Syn Addition to 4α-Epoxypyranosides: Synthesis of L-Idopyranosides Supporting Information
Table of Contents S-1
General Methods and Experimental Procedures S-2
Chemical Characterization of L-Idopyranosides $9 \mathbf{9 - 9 m}, \mathbf{1 0 a}-\mathbf{1 0 f}$, 11e S-3
Synthesis and Characterization of L-Iduronic acid (12) S-13
Synthesis and Characterization of Neosamine B derivatives (13-15) S-14
Products of Diphenethylzinc Additions (16-17) S-16
Synthesis and Characterization of Higher-Order L-Idopyranosides (18-23) S-17
Chemical Shifts and Coupling Constants of Select C4 acetates (Table S1) S-22
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of L-Idopyranosides $9 \mathbf{9 3}$ S-23
(including select C 4 acetates and minor isomers)
${ }^{1}$ H NOE Difference Spectra of Higher-Order L-Idopyranosides 20-23 S-99

General Methods. All starting materials and reagents were obtained from commercial sources and used as received unless otherwise noted. All solvents used were freshly distilled prior to use. Optical rotations were measured at room temperature with a Rudolph Research AUTOPOL® III polarimeter. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra were recorded on a Varian Unity Inova NMR spectrometer operating at 300 MHz and 75 MHz , respectively, or a Bruker DRX 400 operating at 400 MHz and 100 MHz , respectively, and referenced to the solvent used (7.27 and 77.00 ppm for $\mathrm{CDCl}_{3}, 7.16$ and 128.00 ppm for $\mathrm{C}_{6} \mathrm{D}_{6}, 3.31$ and 49.15 ppm for $\mathrm{CD}_{3} \mathrm{OD}$) unless otherwise stated. Mass spectra were acquired using either a Hewlett-Packard 5989B or a Finnigan 4000 mass spectrometer. Silica gel chromatography was performed with ICN SiliTech 32-63 D. Preparative TLC separation was performed with Silica G Prep TLC (Sorbent Tech, $500 \mu \mathrm{~m}$).

General procedure for $\mathbf{Z n B r}_{2}$-mediated organozinc addition to 4α-epoxypyranoside (4$\boldsymbol{E P}$). A solution of sublimed $\mathrm{ZnBr}_{2}(232 \mathrm{mg}, 1.02 \mathrm{mmol})$ in dry THF $(2 \mathrm{~mL})$ was treated at $-78{ }^{\circ} \mathrm{C}$ with an organolithium or Grignard reagent (0.294 mmol), then stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min before cooling again to $-78^{\circ} \mathrm{C}$. A solution of 4-EP (6) ($50 \mathrm{mg}, 0.147 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was cannulated dropwise to the reaction mixture, stirred for 15 min at $-78^{\circ} \mathrm{C}$, then stirred to $0^{\circ} \mathrm{C}$ in an ice bath and slowly allowed to warm up to rt over 2 h . The reaction was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (5 mL), extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \times 25 \mathrm{~mL})$, washed with brine (5 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, then concentrated under reduced pressure. Purification by silica gel chromatography yielded the corresponding L-idopyranoside in good yields (see Tables 1 and 2 in main text).

General procedure for ozonolysis: In the instance provided, a solution of $11 \mathrm{e}(20 \mathrm{mg}$, $0.066 \mathrm{mmol})$ in a $1: 1$ mixture of MeOH and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$ was cooled to $-78{ }^{\circ} \mathrm{C}$ and treated with a stream of electrically generated ozone at a flow rate of $2 \mathrm{~L} / \mathrm{min}$. The flow was stopped after 10 min and the reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for another 30 min, then treated with $\mathrm{Me}_{2} \mathrm{~S}$ and warmed to rt over 2 h . The solvent was removed under reduced pressure to afford the intermediate aldehyde as a pale yellow oil, which was used without further purification.

General procedure for catalytic dihydroxylation: In the instance provided, a solution of olefin $9 \mathbf{m}(20 \mathrm{mg}, 0.051 \mathrm{mmol})$ in a 1:8 mixture of water:acetone $(4.5 \mathrm{~mL})$ was treated at rt with N-methylmorpholine ($13 \mathrm{mg}, 0.11 \mathrm{mmol}$) and a $2.5 \%(\mathrm{w} / \mathrm{v})$ solution of OsO_{4} in t $\mathrm{BuOH}(40 \mu \mathrm{~L}, 5 \mathrm{~mol} \%)$. The reaction mixture was stirred at rt for 12 h , quenched with a saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution (3 mL) and stirred for 10 min , then extracted with EtOAc ($3 \times$ 15 mL), washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Purification by preparative TLC yielded the diol as colorless oil ($18 \mathrm{mg}, 83 \%$).

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.43-7.29(\mathrm{~m}, 11 \mathrm{H}), 6.56(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.6 \mathrm{~Hz}), 6.39(\mathrm{dd}$, $1 \mathrm{H}, \mathrm{J}=1.8,3.0 \mathrm{~Hz}$), $5.23(\mathrm{~s}, 1 \mathrm{H}), 4.86(\mathrm{~s}, 1 \mathrm{H}), 4.70(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=12.3 \mathrm{~Hz}), 4.64(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ $12.9 \mathrm{~Hz}), 3.94(\mathrm{bs}, 1 \mathrm{H}), 3.88(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=3.0 \mathrm{~Hz}), 3.59(\mathrm{bs}, 1 \mathrm{H}), 3.51(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 152.1,142.1,137.7,136.9,128.5$, , 128.1, 127.9, 127.7, 110.3, 108.7, $100.4,74.1,74.0,72.6,72.0,68.1,63.9,55.8$; IR (thin film): 3467, 3064, 3034, 2920, 1452, 1259, $1101 \mathrm{~cm}^{-1} ;[\alpha]^{20}{ }_{\mathrm{D}}=-21.4\left(c \quad 0.8, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ESI-MS: m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{O}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 433$; found: 433.12.

10a
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.79-7.70(\mathrm{~m}, 4 \mathrm{H}), 7.56(\mathrm{~s}, 1 \mathrm{H}), 7.11-7.01(\mathrm{~m}, 5 \mathrm{H}), 6.66$ $(\mathrm{d}, 1 \mathrm{H}, \mathrm{J}=3.6 \mathrm{~Hz}), 6.49(\mathrm{bs}, 1 \mathrm{H}), 5.30(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=5.7 \mathrm{~Hz}), 5.20(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}), 4.79$ $(\mathrm{d}, 1 \mathrm{H}, \mathrm{J}=11.7 \mathrm{~Hz}), 4.71(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=9.0,9.9 \mathrm{~Hz}), 4.58(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=12.3 \mathrm{~Hz}), 4.31-4.20$ $(\mathrm{m}, 2 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 2.4(\mathrm{bs}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.0,149.9,14.0$, 137.9, 133.9 131.7, 128.3, 127.8, 127.6, 123.4, 111.1, 110.6, 96.5, 74.11, 73.1, 69.7, 56.3, 55.0; IR (thin film): 3467, 3059, 3028, 2925, 2853, 1775, 1711, 1468, 1390, 1091, 1044,

1013, 910; $[\alpha]^{20}{ }_{\mathrm{D}}=+11.7$ (c 1.67, CHCl_{3}); ESI-MS: m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{NO}_{7} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+}$472; found: 472.08.

