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It is the purpose of this supporting information to the paper to present the mathematical details
of the Modified Principal Component Analysis (MPCA) method for the analysis of single-molecule
SERS fluctuations, with emphasis on the two-analyte (BiASERS) method proposed in Ref. [1] and
used in the main paper here. Inevitably, the presentation of the method requires going through some
preliminary information on Principal Component Analysis (PCA) itself, for MPCA is a specialization
of the latter. However, rather than giving an abstract introduction to PCA we have chosen to
introduce it directly with an example relevant to single molecule statistics of SERS signals, which has
the main characteristic of arising from a long-tail distribution of enhancements (as studied in detail
in Refs. [2, 3]). The method is presented in all its relevant details, including purely experimental
issues like the removal of events that fall below a certain signal-to-noise criterion. The technique
and methods studied here are somewhat independent of the content of the main paper itself, and
can be used in any other relevant SM-SERS situation[4] like Langmuir-Blodgett films[5], when more
than one analyte are used and the single molecule statistics of the signal becomes relevant.

PACS numbers: 78.67.-n, 78.20.Bh, 78.67.Bf, 73.20.Mf

I. PRELIMINARIES

We first start by recalling the main ingredients of the
BiASERS method with a particular attention to the sta-
tistical aspects. We also introduce a model example that
can be used to describe the statistics of SERS signals at a
hot-spot. This model has several advantages over previ-
ous approaches and will be used in the rest of this paper
first to introduce the modified PCA method, and then to
interpret the results.

A. Definition of the problem

In a conventional single-analyte experiment, the main
statistical features are related to the SERS intensity fluc-
tuations. It is well understood now[2, 3] that the inten-
sity fluctuations cannot be trusted as a direct measure
of the number of molecules in SM-SERS, because of the
widely diverging variety of conditions for the actual en-
hancement factor (EF); in other words: SM-SERS signals
are not quantized and claims of Poisson statistics based
on simple intensity analysis[6] (and obtained from a very
small number of events ~ 100) are an artifact of the
limited sampling of a very skewed enhancement factor
distribution[2, 3]. The latter is, in fact, a typical char-
acteristic of high enhancement factor hot-spots[2], which
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are necessary for single molecule detection.

The bi-analyte approach [1, 4, 5] makes it possible to
ignore these absolute SERS intensity fluctuations, and
concentrate instead on the relative SERS intensities of
the two analytes. These can be analyzed, for example,
in the form of a histogram of relative contributions to the
total signal produced by a specific dye. Broadly speaking,
we can consider two- (or multiple) analyte techniques as
a contrast (or differential) method, in the sense that the
statistics of the contribution of a single dye in a mixture
is revealed in the background of the other signals. It is
important however to understand that (ultimately) the
BiASERS method only works as a proof of SM detection
when single (pure) signals coming from either one analyte
or the other can be pinpointed and observed. If we have a
mixed signal event, we can certainly quantify the relative
contribution of one analyte with respect to the other, but
we cannot decide on the number of molecules producing
these signals. Even signals coming from one analyte alone
can suffer from the same problem at intermediate concen-
trations (we cannot decide if the signal is from one or a
small number of molecules). It is only the combination
of a contrast method like BIASERS with small analyte
concentrations that ensure the single molecule nature of
the signal. The statistics of SERS signals in a BIASERS
experiment is therefore crucial to further confirm its in-
terpretation in terms of single molecule detection.

We believe it is particularly important to understand
how the transition from a few to single molecule events
happens. From this standpoint, the main paper and this
accompanying supporting information are about develop-
ing a better understanding of this transition in real exper-
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FIG. 1: For a SERS hot-spot formed between two particles
(a dimer as schematically represented on the left), dyes are
subject to a distribution of enhancement factors which varies
drastically as a function of § from the maximum at 6§ = 0. The
probability density distribution (pdf) that results is shown
on the right and was extensively studied in Ref. 2; it is a
truncated Pareto distribution (long-tail). The plot shows the
specific pdf we use here with £k = 0.12 and D = 200 (See
Egs. 1-3). On top of this effect, real systems will have a hot-
spot-to-hot-spot variability (typically they will have similar
k’s but different cut-offs) which will result in effective param-
eters for the distribution. We return back to this problem in
the discussion section.

imental conditions and developing the necessary mathe-
matical tools for that purpose. We shall show that a
variation of the Principal Component Analysis (PCA)
method is particularly well suited for this goal, and can
provide a general framework to study similar problems
with two or many analytes when the SM-SERS regime
is approached. In this manner, a new layer of confidence
and understanding is added to the general picture of how
the single molecule limit is approached in SERS, and how
more general cases (including more than two analytes)
can be systematically studied from a statistical point of
view.

