Supporting Information

Rhodium-Catalyzed Asymmetric Rearrangement of Alkynyl Alkenyl Carbinols: Synthetic Equivalent to Asymmetric Conjugate Alkynylation of Enones

Takahiro Nishimura,* Taisuke Katoh, Keishi Takatsu, Ryo Shintani, and Tamio Hayashi*
Department of Chemistry, Graduate School of Science
Kyoto University, Kyoto 606-8502, Japan
E-mail: tnishi@kuchem.kyoto-u.ac.jp; thayashi@kuchem.kyoto-u.ac.jp

List of Supporting Information:

General method and materials S-2
Experimental procedure and characterization data for compounds 3a-3h S-2~S-4
compounds 2a-2h S-4~S-7
Transformation of compound 2a into 4 S-7~S-8
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra
compound 3a S-9
compound 3c S-10
compound $\mathbf{3 e}$ S-11
compound (E, E)-3f S-12
compound $\mathbf{3 g}$ S-13
compound 2b S-14
compound 2c S-15
compound 2 e S-16
compound $2 \mathbf{f}$ S-17
compound $\mathbf{2 g}$ S-18

General. All anaerobic and moisture-sensitive manipulations were carried out with standard Schlenk techniques under predried nitrogen or glovebox techniques under argon. NMR spectra were recorded on a JEOL JNM LA- 500 spectrometer (500 MHz for ${ }^{1} \mathrm{H}, 125 \mathrm{MHz}$ for ${ }^{13} \mathrm{C}$). Chemical shifts are reported in $\delta \mathrm{ppm}$ referenced to an internal SiMe_{4} standard for ${ }^{1} \mathrm{H}$ NMR, chloroform- d ($\delta 77.00$) for ${ }^{13} \mathrm{C}$ NMR: the following abbreviations are used; s: singlet, d: doublet, t : triplet, q: quartet, m: multiplet. Elemental analyses were performed at the Microanalytical Center, Kyoto University. High-resolution mass spectra were obtained with a Bruker micrOTOF spectrometer.

Materials. Toluene and THF were purified by passing through a neutral alumina column under N_{2}. Rhodium complexes, $[\mathrm{Rh}(\mathrm{OH})(\operatorname{cod})]_{2}{ }^{1}$ was prepared according to the reported procedure. The starting alcohols $\mathbf{3}$ were prepared by the reaction of (t-butyldimethylsilyl)ethynyllithium with the corresponding enones, 1-phenyl-2-penten-1-one, ${ }^{2}$ 1 -(2-furanyl)-2-buten-1-one, ${ }^{3}$ 1-phenyl-1,4-hexadien-3-one, ${ }^{4} 3$-penten-2-one, ${ }^{5}$ and 1 -indenone, ${ }^{6}$ according to the reported procedures. 1-Phenyl-2-buten-1-one was purchased and used after purification by column chromatography (silica gel, hexane/ethyl acetate $=20 / 1$).

Preparation of compound 3a. To a solution of (t-butyldimethylsilyl)ethynyllithium prepared from (t-butyldimethylsilyl)acetylene ($934 \mu \mathrm{~L}, 5.0 \mathrm{mmol}$) and n-butyllithium ($3.2 \mathrm{~mL}, 5.1$ mmol) in THF (5 mL) was added (E)-1-phenyl-2-buten-1-one (1a) ($0.71 \mathrm{~mL}, 5.0 \mathrm{mmol}$) at $-78{ }^{\circ} \mathrm{C}$ and the mixture was slowly warmed up to room temperature. After stirring overnight, the mixture was quenched with aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with EtOAc. The EtOAc extracts were washed with brine, dried over MgSO_{4}, and concentrated on a rotary evaporator. The residue was subjected to silica gel column chromatography (eluent, hexane/ethyl acetate $=20 / 1$) to give compound $\mathbf{3 a}$ (1.0 g, $3.5 \mathrm{mmol}, 70 \%$ yield).