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.40-7.20(\mathrm{~m}, 11 \mathrm{H}), 7.05(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.3 \mathrm{~Hz}), 6.99(\mathrm{dd}$, $1 \mathrm{H}, \mathrm{J}=3.6,4.2 \mathrm{~Hz}), 5.26(\mathrm{~s}, 1 \mathrm{H}), 4.79(\mathrm{~s}, 1 \mathrm{H}), 4.60-4.42(\mathrm{~m}, 4 \mathrm{H}), 3.80-3.71(\mathrm{~m}, 2 \mathrm{H})$, $3.44(\mathrm{~s}, 1 \mathrm{H}), 3.39(\mathrm{~s}, 3 \mathrm{H}), 3.37(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=11.7 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 141.0$, 137.7, 136.7, 128.5, 128.2, 127.9, 127.8, 126.1, 125.8, 125.7, 100.5, 73.7, 73.3, 72.4, 71.9, 69.2, 65.5, 55.8; IR (thin film): 3510, 3065, 3028, 2920, 1493, 1452, 1204, 1192, 1096, $1026 \mathrm{~cm}^{-1} ;[\alpha]^{20}{ }_{\mathrm{D}}=-51.4\left(c 1.33 \mathrm{CHCl}_{3}\right)$; ESI-MS: m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{O}_{5} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}$ 449; found: 448.95 .

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.70-7.58(\mathrm{~m}, 4 \mathrm{H}), 7.28(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=5.1 \mathrm{~Hz}), 7.20(\mathrm{~d}, 1 \mathrm{H}$, $\mathrm{J}=3.6 \mathrm{~Hz}), 7.08-6.90(\mathrm{~m}, 6 \mathrm{H}), 5.42(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=5.4 \mathrm{~Hz}), 5.19(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.1 \mathrm{~Hz}), 4.70(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{J}=12.3 \mathrm{~Hz}), 4.51(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=11.7 \mathrm{~Hz}), 4.42(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=3.6,10.5 \mathrm{~Hz}), 4.34(\mathrm{dd}, 1 \mathrm{H}$, $\mathrm{J}=8.1,10.5 \mathrm{~Hz}), 4.17(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=5.1,5.4 \mathrm{~Hz}), 3.24(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 168.0,138.9,137.8,134.0,131.6,128.2,127.8,127,6,126.9,126.6,126.0$, $123.4,96.9,74.2,73.5,70.9,56.0,54.3$; IR (thin film): 3467, 3064, 3023, 2930, 1772, 1713, 1468, 1452, 1388, 1093, 1070, $1037 \mathrm{~cm}^{-1} ;[\alpha]^{20}{ }_{\mathrm{D}}=+27.2\left(c 1.33 \mathrm{CHCl}_{3}\right)$; ESI-MS: m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{NO}_{6} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+} 488$; found: 487.98.

9c
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.30-7.10(\mathrm{~m}, 12 \mathrm{H}), 7.04(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.6 \mathrm{~Hz}), 5.13(\mathrm{bs}$, $1 \mathrm{H}), 4.75(\mathrm{bs}, 1 \mathrm{H}), 4.59(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=12.3 \mathrm{~Hz}), 4.46(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=12.9 \mathrm{~Hz}), 4.44(\mathrm{bs}, 2 \mathrm{H})$, $3.75-3.68(\mathrm{~m}, 2 \mathrm{H}), 3.47(\mathrm{~m}, 1 \mathrm{H}), 3.43(\mathrm{~s}, 3 \mathrm{H}), 3.12(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 139.6,137.8,128.5,128.1,127.9,126.8,125.3,122.4,100.4,74.0,73.6$, $72.5,72.0,69.2,65.7,55.8$; IR (thin film): 3519, 3059, 3018, 2920, 1493, 1452, 1192, 1145, 1099, $1026 \mathrm{~cm}^{-1} ;[\alpha]^{20}{ }_{\mathrm{D}}=-14.7$ (c $0.67 \mathrm{CHCl}_{3}$); ESI-MS: m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{O}_{5} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+} 449$; found: 448.94 .

${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.81-7.70(\mathrm{~m}, 5 \mathrm{H}), 7.53(\mathrm{~m}, 1 \mathrm{H}), 7.42(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=2.7$, $3.0 \mathrm{~Hz}), 7.23(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=1.2,5.4 \mathrm{~Hz}), 7.12-7.05(\mathrm{~m}, 5 \mathrm{H}), 5.40(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=4.2 \mathrm{~Hz}), 5.22$ $(\mathrm{d}, 1 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}), 4.78(\mathrm{~d} 1 \mathrm{H}, \mathrm{J}=12.3 \mathrm{~Hz}), 4.59(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=12.3 \mathrm{~Hz}), 4.44(\mathrm{~m}, 2 \mathrm{H})$, $4.21(\mathrm{~m}, 1 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 2.38(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=5.1 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.0$, $137,8,137.1,134.0,131.6,128.2,127.7,127.5,126.7,126.2,123.4,123.2,97.2,77.2$, 74.6, 73.1, 70.9, 55.8, 54.1; IR (thin film): 3472, 3059, 3023, 2925, 1775, 1713, 1468, 1450, 1390, 1067, 1041, $972 \mathrm{~cm}^{-1} ;[\alpha]^{20}=+33.9\left(c 1.33 \mathrm{CHCl}_{3}\right)$; ESI-MS: m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{NO}_{6} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+} 488$; found: 487.98.

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 7.57$ (bs, 1H), $7.54(\mathrm{bs}, 1 \mathrm{H}), 7.31-7.07(\mathrm{~m}, 13 \mathrm{H}), 5.45$ (bs, $1 \mathrm{H}), 4.95(\mathrm{bs}, 1 \mathrm{H}), 4.48(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=12.3 \mathrm{~Hz}), 4.37(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=12.3 \mathrm{~Hz}), 4.30(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ $11.7 \mathrm{~Hz}), 4.24(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=11.7 \mathrm{~Hz}), 4.01-3.93(\mathrm{~m}, 2 \mathrm{H}), 3.64(\mathrm{~m}, 1 \mathrm{H}), 3.35(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ 11.1 Hz), $3.15(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 139.8$, 138.8, 137.7, 128.7, 128.6, $128.2,128.1,127.4,101.0,75.4,74.0,72,4,71.9,70.8,69.2,55.0$; IR (thin film): 3525, $3059,3023,2904,1599,1496,1452,1204,1194,1142,1098,1023 \mathrm{~cm}^{-1} ;[\alpha]^{20}{ }_{D}=-52.8$ (c $1.67 \mathrm{CHCl}_{3}$); ESI-MS m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{O}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 443$; found: 443.09.

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 7.58-7.44(\mathrm{~m}, 4 \mathrm{H}), 7.38-7.20(\mathrm{~m}, 5 \mathrm{H}), 7.09-6.92(\mathrm{~m}, 5 \mathrm{H})$, $5.79(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz}), 5.35(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.3 \mathrm{~Hz}), 5.17(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=6.6,6.9 \mathrm{~Hz}), 4.94$, (d, $1 \mathrm{H}, \mathrm{J}=11.7 \mathrm{~Hz}$), 4.84, (dd, 1H, J = 4.5, 4.8 Hz), $4.73(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=12.3 \mathrm{~Hz}), 4.07(\mathrm{dd}, 1 \mathrm{H}$, $\mathrm{J}=3.3,4.8 \mathrm{~Hz}$), $3.21(\mathrm{~s}, 3 \mathrm{H}), 1.89(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=4.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): δ $167.9,138.5,136.7,133.3,131.8,128.2,127.5,127,1,126.9,122.9,98.7,78.4,75.8,73.0$, 72.3, 54.7, 53.6; IR (thin film): 3473, 3059, 3028, 2930, 1772, 1713, 1496, 1467, 1452, 1388, 1119, 1070, $1039 \mathrm{~cm}^{-1} ;[\alpha]^{20}{ }_{\mathrm{D}}=+14.7\left(c 1.67 \mathrm{CHCl}_{3}\right)$; ESI-MS m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{NO}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 482$; found: 482.04.

