New Efficient Route to Dissymetric 2,4-Di(het)aryl-pyrido[3,2-d]pyrimidines *via* Regioselective Cross-Coupling Reactions

Abdellatif Tikad, †‡ Sylvain Routier, †* Mohamed Akssira, ‡ Jean-Michel Leger, § Christian Jarry, § and Gérald Guillaumet †

SUPPORTING INFORMATION

Instrumentation and Materials. ¹H NMR and ¹³C NMR were recorded on a Bruker Avance DPX250 spectrometer (250.19 MHz ¹H, 62.89 MHz ¹³C) using tetramethylsilane as the internal standard, multiplicities were determined by the DEPT 135 equivalence, chemical shifts were reported in parts par million (ppm, δ units). Coupling constants were reported in units of hertz (Hz) if applicable. Infrared (IR) spectra were obtained on Perkin-Elmer Paragon 1000 PC FT-IR. Infrared spectra recorded using a Ge ATR equipment. Low-resolution mass spectra (MS) were recorded on a Perkin-Elmer SCIEX API 3000 spectrometer. Exact mass were performed in CRMPO, Rennes, France. Melting points were determined in open capillary tubes and are uncorrected. Flash chromatography was performed on silica gel 60 (40-63 mesh). Thin layer chromatography (TLC) was carried out on Merck silica gel 60F254 precoated plates. Visualization was made with ultraviolet light. Reactions requivuiring anhydrous conditions were performed under argon. All solvents were freshly distilled under argon prior to use. Chemicals products were obtained from the following sources: Aldrich and Acros organics. Copper(I) thiophene-2-carboxylate was prepared from procedure described in the literature. ¹

[†]ICOA UMR 6005 CNRS, Université d'Orléans, F-45067, Orléans, France

[‡]LCBA Université Hassan II-Mohammedia, BP 146, 20650 Mohammedia, Morocco

[§]EA 2962, Pharmacochimie, Université Victor Segalen Bordeaux II, France

¹ Allred, G. D.; Liebeskind, L. S. J. Am. Chem. Soc. 1996, 118, 2748.

General procedure A: synthesis of 2-chloro-4-((het)aryl)pyrido[3,2-d]pyrimidine (I) via Suzuki cross-coupling reaction: To a Argon degassed solution of 2,4-dichloropyrido[3,2-d]pyrimidine 1 (100 mg, 0.5 mmol) in toluene (7mL) were successively added the desired (het)Ar boronic acid (1.05 equiv), potassium carbonate (1.5 equiv) and Pd(PPh₃)₄ (29 mg, 0.05 equiv). The reaction was heated at 100°C under vigorous stirring for the desired time. After complete disappearance of 1, water (10 mL) was added. After extraction with CH₂Cl₂ (3 x 10 mL), the combined organic layers were dried over Mg SO₄ and the solvent were removed under reduced pressure. The crude material was purified by column chromatography to afford compound of type I.

General procedure B: synthesis of 2-chloro-4-((het)aryl)pyrido[3,2-d]pyrimidine (I) via Stille cross-coupling reaction: A solution of 2,4-dichloropyrido[3,2-d]pyrimidine 1 (100 mg, 0.5 mmol), the desired (alk)₃Sn(het)Ar (1.05 equiv) and LiCl (2.8 equiv) in toluene (7 mL) was degassed by argon bubbling during 15 min. Pd(PPh₃)₄ (29 mg, 0.05 equiv) was added in one portion and the reaction mixture was immerged in a pre-heated oil bath (100°C) for the adapted time. After disappearance of 1, the reaction mixture was cooled to room temperature and the volatiles were concentrated under reduced pressure. The crude residue was dissolved in CH₂Cl₂ (10 mL) and a saturated solution of KF (20 mL) was added. After filtration and extraction, the aqueous layer was extracted three times with CH₂Cl₂ (10 mL). The combined organic layers were dried over MgSO₄, and evaporated under reduced pressure. The crude material was purified by flash chromatography to afford compound compounds of type I.

General procedure C : synthesis of 2-(het)aryl-4-(isopropylsulfanyl)pyrido[3,2-d] pyrimidine (II) To a solution containing **2** (0.5 mmol) in a mixture of DME and water (10 mL, 3/1) were successively added the desired (het)Ar boronic acid (1.2 equiv), sodium carbonate (2.0 equiv) and Pd(PPh₃)₄ (0.05 equiv). The reaction was heated at 75°C under

vigorous stirring for the desired time. After complete disappearance of **2** water (10 mL) and CH₂Cl₂ (10 mL) were added. After extraction with CH₂Cl₂ (3 x 10 mL), the combined organic layers were dried over Mg SO₄ and the solvent were removed under reduced pressure. The crude material was purified by flash chromatography to afford compound of type **I**.

General procedure D: synthesis of compounds type (III) via a Suzuki cross-coupling reaction in the presence of CuTc:² A solution containing 2-(HetAr)-4-(isopropylsulfanyl)pyrido[3,2-d]pyrimidine II (0.35 mmol), the (het)aryl boronic acid (2.2 equiv), CuTC (2.2 equiv) and Pd(PPh₃)₄ (0.05 equiv) in dry THF (6 mL). was flushed with argon for 15 min. The brown suspension was stirred under argon at 50 °C for 3 h. After complete disappearance of starting material II, a saturated aqueous solution of NaHCO₃ was added, and the mixture was extracted with dichloromethane (3 x 15 mL). The combined organic layers were washed with saturated NaHCO₃ (2 x 10 mL). The solvent were evaporated under reduced pressure the residue was next purified by flash chromatography to give the attempted products of type III.

General procedure E: synthesis of compounds type (III) via a Stille cross-coupling reaction in the presence of CuBr.Me₂S (III):³ To a solution of 2-(HetAr)-4-(isopropylsulfanyl)pyrido[3,2-d]pyrimidine II (0.35 mmol) in DME (6 mL) were successively added (Alk)₃Sn(het)Ar (2.2 equiv), CuBr.Me₂S (2.2 equiv) and Pd(PPh₃)₄ (0.05 equiv). The reaction mixture was stirred under argon at reflux for the desired time. After cooling to room temperature, a 5% aqueous NH₄OH (10 mL) was added and the mixture was stirred for an additional 10 min. The reaction mixture was filtered through a pad of Celite, and the filtrate was extracted with dichloromethane (3 x 15 mL). The combined organic layers were washed with brine (10 mL), dried over MgSO₄, and evaporated under reduced pressure. After purification by flash chromatography compounds of III were isolated.