Compound 3a: Colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.15(\mathrm{~s}, 3 \mathrm{H}), 0.16(\mathrm{~s}, 3 \mathrm{H})$, 0.97 (s, 9H), 1.72 (dd, $J=6.6,1.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.44$ ($\mathrm{s}, 1 \mathrm{H}$), 5.69 (dq, $J=15.2$, $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.03$ (dq, $J=15.2,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.36$ $(\mathrm{m}, 2 \mathrm{H}), 7.60-7.63(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-4.63,-4.61,16.6,17.4$,

[^0]26.1, 73.1, 90.0, 107.3, 125.7, 125.7, 127.7, 128.2, 135.0, 143.8. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{NaOSi}(\mathrm{M}+\mathrm{Na})^{+} 309.1645$, found 309.1653.

Compound 3b: Colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.15$ (s, 3H), $0.16(\mathrm{~s}, 3 \mathrm{H})$, $0.97(\mathrm{~s}, 9 \mathrm{H}), 0.99(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.08$ (qdd, $J=7.5,6.4,1.6 \mathrm{~Hz}, 2 \mathrm{H})$, $2.46(\mathrm{~s}, 1 \mathrm{H}), 5.67(\mathrm{dt}, J=15.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{dt}, J=15.3,6.4 \mathrm{~Hz}, 1 \mathrm{H})$, 7.25-7.29 (m, 1H), 7.31-7.37 (m, 2H), 7.60-7.65 (m, 2H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-4.7,-4.6,13.2,16.6,24.8,26.1,73.1,90.1,107.4,125.6,127.6,128.2,132.5,132.8$, 143.9. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{OSi}$ C, 75.94; H, 9.39. Found: C, 75.68; H, 9.23.

Compound 3c: Colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.15(\mathrm{~s}, 6 \mathrm{H}), 0.96(\mathrm{~s}, 9 \mathrm{H})$, 1.77 (dd, $J=6.6,1.7 \mathrm{~Hz}, 3 \mathrm{H}), 2.53(\mathrm{~s}, 1 \mathrm{H}), 5.86(\mathrm{dq}, J=15.2,1.7 \mathrm{~Hz}, 1 \mathrm{H})$, 6.12 (dq, $J=15.2,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{dd}, J=3.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.27(\mathrm{dd}, J=$ $3.3,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{dd}, \mathrm{J}=1.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta-4.71$, $-4.70,16.6,17.4,26.1,68.4,89.6,104.7,106.9,110.2,127.9,131.0,142.8,155.0$. HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{NaOSi}(\mathrm{M}+\mathrm{Na})^{+}$299.1438, found 299.1439.

Compound 3d: Colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.11$ (s, 3H), $0.12(\mathrm{~s}, 3 \mathrm{H})$, $0.94(\mathrm{~s}, 9 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}), 1.72$ (dd, $J=6.6,1.4 \mathrm{~Hz}, 3 \mathrm{H}), 2.09(\mathrm{~s}, 1 \mathrm{H}), 5.59(\mathrm{dq}$, $J=15.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.99(\mathrm{dq}, J=15.3,6.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $-4.62,-4.61,16.5,17.3,26.1,30.5,68.2,86.9,108.8,125.4,135.2$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{OSi}: \mathrm{C}$, 69.58; H, 10.78. Found: C, 69.37; H, 11.02.

Compound 3e: Colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.12(\mathrm{~s}, 6 \mathrm{H}), 0.89(\mathrm{t}, J=$ $6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{~s}, 9 \mathrm{H}), 1.24-1.43(\mathrm{~m}, 6 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}), 2.00(\mathrm{~s}, 1 \mathrm{H})$, 2.05 (tdd, $J=7.3,6.9,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.57$ (dt, $J=15.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), 5.99 (dt, $J=15.3,6.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta-4.7,14.0,16.5,22.5,26.1,28.7,30.5,31.3,31.7,68.2$, 86.9, 108.9, 130.9, 133.9. HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{32} \mathrm{NaOSi}(\mathrm{M}+\mathrm{Na})^{+}$303.2115, found 303.2116.

