cells (Dionex, 14 Sunnyvale, CA) with each cell containing ~80 g of the sediment/sodium sulfate mixture. Once in the 15 ASE cells, 15 µL of 10 ng/µL isotopically labeled surrogate-ethyl acetate (EA) solution was distributed 16 equally among the tops of the cells containing sample. The sample was extracted using an ASE 300 17 and dichloromethane (DCM) (100 °C, 1500 psi, 3 cycles of 3 minutes, 150% flush volume). The sediment extract was concentrated to 0.5 mL in the TurboVap II (Zymark, Hopkinton, 18 19 MA) with nitrogen and solvent exchanged to hexane. Polar matrix interferences were removed using a 20 20-g silica solid phase extraction (SPE) cartridge (Varian). Analytes were eluted from the silica SPE 21 using 100 mL DCM:EA. The eluate was then concentrated and solvent exchanged to DCM. Elemental 22 sulfur and the high molecular weight interferences were removed using a Waters Gel Permeation 23 Chromatography Cleanup System (Milford, MA) as previously described (2). The target fraction was 24 concentrated to 0.3 mL under a gentle stream of nitrogen and spiked with 15 μ L of 10 ng/ μ L isotopically 25 labeled internal standard-EA solution just prior to gas chromatographic mass spectrometry (GC/MS) 26 injection.

Sodium sulfate was used as the laboratory blank and was carried through the entire analytical
method (extraction, cleanup, and concentrating), starting at the grinding step, the laboratory blank was
spiked with the same quantity of isotopically labeled surrogate and internal standards as mention above.
The minimum SOC concentrations in samples to the laboratory blank was of 3:1.

31 **Quantification and Validation.**

Quantification was preformed with a surrogate standard calibration curve (4-12 points) and SOC
 concentrations were calculated relative to surrogates. Sample-specific estimated method detection limits
 (EDLs), calculated using EPA-method 8280A (*3*), were determined for all target SOCs. A

1 representative sediment sample (0.5-1.0 cm) (not spiked with target analytes) from Waldo Lake was 2 used to calculate EDLs, which ranged from 0.1-200 ng/g dry wt, depending on the SOC (Table S1). The 3 analytical method was validated for efficiency with triplicate spike and recovery experiments using 4 Waldo Lake sediment. These recoveries were corrected for background SOC concentrations in sediment 5 and represent the efficiency of the entire analytical method because the target SOCs were spiked prior to 6 extraction and the isotopically-labeled surrogates were spiked just prior to analysis. Background SOC 7 concentrations measured in Waldo Lake sediment ranges from 0.0 to 5.0% of the spike concentration, 8 expect for phenanthrene which was approximately 40%. The accuracy and precision of the analytical 9 method were determined using NIST SRM 1941b.

10 **PRISM.**

11 The Parameter-elevation Regressions on Independent Slopes Model (PRISM) was designed to 12 estimate the orographic climate parameters (4). PRISM provides 2×2 km resolution monthly annual 13 precipitation estimates from 1895 to February 2007. PRISM also provides the average precipitation for 14 a month from 1971-2000 with 800×800 m resolution.

15 Analysis and Quality Control.

16 The sediment extracts were analyzed for target SOCs by GC/MS, using both electron impact (EI) 17 ionization and electron capture negative ionization (ECNI) with selective ion monitoring as described in 18 detail by Usenko et al (2) and Ackerman et al (5). Target SOCs were quantified using the mode of 19 ionization that resulted in the lowest instrumental detection limits (IDLs) (2). IDLs ranged from 0.063-20 6.7 pg/µL for GC/EI-MS and from 0.006-1.1 pg/µL for GC/ECNI-MS. Target SOCs were identified 21 using the following criteria; GC retention time (±0.05 min of standard), quantification and confirmation ion ratios (±20% of standard), and a signal-to-noise ratio of 10:1. SOC concentrations in sediment were 22 23 surrogate recovery (concentration calculated relative to surrogate) and laboratory blank corrected. All 24 WACAP quality assurance objectives were meet (6).

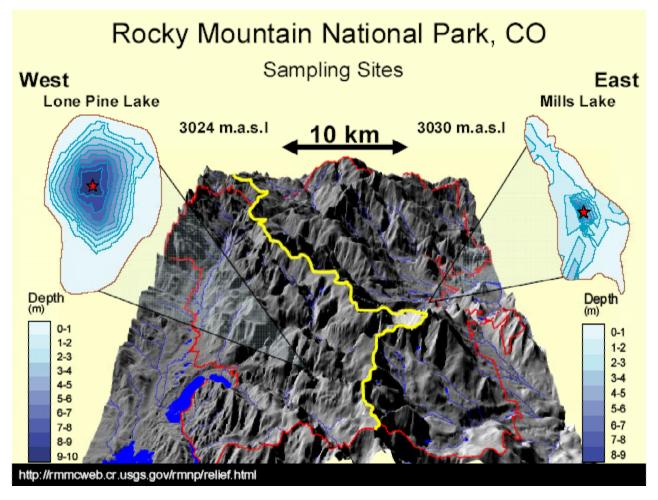


Figure S1. Shaded relief map of Rocky Mountain National Park with lake bathymetry maps for Lone Pine Lake and Mills Lake. Red line represents the park boundary and the yellow line represents the Continental Divide ~ 4150 m.a.s.l. between the two catchments. Stars indicate coring site location with in lake.