B. A model example

Even if BiIASERS substantially helps to understand
SM-SERS phenomena, we still have to take into account
in its interpretation the highly-skewed nature of the en-
hancement distribution, or in other words, the fact that
SM-SERS signals originates from “hot-spots”. Hot-spots
are highly localized areas on the surface, typically at the
junction between two metallic objects [2, 7, 8]. One pos-
sible approach to the SM-SERS statistics at a hot-spot
is to consider that a hot-spot has a given size and that

a molecule can either be inside or outside it. The statis-
tics then arises from the probability of a molecule begin
inside or outside the hot-spot. This picture is misleading
since it ignores the continuous nature of the enhancement
distribution and implicitly assumes “quantized” SERS
intensities. We propose here a different approach that
avoids these two problems. We assume that the number
of molecules under consideration is fixed. The probabilis-
tic nature of the effect is then introduced by considering
that each of these molecules is subject to a random en-
hancement factor, which follows an appropriate enhance-
ment distribution. This approach has a more direct link
with reality, where the molecule position on the substrate
is usually random, and this position determines the en-
hancement factor they are subject to (which can then
vary continuously).

The microscopic origin of the SERS signals, therefore,
is in the details of where the molecules are located on
the surface with respect to hot-spots. The situation is
schematically depicted in Fig. 1. The overriding effect
is the spatial variation of the SERS enhancement factor
(F). In Ref. 2 we proposed that a good phenomenolog-
ical description for the probability of the enhancement
p(F) for dimers is a truncated Pareto distribution, to
wit:

p(F)=AF~'7F, (1)

where A and k are parameters, along with the (maxi-
mum) enhancement at the hot-spot (§ = 0 in Fig. 1)
which we call Fi,.x. To avoid working with large num-
bers, we can consider the normalized enhancement factor
F' = F/(F), where (F) is the average (as defined in Ref.
2) given by:

1-k

Fmax .
(F) = ==, with D = TFn’gaX. (2)

The maximum of F’ is then D, as defined in Eq. 2. A
random enhancement factor F’, with a truncated Pareto
distribution, can be generated numerically from a vari-
able U with uniform random distribution in the [0 — 1]
range by means of:

Note that with such an enhancement distribution, the
total SERS signal of many molecules can be dominated
by one molecule only, the one closest to the “hot-spot”.
This is the reason why this model is particularly suited
to the study of SM-SERS statistics, despite the fact that
many molecules are considered.

Finally, in real cases, all hot-spots will not have the
same identical parameters D, k (and (F')). On top
of the spatial distribution of enhancements for a single
hot-spot (represented by the truncated Pareto distribu-
tion), we can expect some hot-spot-to-hot-spot variabil-
ity. This will inevitably result in a quantitatively dif-
ferent enhancement distribution, which will nevertheless



retain its long-tail nature. If such a distribution can still
be described by a Pareto distribution, as in Eq. 1, the
parameters A and k must then be viewed as effective
parameters, resulting from the hot-spot-to-hot-spot vari-
ability. A more detailed study of the variations of the
parameters of the distribution with changes in incident
polarization, orientation, and distance between particles
has been presented in Ref. [2]. However, it is important
to stress that for the present analysis the same results
are obtained for as long as the final resulting distribu-
tion is long-tail (as it is in real experimental situations).
The overriding characteristic is the long-tail nature of the
distribution rather than the details of its specific origin.
The choice of a Pareto distribution is based here on the
fact that we showed in Ref. [2] that it has a connection
with the actual electromagnetic distribution of dimers in
metallic particles, but the choice is in no way a limitation
to the main conclusions.

C. Statistics for BIASERS experiments

We are now in a position to understand what the statis-
tics of SERS signals coming from a substrate with a long-
tail distribution of SERS enhancements is. The fluctu-
ations come from the fact that, while the average num-
ber of dyes observed in each event is always the same,
the specific enhancement factors for each molecule come
from a long-tail random distribution and will therefore
add up to different signals from one event to another.
Let us assume that we have —per colloid— a certain num-
ber (N7 and N3) of molecules of two different types. For
each molecule, we generate random enhancement factors
using the model distribution defined in Eq. (3) and calcu-
late the total intensity produced by each type of molecule
(I; and I5) by summing over the corresponding enhance-
ments. From here we can derive I /(I + I2), which is
the fraction of the signal contributed by dye 1. If both
dyes have the same intrinsic SERS cross section, the ra-
tio I /(I + 1) is also the fraction of the average number
of dye 1 contributing to the signal, payc1. We can re-
peat this process for a large number of events (7), and
obtain a histogram for paye;. Figure 2 shows the result
for T = 10° events with N; = N, = 1000, 100, and 10
molecules, respectively.