Compound 9e:
${ }^{1} \mathrm{H}$ NMR (300 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 7.26-7.05(\mathrm{~m}, 10 \mathrm{H}), 6.28-6.17(\mathrm{~m}, 1 \mathrm{H}), 5.47(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ $11.1 \mathrm{~Hz}), 5.21(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=10.5 \mathrm{~Hz}), 4.83-4.78(\mathrm{~m}, 2 \mathrm{H}), 4.46(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=12.3 \mathrm{~Hz}), 4.34(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{J}=12.3 \mathrm{~Hz}), 4.26(\mathrm{bs}, 2 \mathrm{H}), 3.82(\mathrm{~m}, 2 \mathrm{H}), 3.55(\mathrm{bs}, 1 \mathrm{H}), 3.25-3.20(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 138.9,137.9,136.1,128.7,128.6,127.9,127.8,116.7,100.4$, $100.3,75.6,74.7,72.6,72.1,70.1,69.3,55.0$; IR (thin film): $3519,3059,3023,2910$, 1493, 1452, 1142, 1099, 1059, $1026 \mathrm{~cm}^{-1} ;[\alpha]^{20}{ }_{\mathrm{D}}=-42.0\left(c 0.67 \mathrm{CHCl}_{3}\right)$; ESI-MS: m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 393$; found: 393.09.

Compound 10e:

${ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}): $\delta 7.78-7.68(\mathrm{~m}, 4 \mathrm{H}), 7.08-6.98(\mathrm{~m}, 5 \mathrm{H}), 6.26-6.14(\mathrm{~m}, 1 \mathrm{H})$, $5.60-5.48(\mathrm{~m}, 2 \mathrm{H}), 5.32(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}), 4.76(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=11.7 \mathrm{~Hz}), 4.69(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=$ $5.1,6.0 \mathrm{~Hz}), 4.53(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=12.3 \mathrm{~Hz}), 4.32-4.22(\mathrm{~m}, 2 \mathrm{H}), 4.06-4.00(\mathrm{~m}, 1 \mathrm{H}), 3.35(\mathrm{~s}$, $3 \mathrm{H}), 2.64(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=5.1 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 168.0,137.9,133.9,131.9$, $131.5,128.1,127.6,127.4,123.3,120.1,96.0,77.1,73.8,73.6,55.9,54.9$; IR (thin film): $3467,2935,1775,1711,1467,1452,1388,1199,1088 \mathrm{~cm}^{-1} ;[\alpha]^{20}{ }_{\mathrm{D}}=-8.8\left(c 0.67 \mathrm{CHCl}_{3}\right)$; ESI-MS: m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{NO}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 432$; found: 432.08.

Compound 11e:
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.40(\mathrm{~m}, 10 \mathrm{H}), 6.07-5.88(\mathrm{~m}, 1 \mathrm{H}), 5.53-5.34(\mathrm{~m}, 2 \mathrm{H})$, $4.85(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=12.3 \mathrm{~Hz}), 4.74(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=12.3 \mathrm{~Hz}), 4.62(\mathrm{~m}, 2 \mathrm{H}), 3.76(\mathrm{~m}, 1 \mathrm{H}), 3.58(\mathrm{~m}$, $2 \mathrm{H}), 3.43(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=4.8 \mathrm{~Hz}){ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 137.5,132.6$, $128.5,128.0,127.9,118.6,99.5,78.0,77.4,70.4,62.0,56.0$; IR (thin film): 3462, 3053, 3023, 2914, 2847, 2109, 1635, 1450, 1357, 1259, 1091, $1052 \mathrm{~cm}^{-1} ;[\alpha]^{20}{ }_{\mathrm{D}}=-101.8(c 1.0$ CHCl_{3}); ESI-MS: m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 306$; found: 306.21.

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 7.43(\mathrm{~m}, 2 \mathrm{H}), 7.32(\mathrm{~m}, 3 \mathrm{H}), 7.20(\mathrm{~m}, 7 \mathrm{H}), 6.93(\mathrm{~m}, 3 \mathrm{H})$, $5.12(\mathrm{~m}, 2 \mathrm{H}), 4.97(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=12.0 \mathrm{~Hz}), 4.92(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=11.7 \mathrm{~Hz}), 4.77(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=11.7$ $\mathrm{Hz}), 4.70(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=12.0 \mathrm{~Hz}), 4.27(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=5.7,9.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 138.9,138.6,132.0,128.5,128.3,127.4,122.6,101.8,88.7,84.8,80.1,79.8,74.2,74.1$, $71.0,65.2,56.2$; IR (thin film): $3452,3065,3028,2910,2847,1597,1491,1449,1351$, 1212, 1191, 1098, $10531026,962 \mathrm{~cm}^{-1} ;[\alpha]^{20}{ }_{\mathrm{D}}=-45.2\left(c \quad 1.0 \mathrm{CHCl}_{3}\right)$; ESI-MS: m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{O}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 467$; found: 466.94.

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 7.83(\mathrm{dd}, 2 \mathrm{H}, \mathrm{J}=1.8,8.1 \mathrm{~Hz}$), $7.41(\mathrm{dd}, 2 \mathrm{H}, \mathrm{J}=5.1,6.0$ $\mathrm{Hz})$, 7.08-6.78 (m, 10H), $6.15(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.7 \mathrm{~Hz}), 4.97-4.90(\mathrm{~m}, 2 \mathrm{H}), 4.80(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ 12.3 Hz), $4.75(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=8.7,10.5 \mathrm{~Hz}), 4.56(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=12.3 \mathrm{~Hz}), 3.88(\mathrm{~m}, 1 \mathrm{H}), 3.23(\mathrm{~s}$ $3 \mathrm{H}), 2.09(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 167.9,138.6,133.2,132.3,132.0,128.7$, $128.4,127.1,122.9,122.6,96.9,90.5,83.8,76.8,74.1,73.4,67.1,56.0,55.8$; IR (thin film): $3473,3065,3028,2935,1775,1711,1497,1388,1091,1044,972 \mathrm{~cm}^{-1} ;[\alpha]^{20}{ }_{\mathrm{D}}=$ $+23.2\left(c 2.0 \mathrm{CHCl}_{3}\right)$; ESI-MS: m / z calcd for $\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{NO}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 506$; found: 505.96.

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.34-7.16(\mathrm{~m}, 10 \mathrm{H}), 5.82(\mathrm{~m}, 1 \mathrm{H}), 5.07-4.96(\mathrm{~m}, 2 \mathrm{H})$, $4.89(\mathrm{dd}, 2 \mathrm{H}, \mathrm{J}=11.1,12.0 \mathrm{~Hz}), 4.62(\mathrm{dd}, 2 \mathrm{H}, \mathrm{J}=11.7,12.3 \mathrm{~Hz}), 4.20(\mathrm{~m}, 1 \mathrm{H}), 3.47(\mathrm{~s}$, $3 H), 3.32-3.12(\mathrm{~m}, 4 \mathrm{H}), 2.50(\mathrm{~m}, 1 \mathrm{H}), 2.18(\mathrm{~m}, 1 \mathrm{H}), 2.06(\mathrm{bs}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (75 MHz , CDCl_{3}): $\delta 138.5,138.4,134.1,128.6,128.4,128.1,128.0,127.7,117.2,104.7,83.9,82.1$, 75.2, 74.5, 74.3, 73.0, 56.9, 35.8; IR (thin film): 3354, 3065, 3023, 2905, 2848, 1641, $1493,1449,1390,1359,1316,12691210,1108,1088,1073,1049,995,980 \mathrm{~cm}^{-1} ;[\alpha]^{20}{ }_{\mathrm{D}}$ $=-54.7\left(c 0.53 \mathrm{CHCl}_{3}\right)$; ESI-MS: m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 407$; found: 407.01.