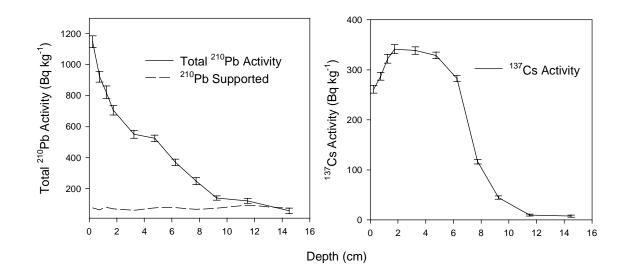


Figure S2. Fallout radionuclides in Lone Pine Lake (a) total and supported ²¹⁰Pb activity, (b) ¹³⁷Cs concentrations versus depth.

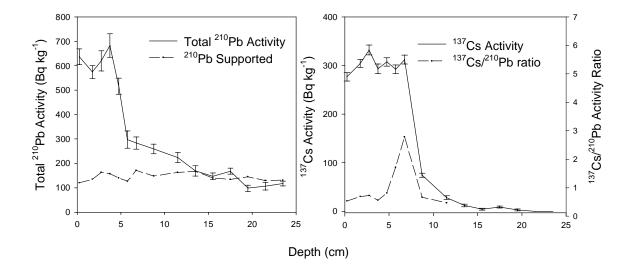


Figure S3. Fallout radionuclides in Mills Lake core (a) total and supported ²¹⁰Pb activity, (b) ¹³⁷Cs
 concentrations and ¹³⁷Cs/²¹⁰Pb activity ratios versus depth.

1 Table S1. Recovery of target SOCs in sediment over the entire analytical method.

	Waldo L		EDL⁵		RM1941b		over the entire ar	Waldo Lake ^a EDL ^b		SRM1941b			
	Avg. % Rec	% RSD	ng/g dw	ng/g dw	PD ^c	% RSD		Avg. %Rec	%RSD	ng/g dw	ng/g dw	PD ^c	~ % RSI
	-			0.0		ide Pesti		-			00.0		-
Propachlor	49.8	3.3	7.8				Acetochlor	46.1	9.3	9.3			
Alachlor	53.1	12.2	13.3				Metolachlor	58.6	12.2	14.2			
				Organo	chlorine	Pesticide	es and Metabolites						
HCH, gamma ^d	29.6	9.4	118				Chlordane, cis	45.7	14.7	18.4	0.7	10.0	29.5
HCH, alpha ^d	50.8	9.0	133				p,p'-DDD ^f	60.3	10.2	16.5	5.1	0.0	40.0
HCH, beta ^d	36.2	9.1	176				Nonachlor, trans	46.8	17.2	3.7	0.1	53.2	32.8
HCH, delta ^d	51.8	9.4	59.5				o,p'-DDD ^f	55.6	10.8	4.3	1.1		
Methoxychlor	67.4	14.8	18.6	1.0			Chlordane, trans	46.8	15.2	2.0	0.4	5.8	28.2
Heptachlor epoxide	46.8	13.8	89.4	1.0			Nonachlor, cis	53.6	13.0	1.5	0.4	55.4	24.2
Endrin aldehyde	51.8	7.9	19.6				Aldrin	29.0	12.5	83.2	0.1	00.1	22
Endrin	70.4	11.5	205				o,p'-DDT ^g	44.4	12.0	23.6			
Heptachlor	32.5	12.4	111.9				p,p'-DDE ^e	55.9	12.7	3.4	3.1	0.0	15.8
p,p'-DDE ^e							1.4				5.1	0.0	15.0
	57.7	11.2	11.3				Mirex	56.3	6.3	41.4			
Chlordane, oxy Dieldrin	43.7 74.0	14.8 13.1	12.2 115	0.32			p,p'-DDT ^g	54.7	13.5	37.9			
Jeidin	74.0	13.1	115	0.32									
				Organochle	orine Sult	fide Pesti	cides and Metabolites						
Endosulfan sulfate	61.4	9.6	4.4	-			Endosulfan II	58.5	10.3	9.0			
Endosulfan I	50.2	13.2	8.1										
							De statue						
					Phospho	rothioate	Pesticides						
Methyl parathion	49.9	5.1	33.0				Parathion	54.0	6.5	15.7			
Malathion	48.3	7.9	65.8				Ethion	60.0	10.4	10.8			
Diazinon	47.9	5.4	5.1				Chlorpyrifos	45.3	9.7	1.2			
				Tria	zine Herl	hicides a	nd Metabolites						
Simazine	63.2	3.4	58.3	1110	Zine nen	oiciues ai	Atrazine	57.6	6.3	9.5			
Cyanazine	136	19.3	171				Audento	07.0	0.0	0.0			
Janazino	100	10.0											
					Miscella	aneous P	esticides						
letribuzin	43.6	20.6	30.0				Dacthal	55.5	11.5	6.4			
Etridiazole	21.6	13.9	29.1				Trifluralin	32.9	10.8	1.7			
Triallate	41.1	8.6	24.2				Hexachlorobenzene	33.5	8.0	1.0	7.6	24.1	22.8
				D -1			hadro a sub a sua						
	20.0	447	10.0		іусусііс А	romatic i	Hydrocarbons	50.0	<u> </u>	0.00			
Acenaphthylene (ACY)	20.9	14.7	13.3	139			Retene	59.2	6.8	9.66	000	0.0	04.0
Acenaphthene (ACE)	33.5	13.5	11.2	51.6	40.7		Benzo[k]fluoranthene (BkF)	68.5	10.0	3.3	206	0.6	21.6
Fluorene (FLO)	25.5	12.7 8.0	7.2	59.2	12.7	22.3	Benzo[a]pyrene (BaP)	46.7	9.3	2.1	221 468	33.6	23.7
Anthracene (ANT)	34.8	20.0	24.6	163	1.5	13.6	Benzo[b]fluoranthene (BbF)	64.8	9.5	4.0	240	0.0	18.7
Phenanthrene (PHE)	26.0 50.6	20.0 5.7	13.0 1.0	383 403	0.0 24.0	18.6 22.1	Indeno[1,2,3-cd]pyrene (IcdP)	60.1 58.2	9.5 9.8	29.0 23.7	76.4	12.9 25.3	17.3 22.9
Pyrene (PYR)		5.7			24.0 24.3		Dibenz[a,h]anthracene (DahA)						
Fluoranthene (FLA) Chrysene/Triphenylene (CT)	50.5 59.9	5.1 9.2	1.1 0.8	443 171	24.3 48.1	20.8 22.3	Benzo[e]pyrene (BeP) Benzo[ghi]perylene (BghiP)	64.6 55.0	9.1 11.1	6.5 5.1	285 227	4.5 11.3	22.4 22.0
Benzo[a]anthracene (BaA)	64.5	10.2	11.4	250	17.8	17.2	Benzolgnijperviene (Bgnir)	55.0	11.1	5.1	221	11.5	22.0
	04.5	10.2	11.4	200	17.0	17.2							
					Polychl	orinated I	Biphenyls						
PCB 101	70.7	14.2	129	4.1	13.2	29.9	PCB 118	74.2	11.6	10.2	3.3	17.2	34.5
PCB 138	74.9	11.7	9.7	4.3	12.3	30.4	PCB 187	76.1	13.1	3.9	2.0	0.0	22.1
PCB 153	73.2	11.8	3.5	4.0	21.6	20.1	PCB 183	76.5	13.1	3.7	0.7	23.0	20.4
				D	olybromi	nated Din	henyl Ethers						
BDE 7	58.6	3.0	0.2			.acca Dip	BDE 85/155	73.0	2.0	1.8			
BDE 8	77.8	2.2	0.2				BDE 99	75.5	2.4	27.2	0.56		
3DE 10	42.7	6.9	0.1				BDE 100	74.1	2.3	9.4	0.85		
3DE 17	78.1	3.6	0.2				BDE 100	72.8	3.2	1.8	0.00		
BDE 17 BDE 25	83.3	3.3	0.4				BDE 118	76.5	4.8	15.1			
3DE 28	70.5	4.7	4.1				BDE 119	75.0	2.9	3.3			
3DE 30	70.6	3.9	0.6				BDE 126	69.2	1.7	2.1			
3DE 32	77.2	1.7	0.7				BDE 138	76.0	1.2	3.3			
3DE 35	82.6	3.2	0.7				BDE 153	76.7	1.3	26.0			
3DE 37	80.3	4.0	1.3				BDE 154	84.8	0.8	0.9			
3DE 49	69.4	5.4	1.3				BDE 155	101.6	0.9	15.6			
3DE 47	71.9	4.5	15.6	1.3			BDE 166	72.4	2.0	2.8			
BDE 66	75.2	5.1	0.6				BDE 181	99.9	2.3	5.8			
BDE 71	67.7	4.8	1.3				BDE 183	73.3	2.3	31.3			
3DE 75	70.0	5.4	4.9				BDE 190	104.4	2.1	5.7			
3DE 77	70.5	6.1	0.8										
97.0													
), and PD [°]						
average	60.3	8.5	23.7	109	16.8	23.6	max	136	20.6	205	468	55.4	40.0
							min	20.9	0.8	0.1	0.1	0.0	13.6