These three cases epitomize the three possible regimes
of a BIASERS experiment:

e The single-molecule detection regime, as exempli-
fied in Fig. 2(c), Ny = Ny = 10. In this case, the
vast majority of events are of a single-dye-signal
type (Pdyer = 0 or paye1 = 1). There is still a small
number of mixed-signal events pgye1 ~ 0.5 and this
is unavoidable due to the statistical nature of the
effect. This indicates that a very small number of
the single-dye-signal events also correspond to the
signals of maybe 2 or 3 identical molecules. But the
overall small number of mixed-signal tells us clearly
that these are statistically negligible compared to

the real single-molecule events. The single-dye-
signal events (pgye1 = 0 Or paye1r = 1) can therefore
be attributed to real single-molecule events with a
high probability.

e The many-molecules detection regime, as exempli-
fied in Fig. 2(a), Ny = No = 1000. Here the ab-
sence of any single-dye-signal events (paye1r = 0 or
Pdye1 = 1) clearly demonstrates that all events have
contributions from many-molecules (typically more
than 10).

e The few-molecules detection regime, as exemplified
in Fig. 2(b), Ny = N = 100. This is the intermedi-
ate or transition regime between the previous two.
The presence of many mixed-signal events suggests
that many of the single-dye-signal events (paye1 = 0
Or pdaye1 = 1) originate from a few (~1-4) identical
molecules. It is therefore difficult to identify for
sure the few true single-molecule events amongst
them. However, it remains clear that the signals
originate at most from a few molecules, and this
regime is therefore sufficient to demonstrate un-
ambiguously the single-molecule detection capabil-
ities of a given SERS substrate. But for a detailed
study of single-molecule events, one has to go into
the single-molecule detection regime of Fig. 2(c),
for example by reducing further the dye concen-
trations. This reduction in concentration must in
practice be accompanied by an increase in the sam-
pling (number of spectra) to retain a sound statis-
tics.

This simple discussion highlights the importance of
these types of histograms for the analysis of BIASERS
experiments. The next section will therefore be devoted
to developing a simple tool to directly obtain these his-
tograms from a collection of BIASERS spectra. We will
then apply this tool to real experimental data in the main
accompanying paper, and will then be in a position to
further discuss the interpretation of these histograms in
real situations.

II. MODIFIED PRINCIPAL COMPONENT
ANALYSIS FOR SM-SERS

We now present a possible method to obtain from ex-
perimental data the statistics of paye1 as in Fig. 2, and
explain its main features. In order to do so, we apply
it first to a set of generated data that can be controlled
and changed at will. The example will provide a case
where the statistics of events is sufficiently distinctive
that the effect of the different potential problems (like
the presence of noise) can be understood and evaluated.
Last, but not least, it will introduce the Modified Prin-
cipal Component Analysis (MPCA) method and several
concepts that are central to the statistical interpretation
of SM-SERS data in the crossover from a few to single
molecule events.
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FIG. 2: Histograms of the relative contribution payer =
Ii/(I1 + I2) to the total intensity of dye 1 for (a) Ny =
Ny = 1000, (b) 100, and (c) 10 molecules. Each molecule
is subject to an enhancement factor with a truncated Pareto
probability distribution[2]. For the normalized enhancement
distribution (Eq. (3)) we used the parameters D = 200 and
k = 0.12, as in Fig. 1. The histogram goes from a Gaussian
centered at payer = 0.5 at high concentrations in (a), to a
regime where single molecule events dominate with two sin-
gularities at payer = 0 and paye1 = 1 in (c). The case in (b),
on the other hand, exemplifies the few molecules transition
regime in the statistics.