² Liebeskind, L. S.; Srogl, J. Org. Lett. **2002**, 4, 979.

³ Alphonse, F.A.; Susenet, F.; Keromnes, A.; Lebret, B.; Guillaumet, G. *Org. Lett.* **2003**, 5, 803.

General procedure F: Compounds **III** were obtained *via* a Suzuki reaction from **I** (0.5 mmol) by modification of the procedure **A** and also using (het)Ar boronic acid (1.2 equiv), Na₂CO₃ (1.5 equiv), Pd(PPh₃)₄ (0.05 equiv) in a mixture of toluene and EtOH (10mL, 3/1) at 100°C.

General procedure G : Compounds **III** were obtained *via* a Stille reaction from **I** (0.5 mmol) by modification of the procedure **B** and also using (Alk)₃Sn(Het)Ar (1.25 equiv), LiCl (2.8 equiv), Pd(PPh₃)₄ (0.05 equiv) in DMF (10mL, 3/1) at 90°C.

2-Chloro-4-phenyl-pyrido[3,2-*d*]**pyrimidine** (3). Compound 3 was obtained with PhB(OH)₂ following the Procedure **A** after 2h or following the procedure **B** after 12h and isolated after flash chromatography (PE:EtOAc, 95:5) as a white solid in a 84 or 83% yield respectively. Compound 3 was recristallized from dichloromethane/petroleum ether. Mp 140-141°C; IR (cm⁻¹) v 1523, 1465, 1279, 1135, 884, 811, 761, 682; ¹H NMR (250 MHz, CDCl₃) δ 7.53-7.59 (m, 3H, H_{Ph}), 7.83 (dd, 1H, J = 4.0 Hz, J = 8.7 Hz, H₇), 8.32 (dd, 1H, J = 1.5 Hz, J = 8.7 Hz, H₈), 8.38 (m, 2H, H_{Ph}), 9.10 (dd, 1H, J = 1.5 Hz, J = 4.0 Hz, H₆); ¹³C NMR (62.5 MHz, CDCl₃) δ 128.4 (2xCH), 128.6 (CH), 131.7 (CH), 132.0 (2xCH), 134.8 (Cq), 136.0 (CH), 137.6 (Cq), 149.6 (Cq), 151.9 (Cq), 157.5 (Cq), 169.8 (Cq); HRMS (EI-MS): m/z calcd for C₁₃H₈N₃³⁵Cl: 241.0407, found: 241.0414.

2,4-diphenyl-pyrido[**3,2-***d*]**pyrimidine** (**4**). Compound **4** was obtained following the procedure **A** with PhB(OH)₂ (2.1 equiv) after 1 h changing the catalytic system for Pd(OAc)₂ (0.05 equiv)/ PPh₃ (0.1 equiv). A flash chromatography (PE:EtOAc, 98:2) afforded **4** as a white solid. Mp 129-130°C; IR (cm⁻¹) v 1545, 1470, 1450, 1371, 1022, 812, 771, 709; ¹H NMR (250 MHz, CDCl₃) δ 7.52-7.60 (m, 6H, H_{Ph}), 7.74 (dd, 1H, J = 4.1 Hz, J = 8.6 Hz, H₇), 8.39 (dd, 1H, J = 1.5 Hz, J = 8.6 Hz, H₈), 8.46-8.50 (m, 2H, H_{Ph}), 8.70-8.74 (m, 2H, H_{Ph}), 9.00 (dd, 1H, J = 1.5 Hz, J = 4.1 Hz, H₆); ¹³C NMR (62.5 MHz, CDCl₃) δ 127.7 (CH), 128.2 (2xCH), 128.6 (2xCH), 128.9 (2xCH), 130.7 (CH), 130.9 (CH), 131.8 (2xCH), 136.5 (Cq),

137.0 (CH), 137.7 (Cq), 137.9 (Cq), 148.2 (Cq), 150.8 (CH), 160.7 (Cq), 166.5 (Cq); HRMS (EI-MS): m/z calcd for C₁₉H₁₃N₃: 283.1109, found: 283.1104.

2-Chloro-4-(-2-naphthyl)-pyrido[3,2-*d***]pyrimidine (5)**. Compound **5** was obtained with 2-naphthylB(OH)₂ following the Procedure **A** after 3h and isolated after flash chromatography ((PE:DCM, 6:4) as a yellow solid in a 72% yield. Mp 174-175°C; IR (cm⁻¹) v 1554, 1528, 1463, 1286, 1181, 1110, 899, 812, 742, 697; ¹H NMR (250 MHz, DMSO- d_6) δ 7.59-7.70 (m, 2H, H_{arom}), 8.00-8.14 (m, 4H, H₇, H_{arom}), 8.36-8.47 (m, 2H, H₈, H_{arom}), 9.00 (s, 1H, H_{arom}), 9.20 (dd, 1H, J = 1.5 Hz, J = 4.0 Hz, H₆); ¹³C NMR (62.5 MHz, DMSO- d_6) δ 126.7 (CH), 127.5 (CH), 127.6 (CH), 127.8 (CH), 128.2 (CH), 129.3 (CH), 129.6 (CH), 132.0 (Cq), 132.1 (Cq), 133.1 (CH), 134.1 (Cq), 135.8 (CH), 137.3 (Cq), 149.4 (Cq), 152.8 (CH), 156.0 (Cq), 168.7 (Cq); HRMS (EI-MS): m/z calcd for C₁₇H₁₀N₃³⁵Cl: 291.0563, found: 291.0556.

