Supporting Information for

Chiral Molecular Ferromagnets Based on Copper(II) Polymers with End-On Azido Bridges

Zhi-Guo Gu, You Song, Jing-Lin Zuo*, and Xiao-Zeng You
Coordination Chemistry Institute and the State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, China

Index Page
Figure S1. Structural model for $\mathbf{1}$ involving organic molecules separating the S2copper-azido layers.
Figure S2. $1 / \chi_{\mathrm{M}}$ versus T in an applied field of 2 kOe for $\mathbf{1}$. S2
Figure S3. Magnetization versus field up to $H=70 \mathrm{kOe}$ at 1.8 K for $\mathbf{1}$. The S3insert shows the hysteresis loop in the $\pm 2 \mathrm{kOe}$ range at $T=1.8 \mathrm{~K}$.
Magnetic susceptibility data simulation for 1 S3

Figure S1. Structural model for $\mathbf{1}$ involving organic molecules separating the copper-azido layers. Color coding: Cu (light blue), N (blue), C (black, green, purple).

Figure S2. $1 / \chi_{\mathrm{M}}$ versus T in an applied field of 2 kOe for $\mathbf{1}$. The solid line is the best fit to the Curie-Weiss law.

Figure S3. Magnetization versus field up to $H=70 \mathrm{kOe}$ at 1.8 K for $\mathbf{1}$. The insert shows the hysteresis loop in the $\pm 2 \mathrm{kOe}$ range at $T=1.8 \mathrm{~K}$.

Magnetic susceptibility data simulation for 1:
For the two-dimensional complex based on interacting chains, the Hamiltonian is:
$\hat{H}_{\text {chain }}=-J \sum_{i=1}^{n-1} \hat{S}_{A_{i}} \hat{S}_{A_{i+1}}$
$\hat{H}=-J \sum_{i=1}^{n-1} \hat{S}_{A_{i}} \hat{S}_{A_{+1}}-z J^{\prime} \hat{S}_{\text {chain }} \hat{S}_{C u}$
Van Vleck equation:
$\chi_{\text {chain }}=\frac{N g^{2} \beta^{2}}{4 k T}\left[\frac{N}{D}\right]^{2 / 3}$
$N=1.0+5.79799 y+16.90265 y^{2}+29.37688 y^{3}+29.83295 y^{4}+14.03691 y^{5}$
$D=1.0+2.79799 y+7.00867 y^{2}+8.65386 y^{3}+4.57431 y^{4}$ and $y=J / 2 k T$
$\chi=\chi_{\text {chain }}+0.5 \chi_{C u}$
$\chi_{m}=\frac{\chi}{1-\chi\left(2 z J^{\prime} / N g^{2} \beta^{2}\right)}$