A. Simulated data

We produce a set of simulated “SM-SERS model data”
through the following steps, which are illustrated at the
same time in Fig. 3:

e We choose a given concentration (the same) for the
two dyes (N7 = No = 20 in this case). We imagine
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FIG. 3: Scheme for the generation of simulated BiASERS
data. We choose the same number of dyes of type 1 and 2
(randomly distributed on the surface of particles, as shown
on the bottom-left diagram) to be subject to the same en-
hancement factor distribution taken from a long-tail (Pareto)
probability density (pdf) shown in (a) (with the same param-
eters of Fig. 1). We run the simulation for Ny = N> = 20.
The pdf is shown in (a) as a function of the intensity (I) of
the event in a log-log plot (as in Fig. 1). We also assume that
dye 1 produces a Raman peak at w/wo = 0.33 (wo is an arbi-
trary scaling factor), while dye 2 has a peak at w/wo = 0.66
and have the same SERS cross section of dye 1. Extensions
to cases where the cross sections of the peaks are different
are automatically taken into account in the method we de-
velop. The average spectrum over a very large number of
events (2000) in shown in (b). On the other hand, (¢), (d),
(e) and (f) show four representative examples of fluctuating
spectra with a medium intensity dye 1 event in (c), a medium-
intensity mixed event in (d), a high intensity pure dye 2 event
in (e), and a null event (signal below the noise level) in (f).
Random noise of a fixed amplitude is added to the spectra, to
resemble real data and to demonstrate its effect on the Prin-
cipal Component Analysis presented in the next subsection.

these dyes covering the surface of the particles as
depicted in Fig. 3 (bottom left corner), and be-
ing subject to the same enhancement distribution,
which we take as before to be a truncated Pareto
distribution (Fig. 3(a)). We therefore choose a
random enhancement factor for the N; and Ns
molecules from this distribution. We insist again
with the remark that a Pareto distribution is taken
here as an archetypal example of a long-tail distri-
bution for the enhancement, but the results do not
depend at all on this particular choice.



e We then simulate the SERS spectrum produced by
these dyes. A Raman peak is generated for each
dye. The SERS intensity of the peak for each dye
is proportional to the sum of Ny (or N3) random
enhancement factors. We assume that the two dyes
have distinctive SERS signals (a requirement for Bi-
ASERS to work). We therefore choose arbitrarily
for dye 1 to have a peak in a reduced (normal-
ized) energy range 0 < w/wy < 1 at wy /wy = 0.33,
while dye two has a peak at wy/wg = 0.66. We
assume that the two peaks have the same intrinsic
intensity (cross-section) and broadening. We then
choose (arbitrarily) to have 100 wavelengths in the
range 0 < w/wp < 1 and we generate a series of
2000 spectra simulating a time series of events. The
average spectrum over the 2000 spectra is shown in
Fig. 3(b).

e We also add noise of a fixed amplitude to the sig-
nals; ~ 10% of the average intensity in this case.
This is added explicitly to demonstrate the role and
effect of noise in the analysis. Noise will be an in-
evitable feature in real spectra and it is important
to understand how to deal with it in the statistics
of events. Figures 3(c)-(f) show four representative
examples of generated data. Figure 3(f), in partic-
ular, shows that signals below a certain intensity
(under the noise level) will be lost.

Note that we have assumed that both dyes have the
same cross sections. Different cross sections (and/or dif-
ferent number of molecules), however, are automatically
accommodated in the general formalism we shall develop,
but they are not necessary to explain the basic idea here.
Moreover, the easiest experimental implementation of the
BiASERS method (as far as the analysis is concerned) al-
ways comes from situations where the two dyes have dis-
tinctive peaks that are not too far away in energy (Raman
shift) —to avoid unnecessary complications with SERS
backgrounds[9]- and have similar cross sections. There
are very many experimental implementations where these
conditions are met, including the examples we shall give
later in this paper.

We have now a set of spectra that simulates a Bi-
ASERS experiment for two dyes. The point at this stage
is as follows: with the generated data set, we have “hid-
den” the original statistics of the contribution of one
dye to the total intensity into a simulated set of spectra
which has: (¢) widely fluctuating overall intensities (com-
ing from the long-tail enhancement distribution), and (%)
noise. The next step is to show how we invert the prob-
lem and obtain the original histogram from the simulated
data. To this end, we proceed to analyze the fluctuations
with the modified PCA method in the next subsections.
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FIG. 4: (a) Eigenvalues of the covariance matrix (ordered in
decreasing order). Note the logarithmic scale on the verti-
cal axis. The first two eigenvalues completely dominate the
spectrum, thus allowing a PCA-representation of the data us-
ing only two eigenvectors which we shall denote as flA 7 and
fg\j, respectively. In (b), (c), (d) and (e) we show the corre-
sponding PCA-representations (thick lines) of the four events
depicted before in Fig. 3(c), (d), (e) and (f), respectively (thin
lines). In (f) the signal is below the noise level and the small
peak in the PCA representation is an artifact of the method
trying to fit fluctuations in the noise. This shows explicitly
the need to exclude signals which fall below the noise level in
the statistics of events.