2-Chloro-4-(3-methoxyphenyl)-pyrido[3,2-d]**pyrimidine** (6). Compound 6 was obtained with 3-OMePhB(OH)₂ following the Procedure **A** after 8h and isolated after flash chromatography (PE:EtOAc, 8:2) as a yellow solid in a 89% yield. Mp 119-120°C; IR (cm⁻¹) v 1524, 1468, 1441, 1250, 1029, 865, 779, 699; ¹H NMR (250 MHz, CDCl₃) δ 3.92 (s, 3H, OCH₃), 7.15 (dd, 1H, J = 1.7 Hz, J = 8.0 Hz, H_{arom}), 7.49 (t, 1H, J = 8.0 Hz, H_{arom}), 7.83 (dd, 1H, J = 4.0 Hz, J = 8.5 Hz, H₇), 7.96-8.01 (m, 2H, H_{arom}), 8.32 (dd, 1H, J = 1.7 Hz, J = 8.5 Hz, H₈), 9.10 (dd, 1H, J = 1.7 Hz, J = 4.0 Hz, H₆); ¹³C NMR (62.5 MHz, CDCl₃) δ 55.6 (CH₃), 117.1 (CH), 117.7 (CH), 124.7 (CH), 128.7 (CH), 129.5 (CH), 136.0 (Cq), 136.1 (CH), 137.8 (Cq), 149.7 (Cq), 152.0 (CH), 157.6 (Cq), 159.5 (Cq), 169.8 (Cq); HRMS (EI-MS): m/z calcd for C₁₄H₁₀N₃O³⁵Cl: 271.0512, found: 271.0511.

2-chloro-4-(-3,4-methylenedioxyphenyl)-pyrido[3,2-*d***]pyrimidine** (7). Compound 7 was obtained with 3,4-(OCH₂O)PhB(OH)₂ following the Procedure **A** after 24h and isolated after flash chromatography (DCM:MeOH, 99:1) as a yellow solid in a 75% yield. Mp 228-229°C; IR (cm⁻¹) v 1528, 1465, 1448, 1246, 1187, 1048, 860, 815, 698; ¹H NMR (250 MHz, CDCl₃)

δ 6.09 (s, 2H, CH₂), 7.00 (d, 1H, J = 8.2 Hz, H_{het}), 7.80 (dd, 1H, J = 4.0 Hz, J = 8.7 Hz, H₇), 8.09 (d, 1H, J = 1.7 Hz, H_{het}), 8.21 (dd, 1H, J = 1.7 Hz, J = 8.25 Hz, H_{het}), 8.29 (dd, 1H, J = 1.7 Hz, J = 8.75 Hz, H₈), 9.07 (dd, 1H, J = 1.7 Hz, J = 4.0 Hz, H₆); ¹³C NMR (62.5 MHz, CDCl₃) δ 101.9 (CH₂), 108.5 (CH), 112.2 (CH), 128.3 (CH), 128.6 (CH), 128.9 (Cq), 136.2 (CH), 137.7 (Cq), 147.9 (Cq), 149.7 (Cq), 151.2 (Cq), 151.5 (CH), 157.5 (Cq), 168.3 (Cq); HRMS (EI-MS): m/z calcd for C₁₄H₈N₃O₂³⁵Cl: 285.0305, found: 285.0301.

2-Chloro-4-(-2-thienyl)-pyrido[3,2-*d*]**pyrimidine** (**8**). Compound **8** was obtained with 2-thienylSnBu₃ following the Procedure **B** after 12h and isolated after flash chromatography (PE:EtOAc, 95:5) as a yellow solid in a 72% yield. Mp 150-151°C; IR (cm⁻¹) v 1525, 1505, 1469, 1436, 1421, 1284, 1190, 825, 705; ¹H NMR (250 MHz, CDCl₃) δ 7.27-7.29 (m, 1H, H_{het}), 7.78-7.83 (m, 2H, H₇, H_{het}), 8.24 (dd, 1H, J = 1.5 Hz, J = 8.5 Hz, H₈), 8.9 (d, 1H, J = 2.7 Hz, H_{het}), 9.07 (dd, 1H, J = 1.5 Hz, J = 4.0 Hz, H₆); ¹³C NMR (62.5 MHz, CDCl₃) δ 128.5 (CH), 128.9 (CH), 136.0 (CH), 136.1 (Cq), 136.2 (CH), 136.4 (CH), 137.7 (Cq), 149.2 (Cq), 151.1 (CH), 157.6 (Cq), 162.6 (Cq); HRMS (EI-MS): m/z calcd for C₁₁H₆N₃³⁵CIS: 246.9971, found: 246.9977.

2-Chloro-4-(-2-furyl)-pyrido[3,2-*d***]pyrimidine (9)**. Compound **9** was obtained with 2-FurylSnBu₃ following the Procedure **B** after 8h and isolated after flash chromatography (PE:EtOAc, 9:1) as a yellow solid in a 71% yield. Mp 195-196°C; IR (cm⁻¹) v 1569, 1521, 1465, 1432, 1280, 1158, 1036, 987, 826, 686; ¹H NMR (250 MHz, CDCl₃) δ 6.72 (dd, 1H, J = 1.7 Hz, J = 3.5 Hz, H_{het}), 7.78-7.83 (m, 2H, H₇, H_{het}), 8.23 (dd, 1H, J = 1.5 Hz, J = 8.5 Hz, H₈), 8.46 (d, 1H, J = 3.5 Hz, H_{het}), 9.04 (dd, 1H, J = 1.5 Hz, J = 4.0 Hz, H₆); ¹³C NMR (62.5 MHz, CDCl₃) δ 113.7 (CH), 125.0 (CH), 128.8 (CH), 135.7 (Cq), 136.0 (CH), 147.7 (CH), 148.4 (Cq), 148.8 (Cq), 151.6 (CH), 157.5 (Cq), 157.8 (Cq); HRMS (EI-MS): m/z calcd for C₁₁H₆N₃O³⁵Cl: 231.0199, found: 231.0210.

