Supporting Information for

Substrate-Dependent Stereochemical Course of the (Z)-13 Desaturation Catalyzed by the Processionary Moth Multifunctional Desaturase

José-Luis Abad,* Francisco Camps, Gemma Fabriàs

Departamento de Química Orgánica Biológica, Instituto de Investigaciones Químicas y Ambientales de Barcelona, Consejo Superior de Investigaciones Científicas, Jordi Girona 18-26, 08034-Barcelona, Spain.
*Corresponding author, email: jlaqob@iiqab.csic.es

Experimental Section

General Methods. All commercially available chemicals and solvents were used without further purification as supplied with the following exceptions: dimethylformamide (DMF) and hexamethylphosphotriamide (HMPA) were distilled and kept over molecular sieves ($3 \AA$), diethyl ether and tetrahydrofuran (THF) were distilled over $\mathrm{Na} / \mathrm{benzophenone} \mathrm{under}$ inert atmosphere. All moisture- and air-sensitive reactions were carried out under a dry nitrogen or argon atmosphere with dry reagents and solvents in flame-dried round bottom flasks. All the organic extracts obtained from workup of crude reaction mixtures were dried over MgSO_{4}, filtered and concentrated with a rotatory evaporator under reduced pressure. C. antarctica lipase type B (CALB) was supplied as an immobilized preparation on a macroporous acrylic resin. Adsorption of T. lanuginosus lipase onto polypropylene support (EP100) was carried out following the methodology described by Gitlesen et al. ${ }^{1}$ The activity of both immobilized lipase preparations was measured by use of the acylation of 1dodecanol in organic media. ${ }^{2}$ Purification procedures were carried out by flash chromatography on silica gel (230-400 mesh) using compressed air, and most of the products were obtained as oils. Melting points (mp) were determined in soft glass capillary tubes and are uncorrected. Elemental analyses were conventional combustion analyses without discrimination between hydrogen and deuterium contents. LiAlD_{4} and D_{2} Deuterium content were 98% and 99.8%, respectively. Analytical thin layer chromatography (TLC) was performed using 0.2 mm silica gel coated Kieselgel $60 \mathrm{~F}_{254}$ plates. Visualization of UV-inactive materials was accomplished by soaking the TLC plates in ethanolic solution of anisaldehyde and sulfuric acid ($\mathrm{v} / \mathrm{v} / \mathrm{v}, 96: 2: 2$) or in ethanolic solution of phosphomolybdic acid (5\%). Unless otherwise stated, most of ${ }^{1} \mathrm{H}$ NMR spectra were acquired at 500 MHz , and ${ }^{13} \mathrm{C}$ NMR spectra, at 125 MHz in freshly neutralized CDCl_{3} solutions, and chemical shifts are quoted in parts per million (ppm) on the δ scale downfield from $\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{4}$ for ${ }^{1} \mathrm{H}$, and CDCl_{3} for ${ }^{13} \mathrm{C}$. GC/MS analysis was performed by chemical ionization (CI) using methane as ionization gas. All IR spectra were run in film. Optical rotations were measured at 25° in CHCl_{3} solution at the specified concentration
$(\mathrm{g} / 100 \mathrm{~mL})$. Enantiomeric and diasteromeric excesses (ee and de) values were calculated by HPLC or NMR analysis of the corresponding $(R)-(-)$-MPA or $(R)-(-)-9$-AMA diastereomeric esters.
$\mathbf{B r C H}_{2}\left(\mathbf{C H}_{2}\right)_{\mathbf{4}} \mathbf{C H}_{\mathbf{2}} \mathbf{O M O M}$ was prepared from 1,6-hexandiol in two steps on a multigram scale according a previously reported method. ${ }^{3}$

Preparation of alkynol 2. To a mixture of 3-butyn-1-ol ($5.6 \mathrm{~g}, 80 \mathrm{mmol}$), 80 ml of dry HMPA and 100 ml of THF was added dropwise a solution of butyllitium (2.4 M) in hexanes ($75 \mathrm{~mL}, 180 \mathrm{mmol}$) at $-15^{\circ} \mathrm{C}$. The resulting pale red mixture was stirred for 10 min and a solution of $\mathrm{BrCH}_{2}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{2} \mathrm{OMOM}(9 \mathrm{~g}, 40 \mathrm{mmol})$ in 20 mL of THF was added dropwise at that temperature. Stirring was continued for 4 h at $0^{\circ} \mathrm{C}$ and then allowed to warm up to ambient temperature and stirred for another 12 h . The reaction mixture was poured into satd NaHCO_{3} aqueous solution (200 ml) and extracted with hexane (3 x 150 $\mathrm{ml})$. Solvent was evaporated and the residue purified by flash chromatography on silica gel using a gradient hexane/MTBE ($0-35 \%$) to afford 6.7 g of the expected alkynol $\mathbf{2}$ in 78% yield.