B. PCA analysis

The PCA method[10] (and related techniques like In-
dependent Component Analysis[11]) is a well established
technique with multiple applications in analytical science
and spectroscopy[10]. We shall not dwell here on the
technical aspects of the technique, accordingly, which are



left for the specialized literature[10, 11]. We only em-
phasize here the aspects of importance for the present
problem.

PCA consists in applying specific linear transforma-
tions on the space defined by the “spectra”, which can
then be used for “dimensionality reduction” in the data
set, while retaining those characteristics of the data that
contribute the most to its variance. This is done specif-
ically by keeping only the lowest-order principal com-
ponents (up to an arbitrary cut-off) and discarding the
rest. Applications of PCA are wide-ranging and cover
fields as dissimilar as chemometrics[12], digital image
compression[13], and weather pattern recognitions[14].
PCA works well only for data that are a linear combi-
nation of independent sources, as it happens here with
the additive contributions of the SERS signals from the
two types of dye. For the BIASERS method, we shall be
working in a situation where the first two principal com-
ponents contain the essence of all the data, as we shall
show later on.

We now describe the modified PCA approach to Bi-
ASERS, and illustrate its use on the data generated in
the previous subsection. We define a rectangular matrix
(M) of T-times x N-wavelengths (7'x N = 2000 x 100 in
this case), where we condense all the spectra as follows:

N —wavelengths

e Y

Iy I I .
M=t "t t2 T — times. (4)

A1 TA A

e I~

Following the standard PCA implementation, we define
the same matrix as before but with the mean (for each
row) subtracted. This produces at each time ¢; a spec-
trum with zero mean intensity.

= (1Y) (5)

where

i

N
AN X, _— . —_— 1 bV
It = Iti] - Iti with Itq' = N Ji . I 1,]. (6)

In the next step, the covariance matrix V (N x N)

for the N column vectors of the matrix M (T x N) is
calculated:

V= (cov(i}, 1)) (7)

where cov(I}9, IM) = cov(I}*, [} is the covariance of
the intensity columns at A; and A, calculated here using
the unbiased estimator for the covariance:

ol = ZT: (f?f _ < fAJ->> (fg’c - < p>) .

(T-1)

with (...) denoting the time-average:

. 1A
<I%'> DI 9)
=1

Note that the covariance matrix V is a square matrix
of size N x N, i.e. its dimensionality is only defined
by the number of data points in a given energy range,
irrespective of the number of spectra (T'). The larger T
is, however, the more accurate (in the statistical sense)
the elements of the covariance matrix will be.

The next step is where the “dimensionality reduction”
concept comes into play. We first obtain the N eigen-
values and N corresponding eigenvectors of the covari-
ance matrix V. The eigenvalues are all real and positive
since this matrix is real and symmetric, and can therefore
be ordered from largest to smallest. The correspond-
ing eigenvectors are the principal components in order
of significance (greatest variance). The first eigenvector

f{\j (j = 1..N), for example, can be considered to be a
function of wavelength that captures the most important
feature in the overall set of data. In the same manner,

the second eigenvector fQ)‘ 7 is also a function (or spec-
trum) that captures the second most important feature
in the data, and so on. The PCA method works well (or
the advantage is the greatest) in situations where we can
work with a minimum number of eigenvectors.

BiASERS is a method that is particularly suited for
PCA, for we shall show that we are mostly in a situation
where only two principal components will be needed. The
importance and relevance of the third eigenvector and
beyond is further discussed in the last section of the main
paper.

Figure 4(a) shows a plot of the eigenvalues (from
largest to smallest) of the covariance matrix from the
data we generated in the previous subsection. It is evi-
dent that two eigenvalues completely dominate the spec-
trum. This indicates that two eigenvectors will be suffi-
cient to represent the most salient features of the data.
Otherwise stated, each individual spectrum in the time
series can be to a good approrimation erpressed as a lin-
ear combination of the first two eigenvectors ff‘j and f;”
of the covariance matriz.