4-(-2-benzenesulfonyl-1H-indolyl)-2-chloro-pyrido[3,2-*d*]**pyrimidine** (10). Compound 10 was obtained with 2-(SnMe₃)-*N*-(SO₂Ph)indole following the Procedure **B** after 24h and isolated after flash chromatography (PE:EtOAc, 95:5) as a yellow solid in a 34% yield. Mp 201-202°C; IR (cm⁻¹) v 1530, 1438, 1365, 1173, 1100, 830, 749, 727; ¹H NMR (250 MHz, CDCl₃) δ 7.24-7.30 (m, 2H, H_{arom}), 7.37-7.60 (m, 5H, H_{arom}), 7.79-7.88 (m, 3H, H_{arom}), 8.10 (d, 1H, J = 8.5 Hz, H₇), 8.33 (dd, 1H, J = 1.6 Hz, J = 8.5 Hz, H₈), 9.08 (dd, 1H, J = 1.6 Hz, J = 4.0 Hz, H₆); ¹³C NMR (62.5 MHz, CDCl₃) δ 115.4 (CH), 119.0 (CH), 122.4 (CH), 124.5 (CH), 126.7 (2xCH), 127.2 (2xCH), 129.1 (2xCH), 129.8 (Cq), 133.9 (CH), 134.3 (Cq), 135.7 (CH) 137.8 (Cq), 138.2 (Cq), 138.8 (Cq), 148.7 (Cq), 152.6 (CH), 156.7 (Cq), 164.8 (Cq) ppm. HRMS (EI-MS): m/z calcd for C₂₁H₁₃N₄O₂³⁵ClS: 420.0447, found: 420.0433.

4-Phenyl-2-(-2-thienyl)-pyrido[3,2-d]pyrimidine (11). Compound 11 was obtained from 3 with 2-thienylB(OH)₂ following the Procedure **F** after 4h or following the procedure **G** with 2-thienylSnBu₃ after 3h and isolated after flash chromatography (PE:EtOAc, 98:2) as a yellow solid in a 98 or 87% yield respectively. Alternatively, compound 11 was obtained from 24 following the Procedure **D** with PhB(OH)₂ after 3h or following the procedure **E** withPhSnBu₃ after 10 min in a 90% or 89 yield respectively. Mp 164-165°C; IR (cm⁻¹) v 1541, 1451, 1423, 1371, 1052, 843, 804, 732, 704; ¹H NMR (250 MHz, CDCl₃) δ 7.17 (dd, 1H, J = 3.7 Hz, J = 5.0 Hz, H_{het}), 7.51 (dd, 1H, J = 1.2 Hz, J = 5.0 Hz, H_{het}), 7.55-7.58 (m, 3H, H_{Ph}), 7.67 (dd, 1H, J = 4.0 Hz, J = 8.5 Hz, H₇), 8.20 (dd, 1H, J = 1.2 Hz, J = 3.7 Hz, H_{het}), 8.28 (dd, 1H, J = 1.5 Hz, J = 8.5 Hz, H₈), 8.43-8.46 (m, 2H, H_{Ph}), 8.92 (dd, 1H, J = 1.5 Hz, J = 4.0 Hz, H₆); ¹³C NMR (62.5 MHz, CDCl₃) δ 127.9 (CH), 128.2 (2xCH), 128.5 (CH), 130.0 (CH), 130.6 (CH), 130.9 (CH), 131.8 (2xCH), 136.1 (Cq), 136.5 (CH), 137.7 (Cq), 143.7 (Cq), 148.2 (Cq), 150.4 (CH), 157.8 (Cq), 166.6 (Cq); HRMS (EI-MS): m/z calcd for C₁₇H₁₁N₃S: 289.0674, found: 289.0684.

2-(3,4-methylenedioxyphenyl)-4-phenyl-pyrido[3,2-*d*]**pyrimidine (12)**. Compound **12** was obtained from **3** with 3,4-(OCH₂O)PhB(OH)₂ following the Procedure **F** after 5h and isolated after flash chromatography (PE:EtOAc, 98:2) as a yellow solid in a 98% yield. Mp 162-163°C; IR (cm⁻¹) v 1543, 1503, 1452, 1326, 1255, 1028, 822, 803, 740, 689; ¹H NMR (250 MHz, CDCl₃) δ 6.07 (s, 2H, CH₂), 6.97 (d, 1H, J = 8.2 Hz, H_{het}), 7.58-7.60 (m, 3H, H_{arom}), 7.75 (dd, 1H, J = 4.0 Hz, J = 8.5 Hz, H₇), 8.21 (d, 1H, J = 1.7 Hz, H_{het}), 8.33-8.38 (m, 2H, H₈, H_{het}), 8.43-8.47 (m, 2H, H_{arom}), 8.99 (dd, 1H, J = 1.5 Hz, J = 4.0 Hz, H₆); ¹³C NMR (62.5 MHz, CDCl₃) δ 101.6 (CH₂), 108.4 (CH), 109.0 (CH), 124.0 (CH), 127.8 (CH), 128.2 (2xCH), 130.8 (CH), 131.8 (2xCH), 132.2 (Cq), 136.6 (Cq), 136.9 (CH), 137.8 (Cq), 148.2 (Cq), 148.3 (Cq), 150.2 (Cq), 150.5 (CH), 160.2 (Cq), 166.4 (Cq); HRMS (EI-MS): m/z calcd for C₂₀H₁₃N₃O₂: 327.10078, found: 327.0998.

2-(-2-Naphthyl)-4-phenyl-pyrido[3,2-*d*]**pyrimidine** (13). Compound 13 was obtained from 3 with 3-naphthylB(OH)₂ following the Procedure **G** after 5h and isolated after flash chromatography (PE:EtOAc, 9:1) as a yellow solid in a 98% yield. Mp 170-171°C; IR (cm⁻¹) v 1542, 1463, 1447, 1385, 1326, 916, 824, 772, 694; ¹H NMR (250 MHz, DMSO- d_6) δ 7.61-7.67 (m, 5H, H_{arom}), 8.01-8.08 (m, 2H, H_{arom}), 8.13 (d, 1H, J = 8.5 Hz, H₇), 8.18-8.22 (m, 1H, H_{arom}), 8.47-8.50 (m, 2H, H_{arom}), 8.58 (d, 1H, J = 8.5 Hz, H₈), 8.75 (d, 1H, J = 8.7 Hz, H_{arom}), 9.13 (d, 1H, J = 2.7 Hz, H₆), 9.24 (m, 1H, H_{arom}); ¹³C NMR (62.5 MHz, DMSO- d_6) δ 125.0 (CH), 126.5 (CH), 127.4 (CH), 127.5 (CH), 127.9 (2xCH), 128.2 (CH), 128.5 (CH), 128.8 (CH), 129.1 (CH), 130.6 (CH), 131.5 (2xCH), 132.7 (Cq), 134.2 (Cq), 134.4 (Cq), 136.0 (Cq), 136.6 (CH), 137.1 (Cq), 147.6 (Cq), 151.7 (CH), 159.3 (Cq), 165.9 (Cq); HRMS (EI-MS): m/z calcd for C₂₃H₁₅N₃: 333.1266, found: 333.1254.