11,13-dioxatetradec-4-yn-1-ol (2). IR 3420, 2935, 2860, 1725, 1460, 1440, 1145, 1110, $1045,920 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 4.62(\mathrm{~s}, 2 \mathrm{H}), 3.68(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.52(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H})$, $3.36(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{~m}, 2 \mathrm{H}), 2.17(\mathrm{~m}, 2 \mathrm{H}), 2.03(\mathrm{bb}, 1 \mathrm{H}), 1.60(\mathrm{~m}, 2 \mathrm{H}), 1.51(\mathrm{~m}, 2 \mathrm{H}), 1.45-$ 1.34 (ca, 4H); ${ }^{13} \mathrm{C}$ NMR $\delta 96.3\left(\mathrm{CH}_{2}\right), 82.4(\mathrm{C}), 76.4(\mathrm{C}), 67.7\left(\mathrm{CH}_{2}\right), 61.3\left(\mathrm{CH}_{2}\right), 55.0$ $\left(\mathrm{CH}_{3}\right), 29.5\left(\mathrm{CH}_{2}\right), 28.8\left(\mathrm{CH}_{2}\right), 28.6\left(\mathrm{CH}_{2}\right), 25.7\left(\mathrm{CH}_{2}\right), 23.1\left(\mathrm{CH}_{2}\right), 18.6\left(\mathrm{CH}_{2}\right) ; \mathrm{MS} \mathrm{m} / \mathrm{z}$ 183 (100, M ${ }^{++}-\mathrm{CH}_{3} \mathrm{O}$), 165 (55), 151 (20), 135 (30), 121 (35), 109 (50), 97 (50), 83 (60); Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{3}$: C, 67.26; H, 10.35. Found: C, 67.25; H, 10.32.

Deuteration of alkynol 2. To a mixture of 6.45 g (30 mmol) of alkynol $\mathbf{2}$ and 0.93 g (1 mmol) of Wilkinson catalyst, ${ }^{4} 200 \mathrm{~mL}$ of degassed benzene was added under argon atmosphere to afford a reddish solution. The system was purged by a combination of vacuum and passing a D_{2} stream throughout it, then D_{2} atmosphere was kept from a balloon and the solution was stirred for 48 h . The mixture was filtered through a bed of Celite and the solvent evaporated. The residue was purified by flash chromatography on silica gel (0 $3 \% \mathrm{MTBE} / \mathrm{hexane}$) to give 5.06 g (75% yield) of the saturated tetradeuterated alcohol 3 after the eluent evaporation.
[3,3,4,4- ${ }^{\mathbf{2}} \mathbf{H}_{4}$]-11,13-dioxatetradecan-1-ol (3). IR 3420, 2925, 2855, 2185, 2095, 1460, $1150,1110,1050,920 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 4.62(\mathrm{~s}, 2 \mathrm{H}), 3.63(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.52(\mathrm{t}, J=$ $6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 1.63-1.51(4 \mathrm{H}), 1.40-1.20(8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 96.2\left(\mathrm{CH}_{2}\right), 67.8$ $\left(\mathrm{CH}_{2}\right), 62.8\left(\mathrm{CH}_{2}\right), 55.0\left(\mathrm{CH}_{3}\right), 32.4\left(\mathrm{CH}_{2}\right), 29.6\left(\mathrm{CH}_{2}\right), 29.4\left(\mathrm{CH}_{2}\right), 29.3\left(\mathrm{CH}_{2}\right), 29.2$ $\left(\mathrm{CH}_{2}\right), 28.3\left(\mathrm{CD}_{2}\right.$, quint, $\left.J=19 \mathrm{~Hz}\right), 26.1\left(\mathrm{CH}_{2}\right), 24.6\left(\mathrm{CD}_{2}\right.$, quint, $\left.J=19 \mathrm{~Hz}\right) ; \mathrm{MS} \mathrm{m} / \mathrm{z} 191$ (100, $\mathrm{M}^{\bullet+}-\mathrm{CH}_{3} \mathrm{O}$), 161 (55), 151 (20), 141 (40); Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{22}{ }^{2} \mathrm{H}_{4} \mathrm{O}_{3}$: C, 64.82; H, 11.79. Found: C, 64.82; H, 11.62.