9h
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.48-7.24(\mathrm{~m}, 10 \mathrm{H}), 6.05-5.91(\mathrm{~m}, 2 \mathrm{H}), 4.86(\mathrm{bs}, 1 \mathrm{H})$, $4.73-4.61(\mathrm{~m}, 5 \mathrm{H}), 4.30-4.29(\mathrm{~m}, 2 \mathrm{H}), 3.82(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{~m}, 1 \mathrm{H}), 3.59(\mathrm{~m}, 1 \mathrm{H}), 3.50(\mathrm{~s}$, $3 \mathrm{H}), 3.13(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=10.8 \mathrm{~Hz}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $137.8,137.0,132.8,128.5,128.4,128.0,127.9,127.7,126.6,100.0,74.0,73.7,72.4,72.0$, 69.1, 67.6, 63.4, 55.6, 25.9, 18.4, -5.20 ; IR (thin film): $3364,3064,3034,2925,2858$, $1493,1455,1388,1359,1315,1253,1194,1096,1065,967 \mathrm{~cm}^{-1} ;[\alpha]^{20}{ }_{\mathrm{D}}=-57.5(c 0.80$ CHCl_{3}); ESI-MS: m / z calcd for $\mathrm{C}_{29} \mathrm{H}_{42} \mathrm{O}_{6} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+} 537$; found: 537.17.

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.39-7.26(\mathrm{~m}, 10 \mathrm{H}), 4.90(\mathrm{~m}, 1 \mathrm{H}), 4.85-4.78(\mathrm{~m}, 3 \mathrm{H})$, $4.70(\mathrm{dd}, 2 \mathrm{H}, \mathrm{J}=11.4,11.7 \mathrm{~Hz}), 4.41(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=1.8 \mathrm{~Hz}), 3.76(\mathrm{~m}, 2 \mathrm{H}), 3.53(\mathrm{~s}, 3 \mathrm{H}), 3.44$ $(\mathrm{m}, 1 \mathrm{H}), 2.58(\mathrm{~m}, 1 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.12(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 138.1$, $137.9,128.5,128.4,128.0,127.9,101.3,87.4,79.4,78.9,74.3,73.9,70.2,63.7,56.8$, 51.7, 25.8, 18.3, -5.1; IR (thin film): 3411, 3059, 3023, 2915, 1496, 1452, 1357, 1272, 1094, 1055, $1026 \mathrm{~cm}^{-1} ;[\alpha]^{20}{ }_{\mathrm{D}}=-44.4$ (c $1.0 \mathrm{CHCl}_{3}$); ESI-MS: m / z calcd for $\mathrm{C}_{29} \mathrm{H}_{40} \mathrm{O}_{6} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+} 535$; found: 534.91.

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.36-7.26(\mathrm{~m}, 15 \mathrm{H}), 6.75(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=12.0 \mathrm{~Hz}), 6.03(\mathrm{dd}$, $1 \mathrm{H}, \mathrm{J}=9.0,12.0 \mathrm{~Hz}), 5.20(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.0 \mathrm{~Hz}), 4.76(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=1.8 \mathrm{~Hz}), 4.70-4.57(\mathrm{~m}$, $4 \mathrm{H}), 3.81-3.77(\mathrm{~m}, 2 \mathrm{H}), 3.54(\mathrm{~m}, 1 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 138.0$, $137.1,136.5,133.1,128.8,128.5,128.4,128.3,128.1,127.9,127.7,127.5,127.3,100.2$, $75.0,74.8,72.8,72.2,69.3,64.7,55.9$; IR (thin film): $3514,3059,3028,2920,1493$, $1450,1393,1352,1194,1142,1096,1052,1026 \mathrm{~cm}^{-1} ;[\alpha]^{20}{ }_{\mathrm{D}}=-5.2\left(c 0.53 \mathrm{CHCl}_{3}\right)$; ESIMS: m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{O}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 469$; found: 469.11.

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 7.44-7.21(\mathrm{~m}, 15 \mathrm{H}), 6.76(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=15.9 \mathrm{~Hz}), 6.46(\mathrm{dd}$, $1 \mathrm{H}, \mathrm{J}=6.6,15.9 \mathrm{~Hz}$), 4.85 (bs, 1H), 4.75 (bs, 1H), 4.73 (bs, 1H), $4.69(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=12.3$ $\mathrm{Hz}), 4.61(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=12.3 \mathrm{~Hz}), 4.56(\mathrm{bs}, 2 \mathrm{H}), 3.81(\mathrm{~m}, 1 \mathrm{H}), 3.72(\mathrm{~m}, 1 \mathrm{H}), 3.56(\mathrm{~m}, 2 \mathrm{H})$, 3.47 ($\mathrm{s}, 3 \mathrm{H}$), $3.20(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=10.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 137.8,136.9$, 136.7, 132.6, 128.5, 128.1, 127.9, 127.8, 127.6, 126.6, 126.1, 100.1, 74.0, 73.6, 72.5, 72.0, 69.3, 68.3, 55.7; IR (thin film):3504, 3054, 3023, 2915, 1496, 1450, 1362, 1315, 1269, 1194, 1145, 1096, 1026, $967 \mathrm{~cm}^{-1} ;[\alpha]^{20}{ }_{\mathrm{D}}=-5.5\left(c 0.8 \mathrm{CHCl}_{3}\right)$; ESI-MS: m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{O}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 469$; found: 469.11.

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.42-7.22(\mathrm{~m}, 15 \mathrm{H}), 5.61(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=1.8 \mathrm{~Hz}$), 5.49 (bs, $1 \mathrm{H}), 4.92(\mathrm{bs}, 1 \mathrm{H}), 4.62-4.50(\mathrm{~m}, 4 \mathrm{H}), 3.80(\mathrm{~m}, 1 \mathrm{H}), 3.65(\mathrm{~m}, 1 \mathrm{H}), 3.58(\mathrm{~m}, 1 \mathrm{H}), 3.47(\mathrm{~s}$, $3 \mathrm{H}), 3.01(\mathrm{~d} 1 \mathrm{H}, \mathrm{J}=11.1 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 145.3,139.5,137.8,137.0$, $128.5,128.4,128.1,127.9,127.8,127.7,127.6,126.9,114.1,100.9 .74 .1,73.9,72.4,71.9$, 67.1, 66.5, 55.8; IR (thin film):3467, 3064, 3028, 2920, 1497, 1450, 1393, 1352, 1194, 1142, 1093, 1052, $1026 \mathrm{~cm}^{-1} ;[\alpha]^{20}{ }_{\mathrm{D}}=-72\left(c \quad 1.0 \mathrm{CHCl}_{3}\right)$; ESI-MS: m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{O}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 469$; found: 469.07.

A solution of $\mathbf{9 i}(51 \mathrm{mg}, 0.1 \mathrm{mmol})$ in hexanes $(6 \mathrm{~mL})$ was treated with Lindlar catalyst $(14 \mathrm{mg})$ and quinoline $(13 \mathrm{mg})$ at rt and stirred for 2 h , then exposed to a positive hydrogen atmosphere for 3 h at rt with stirring. The reaction mixture was filtered, washed with 1 M HCl , saturated NaHCO_{3}, and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to afford cis-alkene $\mathbf{1 8}$ as light yellow oil in quantitative yield. Alkene $\mathbf{1 8}$ was dissolved in THF (2 mL) and treated with TBAF in THF ($1 \mathrm{M}, 0.12 \mathrm{~mL}$) at room temperature for 5 min . The reaction mixture was then concentrated and the resulting oil was dissolved in EtOAc, washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to a yellow oil. The crude allylic alcohol was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$, followed by addition of bis-acetoxyiodobenzene ($96 \mathrm{mg}, 0.3 \mathrm{mmol}$) and 2,2,6,6,-tetramethylpiperidine- N -oxide ($3 \mathrm{mg}, 20 \mathrm{~mol} \%$) at room temperature. After stirring for 3 h, the reaction mixture was quenched with a saturated solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$. The combined organic extracts were washed with saturated $\mathrm{NaHCO}_{3}, \mathrm{NH}_{4} \mathrm{Cl}$, and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, then filtered and concentrated. The residue was purified by silica gel chromatography (16.7% EtOAc in hexanes) to afford unsaturated lactone $\mathbf{9 m}$ as a white solid ($37 \mathrm{mg}, 93 \%$ over three steps).
${ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}): $\delta 7.40-7.28(\mathrm{~m}, 10 \mathrm{H}), 6.83(\mathrm{dd} 1 \mathrm{H}, \mathrm{J}=4.8,9.9 \mathrm{~Hz}), 6.23(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{J}=9.9 \mathrm{~Hz}), 4.85-4.66(\mathrm{~m}, 5 \mathrm{H}), 4.59-4.52(\mathrm{~m}, 2 \mathrm{H}), 3.96(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=4.5,8.1 \mathrm{~Hz})$, $3.57(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=4.8,8.1 \mathrm{~Hz}), 3.48(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 161.5,140.8$, $137.8,137.6,128.4,128.3,128.0,127.8,127.8,124.4,102.7,79.0,78.1,77.8,73.7,59.2$, 56.0; IR (thin film): $3467,3025,2924,1731,1606,1493,1452,1401,1256,1105,1071$, $1046 \mathrm{~cm}^{-1} ;[\alpha]^{20}=-45.0\left(c 0.67 \mathrm{CHCl}_{3}\right)$; ESI-MS: m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{O}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$ 419; found: 419.02.