Compound (E, E)-3f: Colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.17(\mathrm{~s}, 6 \mathrm{H})$, $0.99(\mathrm{~s}, 9 \mathrm{H}), 1.75(\mathrm{dd}, J=6.7,1.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.31(\mathrm{~s}, 1 \mathrm{H}), 5.63(\mathrm{dq}, J=$ $15.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{dq}, J=15.3,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{~d}, J=15.9$ $\mathrm{Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.28-7.33(\mathrm{~m}$, 2H), 7.28-7.33 (m, 2H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)-4.6,16.5,17.4,26.1,71.4,90.1,105.9,126.6,126.8$, 127.8, 128.5, 129.5, 131.6, 133.0, 136.3. HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{NaOSi}(\mathrm{M}+\mathrm{Na})^{+} 335.1802$,

Compound (E,Z)-3f: Colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.15(\mathrm{~s}, 3 \mathrm{H})$, $0.16(\mathrm{~s}, 3 \mathrm{H}), 0.98(\mathrm{~s}, 9 \mathrm{H}), 1.85(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 2.32(\mathrm{~s}, 1 \mathrm{H})$, $5.60-5.68(\mathrm{~m}, 2 \mathrm{H}), 6.27(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=15.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.23-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.32(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.42(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\delta\left(\mathrm{CDCl}_{3}\right)-4.68,-4.66,14.1,16.6,26.1,70.0,89.4,106.6,126.8,127.9,128.2,128.6$, 129.5, 131.6, 133.0, 136.3. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{OSi}$: C, 76.86; H, 9.03. Found: C, 76.47; H, 8.81.

Compound 3g: Colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}$, $3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 2.28(\mathrm{~s}, 1 \mathrm{H}), 6.32(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=5.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.53(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-4.79,-4.77,16.6,26.0,77.0,85.9,104.2$, 121.7, 122.6, 127.1, 129.1, 132.3, 139.0, 141.3, 146.7. HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{NaOSi}$ $(\mathrm{M}+\mathrm{Na})^{+}$293.1332, found 293.1339.

Compound 3h: Colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.90-1.10(\mathrm{~m}, 21 \mathrm{H}), 2.32$ $(\mathrm{s}, 1 \mathrm{H}), 6.32(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.27(\mathrm{~m}, 3 \mathrm{H})$, $7.53(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 11.1,18.5,18.6,77.0,83.9$, 105.8, 121.7, 122.5, 127.0, 129.0, 132.2, 139.1, 141.3, 146.9. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{OSi}$: C, 76.86; $\mathrm{H}, 9.03$. Found: C, 76.57; H, 8.89.

General procedure for rhodium-catalyzed asymmetric rearrangement of alkynyl

alkenyl carbinols (Table 1). A mixture of $[\mathrm{Rh}(\mathrm{OH})(\mathrm{cod})]_{2}(2.3 \mathrm{mg}, 0.005 \mathrm{mmol})$ and (R)-BINAP $(7.5 \mathrm{mg}, 0.012 \mathrm{mmol})$ in toluene $(0.5 \mathrm{~mL})$ was heated at $60^{\circ} \mathrm{C}$ for 5 min . To the mixture was added alcohol $3(0.20 \mathrm{mmol})$ and toluene $(0.5 \mathrm{~mL})$, and it was stirred at $60^{\circ} \mathrm{C}$ for 3 h . The mixture was passed through a short column of silica gel with ethyl acetate as eluent. After evaporation of the solvent, the residue was subjected to a preparative TLC (SiO_{2}, hexane/ethyl acetate) to give compound $\mathbf{2}$. The enantiomeric excess of the product $\mathbf{2}$ was measured by HPLC. The absolute configuration of 2a produced by use of (R)-binap was determined to be $S-(-)$, which is assigned by comparison of the specific rotation ($[\alpha]^{20}{ }_{\mathrm{D}} \quad-15 \quad\left(c 1.50, \mathrm{Et}_{2} \mathrm{O}\right)$) of (R)-3-methyl-1-phenyl-1-pentanone (4), derived from 2a in two steps, with the reported value (vide infra). ${ }^{7} \quad$ For others, they were assigned by consideration of the stereochemical pathway.