2-(-3-methoxyphenyl)-4-phenyl-pyrido[3,2-*d***]pyrimidine (14)**. Compound **14** was obtained from **3** with 3-OMePhB(OH)₂ following the Procedure **F** after 4h and isolated after flash chromatography (PE:MeOH, 99:1) as a yellow solid in a 89% yield. Alternatively, compound

14 was obtained from **23** following the Procedure **D** with PhB(OH)₂ after 1h or following the procedure **E** with PhSnBu₃ after 10 min in a 86 and 85 %yield respectively. Compound **14** was recristallized from dichloromethane/petroleum ether. Mp 104-105°C; IR (cm⁻¹) v 1600, 1541, 1467, 1447, 1340, 1253, 1038, 831, 737, 694; ¹H NMR (250 MHz, CDCl₃) δ 3.94 (s, 3H, OCH₃), 7.07 (d, 1H, J = 2.8 Hz, H_{arom}), 7.47 (t, 1H, J = 8.0 Hz, H_{arom}), 7.57-7.60 (m, 3H, H_{Ph}), 7.74 (dd, 1H, J = 4.0 Hz, J = 8.7 Hz, H₇), 8.27-8.34 (m, 2H, H_{arom}), 8.39 (dd, 1H, J = 1.7 Hz, J = 8.7 Hz, H₈), 8.46-8.50 (m, 2H, H_{Ph}), 9.01 (dd, 1H, J = 1.7 Hz, 4 Hz, H₆); ¹³C NMR (62.5 MHz, CDCl₃) δ 55.6 (CH₃), 117.1 (CH), 113.7 (CH), 117.2 (CH), 121.6 (CH), 127.8 (CH), 128.3 (2xCH), 129.7 (CH), 130.8 (CH), 131.9 (2xCH), 136.6 (Cq), 137.1 (CH), 138.0 (Cq), 139.2 (Cq), 148.2 (Cq), 150.9 (CH), 160.1 (Cq), 160.6 (Cq), 166.6 (Cq); HRMS (EI-MS): m/z calcd for C₂₀H₁₅N₃O: 313.1215, found: 313.1219.

4-(3,4-methylenedioxyphenyl)-2-phenyl-pyrido[3,2-*d***]pyrimidine** (**15**). Compound **15** was obtained from **7** with PhB(OH)₂ following the Procedure **F** after 5h and isolated after flash chromatography (PE:EtOAc, 99:1) as a yellow solid in a 89% yield. Alternatively, compound **15** was obtained following the Procedure **D** from **22** with 3,4-(OCH₂O)PhB(OH)₂ after 30 min in a 99% yield. Mp 141-142°C; IR (cm⁻¹) v 1533, 1469, 1442, 1325, 1255, 1037, 930, 816, 710; 1 H NMR (250 MHz, CDCl₃) δ 6.09 (s, 2H, CH₂), 7.03 (d, 1H, J = 8.2 Hz, H_{het}), 7.53-7.58 (m, 3H, H_{arom}), 7.76 (dd, 1H, J = 4.0 Hz, J = 8.7 Hz, H₇), 8.15 (d, 1H, J = 1.7 Hz, H_{het}), 8.26 (dd, 1H, J = 1.7 Hz, J = 8.2 Hz, H_{het}), 8.39 (dd, 1H, J = 1.7 Hz, J = 8.7 Hz Hz, H₈), 8.68-8.72 (m, 2H, H_{arom}), 9.01 (dd, 1H, J = 1.7 Hz, J = 4.0 Hz, H₆); 13 C NMR (62.5 MHz, CDCl₃) δ 161.6 (CH₂), 108.3 (CH), 112.0 (CH), 127.5 (CH), 127.7 (CH), 128.7 (2xCH), 128.9 (2xCH), 130.6 (Cq), 130.9 (CH), 137.1 (CH), 137.8 (Cq), 137.9 (Cq), 147.7 (Cq), 148.3 (Cq), 150.2 (Cq), 150.6 (CH), 160.6 (Cq), 165.2 (Cq); HRMS (EI-MS): m/z calcd for C₂₀H₁₃N₃O₂: 327.1007, found: 327.0998.

2-phenyl-4-(-2-thienyl)-pyrido[3,2-*d*]**pyrimidine** (**16**). Compound **16** was obtained from **8** with PhB(OH)₂ following the Procedure **F** after 4h or following the procedure **G** after 16h and isolated after flash chromatography (PE:EtOAc, 98:2) as a yellow solid in a 94 or 67% yield respectively. Alternatively, compound **16** was obtained following the Procedure **E** from **22** with 2-thienylSnBu₃ after 10 min in a 95% yield. Mp 124-125°C; IR (cm⁻¹) v 1622, 1476, 1402, 1343, 1149, 1056, 962, 790, 711; ¹H NMR (250 MHz, CDCl₃) δ 7.22-7.25 (m, 1H, H_{het}), 7.51-7.56 (m, 3H, H_{Ph}), 7.64-7.69 (m, 2H, H_{het}, H₇), 8.26 (dd, 1H, J = 1.75, 8.5 Hz, H₈), 8.64-8.68 (m, 2H, H_{Ph}), 8.92-8.94 (m, 2H, H_{het}, H₆); ¹³C NMR (62.5 MHz, CDCl₃) δ 127.9 (CH), 128.3 (CH), 128.7 (2xCH), 128.8 (2xCH), 130.9 (CH), 133.6 (CH), 134.9 (CH), 136.7 (Cq), 136.9 (CH), 137.6 (Cq), 140.2 (Cq), 147.9 (Cq), 150.3 (CH), 159.5 (Cq), 160.7 (Cq); HRMS (EI-MS): m/z calcd for C₁₇H₁₁N₃S: 289.0674, found: 289.0684.