Methyl 2,3-O-dibenzyl- α-L-iduronic acid (12)

A solution of 9 a $(80 \mathrm{mg}, 0.195 \mathrm{mmol})$ in a $1: 1$ mixture of MeOH and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was cooled to $-78^{\circ} \mathrm{C}$ and treated with a stream of electrically generated ozone at a flow rate of $2 \mathrm{~L} / \mathrm{min}$. The flow was stopped after 10 min and the reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for another 30 min , then treated with $\mathrm{Me}_{2} \mathrm{~S}$ and warmed to rt over 2 h . The mixture was concentrated and purified by silica gel chromatography ($20 \% \mathrm{MeOH}$ in CHCl_{3}) to yield L-iduronic acid $\mathbf{1 2}$ as a white solid ($55 \mathrm{mg}, 73 \%$). ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right): \delta 7.30(\mathrm{~m}, 10 \mathrm{H}), 5.02(\mathrm{bs}, 1 \mathrm{H}), 4.64(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=11.7 \mathrm{~Hz}), 4.60(\mathrm{bs}, 2 \mathrm{H}), 4.57(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{J}=11.7 \mathrm{~Hz}), 4.51(\mathrm{bs}, 1 \mathrm{H}), 4.04(\mathrm{bs}, 1 \mathrm{H}), 3.71(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=4.2 \mathrm{~Hz}), 3.48(\mathrm{~m}, 1 \mathrm{H}), 3.42$ $(\mathrm{s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 178.0,140.4,139.9,130.3,130.2,129.8,129.6$, $103.1,78.3,77.3,74.8,74.3,72.3,71.3,57.2$; IR (thin film): 3416, 3059, 3028, 2920, 1721, 1605, 1496, 1452, 1148, 1106, 1026, $949 \mathrm{~cm}^{-1} ;[\alpha]^{20}{ }_{\mathrm{D}}=-4.3\left(c 1.0 \mathrm{CHCl}_{3}\right)$; ESIMS: m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{7} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 411$; found: 410.89.

Methyl 6-(N-benzyl)amino-2-azido-3- O-benzyl-2,6-dideoxy- α-L-idopyranoside (13)

13
Ozonolysis of C5 vinyl adduct $11 \mathbf{e}(20 \mathrm{mg}, 0.066 \mathrm{mmol})$ produced the corresponding aldehyde, which was dissolved in 1,2-dichloroethane (2 mL), treated with benzylamine ($6.5 \mu \mathrm{~L}, 0.079 \mathrm{mmol}$), and stirred at rt for 3 h . The reaction mixture was then treated with a solution of $\mathrm{NaCNBH}_{3}(41 \mathrm{mg}, 0.66 \mathrm{mmol})$ in anhydrous $\mathrm{MeOH}(2 \mathrm{~mL})$. The mixture was stirred for overnight at rt , then concentrated and redispersed in brine (5 mL), extracted with EtOAc ($3 \times 15 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to a yellow oil. Purification with silica gel chromatography $\left(1 \% \mathrm{MeOH}\right.$ in $\left.\mathrm{CHCl}_{3}\right)$ yielded methyl $6-(\mathrm{N}-$ benzyl) amino-2-azido-3- O-benzyl-2,6-dideoxy- α-L-idopyranoside 13 as a pale yellow oil ($17 \mathrm{mg}, 66 \%$ over two steps). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.41-7.29(\mathrm{~m}, 10 \mathrm{H})$, $4.80(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=11.7 \mathrm{~Hz}), 4.74(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=11.7 \mathrm{~Hz}), 4.63(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.3 \mathrm{~Hz}), 4.17(\mathrm{~m}$, $1 \mathrm{H}), 3.97(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=3.0,3.3 \mathrm{~Hz}), 3.87(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=12.9 \mathrm{~Hz}), 3.81(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=12.9 \mathrm{~Hz})$, $3.61(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=3.6,6.6 \mathrm{~Hz}), 3.50(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=4.2,6.6 \mathrm{~Hz}), 3.42(\mathrm{~s}, 3 \mathrm{H}), 3.21(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}$ $=4.2,12.3 \mathrm{~Hz}$), $2.97(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=2.7,12.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 138.8$, 137.8, 128.6, 128.4, 128.2, 127.8, 127.4, 100.7, 79.4, 73.0, 72.6, 66.4, 60.4, 55.7, 53.9, 50.4; IR (thin film): 3328, 3023, 2920, 2853, 2103, 1644, 1494, 1452, 1357, 1266, 1109, 1075, 1049, $967 \mathrm{~cm}^{-1} ;[\alpha]^{20}{ }_{\mathrm{D}}=-55.8\left(c 0.67 \mathrm{CHCl}_{3}\right)$; HRESI-MS: m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{H}]^{+} 399$; found: 398.96.

Neosamine B methyl glycoside peracetate (15)

The synthesis of $\mathbf{1 5}$ has been previously described (see Ref. 19 in the main text). Compound $13(15 \mathrm{mg}, 0.038 \mathrm{mmol})$ was treated with $20 \% \mathrm{Pd}(\mathrm{OH})_{2}$ on carbon $(52 \mathrm{mg})$ in $80 \% \mathrm{AcOH}(6 \mathrm{~mL})$, and stirred at $60^{\circ} \mathrm{C}$ under a positive hydrogen atmosphere for 12 h . The mixture was passed through Celite, which was washed thoroughly with $\mathrm{H}_{2} \mathrm{O}(3 \times 10$ $\mathrm{mL})$ and $\mathrm{MeOH}(3 \times 20 \mathrm{~mL})$. The combined filtrates were concentrated and azeotroped with toluene ($3 \times 10 \mathrm{~mL}$) to yield neosamine B methyl glycoside 14 as a red-brown oil. The crude product was dissolved in 70% aqueous $\mathrm{AcOH}(5 \mathrm{~mL})$ and stirred at $70^{\circ} \mathrm{C}$ for 2 h , then concentrated and azeotroped with toluene $(3 \times 10 \mathrm{~mL})$. The crude $2,6-N, N$ ' diacetate was further acetylated by treatment with $\mathrm{Ac}_{2} \mathrm{O}(2 \mathrm{~mL})$ in pyridine $(4 \mathrm{~mL})$ at rt for 12 h . The mixture was concentrated, azeotroped with toluene ($3 \times 10 \mathrm{~mL}$), and purified by preparative $\mathrm{TLC}\left(10 \% \mathrm{MeOH}\right.$ in $\left.\mathrm{CHCl}_{3}\right)$ to afford peracetate $\mathbf{1 5}$ as a white solid ($7 \mathrm{mg}, 52 \%$ over three steps). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.09(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.9$ $\mathrm{Hz}), 5.87(\mathrm{~m}, 1 \mathrm{H}), 4.94(\mathrm{bs}, 1 \mathrm{H}), 4.79(\mathrm{~m}, 1 \mathrm{H}), 4.59(\mathrm{bs} 1 \mathrm{H}), 4.25(\mathrm{~m}, 2 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H})$, $3.48(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=6.9,14.1 \mathrm{~Hz}), 3.30(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}=14.1,6.6 \mathrm{~Hz}), 2.21(\mathrm{~s}, 3 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H})$, $2.02(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.2,169.4,169.3,168.8,100.6,67.8$, $67.4,64.0,55.6,46.8,38.9,23.4,23.3,20.9,20.8$; IR (thin film): 3287, 3091, 2925, 1739, 1659, 1556, 1434, 1370, 1246, $1034 \mathrm{~cm}^{-1} ;[\alpha]^{20}{ }_{\mathrm{D}}=-15.8\left(c 0.47 \mathrm{CHCl}_{3}\right) ;$ ESI-HRMS m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{8}[\mathrm{M}+\mathrm{H}]^{+}$361.1611; found: 361.1613.