^aRecoveries validated at 26 ng/g wet wt and were corrected for background concentrations of SOCs in sediment. ^bSample-specific estimated method detection limits. ^cPercent Difference from SRM 1941b certified values n=5. ^dHexachlorocyclohexane. ^aDichlorodiphenyldichloroethylene. ^fDichlorodiphenyldichloroethylene. ^gDichlorodiphenyldichloroethane.

1 Table S2. Physical and Chemical Limnological Characteristics of Mills Lake and Lone Pine Lake.

* indicate data from the parameter-elevation regressions on independent slopes model (average

annual total precipitation from 1971-2000, 800×800 m).

Rocky Mountain National Park			
Lc	one Pine Lake	Mills Lake	Mills/Lone Pine
Catchment Characteristics			
Latitude (dd)	40.22	40.29	1.00
Longitude (dd)	105.73	105.64	1.00
Elevation (masl)	3024	3030	1.00
Lake Volume (m ³)	128325	78251	0.61
Lake Surface Area (m ²)	49134.9	61148	1.24
Catchment Area (m ²)	21144492	15093297	0.71
Hydraulic Residence Time (d)	4.3	3.3	0.77
*Average Annual Precipitation (cm	97.6	107.1	1.10
*Average Annual Max Temp (°C)	7.7	7.4	0.96
Focusing Factor	1.87	1.48	0.79
Limnological Characteristics (2003)			
Primary Productivity	Oligotrophic	Oligotrophic	
Dissolved Organic Carbon (mg [·] L ⁻¹	1.73	1.55	0.90
Total Nitrogen (mg [·] L ⁻¹)	0.17	0.38	2.24
Total Phosphorus (μg [·] L ⁻¹)	2.7	2.8	1.04
Chlorophyll a (µg [·] L ^{−1})	2.0	2.1	1.05
Turbidity (NTU)	0.3	0.6	2.00
Specific Conductivity (µS ⁻ cm ⁻¹)	14.0	11.9	0.85
рН	6.67	6.05	0.91

