Absence of Curie Relaxation in Paramagnetic Solids Yields Long ¹H Coherence Lifetimes

 Gwendal Kervern,^(a) Stefan Steuernagel, ^(b) Frank Engelke,^(b) Guido Pintacuda^(a) and Lyndon Emsley^(a)
(a) Laboratoire de Chimie, UMR 5182 CNRS – ÉNS Lyon, École Normale Supérieure de Lyon, 69364 Lyon, France;
(b) Bruker BioSpin GmbH, D 76287 Rheinstetten, Germany.

Supporting Information

1. Predicted paramagnetic relaxation enhancements

The expression for the paramagnetic enhancement of longitudinal and transverse relaxation of a nuclear spin in the presence of a paramagnetic center with a fast-relaxing electronic spin, according to the Solomon-Bloembergen mechanism (R_1^{SB} and R_2^{SB}) [1,2] and to the Curie mechanism (R_1^{C} and R_2^{C}) are the following [1,3]:

$$\begin{split} R_2^{SB} &= \frac{1}{15} \left(\frac{\mu_0}{4\pi} \right)^2 \frac{\hbar^2 \gamma_I^2 g_J^2 \mu_B^2 J(J+1)}{r_{Ln-I}^6} \left(4 \tau_c + \frac{\tau_c}{1 + (\omega_I - \omega_S)^2 \tau_c^2} + \frac{3 \tau_c}{1 + \omega_I^2 \tau_c^2} + \frac{6 \tau_c}{1 + \omega_S^2 \tau_c^2} + \frac{6 \tau_c}{1 + (\omega_I - \omega_S)^2 \tau_c^2} \right) \\ &+ \frac{1}{3} J(J+1) \left(\frac{A}{\hbar} \right)^2 \left(\tau_e + \frac{\tau_e}{1 + \omega_S^2 \tau_e^2} \right) \\ R_2^{Curie} &= \frac{1}{5} \left(\frac{\mu_0}{4 \cdot \pi} \right)^2 \frac{\gamma_I^2 B_0^2 \mu_B^4 g_e^4 J^2 (J+1)^2}{r_{Ln-I}^6 (3kT)^2} \left(4 \tau_r + \frac{3 \cdot \tau_r}{1 + (\omega_I \tau_r)^2} \right) \end{split}$$

$$\begin{split} R_1^{SB} &= \frac{2}{15} \left(\frac{\mu_0}{4\pi} \right)^2 \frac{\hbar^2 \gamma_I^2 g_J^2 \mu_B^2 J(J+1)}{r_{Ln-I}^6} \left(\frac{\tau_c}{1 + (\omega_I - \omega_S)^2 \tau_c^2} + \frac{3\tau_c}{1 + \omega_I^2 \tau_c^2} + \frac{6\tau_c}{1 + (\omega_I + \omega_S)^2 \tau_c^2} \right) \\ &+ \frac{2}{3} J(J+1) \left(\frac{A}{\hbar} \right)^2 \left(\frac{\tau_e}{1 + \omega_S^2 \tau_e^2} \right) \\ R_1^{Curie} &= \frac{2}{5} \left(\frac{\mu_0}{4 \cdot \pi} \right)^2 \frac{\gamma_I^2 B_0^2 \mu_B^4 g_e^4 J^2 (J+1)^2}{r_{Ln-I}^6 (3kT)^2} \left(\frac{3 \cdot \tau_r}{1 + (\omega_I \tau_r)^2} \right) \end{split}$$

where γ_I is the magnetogyric ratio of the nuclear spin *I*; ω_I and ω_S are the nuclear and electronic Larmor frequencies. τ_r and τ_e are the rotational and electronic correlation times,

respectively, and $\frac{1}{\tau_c} = \frac{1}{\tau_e} + \frac{1}{\tau_r}$. \hbar is Planck's constant divided by 2π , *A* the Fermi hyperfine coupling constant, μ_0 the vacuum permeability, μ_B Bohr's magneton, B_0 the magnetic field strength, *k* the Boltzmann factor, *T* the temperature, g_J and *J* are the *g*-factor and spin of the lanthanide ion. Finally, $r_{\text{Ln-I}}$ denotes the distance between the lanthanide ion and the nuclear spin *I*. Typical values of the relaxation enhancements are illustrated in Table S1.

R_1^{SB}	30-140 s ⁻¹
R_1^C	165 s ⁻¹
R_2^{SB}	30-150 s ⁻¹
R_2^C	200 s ⁻¹

Table S1. Paramagnetic relaxation enhancements experienced by a proton 5Å from the metal center in a small molecule (τ_R =100 ps) containing Tb³⁺ (*J*=6; *g_J*=3/2; τ_e =2-10·10⁻¹³ s) [1].

2. NMR measurements

All NMR experiments were recorded at a temperature of 30±0.5°C on a Bruker Avance-500 spectrometer operating at a proton frequency of 500 MHz, and equipped with a triple-resonance TXI probe (liquid-state spectra) or with double-resonance 1.3 mm or 2.5 mm CP-MAS probes (solid-state spectra).

A sample for liquid-state NMR spectroscopy was prepared by dissolving about 20 mg of compound (1) in 0.5 ml D2O.

Samples for solid-state NMR spectroscopy were prepared by packing approximately 1 mg of powder into a 1.3 mm zirconia rotor (or approximately 5 mg of powder into a 2.5 mm

rotor). All solid-state NMR spectra were acquired with either a double-resonance 1.3 mm or 2.5 mm CP-MAS probe at 303 K.