C5 phenethyl adduct 16 was prepared according to the general procedure described for ZnBr_{2}-mediated organozinc addition to 4-EPs, and isolated as a colorless oil in 43% yield.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.38-7.18(\mathrm{~m}, 15 \mathrm{H}), 4.78(\mathrm{bs}, 1 \mathrm{H}), 4.65(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=12.3$ $\mathrm{Hz}), 4.57(\mathrm{~d}, 1 \mathrm{H}, 12.3 \mathrm{~Hz}), 4.54(\mathrm{bs}, 2 \mathrm{H}), 4.13(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=4.2,9.6 \mathrm{~Hz}), 3.76(\mathrm{~m}, 1 \mathrm{H})$, $3.55(\mathrm{~m}, 2 \mathrm{H}), 3.45(\mathrm{~s}, 3 \mathrm{H}), 3.02(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=11.1 \mathrm{~Hz}), 2.92(\mathrm{~m}, 1 \mathrm{H}), 2.71(\mathrm{~m}, 1 \mathrm{H}), 2.17(\mathrm{~m}$, $1 \mathrm{H}), 1.92(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 142.1,137.9,137.0,128.5,128.4$, $128.3,128.1,127.9,127.8,125.8,100.0,73.9,73.8,72.4,71.9,68.6,66.9,55.6,33.1$, 32.1; IR (thin film): 3519, 3064, 3023, 2910, 2853, 1602, 1496, 1452, 1148, 1104, 1073, $1029 \mathrm{~cm}^{-1} ;[\alpha]^{20}{ }_{\mathrm{D}}=-5.2\left(c \quad 0.53 \mathrm{CHCl}_{3}\right)$; ESI-MS: m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{O}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$ 471; found:471.20.

17
C5 phenethoxy adduct $\mathbf{1 7}$ was isolated as a byproduct of the reaction above, as a colorless oil in 24% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.28-7.14(\mathrm{~m}, 15 \mathrm{H}), 4.83(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ $11.4 \mathrm{~Hz}), 4.82(\mathrm{~d}, 1 \mathrm{H}, 11.1 \mathrm{~Hz}), 4.75(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=11.1 \mathrm{~Hz}), 4.66(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=11.1 \mathrm{~Hz}), 4.35$ $(\mathrm{m}, 2 \mathrm{H}), 4.12(\mathrm{~m}, 1 \mathrm{H}), 3.73(\mathrm{~m}, 1 \mathrm{H}), 3.56-3.38(\mathrm{~m}, 6 \mathrm{H}), 2.95(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=8.1 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 138.5,138.3,128.9,128.4,128.3,128.0,127.9,127.7,126.4$, 101.6, 99.6, 81.8, 81.4, 75.0, 74.6, 73.9, 70.5, 56.8, 36.2.

Higher-order monosaccharides with L-ido configuration:

A solution of $9 \mathbf{i}(51 \mathrm{mg}, 0.1 \mathrm{mmol})$ in hexanes $(6 \mathrm{~mL})$ was treated with Lindlar catalyst $(14 \mathrm{mg})$ and quinoline $(13 \mathrm{mg})$ at rt and stirred for 2 h , then exposed to a positive hydrogen atmosphere for 3 h at rt with stirring. The reaction mixture was filtered, washed with 1 M HCl , saturated NaHCO_{3}, and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to afford cis-alkene 18 as a light yellow oil in quantitative yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.40-7.22(\mathrm{~m}, 10 \mathrm{H}), 5.85-5.72$ (m, 2H), 4.89 (dd, 1H, J = 1.8, 6.3 $\mathrm{Hz}), 4.75(\mathrm{bs}, 1 \mathrm{H}), 4.68(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=12.3 \mathrm{~Hz}), 4.61(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=12.3 \mathrm{~Hz}), 4.56(\mathrm{~s}, 2 \mathrm{H}), 4.34$ $(\mathrm{m}, 2 \mathrm{H}), 3.76(\mathrm{~m}, 1 \mathrm{H}), 3.58(\mathrm{~m}, 2 \mathrm{H}), 3.46(\mathrm{~s}, 3 \mathrm{H}), 3.16(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=10.5 \mathrm{~Hz}),{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 137.9,137.0,134.0,128.5,128.4,128.1,127.9,127.7,126.4,100.1$, 74.1, 72.6, 69.4, 64.1, 59.7, 56.0, 25.9, 18.3, -5.2.

Unsaturated lactone $9 \mathrm{~m}(20 \mathrm{mg}, 0.051 \mathrm{mmol})$ was dissolved in pyridine (2 mL) and treated with commercial bleach $(5 \% \mathrm{NaOCl}, 0.2 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The resulting yellowish solution was warmed to rt and stirred for 4 h , then quenched with saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ (3 mL), extracted with EtOAc ($3 \times 15 \mathrm{~mL}$), washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Purification by preparative TLC (25% EtOAc in hexanes) yielded 6,7-epoxide 19 as a single stereoisomer and a white solid ($16 \mathrm{mg}, 78 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 7.30(\mathrm{~m}, 10 \mathrm{H}), 4.72(\mathrm{~m}, 1 \mathrm{H}), 4.68(\mathrm{~m}, 1 \mathrm{H}), 4.60(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}$ $=11.7 \mathrm{~Hz}), 4.57(\mathrm{bs}, 2 \mathrm{H}), 4.51(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=11.7 \mathrm{~Hz}), 4.43(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=2.4 \mathrm{~Hz}), 3.78(\mathrm{t}, 1 \mathrm{H}$, $\mathrm{J}=3.3 \mathrm{~Hz}), 3.74(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=3.6 \mathrm{~Hz}), 3.61(\mathrm{~d}, 1 \mathrm{H}, 3.6 \mathrm{~Hz}), 3.51(\mathrm{~m}, 1 \mathrm{H}), 3.42(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (100 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 165.4,137.4,137.0,128.5,128.3,128.1,127.9,127.7,101.3$, $74.0,73.8,73.2,72.4,72.3,60.0,55.9,52.7,48.4$; IR (thin film): 3028, 2915, 1749, 1496,

1452, 1365, 1323, 1261, 1117, $1104 \mathrm{~cm}^{-1} ;[\alpha]^{20}{ }_{\mathrm{D}}=-101\left(c 1.0 \mathrm{CHCl}_{3}\right) ;$ ESI-MS: m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{O}_{7} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 435$; found: 434.95 .