- 1 Table S3. Focus-corrected concentrations and fluxes in sediment from Lone Pine Lake (west) and
- 2 Mills Lake (east) sediment cores. * indicate below method detection limit and nm indicates no

Lone Pine Lake Date Conc.(FF) Flux (FF)	easurement w	-								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		ZEnuo	sulfan			ΣDDEs +	- ΣDDDs	ΣChlordane		
Date 0.57 86 0.034 5.1 2.2 340 0.13 1997.5 0.42 67 0.024 3.8 2.5 400 0.13 19960 0.24 41 0.025 4.3 3.2 550 0.15 1982 0.34 57 0.021 3.6 5.2 870 0.20 1987.5 0.19 2.9 0.025 3.7 4.9 7.30 0.16 1987 0.20 31 0.022 3.1 5.1 7.10 0.14 1986 0.051 6.1 * * 7.2 940 0.031 1990 0.051 6.1 *					, ,			Conc.(FF)		
1997.5 0.42 67 0.024 3.8 2.5 400 0.13 1990 0.47 80 0.029 4.9 4.4 750 0.15 1982 0.34 57 0.021 3.6 5.2 870 0.20 1972.5 0.15 20.20 31 0.029 4.4 5.5 820 0.18 1967 0.20 31 0.029 4.4 5.5 820 0.18 1965 0.11 15 21 0.022 3.1 5.1 7.10 0.14 1955 0.11 15 0.030 4.0 4.6 590 0.13 1949 0.093 12 * * * * * * 1936 0.051 6.1 * * * * * * * 1936 0.24 7.7 500 0.668 20 7.0 2100 0.33 1937		ng ̀g⁻¹ dw	ng [·] m ⁻² ·y ⁻¹	ng g⁻¹ dw	ng m ⁻² y ⁻¹	ng g ⁻¹ dw	ng [·] m ⁻² ·y ⁻¹	ng g ⁻¹ dw	ng m ⁻² .y ⁻¹	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2003	0.57	86	0.034	5.1	2.2	340	0.13	20	
1986 0.24 41 0.025 4.3 3.2 550 0.20 1972.5 0.19 29 0.025 3.7 4.9 730 0.16 1967 0.20 31 0.029 4.4 5.5 820 0.18 1961 0.15 21 0.022 3.1 5.1 7.10 0.14 1955 0.11 15 0.030 4.0 4.6 590 0.13 1949 0.093 12 * * 7.2 940 0.11 1936 0.051 6.1 *	1997.5				3.8	2.5	400	0.13	22	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1990	0.47	80	0.029	4.9	4.4	750	0.18	32	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1986	0.24	41	0.025	4.3	3.2	550	0.15	26	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1982	0.34	57	0.021	3.6	5.2	870	0.20	33	
1961 0.15 21 0.022 3.1 5.1 710 0.13 1949 0.093 12 * * 7.2 940 0.11 1936 0.051 6.1 * * 7.2 940 0.03 1920 * * * * 3.3 400 0.03 1870 *	1972.5	0.19	29	0.025	3.7	4.9	730	0.16	24	
1955 0.11 15 0.030 4.0 4.6 590 0.13 1949 0.093 12 * * 7.2 940 0.11 1936 0.051 6.1 * * 5.6 670 0.08 1920 *	1967	0.20	31	0.029	4.4	5.5	820	0.18	26	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1961	0.15	21	0.022	3.1	5.1	710	0.14	19	
1936 0.051 6.1 * * 5.6 670 0.08 1920 *	1955	0.11	15	0.030	4.0	4.6	590	0.13	17	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1949	0.093	12	*	*	7.2	940	0.11	14	
1920 * * * * * 3.3 400 0.03 1870 *				*	*				9.4	
1870 *				*	*				4.1	
Date 2004 1.7 500 0.068 20 7.0 2100 0.33 1996 1.2 360 0.065 19 6.5 2000 0.32 1996 1.2 340 0.030 8.6 6.3 1800 0.40 1990.5 1.3 310 0.042 10 10 2400 0.33 1987.5 0.85 170 0.041 8.1 7.0 1401 0.34 1974 0.79 150 0.047 8.8 9.8 1880 0.36 1970 0.38 90 0.035 8.4 7.1 1600 0.27 1963.5 0.073 23 * * 8.6 2700 0.12 1947 0.045 11 * * 4.1 1000 0.04 1938 0.040 8.7 * * 1.8 410 0.02 1905 * * * 1.8				*	*				4.1 *	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ills Lake									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2004	1.7	500	0.068	20	7.0	2100	0.38	110	
1990.5 1.3 310 0.042 10 10 2400 0.43 1975.5 0.85 170 0.041 8.1 7.0 1401 0.34 1974 0.79 150 0.047 8.8 9.8 1880 0.36 1970 0.38 90 0.035 8.4 7.1 1600 0.27 1963.5 0.24 77 0.018 5.9 10 3300 0.24 1953.5 0.073 23 * * 8.6 2700 0.12 1947 0.045 11 * * 4.1 1000 0.04 1905 *	2000	1.2	360	0.065	19	6.5	2000	0.32	95	
1987.5 0.85 170 0.041 8.1 7.0 1401 0.34 1974 0.79 150 0.047 8.8 9.8 1880 0.36 1970 0.38 90 0.035 8.4 7.1 1600 0.27 1963.5 0.24 77 0.018 5.9 10 3300 0.24 1953.5 0.073 23 * * 8.6 2700 0.12 1947 0.045 11 * * 4.1 1000 0.04 1998 0.040 8.7 * * 1.8 410 0.02 1905 * <td< td=""><td>1996</td><td>1.2</td><td>340</td><td>0.030</td><td>8.6</td><td>6.3</td><td>1800</td><td>0.40</td><td>110</td></td<>	1996	1.2	340	0.030	8.6	6.3	1800	0.40	110	