The last step is to obtain the table of coefficients; i.e.
we need two coefficients per spectrum (2 x T in total) in
the original series that will tell us which linear combina-
tion of the first two eigenvectors fl)‘ I and f; 7 we need to
represent a particular spectrum. That table is obtained
from the following matrix operation (equivalent to the
various scalar products of the spectra with the first two
eigenvectors):

(631 51 111 2?1
-~ 2 2

o= Py | i (10)
ar fPr N

This completes the standard PCA; it yields all the in-
formation needed to reconstruct the data: (i) the coef-
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FIG. 5: In (a) we show the two dimensional (2D) represen-
tation of the matrix C in coefficient space while (b) shows
the first two eigenvectors of the PCA analysis as a function
of the reduced energy w/wg. The first two eigenvectors of the
covariance matrix do not necessarily separate the features we
are trying to differentiate. In this particular case, for exam-
ple, both eigenvectors contain a mixture of signals from dye
1 at w/wo = 0.33 and from dye 2 at w/wy = 0.66. By ap-
plying a linear transformation to C' through the matrix R
defined in Eq. 13, we achieve the 2D representation of the
coefficients shown in (c), together with the two (transformed)
eigenvectors shown in (d). The principal axes for pure dye
events are now perpendicular to each other and the intensi-
ties are automatically re-scaled in the transformation (which
would account for possible differences in the intrinsic cross
sections of the dyes and concentrations). The new (trans-
formed) eigenvectors are now directly related to the indepen-
dent contributions of the two dyes to the total signals, and a
histogram of intensities can be directly obtained, as detailed
in Fig. 6.

ficients matrix C' (T x 2), (i) the first two eigenvectors

of the covariance matrix f;’ and f;° (each 1 x N), and
(iii) the original mean of each spectrum Iy, (T x 1). This
represents a massive reduction on the amount of informa-
tion that still captures the essential features of the data
(i.e. from T x N in the original data matrix, to 3T + 2N
in the final arrays).

The i-th spectrum in the time series (¢;) is recon-
structed as a function of A; as:

LY = +Bify? + 1o, (11)

An example of “reconstruction” for the spectra shown be-
fore in Figs. 3(c)-(f) is displayed in Fig. 4(b)-(e), respec-
tively. As can be appreciated for this latter four figures,
the PCA method captures the essence and most impor-
tant features of the data, ignoring the noise components
and providing good quality interpolations of the data.
They also show that when the intensity falls below the

noise level, the PCA representation of the signal maybe
artificial. This is explicitly seen in Fig. 4(e), in which the
“peak” is an artifact of the PCA representation trying to
fit accidental correlations in the noise signal with only
two eigenvectors. Events below certain intensity must be
discarded to obtain a meaningful histogram. This leads
to the concept of a cut-off in coefficient space, as we shall
see in what follows.

C. Modified PCA for BiASERS

We now specialize the PCA method for our purposes.
The following points must be noted:

e For problems where two main components are
needed, we always finish with two eigenvectors and
a matrix of coefficients like C' in Eq. 10. We can
plot the two main eigenvectors fl)‘ 7 and fg)‘ 7 as a
function of wavelength; this is done in Fig. 5. On
the other hand, a matrix like C' defines a two di-
mensional coefficient space. We can think of each
row in C as representing a point in a plane with
coordinates x; = «;, and y; = ;. Each point rep-
resents an “event”. We can then plot the matrix C
in coefficient space, as done also in Fig. 5.

e In Fig. 5(a) we see a clear pattern of two main
axes. Since the average signal also scales with in-
tensity, two spectra with the same relative ratio
among peaks come from the same coefficients «
and (8 but simply re-scaled by a factor. Other-
wise stated: spectra that only differ in the total
intensity are obtained from a re-scaling factor of
the coefficients in C' and lay along lines in coeffi-
cient space. This is an important observation to
count these events irrespective of their widely fluc-
tuating intensity. Ewvents along lines in coefficient
space are essentially the same events, only differing
by their total intensity.

e In the case at hand here, there are 2 different main
axes representing pure events of dye 1 and dye 2
type, respectively. The points in between the two
axes represent intermediate situations with contri-
butions from both dyes. Points close (far away) to
the origin represent weak (strong) intensity events.
Points very close to the origin represent events
within the noise and are mostly artificial assign-
ments of the PCA trying to represent features in
the noise with only two eigenvectors. This points
are discarded for any subsequent analysis by using
a cut-off to be defined later.

Still, the PCA method by itself can produce two princi-
pal eigenvectors which do not represent the main aspects
we want to differentiate. What we want to emphasize in
this case is the amount of signal we have from either dye



1 or dye 2 in the spectrum. Ideally, we want two eigen-
vectors that represent precisely that: the signal from dye
1 or dye 2, respectively. The PCA produces two main
eigenvectors that will have (in general) a mixture of con-
tributions of dye 1 and 2 in both eigenvectors. This is
because the principal components are not based on the
“physical meaning” of the signal, but rather on orthog-
onality and maximal variance conditions. In technical
terms, this is the difference between the principal compo-
nents and the independent components (PCA vs. ICA)
of the problem. What we propose hereafter as Modified
PCA (MPCA) method is a variation of PCA to get di-
rectly to the independent components of the problem (the
individual signals of the dyes) without using the more so-
phisticated mathematical tools of ICA (like maximum
non-Gaussianity or non-linear optimization[11]) which
are more difficult to implement in general.