4-(-2-Naphthyl)-2-phenyl-pyrido[3,2-*d*]**pyrimidine** (17). Compound 17 was obtained from 5 with PhB(OH)₂ following the Procedure **F** after 6h and isolated after flash chromatography (PE:EtOAc, 99:1) as a yellow solid in a 96% yield. Alternatively, compound 17 was obtained following the Procedure **D** from 22 with 2-naphthylB(OH)₂ after 1h in a 91% yield. Mp 153-154°C; IR (cm⁻¹) v 1540, 1479, 1450, 1329, 1022, 905, 822, 755, 717; ¹H NMR (250 MHz, DMSO-*d*₆) δ 7.61-7.70 (m, 5H, H_{arom}), 8.03-8.08 (m, 2H, H_{arom}), 8.12-8.18 (m, 2H, H₇, H_{arom}), 8.52-8.57 (m, 2H, H₈, H_{arom}), 8.67-8.71 (m, 2H, H_{arom}), 9.12 (s, 1H, H_{arom}), 9.17 (dd, 1H, J = 1.7 Hz, J = 4.0 Hz, H₆); ¹³C NMR (62.5 MHz, DMSO-*d*₆) δ 126.5 (CH), 127.3 (CH), 127.5 (CH), 127.7 (CH), 127.9 (CH), 128.3 (CH), 128.8 (2xCH), 128.9 (2xCH), 129.1 (CH), 131.1 (CH), 132.2 (Cq), 132.5 (CH), 133.5 (Cq), 133.8 (Cq), 136.7 (CH), 137.0 (Cq), 137.3 (Cq), 147.7 (Cq), 151.9 (CH), 159.4 (Cq), 165.5 (Cq) ppm. HRMS (EI-MS): m/z calcd for C₂₃H₁₅N₃: 333.1266, found: 333.1254.

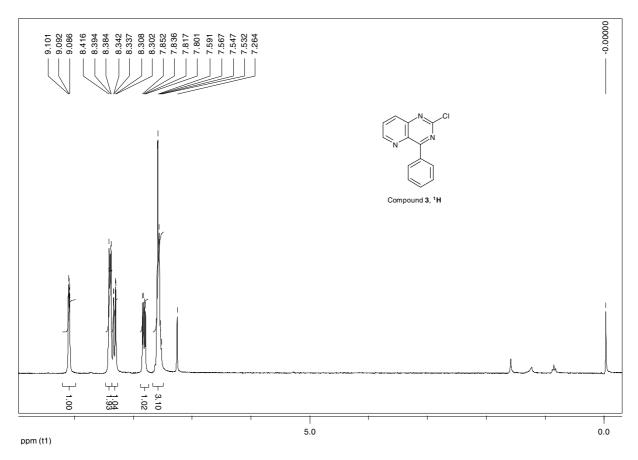
2-(-2-Furyl)-4-phenyl-pyrido[3,2-d]pyrimidine (18). Compound 18 was obtained from 3 with 2-furylSnBu₃ following the Procedure G after 1h and isolated after flash chromatography

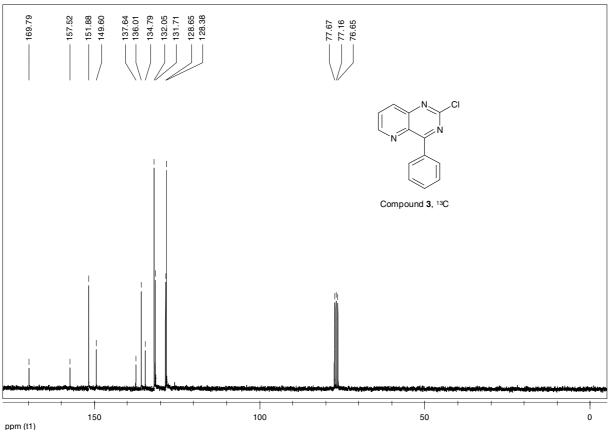
(PE:EtOAc, 95:5) as a sandy solid in a 88% yield. Mp 146-147°C; IR (cm⁻¹) v 1584, 1542, 1487, 1469, 1334, 1010, 813, 762, 692; ¹H NMR (250 MHz, CDCl₃) δ 6.64 (dd, 1H, J = 1.5 Hz, J = 3.2 Hz, H_{het}), 7.58-7.60 (m, 4H, H_{Ph}, H_{het}), 7.72 (s, 1H, H_{het}), 7.78 (dd, 1H, J = 4.0 Hz, J = 8.7 Hz, H₇), 8.39-8.47 (m, 3H, H₈, H_{Ph}), 9.01 (dd, 1H, J = 1.5 Hz, J = 4.0 Hz, H₆); ¹³C NMR (62.5 MHz, CDCl₃) δ 112.5 (CH), 115.2 (CH), 128.1 (CH), 128.2 (2xCH), 130.9 (CH), 131.8 (2xCH), 136.1 (Cq), 136.7 (CH), 137.7 (Cq), 145.8 (CH), 148.0 (Cq), 150.7 (CH), 152.5 (Cq), 154.0 (Cq), 167.3 (Cq); HRMS (EI-MS): m/z calcd for C₁₇H₁₁N₃O: 273.0902, found: 273.0901.