1974 0.79 150 0.047 8.8 9.8 1880 0.36 1970 0.38 90 0.035 8.4 7.1 1600 0.27 1963.5 0.073 23 * * 8.6 2700 0.12 1953.5 0.073 23 * * 8.6 2700 0.12 1947 0.045 11 * * 4.1 1000 0.04 1938 0.040 8.7 * * 1.8 410 0.02 1905 * * * * * * * Lone Pine Lake ngg ⁻¹ dw ngm ⁻² y ⁻¹ ngg ⁻¹ dw ngm ⁻² y ⁻¹ ngg ⁻¹ dw ngm ⁻² y ⁻¹ ngg ⁻¹ dw ngg ⁻¹ dw<	1990.5	1.3	310	0.042	10	10	2400	0.43	110	
1970 0.38 90 0.035 8.4 7.1 1600 0.27 1963.5 0.24 77 0.018 5.9 10 3300 0.24 1953.5 0.073 23 * * 8.6 2700 0.12 1947 0.045 11 * * 4.1 1000 0.04 1905 * <td></td> <td>0.85</td> <td>170</td> <td>0.041</td> <td>8.1</td> <td>7.0</td> <td>1401</td> <td>0.34</td> <td>67</td>		0.85	170	0.041	8.1	7.0	1401	0.34	67	
1970 0.38 90 0.035 8.4 7.1 1600 0.27 1963.5 0.24 77 0.018 5.9 10 3300 0.24 1953.5 0.073 23 * * 8.6 2700 0.12 1947 0.045 11 * * 4.1 1000 0.04 1905 * <td>1974</td> <td>0.79</td> <td>150</td> <td>0.047</td> <td>8.8</td> <td>9.8</td> <td>1880</td> <td>0.36</td> <td>68</td>	1974	0.79	150	0.047	8.8	9.8	1880	0.36	68	
1963.5 0.24 77 0.018 5.9 10 3300 0.24 1953.5 0.073 23 * * * 8.6 2700 0.12 1947 0.045 11 * * * 4.1 1000 0.04 1938 0.040 8.7 * * 1.8 410 0.02 1905 * * * * * * * * * Lone Pine Lake ngg ⁻¹ dw ngm ⁻² y ⁻¹ ngg ⁻¹ dw ngg ⁻¹ dw	1970		90	0.035	8.4		1600		63	
1953.5 0.073 23 * * * 8.6 2700 0.12 1947 0.045 11 * * 4.1 1000 0.04 1938 0.040 8.7 * * 1.8 410 0.02 1905 * * * * * * * * 1905 * * * * * * * * * * 1905 *	1963.5			0.018	5.9	10			77	
1947 0.045 11 * * * 4.1 1000 0.04 1938 0.040 8.7 * * 1.8 410 0.02 1905 * * * * * * * * * .one Pine Lake Date Conc.(FF) Flux (FF) Conc.(FF) Flux (FF) Conc.(FF) Flux (FF) Conc.(FF) Gond. (FF) Gond. (FF) Flux (FF) Conc.(FF) Gond. (FF) Gond. (FF) Gond. (FF) Flux (FF) Conc.(FF) Gond. (FF)			23	*	*	8.6		0.12	36	
1938 1905 0.040 * 8.7 * * * * * * * 1.8 * 410 * 0.02 * .one Pine Lake Date Dieldrin (Onc.(FF) Trux (FF) (Ngg ⁻¹ dw) Dieldrin (Ngg ⁻¹ dw) Dieldr				*	*				11	
1936 0.040 6.7 1.8 410 0.02 1905 *				+	+					
Dieldrin SPAHs SPCBs SPB cone Pine Lake ngg ⁻¹ dw ngm ⁻² y ⁻¹ ngg ⁻¹ dw ngg ⁻									3.7	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1905	*	*	*	*	*	*	*	*	
Lone Pine Lake Date ngg ⁻¹ dw ngm ⁻² y ⁻¹ ngg ⁻¹ dw ngm ⁻² y ⁻¹ ngg ⁻¹ dw								<u>ΣPB</u>		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	na Dia a Laba							, ,	ng [·] m ^{-2.} y ⁻¹	
2003 0.12 19 85 13000 0.19 28 1.2 1997.5 0.064 10 80 13000 0.22 36 0.45 1990 0.075 12 99 17000 0.31 53 nm 1986 0.052 8.9 90 16000 0.24 41 nm 1982 0.070 12 130 21000 0.27 46 1.7 1972.5 0.050 7.5 170 25000 0.24 35 nm 1967 0.086 13 190 29000 0.28 41 nm 1961 * * 170 24000 0.24 33 * 1955 * * 150 19000 0.089 11 nm 1949 * * 210 25000 0.17 20 * 1920 * * 210 25000 0.61 7.3 * 1870 * * 40 4800 * *		ngg uw	ng ni y	ngg uw	ng ni y	ngg uw	ngni y	ngg uw	пуппу	
1997.5 0.064 10 80 13000 0.22 36 0.45 1990 0.075 12 99 17000 0.31 53 nm 1986 0.052 8.9 90 16000 0.24 41 nm 1982 0.070 12 130 21000 0.27 46 1.7 1972.5 0.050 7.5 170 25000 0.24 35 nm 1967 0.086 13 190 29000 0.28 41 nm 1961 * * 170 24000 0.24 33 * 1955 * * 150 19000 0.089 11 nm 1949 * * 280 37000 0.22 29 nm 1936 * * 210 25000 0.17 20 * 1920 * * 210 25000 0.61 7.3 * 1870 * * 40 4800 * *		0.12	10	85	13000	0.10	28	1 2	160	