[^1]Compound 2a (88% yield, 94% ee (S)): Colorless oil. The ee was measured by HPLC (Chiralcel OJ-H column $\times 2,0.2 \mathrm{~mL} / \mathrm{min}$, hexane $/ 2$-propanol $\left.=500 / 1,224 \mathrm{~nm}, t_{1}=44.1 \mathrm{~min}(S), t_{2}=46.0 \mathrm{~min}(R)\right)$; $[\alpha]^{20}{ }_{\mathrm{D}}-4\left(c \quad 0.90, \mathrm{CHCl}_{3}\right)$ for 94% ee. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.04(\mathrm{~s}, 6 \mathrm{H})$, $0.88(\mathrm{~s}, 9 \mathrm{H}), 1.27(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 3.01(\mathrm{dd}, J=15.8,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.21$ (dqd, $J=7.3,6.8,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{dd}, J=15.8,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-4.5,16.5,21.1,23.0,26.0,45.4,82.7$, 111.2, 128.2, 128.6, 133.1, 137.1, 198.0. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{OSi}$: C, 75.46; H, 9.15. Found: C, 75.36; H, 9.24.

Compound 2b (91% yield, 98% ee (S)): Colorless oil. The ee was measured by HPLC (Chiralcel OJ-H column $\times 2,0.2 \mathrm{~mL} / \mathrm{min}$, hexane $/ 2$-propanol $\left.=500 / 1,224 \mathrm{~nm}, t_{1}=41.7 \mathrm{~min}(S), t_{2}=43.9 \mathrm{~min}(R)\right)$; $[\alpha]^{20}{ }_{\mathrm{D}}-9\left(c 0.75, \mathrm{CHCl}_{3}\right)$ for 98% ee. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.03(\mathrm{~s}, 6 \mathrm{H})$, $0.88(\mathrm{~s}, 9 \mathrm{H}), 1.06(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.42-1.52(\mathrm{~m}, 1 \mathrm{H}), 1.57-1.69(\mathrm{~m}, 1 \mathrm{H})$, 2.98-3.10 (m, 2H), $3.24(\mathrm{dd}, J=15.2,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.96(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-4.5,11.6,16.5,26.1,27.9,30.1,43.5,84.0,109.8$, 128.2, 128.6, 133.1, 137.2, 198.2. HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{NaOSi}(\mathrm{M}+\mathrm{Na})^{+} 323.1802$, found 323.1814.
 measured by HPLC (Chiralpak AD-H column $\times 2,0.2 \mathrm{~mL} / \mathrm{min}$, hexane $/ 2$-propanol $=500 / 1,224 \mathrm{~nm}, t_{1}=71.7 \mathrm{~min}(S), t_{2}=78.5 \mathrm{~min}(R)$); $[\alpha]^{20}{ }_{\mathrm{D}}-17\left(c 1.28, \mathrm{CHCl}_{3}\right)$ for 91% ee. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.03(\mathrm{~s}, 6 \mathrm{H})$, $0.87(\mathrm{~s}, 9 \mathrm{H}), 1.25(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 2.85(\mathrm{dd}, J=15.4,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{dd}, J=15.4,6.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.16$ (dqd, $J=7.6,6.8,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{dd}, J=3.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{dd}, J=3.5,0.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.58(\mathrm{dd}, J=1.7,0.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)-4.5,16.4,21.0,23.1,26.0,45.1,82.9,110.7$, 112.3, 117.5, 146.5, 152.9, 187.1. HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{NaOSi}(\mathrm{M}+\mathrm{Na})^{+} 299.1438$, found 299.1441 .

