1 AN OPEN AIR BIOCATHODE ENABLES EFFECTIVE ELECTRICITY

2 GENERATION WITH MICROBIAL FUEL CELLS

3	Peter Clauwaert, David van der Ha, Nico Boon, Kim Verbeken, Marc Verhaege
4	Korneel Rabaey and Willy Verstraete
5	
6	
7	
8	Summary:
9	Page S2: Table S1
10	Page S3: Figure S1
11	Page S4: Figure S2
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	

Table S1: Overview of the organisms (O1-O9) corresponding with the sequenced bands on the DGGE represented in Figure S1.D. Identification was performed with the RDP Classification Algorithm. The probability values are given between brackets.

	Phylum	Order	Family	Genus
01	TM7 (100%)			Genera_incertae_sedis_TM7 (100%)
02	γ-Proteobacteria (100%)	Pseudomonadeles (100%)	Pseudomonadaceae (100%)	Pseudomonas (100%)
03	γ-Proteobacteria (100%)	Xanthomonadales (100%)	Xanthomonadaceae (100%)	Hydrocarboniphaga (100%)
04	α-Proteobacteria (100%)	Sphingomonoadeles (100%)	Sphingomonadaceae ((100%)	Novosphigobium (69%)
O 5	α-Proteobacteria (100%)	Sphingomonoadeles (100%)	Sphingomonadaceae (100%)	Sphingopyxis (100%)
06	α-Proteobacteria (100%)	Rhizobiales (100%)	Hyphomicrobiaceae (99%)	Xantobacter (95%)
07	α-Proteobacteria (98%)	Rhizobiales (83%)	Methylocystaceae (59%)	Albibacter (57%)
08	α-Proteobacteria (100%)	Rhodobacterales (100%)	Rhodobaceteraceae (100%)	Catellibacterium (54%)
09	α-Proteobacteria (100%)	Rhodobacterales (100%)	Rhodobaceteraceae (100%)	Catellibacterium (63%)

Figure S1: Epifluorescence microscopy images (A, B) and a secondary electron image (SEM) (C) of cathodic graphite fibers. DGGE pattern of the different biofilms on the cathodic felts after 5 months of operation; both the membrane oriented side (m.o.) as the air oriented side (a.o.) of the cathodic graphite felt were investigated (D) – The organisms (O1-O9) are indicated in Table S1

Figure S2: Power density curves (scan rate: 1 mV s⁻¹) for the different reactor designs (R1, R2 and R3/4) with 0.05 M ferricyanide as a cathodic electron acceptor (0.1 M phosphate buffer). The OCV was between 0.651 V and 0.708 V