Methyl 2,3-di- O-benzyl-6,7-isopropylidene-D-threo- α-L-ido-octono-4,8-lactone (20)

20
A solution of trans-alkene $\mathbf{9 h}(50 \mathrm{mg}, 0.097 \mathrm{mmol})$ in THF $(2 \mathrm{~mL})$ was treated with TBAF in THF $(1 \mathrm{M}, 100 \mu \mathrm{~L})$ at rt . After stirring for 5 min , the reaction mixture was concentrated and redissolved in a $2: 1$ mixture of $\mathrm{Ac}_{2} \mathrm{O}$ and pyridine (6 mL) and stirred for 12 h at rt . The mixture was concentrated and azeotroped with toluene $(3 \times 10 \mathrm{~mL})$ and passed through a silica gel plug to afford the intermediate 4,8-diacetate as a colorless oil. This intermediate was subjected to the catalytic osmylation conditions previously described to yield the intermediate 6,7 -diol as a $5: 1$ mixture of diastereoisomers, the major product having a D-threo-L-ido configuration. The crude diol was then dissolved in THF (3 mL) and treated with 2-methoxypropene ($120 \mu \mathrm{~L}, 0.1 \mathrm{mmol}$) and d-CSA (4 mg , 0.017 mmol) at $0{ }^{\circ} \mathrm{C}$. The mixture was warmed to rt and stirred for 4 h , then quenched with $\mathrm{Et}_{3} \mathrm{~N}$ at $0{ }^{\circ} \mathrm{C}$ and concentrated to give the crude acetonide as a yellow oil. This was redissolved in $\mathrm{MeOH}(3 \mathrm{~mL})$, treated with $\mathrm{K}_{2} \mathrm{CO}_{3}(25 \mathrm{mg})$, and stirred for 1 h at rt . The resulting white suspension was filtered and washed with EtOAc $(3 \times 25 \mathrm{~mL})$. The combined organic washings were concentrated and the residue was dried in vacuo for 2 h , then dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ and treated with bis-acetoxyiodobenzene ($96 \mathrm{mg}, 0.3$ mmol) and TEMPO ($3 \mathrm{mg}, 20 \mathrm{~mol} \%$) at rt . The reaction mixture was stirred for 3 h , then quenched with saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$, followed by a standard aqueous workup. The residue was purified by silica gel chromatography (33.3\% EtOAc in hexanes) to afford D-threo-L-idooctopyranoside derivative $\mathbf{2 0}$ as a colorless oil ($17 \mathrm{mg}, 37 \%$ over six steps). The relative stereochemistry was confirmed by NOE difference spectroscopy (see spectra below). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 7.43(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}$
$=7.5 \mathrm{~Hz}), 7.35(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}), 7.22(\mathrm{~m}, 6 \mathrm{H}), 4.83(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=11.7 \mathrm{~Hz}), 4.75(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}$ $=11.7 \mathrm{~Hz}), 4.70(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=11.7 \mathrm{~Hz}), 4.63(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=11.7 \mathrm{~Hz}), 4.54(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=4.8 \mathrm{~Hz})$, $4.50(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=11.1 \mathrm{~Hz}), 4.04(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=1.2,4.2 \mathrm{~Hz}), 3.94(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=1.2,6.0 \mathrm{~Hz})$, $3.57(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=3.6,9.9 \mathrm{~Hz}), 3.43(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=3.3,11.1 \mathrm{~Hz}), 3.37(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=4.8,9.9$ $\mathrm{Hz}), 3.10(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 165.3,138.2$, $130.5,127.4,112.7,103.2,83.9,79.6,79.2,74.0,73.7,73.4,70.0,64.1,54.4,26.4,26.2$; IR (thin film): 2925, 1780, 1496, 1452, 1372, 1227, 1163, 1111, 1062, 1037, $1024 \mathrm{~cm}^{-1}$; $[\alpha]^{20}{ }_{\mathrm{D}}=-52.5\left(c \quad 0.67 \mathrm{CHCl}_{3}\right)$; ESI-MS: m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{O}_{8} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 493$; found:493.06.

Methyl 2,3-di-O-benzyl-6,7-isopropylidene-L-erythro- α-L-ido-octono-4,8-lactone (21)

Compound 21 was obtained from cis-alkene 18 using the same synthetic sequence described above, and isolated as colorless oil ($15 \mathrm{mg}, 34 \%$ over six steps). The relative stereochemistry was confirmed by NOE difference spectroscopy (see spectra below). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 7.39(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}$), $7.27(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}), 7.21(\mathrm{~m}, 6$ H), $4.78(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.7 \mathrm{~Hz}), 4.46(\mathrm{~m}, 4 \mathrm{H}), 4.20(\mathrm{~m}, 1 \mathrm{H}), 4.08(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.7 \mathrm{~Hz}), 3.94(\mathrm{t}$, $1 \mathrm{H}, \mathrm{J}=3.9 \mathrm{~Hz}), 3.84(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=3.9,8.7 \mathrm{~Hz}), 3.53(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=3.0,3.6$ $\mathrm{Hz}), 3.20(\mathrm{~s}, 3 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 167.6,137.7$, $137.2,128.6,128.4,128.2,128.0,127.8,111.6,100.7,74.2,73.9,73.6,72.5,72.3,71.5$, 60.0, 55.5, 25.8, 25.4; IR (thin film): 2930, 1755, 1496, 1452, 1372, 1204, 1111, 1094, 1037, $962 \mathrm{~cm}^{-1} ;[\alpha]^{20}{ }_{\mathrm{D}}=-78.3\left(c 0.67 \mathrm{CHCl}_{3}\right)$; ESI-MS: m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{O}_{8} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+}$493; found:493.06.

Unsaturated lactone $9 \mathbf{m}(27 \mathrm{mg})$ was subjected to the catalytic osmylation previously described to yield the corresponding 6,7-diol as a single diastereomer and a colorless oil ($26 \mathrm{mg}, 87 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 7.41-7.24$ (m, 10H), 4.79-4.63 (m, $5 \mathrm{H}), 4.55(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=12.3 \mathrm{~Hz}), 4.54(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.0 \mathrm{~Hz}), 4.41(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=3.6,4.2 \mathrm{~Hz})$, $4.35(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=3.0,3.9 \mathrm{~Hz}), 3.85(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=4.2,6.3 \mathrm{~Hz}), 3.61(\mathrm{bs}, 1 \mathrm{H}), 3.54(\mathrm{dd}, 1 \mathrm{H}$, $\mathrm{J}=3.6,6.3 \mathrm{~Hz}), 3.43(\mathrm{~s}, 3 \mathrm{H}), 3.22(\mathrm{bs}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.8,137.6$, 137.4, 128.4, 128.3, 128.0, 127.8, 102.0, 78.9, 76.4, 76.1, 73.1, 73.0, 68.8, 67.9, 64.7, 55.7; IR (thin film): $3432,3059,3028,2915,1744,1496,1452,1364,1197,1114,1042$, $946 \mathrm{~cm}^{-1} ;[\alpha]^{20}{ }_{\mathrm{D}}=-82.2\left(c \quad 0.67 \mathrm{CHCl}_{3}\right)$; ESI-MS: m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{8} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$ 453; found:452.90.

Methyl 6,7-di- O-acetyl-2,3-di- O-benzyl-D-erythro- α-L-ido-octono-4,8-lactone (22)

22
Compound 22 was prepared from the diol above ($4 \mathrm{mg}, 91 \%$ yield), and its relative stereochemistry was confirmed by NOE difference spectroscopy (see spectra below). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 7.38-7.24(\mathrm{~m}, 10 \mathrm{H}), 5.88(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.3 \mathrm{~Hz}), 5.54(\mathrm{dd}, 1 \mathrm{H}$, $\mathrm{J}=2.7,3.6 \mathrm{~Hz}), 4.77(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.6 \mathrm{~Hz}), 4.72(\mathrm{~s}, 2 \mathrm{H}), 4.66(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=11.7 \mathrm{~Hz}), 4.59(\mathrm{dd}$, $1 \mathrm{H}, \mathrm{J}=3.3,3.6 \mathrm{~Hz}), 4.57(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=11.7 \mathrm{~Hz}), 4.34(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=3.3,4.2 \mathrm{~Hz}), 3.87(\mathrm{dd}$, $1 \mathrm{H}, \mathrm{J}=4.2,6.6 \mathrm{~Hz}), 3.53(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=3.6,6.6 \mathrm{~Hz}$), $3.44(\mathrm{~s}, 3 \mathrm{H})$; ESI-MS: m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{O}_{8} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 537$; found:537.03.