Compound 2d (78\% yield, 98% ee (S)): Colorless oil. The ee was measured by HPLC (Chiralpak AD-H column, $0.5 \mathrm{~mL} / \mathrm{min}$, hexane $/ 2$-propanol $=4 / 1,200$ $\left.\mathrm{nm}, t_{1}=6.2 \mathrm{~min}(S), t_{2}=7.0 \mathrm{~min}(R)\right) ;[\alpha]^{20}{ }_{\mathrm{D}}+19\left(c 1.01, \mathrm{CHCl}_{3}\right)$ for 98% ee. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.06(\mathrm{~s}, 6 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 1.19(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 2.49(\mathrm{dd}, J=$ $16.4,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{dd}, J=16.4,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{dqd}, J=7.2,6.9,6.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR
$\left(\mathrm{CDCl}_{3}\right) \delta-4.5,16.5,20.9,22.7,26.1,30.5,50.4,82.8,110.8,206.5$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{OSi}:$ C, 69.58; H, 10.78. Found: C, 69.80; H, 10.93.

Compound 2e (78% yield, 81% ee (S)): Colorless oil. The enantiomeric purity of $\mathbf{2 e}$ was determined by HPLC analysis of 4-(phenylethynyl)-2-nonanone ($\mathbf{2} \mathbf{e}^{\mathbf{\prime}}$), which was obtained by Sonogashira coupling reaction of 4-ethynyl-2-nonanone with iodobenzene after deprotection of the silyl group on 2e with tetrabutylammonium fluoride (TBAF). $[\alpha]^{20}{ }_{\mathrm{D}}-9\left(c 1.08, \mathrm{CHCl}_{3}\right)$ for 81% ee. ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 1.20-1.55(\mathrm{~m}, 8 \mathrm{H})$, $2.18(\mathrm{~s}, 3 \mathrm{H}), 2.49(\mathrm{dd}, J=16.0,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{dd}, J=16.0,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.84-2.92(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-4.51,-4.50,13.9,16.5,22.5,26.0,26.7,28.3,30.5,31.4,34.7,48.9,83.9,109.7$, 206.7. HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{32} \mathrm{NaOSi}(\mathrm{M}+\mathrm{Na})^{+} 303.2115$, found 303.2118. Compound $\mathbf{2} \mathbf{e}^{\prime}$ [CAS\#:146491-95-4]: Colorless oil (95% from 2e). The ee was measured
 by HPLC (Chiralcel OD-H column, $0.5 \mathrm{~mL} / \mathrm{min}$, hexane $/ 2$-propanol $=200 / 1$, $\left.254 \mathrm{~nm}, t_{1}=18.6 \mathrm{~min}(S), t_{2}=24.1 \mathrm{~min}(R)\right) ;[\alpha]^{20}{ }_{\mathrm{D}}-12\left(c 0.70, \mathrm{CHCl}_{3}\right)$ for 81% ee. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.90(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.25-2.60(\mathrm{~m}, 8 \mathrm{H})$, $2.21(\mathrm{~s}, 3 \mathrm{H}), 2.59(\mathrm{dd}, J=16.2,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{dd}, J=16.2,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.02-3.12(\mathrm{~m}, 1 \mathrm{H})$, 7.25-7.30 (m, 3H), 7.35-7.39 (m, 2H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 14.0,22.5,26.9,27.8,30.5,31.5,34.8$, 49.0, 81.9, 92.0, 123.7, 127.7, 128.1, 131.6, 206.8.