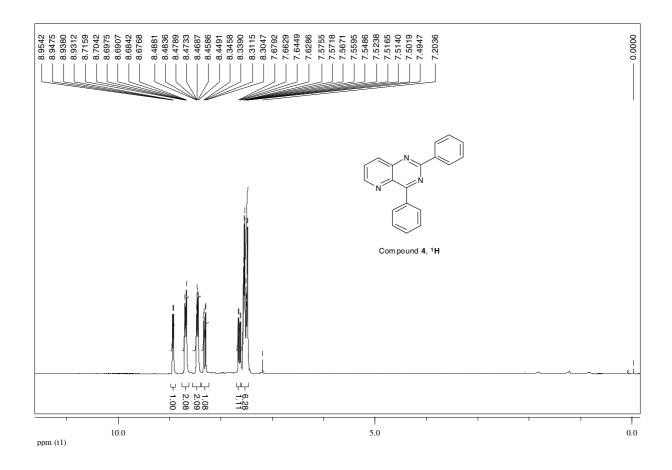
4-Phenyl-2-(-2-pyridyl)-pyrido[3,2-*d*]**pyrimidine** (19). Compound 19 was obtained from 3 with 2-PySnBu₃ following the Procedure **G** after 14h and isolated after flash chromatography (PE:EtOAc:Et₃N, 5:4:1) as a yellow solid in a 77% yield. Mp 145-146°C; IR (cm⁻¹) v 1541, 1472, 1450, 1378, 1336, 811, 771, 746, 697; ¹H NMR (250 MHz, CDCl₃) δ 7.42-7.47 (m, 1H, H_{Pyr}), 7.59-7.61 (m, 3H, H_{Ph}), 7.82 (dd, 1H, J = 4.0 Hz, J = 8.5 Hz, H₇), 7.89-7.96 (m, 1H, H_{Pyr}), 8.47-8.51 (m, 2H, H_{Ph}), 8.66 (dd, 1H, J = 1.7 Hz, J = 8.5 Hz, H₈), 8.84 (d, 1H, J = 7.5 Hz, H_{Pyr}), 8.94 (d, 1H, J = 3.7 Hz, H_{Pyr}), 9.09 (dd, 1H, J = 1.7 Hz, J = 4.0 Hz, H₆); ¹³C NMR (62.5 MHz, CDCl₃) δ 124.7 (CH), 125.0 (CH), 128.0 (CH), 128.3 (2xCH), 130.9 (CH), 131.9 (2xCH), 136.2 (Cq), 137.1 (CH), 137.8 (CH), 138.2 (Cq), 148.5 (Cq), 150.4 (CH), 151.8 (Cq), 154.9 (CH), 159.6 (Cq), 167.1 (Cq); HRMS (EI-MS): m/z calcd for C₁₈H₁₂N₄: 284.1062, found: 284.1069.

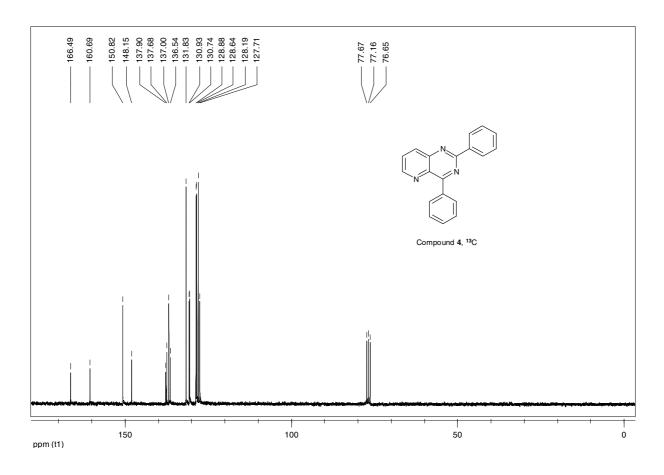
4-(-2-Furyl)-2-phenyl-pyrido[3,2-d]**pyrimidine** (20). Compound 20 was obtained from 9 with PhB(OH)₂ following the Procedure **G** after 24h and isolated after flash chromatography (PE:EtOAc, 95:5) as a tan solid in a 52% yield. Alternatively, compound 20 was obtained following the Procedure **E** from 22 with 2-furylSnBu₃ after 10 min in a 89% yield. Mp 127-128°C; IR (cm⁻¹) v 1572, 1540, 1473, 1454, 1330, 1022, 807, 762, 712; ¹H NMR (250 MHz, CDCl₃) δ 6.73 (dd, 1H, J = 1.5 Hz, J = 3.2 Hz, H_{het}), 7.54-7.56 (m, 3H, H_{Ph}), 7.78 (dd, 1H, J =

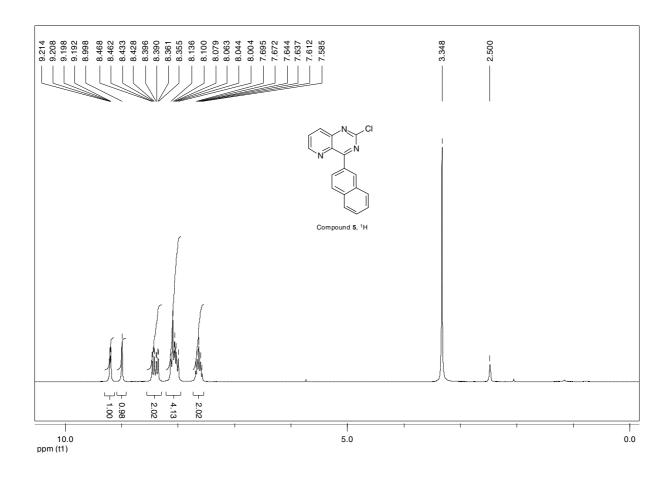
4.0 Hz, J = 8.7 Hz, H₇), 7.86 (s, 1H, H_{het}), 8.35 (d, 1H, J = 1.5 Hz, H_{het}), 8.35-8.40 (m, 1H, H₈), 8.68-8.71 (m, 2H, H_{Ph}), 9.01 (dd, 1H, J = 1.5 Hz, J =4.0 Hz, H₆); ¹³C NMR (62.5 MHz, CDCl₃) δ 113.1 (CH), 122.5 (CH), 128.0 (CH), 128.8 (2xCH), 129.0 (2xCH), 131.0 (CH), 136.2 (Cq), 137.1 (CH), 137.8 (Cq), 146.4 (CH), 147.7 (Cq), 150.0 (Cq), 150.7 (CH), 155.5 (Cq), 161.2 (Cq); HRMS (EI-MS): m/z calcd for C₁₇H₁₁N₃O: 273.0902, found: 273.0901.