Methyl 2,3-di-O-benzyl-7-deoxy-L-glycero- α-L-ido-octono-4,8-lactone (23)

A solution of $(\mathrm{PhSe})_{2}(60 \mathrm{mg}, 0.19 \mathrm{mmol})$ in $\mathrm{EtOH}(1 \mathrm{~mL})$ was treated with $\mathrm{NaBH}_{4}(14.5$ $\mathrm{mg}, 0.38 \mathrm{mmol}$) under Ar at rt and stirred for 5 min before being cooled to $0^{\circ} \mathrm{C}$. The reaction mixture was then treated with the dropwise addition of $\mathrm{AcOH}(14 \mu \mathrm{~L}, 0.38$ mmol), then stirred for 5 min at rt to generate the unstable phenylselenol. This was immediately treated with a solution of epoxide $19(10 \mathrm{mg}, 0.024 \mathrm{mmol})$ in $\mathrm{EtOH}(0.5 \mathrm{~mL})$ and stirred for 15 min at rt , then diluted with EtOAc (3 mL). The reaction was quenched with NaCl solution (2 mL), extracted with EtOAc $(2 \times 15 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. Purification with preparative TLC (50\% EtOAc in hexanes) yielded C6 alcohol 23 as a colorless oil ($9 \mathrm{mg}, 90 \%$). ${ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{C}_{6} \mathrm{D}_{6}: \mathrm{CD}_{3} \mathrm{OD}=5: 1\right): \delta 7.31-7.03(\mathrm{~m}, 10 \mathrm{H}), 4.70(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=3.6 \mathrm{~Hz}), 4.69(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{J}=11.7 \mathrm{~Hz}), 4.62(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.6 \mathrm{~Hz}), 4.59(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=11.7 \mathrm{~Hz}), 4.56(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=11.7$ $\mathrm{Hz}), 4.47(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=11.7 \mathrm{~Hz}), 4.18(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=3.6,4.2 \mathrm{~Hz}), 4.09(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=4.2,8.4$ $\mathrm{Hz}), 3.84(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=3.0,7.5 \mathrm{~Hz}), 3.52(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=3.6,7.8 \mathrm{~Hz}), 3.16(\mathrm{~s}, 3 \mathrm{H}), 2.85(\mathrm{dd}$, $1 \mathrm{H}, \mathrm{J}=4.2,17.1 \mathrm{~Hz}$), $2.61(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=4.5,17.1 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, 5: 1$ $\left.\mathrm{C}_{6} \mathrm{D}_{6}: \mathrm{CD}_{3} \mathrm{OD}\right): \delta 170.3,138.5,138.4,102.6,78.3,77.4,77.3,73.3,73.2,65.8,65.3,55.0$, 35.2; IR (thin film): $3432,3065,3028,2920,1731,1496,1452,1365,1235,1114,1070$, $1042 \mathrm{~cm}^{-1} ;[\alpha]^{20}{ }_{\mathrm{D}}=-2.2\left(c \quad 0.67 \mathrm{CHCl}_{3}\right) ;$ ESI-MS: m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{7} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$ 426; found: 426.24.

Table S1. Chemical Shifts and Coupling Constants of Select C4 acetates.

compd $(\mathrm{C} 4$ acetate $)$	$\delta\left({ }^{1} \mathrm{H}\right.$ NMR, 300 MHz$)$	$J_{4,5}(\mathrm{~Hz})$
$\mathbf{9 a}^{a}$	5.16	4.2
$\mathbf{1 0 a}{ }^{a}$	5.32	6.6
$\mathbf{9 b}^{a}$	5.11	2.4
$\mathbf{1 0 b}^{a}$	5.43	5.4
$\mathbf{9 c}^{a}$	5.16	2.7
$\mathbf{1 0 c ^ { a }}$	5.75	5.1
$\mathbf{9 d}^{b}$	5.09	2.7
$\mathbf{1 0 d}^{b}$	5.66	3.6
$\mathbf{9 e}^{a}$	4.92	3.6
$\mathbf{1 0 e ^ { a }}$	5.25	5.1
$\mathbf{9 f}^{b}$	5.32	5.4
$\mathbf{1 0 f}^{b}$	5.08	4.2
$\mathbf{9 h}^{a}$	4.95	3.6
$\mathbf{9 k}^{a}$	5.02	1.2
$\mathbf{9 1}^{a}$	4.91	3.0
${ }^{a} \mathrm{CDCl}_{3} .{ }^{b}{\text { benzene- } d_{6} .}$		

9a
${ }^{1} \mathrm{H}$ NMR, $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR, $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR, $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H} \mathrm{NMR}, 300 \mathrm{MHz}, \mathrm{CDCl}_{3}$

10a
${ }^{1} \mathrm{H}$ NMR, $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$

10a
${ }^{13} \mathrm{C}$ NMR, $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR, $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR, $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$

9c
${ }^{13} \mathrm{C}$ NMR, $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR, $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR, $300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$

${ }^{13} \mathrm{C}$ NMR, $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR, $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR, $300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$

${ }^{1} \mathrm{H}$ NMR, $300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$

${ }^{1} \mathrm{H}$ NMR, $300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$

9 e
${ }^{1} \mathrm{H}$ NMR, $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$

9e
${ }^{13} \mathrm{C}$ NMR, $75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$

${ }^{1} \mathrm{H}$ NMR, $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$

10e
${ }^{1} \mathrm{H}$ NMR, $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR, $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR, $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$

11e
${ }^{1} \mathrm{H}$ NMR, $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$

Ph

${ }^{1} \mathrm{H}$ NMR, $300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$

${ }^{1} \mathrm{H}$ NMR, $300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$

${ }^{1} \mathrm{H}$ NMR, $300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$

${ }^{1} \mathrm{H}$ NMR, $300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$

${ }^{1} \mathrm{H}$ NMR, $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR, $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR, $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$

9h
${ }^{1} \mathrm{H}$ NMR, $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$

9h
${ }^{13} \mathrm{C}$ NMR, $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR, $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$

9i
${ }^{1} \mathrm{H}$ NMR, $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR, $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR, $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$

9j
${ }^{1} \mathrm{H}$ NMR, $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR, $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$

9 k
${ }^{1} \mathrm{H}$ NMR, $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR, $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR, $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$

9|
${ }^{1} \mathrm{H}$ NMR, $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR, $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR, $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$

9 m
${ }^{1} \mathrm{H}$ NMR, $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR, $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR, $75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$

${ }^{1} \mathrm{H}$ NMR, $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$

13
${ }^{13} \mathrm{C}$ NMR, $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$

15
${ }^{1} \mathrm{H}$ NMR, $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$

16
${ }^{1} \mathrm{H}$ NMR, $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR, $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR, $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$

17
${ }^{13} \mathrm{C}$ NMR, $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H} \mathrm{NMR}, 300 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR, $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR, $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$

19
${ }^{1} \mathrm{H}$ NMR, $300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$

${ }^{1} \mathrm{H}$ NMR, $300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$

${ }^{13}$ C NMR, $100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$

$$
\text { 물 } \overrightarrow{9}
$$

${ }^{1} \mathrm{H}$ NMR, $300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$

${ }^{1} \mathrm{H}$ NMR, $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR, $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$

23
${ }^{1} \mathrm{H}$ NMR, $300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}: \mathrm{CD}_{3} \mathrm{OD}=5: 1$

${ }^{3} \mathrm{C}$ NMR, $75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}: \mathrm{CD}_{3} \mathrm{OD}=5: 1$

80

${ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{H}_{3}$ NOE, $300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$

${ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{H}_{4} \mathrm{NOE}, 30 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$

22
${ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{H}_{6}$ NOE, $300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$

23
${ }^{1} \mathrm{H}$ NMR, $300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}: \mathrm{CD}_{3} \mathrm{OD}=5: 1$