Compound $2 f$ (78% yield with 96% ee (S) from ((E, E)-3f, 88% yield with 81% ee (R) from $(E, Z)-\mathbf{3 f})$: Colorless oil. The ee was measured by HPLC (Chiralcel OJ-H column, $0.5 \mathrm{~mL} / \mathrm{min}$, hexane $/ 2-\mathrm{propanol}=$ $\left.500 / 1,224 \mathrm{~nm}, t_{1}=15.8 \mathrm{~min}(S), t_{2}=19.0 \mathrm{~min}(R)\right) ;[\alpha]_{\mathrm{D}}^{20}-14(c 0.81$, CHCl_{3}) for 96% ee $(S) ;[\alpha]^{20}{ }_{\mathrm{D}}+13\left(c 1.29, \mathrm{CHCl}_{3}\right)$ for 81% ee $(R) .{ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 0.05(\mathrm{~s}, 6 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 1.24(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 2.72(\mathrm{dd}, J=15.8,7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $2.94(\mathrm{dd}, J=15.8,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{dqd}, \mathrm{J}=7.6,6.9,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.36-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.52-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-4.5,16.5$, $21.0,23.1,26.0,47.5,82.8,111.1,126.4,128.3,129.0,130.5,134.5,143.0,198.0$. HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{NaOSi}(\mathrm{M}+\mathrm{Na})^{+} 335.1802$, found 335.1804.

Compound 2g (86% yield, 71% ee (S)): White solid. The ee was measured by HPLC (Chiralpak AD-H column, $0.5 \mathrm{~mL} / \mathrm{min}$, hexane $/ 2$-propanol $=$ $\left.500 / 1,224 \mathrm{~nm}, t_{1}=23.4 \mathrm{~min}(S), t_{2}=27.2 \mathrm{~min}(R)\right) ;[\alpha]^{20}{ }_{\mathrm{D}}+48(c 0.86$, CHCl_{3}) for 71% ee. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.92(\mathrm{~s}$, $9 \mathrm{H}), 2.78(\mathrm{dd}, J=18.9,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{dd}, J=18.9,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.27$
(dd, $J=8.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.47(\mathrm{~m}, 1 \mathrm{H}), 7.67-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.75(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-4.6,16.5,26.1,30.6,44.4,84.6,106.4,123.6,126.3,128.3,135.3,135.6,154.2,203.8$. HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{NaOSi}(\mathrm{M}+\mathrm{Na})^{+}$293.1332, found 293.1338.

Procedure for rhodium-catalyzed asymmetric rearrangement of 3 h with a chiral

 diene ligand $\left[(S, S)\right.$-Ph-bod*] (eq 3). A mixture of (S, S)-Ph-bod** ${ }^{*}(3.1 \mathrm{mg}, 0.012 \mathrm{mmol})$ and $\left[\mathrm{RhCl}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]_{2}(1.9 \mathrm{mg}, 0.005 \mathrm{mmol})$ in toluene $(0.5 \mathrm{~mL})$ was stirred at room temperature for 10 min . To this solution were added $\mathrm{Cs}_{2} \mathrm{CO}_{3}(6.5 \mathrm{mg}, 0.020 \mathrm{mmol})$, alcohol $\mathbf{3 h}(62.4 \mathrm{mg}, 0.20 \mathrm{mmol})$ and toluene $(0.5 \mathrm{~mL})$, and the mixture was heated at $80^{\circ} \mathrm{C}$ for 15 h . The reaction mixture was passed through a short column of silica gel with ethyl acetate as eluent. After evaporation of the solvent, the residue was subjected to a preparative TLC (eluent, hexane/ ethyl acetate $=10 / 1$) to give compound $\mathbf{2 h}$ ($57.0 \mathrm{mg}, 0.18 \mathrm{mmol}, 91 \%$ yield).

Compound $\mathbf{2 h}$ (91% yield, 97% ee (R)): White solid. The ee was measured by HPLC (Chiralpak AD-H column, $0.2 \mathrm{~mL} / \mathrm{min}$, hexane $/ 2$-propanol $=200 / 1,224$ $\left.\mathrm{nm}, t_{1}=28.1 \mathrm{~min}(R), t_{2}=30.8 \mathrm{~min}(S)\right) ;[\alpha]^{20}{ }_{\mathrm{D}}-46\left(c 1.11, \mathrm{CHCl}_{3}\right)$ for 97% ee. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.05(\mathrm{~s}, 21 \mathrm{H}), 2.78(\mathrm{dd}, J=18.7,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{dd}, J=$ $18.7,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{dd}, J=8.0,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.65-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.75(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 11.2,18.6,30.6,44.6,82.4,107.6$, 123.5, 126.2, 128.3, 135.2, 135.5, 154.5, 203.9. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{OSi}$ C, 76.86; H, 9.03. Found: C,76.65 ; H, 9.01.