1990 0.075 12 99 17000 0.31 53 nm 1986 0.052 8.9 90 16000 0.24 41 nm 1982 0.070 12 130 21000 0.27 46 1.7 1972.5 0.050 7.5 170 25000 0.24 35 nm 1967 0.086 13 190 29000 0.28 41 nm 1961 * * 170 24000 0.24 33 * 1955 * * 150 19000 0.089 11 nm 1949 * * 280 37000 0.22 29 nm 1936 * * 210 25000 0.17 20 * 1920 * * 40 4800 * * * 1870 * * 40 4800 * * * Vills Lake 204 0.23 66 180 52000 0.47									59	
1986 0.052 8.9 90 16000 0.24 41 nm 1982 0.070 12 130 21000 0.27 46 1.7 1972.5 0.050 7.5 170 25000 0.24 35 nm 1967 0.086 13 190 29000 0.28 41 nm 1961 * * 170 24000 0.24 33 * 1955 * * 170 24000 0.28 41 nm 1961 * * 170 24000 0.24 33 * 1955 * * 150 19000 0.089 11 nm 1949 * * 210 25000 0.17 20 * 1920 * * 210 25000 0.061 7.3 * 1870 * * 40 4800 * * *									nm	
1982 0.070 12 130 21000 0.27 46 1.7 1972.5 0.050 7.5 170 25000 0.24 35 nm 1967 0.086 13 190 29000 0.28 41 nm 1961 * * 170 24000 0.24 33 * 1955 * * 150 19000 0.089 11 nm 1949 * * 280 37000 0.22 29 nm 1936 * * 210 25000 0.17 20 * 1936 * * 210 25000 0.61 7.3 * 1920 * * 210 25000 0.61 7.3 * 1870 * * 40 4800 * * * Vills Lake 2004 0.23 66 180 52000 0.74 210 9.6 2000 0.10 30 190 5600										
1972.5 0.050 7.5 170 25000 0.24 35 nm 1967 0.086 13 190 29000 0.28 41 nm 1961 * * 170 24000 0.24 33 * 1955 * * 170 24000 0.24 33 * 1955 * * 150 19000 0.089 11 nm 1949 * * 280 37000 0.22 29 nm 1936 * * 210 25000 0.17 20 * 1920 * * 210 25000 0.061 7.3 * 1870 * * 40 4800 * * * Mills Lake Date									nm 250	
1967 0.086 13 190 29000 0.28 41 nm 1961 * * 170 24000 0.24 33 * 1955 * * 150 19000 0.089 11 nm 1949 * * 280 37000 0.22 29 nm 1936 * * 210 25000 0.17 20 * 1920 * * 210 25000 0.061 7.3 * 1920 * * 40 4800 * * * Mills Lake 2004 0.23 66 180 52000 0.74 210 9.6 2000 0.10 30 190 56000 0.47 140 4.9 1996 0.059 17 150 41000 0.50 140 nm										
1961 * * 170 24000 0.24 33 * 1955 * * 150 19000 0.089 11 nm 1949 * * 280 37000 0.22 29 nm 1936 * * 210 25000 0.17 20 * 1920 * * 210 25000 0.061 7.3 * 1870 * * 40 4800 * * *									nm	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									nm *	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								~	~	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1955	*	*	150	19000	0.089	11	nm	nm	
1930 * * 210 23000 0.17 20 1920 * * 210 25000 0.061 7.3 * 1870 * * 40 4800 * * * Aills Lake Date 2004 0.23 66 180 52000 0.74 210 9.6 2000 0.10 30 190 56000 0.47 140 4.9 1996 0.059 17 150 41000 0.50 140 nm	1949	*	*	280	37000	0.22	29	nm	nm	
1920 * * 210 25000 0.061 7.3 * 1870 * * 40 4800 * * * * Alills Lake Date 2004 0.23 66 180 52000 0.74 210 9.6 2000 0.10 30 190 56000 0.47 140 4.9 1996 0.059 17 150 41000 0.50 140 nm	1936	*	*		25000		20	*	*	
1870 * * 40 4800 * * * Mills Lake Date		*	*					*	*	
Date 2004 0.23 66 180 52000 0.74 210 9.6 2000 0.10 30 190 56000 0.47 140 4.9 1996 0.059 17 150 41000 0.50 140 nm		*	*					*	*	
Date 2004 0.23 66 180 52000 0.74 210 9.6 2000 0.10 30 190 56000 0.47 140 4.9 1996 0.059 17 150 41000 0.50 140 nm	ills Lake									
2000 0.10 30 190 56000 0.47 140 4.9 1996 0.059 17 150 41000 0.50 140 nm										
2000 0.10 30 190 56000 0.47 140 4.9 1996 0.059 17 150 41000 0.50 140 nm		0.23	66	180	52000	0.74	210	9.6	2900	
1996 0.059 17 150 41000 0.50 140 nm									1400	
									nm	
	1990.5	0.18	43	160	37000	0.49	120	2.4	560	
1987.5 0.088 18 170 33000 0.41 81 nm									nm	
1974 0.095 17 210 40000 0.60 110 0.30									57	
1970 0.061 15 160 37000 0.40 97 *									*	
1970 0.001 15 160 37000 0.40 97										
160 5000 0.57 120 111									nm	
1953.5 * * 140 42000 0.10 30 nm	1953.5	*		140	42000	0.10	30		nm	
1947 * * 180 45000 0.064 16 *	10.17	*	*	180	45000	0.064	16	*	*	
	1947									
1938 240 52000 0.027 5.9 nm	1947 1938	*	*	240	52000	0.027	5.9	nm	nm	