In terms of the physical meaning of the data, we would
like: (7) the two eigenvectors to represent the actual Ra-
man spectra, i.e. with “positive peaks” for each of the
dyes, (i7) the coefficient matrix C' to be composed of
“positive coeflicients” only, and (ii7) the relative intensi-
ties of the two eigenvectors to represent exactly the dye
concentrations. Although these three conditions could
in principle be done by using a non-negative matrix fac-
torization algorithm[15], we show now how this can be
achieved more simply from the standard PCA analysis.

We therefore apply an appropriate linear transforma-
tion in coefficient space, to simultaneously rotate and
rescale the two “pure dye” axes identified in Fig. 5(a).
In more detail, we perform the following transformations
on the PCA results:

e We define two vectors €; = n{ €, +n &, and €, =
n3 €, +nj €, that are two unit vectors ((€; -€; =1
and & - @& = 1)) along the principal directions
representing “dye 1”7 events and “dye 2” events in
coefficient space, as depicted schematically in Fig.
5(a). Note that the choice of €; and & is carried
out “manually” by visual inspection of the plot in
Fig. 5(a). This approach is therefore not purely
algorithmic, as would be a non-negative matrix fac-
torization or independent component analysis ap-
proach, but is arguably more physical and intuitive.

e We take the average spectrum in Fig. 3(b) (with
zero mean intensity) and decompose it as a sum of
the two main eigenvectors of the PCA, i.e:
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We therefore obtain two coefficients o and § (as
we did for each individual spectrum in (10)), which
tell us how much of the first and second eigenvector
we need to represent the average.

e We now need to find the linear transformation R
that rotates €} into €, and € into &,, with possi-
ble scaling factors. These scaling factors must be

chosen so that the transformed coefficients a and
0 of the average spectrum are in the same ratio as
the known dye concentrations ¢; and ¢ (¢1 = ¢z in
our example here[16]). One can show that R must
then be defined as:

T T -1
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e The transformation R is applied to the coefficient

matrix C' by standard matrix multiplication, thus
defining a new table of coefficients ¢’ = C' (*R).

where

e The first two eigenvectors must also be transformed
accordingly into gf 7 and ggj as:

by . f,\j
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A linear transformation always maps lines into lines
(and zero to zero), so we are simply reorienting and re-
scaling the main axes of the “fan” plot in coefficient
space. This last step is what we shall call the Modi-
fied PCA (MPCA) approach. The result of applying the
transformation to the example we have at hand here can
be appreciated in Figs. 5(c) and (d). The advantages
of performing the transformation in coefficient space is
twofold:

e It enhances the two features we are trying to differ-
entiate and count, i.e. it creates two eigenvectors
which are directly linked to the presence of either
one dye or the other, and they are their correspond-
ing Raman spectra (with positive peaks), and

e it maps the “pure dye 1” and “pure dye 2” onto two
perpendicular axes in coefficient space. It can also
be shown that this transformation automatically
rescales the intensity of one dye with respect to the
other to account for cases where the intrinsic cross
sections or the concentrations of the two dyes are
different. The transformed coefficients are a direct
measure of the average number of each dye (not
the average SERS intensity) producing the SERS
signal.

The advantages of transforming the data into this new
form will be obvious now from Fig. 6. Once the transfor-
mation is performed, we can obtain directly the statistics
of events independent of the total enhancement and the
differences in intrinsic cross sections. gi\j and g;\ 7 repre-
sents the average signal of a single molecule of dye 1 and
dye 2 (in the same arbitrary units). We denote I; and I
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FIG. 6: Once the coefficient matrix C' is transformed, the his-
togram of relative contributions to the total signal can be eas-
ily obtained. A point with coordinates (z,y) as shown in (a)
contributes with an event of paye, = 1/(1+y/x). The count-
ing is actually done with the function paye, = 1/(1+abs(y/x))
which avoids problems with small negative components pro-
duced by the scatter in the data along the main axes. From
here, a list of events with their corresponding paye,’s can be
obtained, and a histogram can be built. The effect of noise
becomes also apparent. In (b) we show the reconstructed
histogram when all points are taken into account (including
weak signals comparable to or below the noise level). The
background comes from “artificial” counting of events that
the PCA cannot distinguish as such below the noise level. By
doing a counting of events above a certain threshold (shown
in (a)) decided by a variance criterion, we recover the true
histogram in (c), which agrees with the expected result for a
Pareto distribution with N1 = N2 = 20 (inset in (c)), within
the expected statistical scatter. See the text for further de-
tails.