Transformation of compound 2a into 4.

To a solution of $\mathbf{2 a}(106.4 \mathrm{mg}, 0.37 \mathrm{mmol})$ in THF (1.0 mL) was added tetrabutylammonium fluoride (TBAF) solution ($0.37 \mathrm{~mL}, 1.0 \mathrm{M}$ in THF), and the mixture was stirred at room temperature for 2 h . The mixture was quenched with $\mathrm{H}_{2} \mathrm{O}$ and extracted with ethyl acetate. The combined organic layer was washed with brine, dried over MgSO_{4}, filtered, and concentrated on a rotary evaporator. The residue was subjected to a preparative $\mathrm{TLC}\left(\mathrm{SiO}_{2}\right.$, hexane/ethyl acetate $=$ $10 / 1$) to give 3-methyl-1-phenyl-4-pentyn-1-one ($56.8 \mathrm{mg}, 0.33 \mathrm{mmol}, 90 \%$). A mixture of this acetylenic ketone ($56.8 \mathrm{mg}, 0.33 \mathrm{mmol}$) and $\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}(17.0 \mathrm{mg}, 0.018 \mathrm{mmol})$ in ethanol (2.0
mL) was stirred at room temperature for 12 h under $\mathrm{H}_{2}(1 \mathrm{~atm})$. The mixture was filtered though a pad of celite and the filtrate was concentrated on a rotary evaporator. The residue was subjected to a preparative TLC $\left(\mathrm{SiO}_{2}\right.$, hexane/ethyl acetate $\left.=20 / 1\right)$ to give compound $4(48.0 \mathrm{mg}, 0.27 \mathrm{mmol}$, 83%). Compound 4^{7} (93% ee (R)): Colorless oil. The ee was measured by HPLC (Chiralcel OD-H column $\times 3,0.2 \mathrm{~mL} / \mathrm{min}$, hexane $/ 2$-propanol $=500 / 1,224 \mathrm{~nm} t_{1}=106.0 \mathrm{~min}(R), t_{2}=110.4$ $\min (S)) ;[\alpha]^{20}{ }_{\mathrm{D}}-15\left(c 1.50, \mathrm{Et}_{2} \mathrm{O}\right)$ for 93% ee. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.93(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.96$ $(\mathrm{d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.21-1.34(\mathrm{~m}, 1 \mathrm{H}), 1.39-1.49(\mathrm{~m}, 1 \mathrm{H}), 2.01-2.14(\mathrm{~m}, 1 \mathrm{H}), 2.75(\mathrm{dd}, J=15.7$, $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{dd}, J=15.7,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.95$ (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$).

[^0]: ${ }^{1}$ Uson, R.; Oro, L. A.; Cabeza, J. A. Inorg. Synth. 1985, 23, 126.
 ${ }^{2}$ Resek, J. E.; Meyers, A, I. Tetrahedron Lett. 1995, 36, 7051.
 ${ }^{3}$ Kondo, T.; Mukai, T.; Watanabe, Y. J. Org. Chem. 1991, 56, 487.
 ${ }^{4}$ Lee, P. H.; Park, J.; Lee, K.; Kim, H.-C. Tetrahedron Lett. 1999, 40, 7109.
 ${ }^{5}$ Arisawa, M.; Torisawa, Y.; Kawahara, M.; Yamanaka, M.; Nishida, A.; Nakagawa, M. J. Org. Chem. 1997, 62, 4327.
 ${ }^{6}$ Nicolaou, K. C.; Montagnon, T.; Baran, P. S. Angew. Chem. Int. Ed. 2002, 41, 1386.

[^1]: ${ }^{7}$ Soai, K.; Okudo, M.; Okamoto, M. Tetrahedron Lett. 1991, 32, 95.

