Supporting Information Routes of Spontaneous Disintegration of DNA and the Rate Enhancements Produced by DNA Glycosylases and Deaminases Gottfried K. Schroeder[‡] and Richard V. Wolfenden*,[‡] [‡] Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599 Supporting Information Figure 1. Arrhenius plot of the rate constants for the glycoside cleavage of 2'-deoxyuridine (\bullet) at pH 6.8. Supporting Information Figure 2. 500 MHz proton NMR spectrum (in D_2O) of a sample of 9-methylhypoxanthine incubated at 170 °C for 5.5 hours. Peak labels correspond to 9-methylhypoxanthine (red), compound \mathbf{I} (blue), compound \mathbf{I} (black) and formate (green) as indicated in Scheme 2. Supporting Information Figure 3. Arrhenius plot of the rate constants for the deamination of cytosine (\blacksquare) at pH 6.8. Supporting Information Figure 4. Arrhenius plot of the apparent first order rate constants for the glycoside cleavage of 2'-deoxyadenosine (\bullet) at pH 1 ([HCl] = 0.185 M). The data fit a linear regression satisfactorily ($R^2 > 0.99$). The enthalpy of activation in acid (24 kcal/mol) was lower than the enthalpy of activation at neutral pH (27 kcal/mol). Supporting Information Figure 5. Time course for the glycoside cleavage of 2'-deoxyadenosine (\bullet) to adenine (\circ) at pH 1 and 35 °C. The solid line is a fit of the integrated ¹H NMR data to an exponential decay curve ($R^2 > 0.99$) and the dashed line is a fit of the integrated ¹H NMR data to an exponential rise to maximum ($R^2 > 0.99$). Rate constants determined by non-linear regression analysis were identical within experimental error, consistent with a direct cleavage event. Supporting Information Figure 6. 500 MHz proton NMR spectrum (in DMSO- d_6) of a sample of 9-methylhypoxanthine incubated at 170 °C for 5.5 hours. Peak labels correspond to 9-methylhypoxanthine (red) and compound **I** (blue) as indicated in the included structures. The resonance shift values reported in the literature for authentic 5-amino-1-methyl-imidazole-4-carboxamide (26) are included in parenthesis. The large peak at ~3.33 ppm corresponds to residual water.