1 Table S4. Statistically significant (p<0.05) doubling times and half-lives of current and historic

2 use SOCs in Mills Lake and Lone Pine Lake sediment cores. Half-lives and doubling times were

3 calculated from the natural log focus-corrected flux vs. year and the standard deviation was

estimated from the slope of the linear regression. Linear regressions were calculated from the
 time of U.S. introduction to U.S. restriction and/or U.S. restriction to 2003. ns indicates the linear

regression was not statistically significant (p>0.05). ^a reference (7), ^b reference (8), and ^c reference (9).

8

		Current-use	e SOCs			Historic-use S	SOCs
	ΣEndosulfans	Dacthal	ΣPAHs	ΣPBDEs	ΣChlordane	$\Sigma DDDs + \Sigma DDEs$	ΣPCBs
Mills Lake Doubling Time	12.8 ± 0.005	30.7 ± 0.02	22.6 ± 0.01	5.4 ± 0.001	10.9 ± 0.02	ns	8.3 ± 0.01, 13.6 ± 0.01
Half-life	ns	ns	ns	ns	ns	ns	ns
Lone Pine Lake							
Doubling Time	19.1 ± 0.004	ns	ns	ns	27.5 ± 0.01	46.3 ± 0.01	ns
Half-life	ns	ns	28.3 ± 0.01	ns	28.5 ± 0.01	16.0 ± 0.01	ns
Great Lakes							
Doubling Time Half-life				17 ^a , 11 ^b , 6.4 ^b			
Lakes across the U	J.S.						
Half-life						14.9 ^c	19.7 ^c

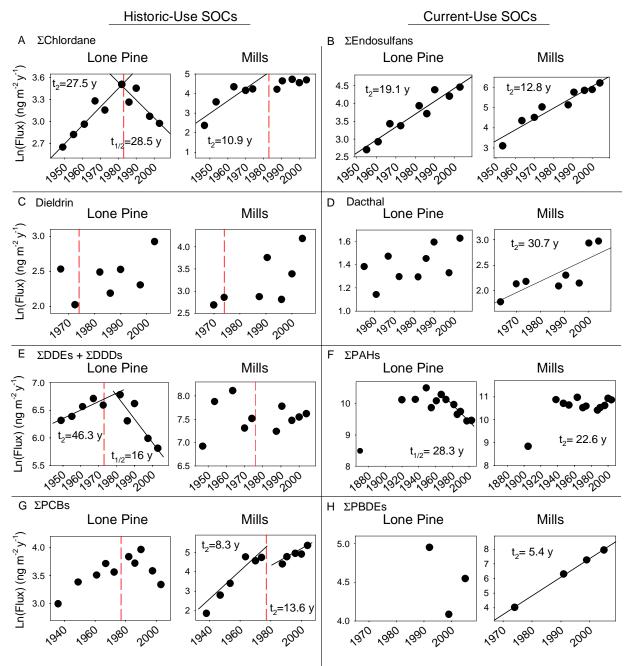

- 9 10
- 11
- 12
- 13

Table S5. Selected SOC ratios (Mills Lake/Lone Pine Lake) in snow (concentrations, flux, and load), lake water (concentrations), and paired sediment intervals (focus-corrected flux). * indicates where a significant difference (p<0.05) exists between Lone Pine Lake and Mills Lake, nd indicates a non detect, and nm indicates not measured in snow. ** indicates data from the parameter-elevation regressions on independent slopes model (1971-2003, 2×2 km).

19

20

		Snow		Lake Water		Se	ediment Ra	tio	
	2003	2003	2003	2003	2003 ± 1	1990 ± 1	1987 ± 1	1974 ± 1	1954 ± 1
SOCs	Conc.	Flux	Load	Conc.	Flux	Flux	Flux	Flux	Flux
ΣEndosulfan	1.4*	3.2*	2.3*	4.0*	6.4*	4.1*	3.2*	5.2*	1.5*
Dacthal	1.1	2.5*	1.8*	1.5*	3.8*	2.0*	1.9*	2.4*	nd
ΣDDEs + ΣDDDs	nd	nd	nd	nd	6.1*	3.2*	2.5*	2.5*	4.5*
Trans-Chlordane	1.3	3.0*	2.1*	nd	6.0*	3.2*	2.3*	2.4*	2.7*
Dieldrin	1.6*	4.3*	3.1*	nd	3.5*	3.4*	2.0*	2.3*	nd
ΣPAHs	0.95	2.2*	1.6*	nd	4.1*	2.2*	2.1*	1.6*	2.2*
ΣPCBs	nd	nd	nd	nd	6.5*	2.2	2.0	3.2*	2.6*
ΣPBDEs	nm	nm	nm	nm	24*	3.1*	nd	nd	nd
Precipitation**									
April-Sept. (Summer)					0.90	1.0	0.97	1.0	0.96
Oct-March (Winter)					1.1	0.97	1.0	0.95	0.91
Annual					1.1	1.0	0.96	0.94	0.92
%ТОС					1.1	1.3	1.2	1.1	1.0