4-(-2-Benzenesulfonyl-1H-indolyl)-2-phenyl-pyrido[3,2-*d*]**pyrimidine** (21). Compound 21 was obtained from 10 with PhB(OH)₂ following the Procedure G after 24h and isolated after flash chromatography (PE:EtOAc, 95:5) as a pale brown solid in a 58% yield. Alternatively, compound 21 was obtained following the Procedure E from 22 with 2-(SnBu₃)-*N*-SO₂Ph)indole after 30 min in a 75% yield. Mp 202-203°C; IR (cm⁻¹) v 1545, 1444, 1368, 1249, 1178, 1091, 808, 749, 710; ¹H NMR (250 MHz, CDCl₃) δ 7.16 (s, 1H, H_{indol}), 7.29-7.41 (m, 4H, H_{arom}), 7.48-7.61 (m, 5H, H_{Ph}), 7.78 (m, 3H, H_{Ph}), 8.16 (d, 1H, J = 8.5 Hz, H₇), 8.46 (dd, 1H, J = 1.5 Hz, J = 8.5 Hz, H₈), 8.61-8.64 (m, 2H, H_{Ph}), 9.03 (dd, 1H, J = 1.5 Hz, J = 4.0 Hz, H₆); ¹³C NMR (62.5 MHz, CDCl₃) δ 115.5 (CH), 116.7 (CH), 122.1 (CH), 124.3 (CH), 126.0 (CH), 127.2 (2xCH), 128.4 (CH), 128.8 (2xCH), 129.0 (2xCH), 129.1 (2xCH), 130.1 (Cq), 131.2 (CH), 133.7 (CH), 136.0 (Cq), 136.7 (CH), 137.3 (Cq), 137.8 (Cq), 138.0 (Cq), 139.2 (Cq), 147.1 (Cq), 151.7 (CH), 160.5 (Cq), 162.6 (Cq) ppm. HRMS (EI-MS): m/z calcd for C₂₇H₁₈N₄O₂S: 462.1150, found: 462.1159.


4-isopropylsulfanyl-2-phenyl-pyrido[3,2-d]pyrimidine (22). Compound 22 was obtained with PhB(OH)₂ following the Procedure C after 1h and isolated after flash chromatography (DCM:Pentane, 6:4) as a beige solid in a 90% yield . Mp 110-110°C; IR (cm⁻¹) v 1536, 1466, 1446, 1380, 1326, 1242, 1006, 858, 711; ¹H RMN (250 MHZ, CDCl₃) δ 1.60 (d, 6H, J = 6.9 Hz, CH₃), 4.33-4.44 (m, 1H, J = 6.9 Hz, CH), 7.49-7.55 (m, 3H, H_{Ph}), 7.72 (dd, 1H, J = 4.1, 8.5 Hz, H₇), 8.26 (dd, 1H, J = 1.6, 8.5 Hz, H₈), 8.59-8.63 (m, 2H, H_{Ph}), 8.85 (dd, 1H, J = 1.6, 4.1 Hz, H₆); ¹³C RMN (62.5 MHZ, CDCl₃) δ 22.8 (2xCH₃), 34.8 (CH), 128.5 (CH),


128.7 (2xCH), 128.8 (2xCH), 131.0 (CH), 136.9 (CH), 137.7 (Cq), 138.3 (Cq), 144.4 (Cq), 149.6 (CH), 159.7 (Cq), 174.3 (Cq) ppm. HRMS (EI-MS): m/z calcd for C₁₆H₁₅N₃S: 282.1060, found: 282.1060.


4-isopropylsulfanyl-2-(3-methoxyphenyl)-pyrido[3,2-*d*]**pyrimidine** (23). Compound 23 was obtained with 3-OMePhB(OH)₂ following the Procedure C after 3h and isolated after flash chromatography (PE:DCM, 2:8) as a yellow solid in a 81% yield . Mp 115-116°C; IR (cm⁻¹) v 1596, 1536, 1434, 1318, 1244, 1038, 1006, 820, 732; **RMN** ¹**H** (250 MHZ, CDCl₃) δ 1.61 (d, 6H, J = 6.6 Hz, CH₃), 3.95 (s, 3H, OCH₃), 4.33-4.44 (m, 1H, J = 6.6 Hz, CH), 7.06 (dd, 1H, J = 2.5, 8.2 Hz, **H**_{arom}), 7.45 (t, 1H, J = 8.2 Hz, **H**_{arom}), 7.74 (dd, 1H, J = 4.1, 8.5 Hz, **H**₇), 8.18-8.31 (m, 3H, **H**₈, **H**_{arom}), 8.86 (dd, 1H, J = 1.6, 4.1 Hz, **H**₆); **RMN** ¹³C (62.5 MHZ, CDCl₃) δ 22.7 (2xCH₃), 34.8 (CH), 55.4 (OCH₃), 113.6 (CH), 117.1 (CH), 121.4 (CH), 128.4 (Cq), 129.6 (CH), 136.9 (CH), 138.3 (Cq), 139.0 (Cq), 144.3 (Cq), 149.6 (CH), 159.3 (Cq), 159.9 (Cq), 174.2 (Cq) ppm. HRMS (EI-MS): m/z calcd for C₂₇H₁₈N₄O₂S: 311.1092, found: 311.1087.


4-isopropylsulfanyl-2-(2-thienyl)-pyrido[3,2-*d*]**pyrimidine (24).** Compound **24** was obtained with 2-thienylPhB(OH)₂ following the Procedure C after 3h and isolated after flash chromatography (PE:EtOAc, 95:5) as a beige solid in a 73% yield . Mp 118-119°C; IR (cm⁻¹) ν 1646, 1534, 1439, 1372, 1322, 1236, 1007, 873, 729; **RMN** ¹**H** (250 MHZ, CDCl₃) δ 1.58 (d, 6H, J = 6.3 Hz, C**H**₃), 4.20-4.36 (m, 1H, J = 6.3 Hz, C**H**), 7.16 (dd, 1H, J = 3.8, 5.0 Hz, **H**_{het}), 7.50 (dd, 1H, J = 1.3, 5.0 Hz, **H**_{het}), 7.67 (dd, 1H, J = 4.1, 8.5 Hz, **H**₇), 8.08 (dd, 1H, J = 1.3, 3.8 Hz, **H**_{het}), 8.17 (dd, 1H, J = 1.6, 8.5 Hz, **H**₈), 8.79 (dd, 1H, J = 1.6, 4.1 Hz, **H**₆); **RMN** ¹³**C** (62.5 MHZ, CDCl₃) δ: 22.7 (2xCH₃), 35.0 (CH), 128.4 (CH), 128.5 (CH), 129.7 (CH), 130.6 (CH), 136.4 (CH), 138.0 (Cq), 143.6 (Cq), 144.4 (Cq), 149.1 (CH), 156.5 (Cq), 174.3 (Cq) ppm. HRMS (EI-MS): m/z calcd for C₁₄H₁₃N₃S₂: 288.0629, found: 288.0633.