Preparation of 1-Bromoalkane 4. This reaction was accomplished according to the procedure described by Bates et al ${ }^{5}$ with some modifications. A solution of NBS (26 mmol , 4.63 g in 18 mL of DMF) was added dropwise at $0^{\circ} \mathrm{C}$ to a stirred DMF solution (30 mL) containing $4.44 \mathrm{~g}(20 \mathrm{mmol})$ of the tetradeuterated alcohol and $6.84 \mathrm{~g}(26 \mathrm{mmol})$ of triphenylphosphine. Stirring was continued until TLC showed absence of starting material (ca. 1 h). The reaction was quenched by addition of 5 mL of methanol to the resulting pale
yellow mixture. After 5 minutes, ethyl ether was added, the organic layer washed with brine and carefully evaporated to dryness. Residue was purified by flash chromatography on silica gel using hexane (alkanes mixture) as eluent to obtain 4.50 g (79% yield) of the tetradeuterated bromide after solvent evaporation.
[3,3,4,4- ${ }^{\mathbf{2}} \mathbf{H}_{\mathbf{4}}$]-1-Bromo-11,13-dioxatetradecane (4). IR 2925, 2855, 2190, 2095, 1460, $1440,1280,1215,1145,1110,1050,920 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 4.62(\mathrm{~s}, 2 \mathrm{H}), 3.52(\mathrm{t}, J=6.5$ $\mathrm{Hz}, 4 \mathrm{H}), 3.41(\mathrm{t}, J=6.5 \mathrm{~Hz}, 4 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 1.83\left(\mathrm{t}, J_{l}=7 \mathrm{~Hz}, 2 \mathrm{H}\right), 1.59(\mathrm{~m}, 2 \mathrm{H}), 1.42-$ $1.24(\mathrm{ca}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 96.2\left(\mathrm{CH}_{2}\right), 67.6\left(\mathrm{CH}_{2}\right), 54.9\left(\mathrm{CH}_{3}\right), 33.8\left(\mathrm{CH}_{2}\right), 32.4\left(\mathrm{CH}_{2}\right)$, $29.6\left(\mathrm{CH}_{2}\right)$, $29.3\left(\mathrm{CH}_{2}\right), 29.2\left(\mathrm{CH}_{2}\right), 29.0\left(\mathrm{CH}_{2}\right), 27.6\left(\mathrm{CD}_{2}\right.$, quint, $\left.J=19 \mathrm{~Hz}\right), 27.0\left(\mathrm{CD}_{2}\right.$, quint, $J=19 \mathrm{~Hz}$), $26.1\left(\mathrm{CH}_{2}\right)$; MS m/z $287\left(7, \mathrm{M}^{++}+1\right)$, $285\left(9, \mathrm{M}^{++}+1\right)$, 255 (45), 253 (50), 225 (40), 223 (55), 173 (100), 155 (40), 141 (25), 123 (15), 111 (75), 97 (50). Calcd for $\mathrm{C}_{12} \mathrm{H}_{21}{ }^{2} \mathrm{H}_{4} \mathrm{BrO}_{2}$: C, $50.53 ; \mathrm{H}, 8.87$. Found: C, $50.52 ; \mathrm{H}, 8.92$.