1 2

Figure S4. Natural log focus-corrected flux (ng m⁻² y⁻¹) profiles of current and historic-use SOCs in 3 Lone Pine Lake (west) and Mills Lake (east) sediment cores. Doubling times (t₂) and half-lives 4 $(t_{1/2})$ are given where linear regression lines are statistically significant (p<0.05). Dashed lines (-5 -) indicate U.S. restriction date. ΣChlordane represents the sum of TC, TN, and CN. Plots start at U.S. registration year. Linear regressions were calculated from the time of U.S. introduction to 6 7 U.S. restriction and/or U.S. restriction to 2003. 8

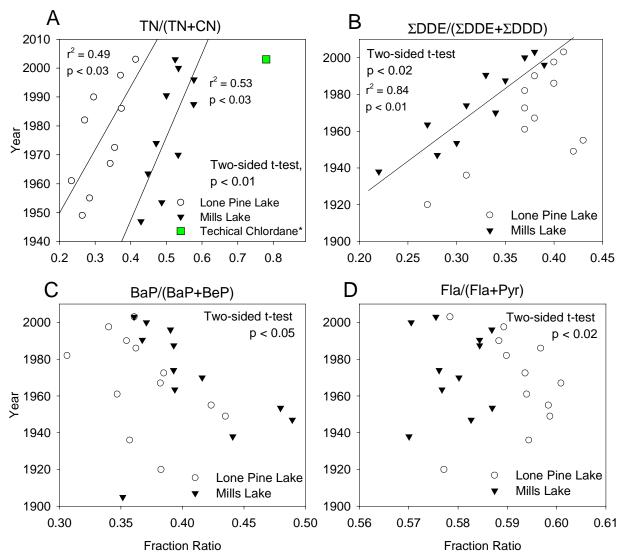


Figure S5. The ratio of TN/(TN+CN), ΣDDE/(ΣDDE+ΣDDD), BaP/(BaP+BeP), and
FLA/(FLA+PYR) in sediment from Mills Lake and Lone Pine Lake. Only linear regressions that
were statistical significant (p<0.05) are shown. Ratios of contaminants were significantly different
between the lakes. * reference (10).

Reference:

1

- 9 (1) Appleby, P. G.; Nolan, P. J.; Gifford, D. W.; Godfrey, M. J.; Oldfield, F.; Anderson, N. J.;
 10 Battarbee, R. W. ²¹⁰Pb Dating by low background gamma counting. Hydrobiologia 1986, 141,
 11 21-27.
- Usenko, S.; Hageman, K. J.; Schmedding, D. W.; Wilson, G. R.; Simonich, S. L. Trace Analysis
 of Semi-Volatile Organic Compounds in Large Volume Samples of Snow, Lake Water, and
 Groundwater. Environ. Sci. Technol. 2005, 39, 6006-6015.
- Method-8280A, E. P. A. The analysis of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans by high resolution gas chromatography/low resolution mass spectrometry (HRGC/LRMS). <u>http://www.epa.gov/epaoswer/hazwaste/test/pdfs/8280a.pdf</u>.
- 18 (4) Daly, C.; Neilson, R. P.; Phillips, D. L. A statistical-topographic model for mapping
 19 climatological precipitation over mountainous terrain. Journal of Applied Meteorology 1994,
 20 33, 140-158.
- (5) Ackerman, L. K.; Wilson, G. R.; Simonich, S. L. *Quantitative Analysis of 39 Polybrominated* Diphenyl Ethers by Isotope Dilution GC/Low-Resolution MS. Anal. Chem. 2005, 77, 1979-1987.

- (6) Landers, D. H.; Simonich, S. L.; Campbell, D. H.; Erway, M. M.; Geiser, L.; Jaffe, D.; Kent, M.;
 Schreck, C.; Blett, T.; Taylor, H. E. Western Airborne Contaminants Assessment Project
 Research Plan. 2003, Western Airborne Contaminants Assessment Project Research Plan.
 EPA/600/R-03/035. U.S. EPA, ORD, NHEERL, WED, Corvallis,
 OR(www2.nature.nps.gov/air/Studies/air_toxics/wacap.htm).
- 6 (7) Li, A.; Rockne, K. J.; Sturchio, N.; Song, W. L.; Ford, J. C.; Buckley, D. R.; Mills, W. J.
 7 Polybrominated diphenyl ethers in the sediments of the Great Lakes. 4. Influencing factors,
 8 trends, and implications. Environ. Sci. Technol. 2006, 40, 7528-7534.
- 9 (8)
 2600, 40, 7520 7554.
 9 (8)
 2600, 40, 7520 7554.
 2600, 40, 7520 7554.
 2600, 40, 7520 7554.
 2600, 40, 7520 7554.
 2600, 40, 7520 7554.
 2600, 40, 7520 7554.
 2600, 40, 7520 7554.
 2600, 40, 7520 7554.
 2600, 40, 7520 7554.
 2600, 40, 7520 7554.
 2600, 40, 7520 7554.
 2600, 40, 7520 7554.
 2600, 40, 7520 7554.
 2600, 40, 7520 7554.
 2600, 40, 7520 7554.
 2600, 40, 7520 7554.
 2600, 40, 7520 7554.
 2600, 40, 7520 7554.
 2600, 40, 7520 7554.
 2600, 40, 7520 7554.
- (9) Van Metre, P. C.; Mahler, B. J. Trends in Hydrophobic Organic Contaminants in Urban and Reference Lake Sediments across the United States, 1970-2001. Environ. Sci. Technol. 2005, 39, 5567-5574.
- (10) Dearth, M. A.; Hites, R. A. Complete Analysis of Technical Chlordane Using Negative
 Ionization Mass Spectrometry. Environ. Sci. Technol. 1991, 25, 245-254.
- 16