As fast MAS efficiently removes a large part of ¹H-¹H dipolar couplings, no heteronuclear nor homonuclear decoupling was applied during acquisition. In the ¹H spectra, the signals were recorded with 1 µs sampling for a total acquisition time of 1 ms. To avoid baseline distortions on the very large spectral width, a rotor-synchronous double spin-echo refocusing sequence employing tanh/tan SHAPs ($\tau_p=50\mu$ s; B_{1max}=200 kHz; $\Delta\omega_{max}/(2\pi)=5$ MHz) was always used before acquisition [4]. The RF nutation frequency used for all pulses was 200 kHz.

Non-selective T_1 relaxation times of the ¹H resonances were measured by an inversionrecovery sequence. In the solid, inversion was performed by a 33 µs tanh/tan SHAP pulse with a B_{1max} of 200 kHz and $\Delta \omega_{max}/(2\pi)=5$ MHz [4]. Ten experiments with relaxation delays in the range between 0.5 ms and 50 ms were recorded using an interscan recovery delay of 5 s. The measured echo peak intensities were fitted to a two-parameter exponential equation.

Paramagnetic enhancements of the R_2 relaxation rates of the ¹H resonances were measured in two ways, (i) in liquids, by evaluating the full line widths at half-height (Δv^p) in the ¹H spectrum, and disregarding the presence of scalar couplings ($R_2^p = \pi \Delta v^p$); (ii) in solids, by evaluating the exponential decay of the echo tops in a CPMG experiment [5], where the FID sampling (up to 10 ms) is interrupted by *n* basic elements of rotor-synchronized tanh/tan SHAP pulse pairs (τ_p =50µs; B_{1max}=200 kHz; $\Delta \omega_{max}/(2\pi)$ =5MHz).

3. Experimental determination of relaxation rates in solution and in the solid

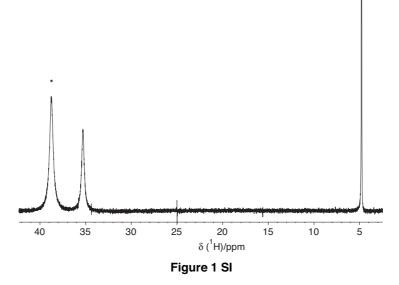
The liquid-state spectrum of (1) (figure 1 SI) shows two lines, at 39 ppm (ortho protons [6]) and at 35 ppm (para proton). The two signals have longitudinal relaxation times of 3.5 and 8.1

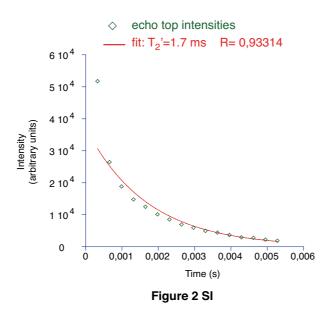
ms, respectively, and transverse relaxation times of 1.4 and 1.96 ms, equivalent to a linewidth of 228 ± 0.5 Hz and 162 ± 0.5 Hz, respectively.

In the solid-state, the ortho and para proton sites are predicted to have largely different dipolar shift anisotropy. In particular, the dipolar anisotropy predicted following Nayeem and Yesinowski (*J. Chem. Phys.* **1988**, *89*, 4600-4608) on the basis of the crystal structure (Cambridge database code: JEXWOY) is in the range 1000-2300 ppm for the para proton, which thus becomes unobservable under MAS, and is not refocused using the SHAP pulses here, tailored for a bandwidth of 1000 ppm. The MAS ¹H spectrum is thus representative of only the ortho protons, whose anisotropy is predicted in the range 500-1000 ppm. The longitudinal (T₁) and transverse (T₂') relaxation times of the ortho protons are measured to be $T_1 = 7.5$ ms and $T_2' = 1.7$ ms (figure 2 SI), respectively, the latter being equivalent to a refocussable linewidth of 187 Hz (R_{fit}=0.93314).

4. Bibliography

[1] Bertini, I.; Luchinat, C. and Parigi, G., Solution NMR of paramagnetic molecules: applications to metallobiomolecules and models. Elsevier: Amsterdam; London, 2001.


[2] Solomon, I. S., Phys. Rev. A 1955, 99, 559-565; Bloembergen, N. J. Chem. Phys. 1957, 27, 575-576.


[3] Gueron, M., J. Magn. Reson. 1975, 19, 58-66; Vega, A. J. and Fiat, D., Mol. Phys. 1976, 31, 347-355.

[4] Kervern, G.; Pintacuda, G. and Emsley, L., Chem. Phys. Lett. 2007, 435, 157-162.

[5] Carr, H. Y. and Purcell, E. M., *Phys. Rev.* **1954**, *94*, 630; Meiboom, S. and Gill, D., *Rev. Sci. Instrum.* **1958**, *29*, 688.

[6] Ouali, N.; Bocquet, B.; Rigault, S.; Morgantini, P. Y.; Weber, J. and Piguet, C., *Inorg. Chem.* **2002**, *41*, 1436-45.

Figure 1 SI:

Liquid state ¹H spectrum of compound (1) obtained on a 500 MHz spectrometer (Bruker Avance) at $T=30^{\circ}C \pm 0.5^{\circ}C$. The resonances at 35 and 39 ppm (*) correspond respectively to the para and ortho protons. The Bruker topspin utility gives a full linewidth at half height of 228±0.5 Hz for the ortho resonance.

Figure 2 SI: Intenisty of the echo tops of the adiabatic CPMG experiment obtained on compound (1) for protons at 500 MHz, $T=30\pm0.5^{\circ}C$. The decay is fitted by a mono exponential curve that gives a T_2 ' of 1.7 ms, which corresponds to a non-refocusable linewidth of 187 Hz.