their SERS intensity. A point in coefficient space with
coordinates = and y (as depicted in Fig. 6(a)) has a total
intensity which is directly given by:

ItOt = (iCIl + yIQ) (16)
The fraction of dye 1 in terms of signal intensity for this
event would be given by: zI;/(xI; + ylI2). However, the
important quantity for analysis of a Bi-Analyte SERS
experiment is the fraction of dye 1 in terms of average

number of dyes contributing to the signal for that partic-
ular event. Within our framework where different cross-
sections and concentrations have already been accounted
for, it is simply given now by:

Pdye, = x/(x +y) =1/(1 +abs(y/z)).  (17)
The use of abs(y/x) in the above expression is a pri-
ori irrelevant since x and y are normally positive, but it
avoids problems in practice with points on the main dye
axes that might go slightly negative due to the natural
scatter of the statistical analysis introduced by the noise.

We can therefore obtain, for each point in the plot of
Fig. 6(a), a value of pqye, and make a histogram of these
values, as done in Fig. 6(b).

D. Removal of noisy events

Fig. 6(b) shows indeed the two singularities of the his-
togram we are expecting at pgye1 = 0 and 1, but mounted
on a background. Part of this background can have a real
physical origin in real experiments: due to the statistical
nature of molecular adsorption, there is always a (slim)
chance that one molecule of each type is located at the
hot-spot, resulting in pgye1 ~ 0.5. There are also issues
related to the counting of multiple hot-spots, as we shall
show later. However, in the model spectra at hand here,
the background comes from the “counting” of many arti-
ficial cases below the noise level, where pqye1 could take
any random value between 0 and 1.

In order to recover the original statistics of events, we
have to introduce a threshold in intensity at the noise
level. Below this threshold, the relative intensities of the
two dyes as determined by the PCA analysis, are entirely
artificial and the events should not be taken into account
for the statistics. If we introduce a cut-off to eliminate
these cases, as shown in Fig. 6(a), we recover the original
statistics of contributions of one dye to the total signal
(with the inevitable scatter introduced by the PCA trim-
ming and the finite number of spectra). This is explicitly
shown in Fig. 6(c).

The cut-off can be decided with a variety of schemes,
but should ultimately be validated by checking that the
retained spectra are indeed above the noise. Here we
chose to compare for a given spectrum the standard de-
viation of the error (measured signal minus its PCA rep-
resentation) with respect to the intensity of the peaks
(either from dye 1 or 2) measured by the PCA coeffi-
cients matrix C' itself (and from the corresponding eigen-
vectors). Only events with a peak intensity twice above
the standard deviation of the error are accepted. Other
criteria are also possible and special consideration must
be taken if the cross sections of the dyes are not the
same. Note for example that if the dyes have different
cross sections, the background is in general skewed.



E. Summary of the MPCA approach

This completes the “proof by example”, showing that
the problem can be inverted from the data using MPCA
and that the statistics of contributions of one dye to the
total signal can be retrieved from a time sequence of spec-
tra. We summarize briefly what we have done in this
supplementary information:

e We started with a clear-cut pre-defined statistics
of events based on a long-tail distribution of SERS
enhancements and a fixed average number of dyes
for both analytes.

e We “hid” the statistics in spectra with widely vary-
ing overall intensities and background noise, as in
real experiments.

e We inverted the problem and recovered the ex-
pected histogram from the statistics of signals by
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using a modified PCA method (MPCA) which in-
volves a transformation of the coefficient matrix
and the two main eigenvectors.

e The statistics of events can be directly obtained
from the modified coefficients and the new eigen-
vectors separate explicitly the two contributions we
are trying to quantify.

This approach is very general and can be applied to
most BIASERS data, independent of the actual nature of
the SERS enhancement distribution. Its aim is to extract
in a systematic and unbiased way the histogram of rela-
tive contributions to the total intensity. We have already
discussed from a theoretical point of view the interpre-
tation of these histograms in the preliminary section. In
the main paper we now apply the MPCA approach to real
experimental data and discuss their interpretation for a
particular system: partially aggregated silver colloids.
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