Kinetic enzymatic resolution of alkynols 5. Reactions were performed in 250 ml sealed round bottom flasks. To a mixture of the racemic alkynol 12 g (101 mmol) and inmobilized lipase type B from C. antarctica (5a; 1 g , $\mathbf{5 b} ; 2.2 \mathrm{~g}$) in 120 mL of diisopropyl ether was added vinyl acetate ($17 \mathrm{~mL}, 180 \mathrm{mmol}$). The resulting mixture was reciprocally shaken (125 rpm) at ambient temperature until GC analysis showed a 45% conversion. The chilled suspension was filtered off, the solid washed with diethyl ether and the solvent was carefully distilled to give a residue that was purified by column chromatography on silica gel. A gradient of diethyl ether in pentane ($0-30 \%$) and a careful distillation of the eluent allowed the separation of the corresponding acetate ((S)-$(-)-\mathbf{6 a} ; \mathbf{8 6 \%}$ ee, (($\boldsymbol{R})-(+)-\mathbf{6 b} ; 76 \%$ ee) from the complementary enantiomerically enriched alkynol ((R)-(+)-6a; 80% ee, $((\boldsymbol{S})-(+)-\mathbf{6 b} ; 76 \%$ ee $)$. Acetate hydrolysis and a second chemoenzymatic resolution (a; 80% conversion, $\mathbf{b} ; 70 \%$ conversion) afforded the enantiomerically pure acetates 6 .
(S)-(-)-3-Acetoxy-1-hexyne (6a). In this case, after both consecutive resolutions 4.2 g were obtained (29\%) with 98\% ee. IR 3295, 2965, 2935, 2875, 1745 (CO), 1450, 1375, 1235, $1020 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 5.36\left(\mathrm{dt}, J_{l}=7 \mathrm{~Hz}, J_{2}=2 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.45(\mathrm{~d}, J=2 \mathrm{~Hz}, 1 \mathrm{H}), 2.09(\mathrm{~s}$, $3 \mathrm{H}), 1.82-1.70(2 \mathrm{H}), 1.53-1.38(2 \mathrm{H}), 0.95(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 170.0(\mathrm{CO}), 81.3$ (C), $73.3(\mathrm{CH}), 63.6,36.5\left(\mathrm{CH}_{2}\right), 21.0\left(\mathrm{CH}_{3}\right), 18.2\left(\mathrm{CH}_{2}\right), 13.9\left(\mathrm{CH}_{3}\right) ;$ MS m/z $141(15$, $\mathrm{M}^{++}+1$), 99 (100); Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}_{2}$: C, 68.54; H 8.63, Found: C; $68.47 \mathrm{H}, 8.65$; $[\alpha]_{\mathrm{D}}=-110.8$ (c 1, $\mathrm{CHCl}_{3}, 96 \%$ ee).
(\boldsymbol{R})-(+)-3-Acetoxy-5-hexyne ($\mathbf{6 b}$) In this case, after both consecutive resolutions 3.1 g were obtained (22%) with 96% ee. IR 3300, 2965, 2940, 2885, 1730 (CO), 1460, 1430, 1375, $1235,1020 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 4.88(\mathrm{~m}, 1 \mathrm{H}), 2.48(\mathrm{~m}, 2 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}), 2.00(\mathrm{t}, J=2.5 \mathrm{~Hz}$, $1 \mathrm{H}), 1.82-1.64(2 \mathrm{H}), 0.93(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 170.6(\mathrm{CO}), 79.6(\mathrm{C}), 72.8(\mathrm{CH})$, $70.2(\mathrm{CH}), 25.8\left(\mathrm{CH}_{2}\right), 23.3\left(\mathrm{CH}_{2}\right), 21.0\left(\mathrm{CH}_{3}\right), 9.4\left(\mathrm{CH}_{3}\right) ; \mathrm{MS} \mathrm{m} / \mathrm{z} 141\left(75, \mathrm{M}^{\bullet+}+1\right), 101$ (100); Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}_{2}$: C, 68.54; H 8.63, Found: C; $68.49 \mathrm{H}, 8.55$; $[\alpha]_{\mathrm{D}}=+62.0$ (c $1, \mathrm{CHCl}_{3}, 94 \% \mathrm{ee}$).

Acetate Saponification. Enantiomerically pure alcohols 5 were obtained by treatment of the corresponding acetoxy derivatives $6(0.1 \mathrm{mmol} / \mathrm{mL})$ with a mixture of $\mathrm{K}_{2} \mathrm{CO}_{3}$ in MeOH $(20 \mathrm{mg} / \mathrm{mL})$. Reaction evolution was monitored by TLC (16 h) and then the reaction mixture was neutralized with $\mathrm{HCl}(2 \mathrm{~N})$, extracted with ethyl ether and the resulting solvent
mixture distilled. The final residue was purified by column chromatography (silica gel, pentane:diethyl ether 7:3) yielding the oily pure alkynols after eluent elimination.
(S)-(-)-1-Hexyn-3-ol ((S)-(-)-5a). This compound was isolated ($2.45 \mathrm{~g}, 85 \%$ yield) starting from 4.20 g of acetate $[\alpha]_{\mathrm{D}}=-15.2$ (c 1, $\mathrm{CHCl}_{3}, 96 \%$ ee); (R)-(-)-5-Hexyn-3-ol ((R)-(-)-5b), This compound was isolated $\left(1.82 \mathrm{~g}, 81 \%\right.$ yield) starting from 3.20 g of acetate $[\alpha]_{D}=-4.0$ (c $1, \mathrm{CHCl}_{3}, 94 \% \mathrm{ee}$).

Preparation of alkynols 7. Coupling of alkynol 5 with bromoderivative $\mathbf{4}$ was similarly performed by the above described procedure for the preparation of compound 2. Thus, to a solution of the corresponding enantiomerically resolved or enriched alkynol 5 (16 mmol) dissolved in 25 ml of dry HMPA and 25 ml of THF was added dropwise a solution of butyllitium (2.5 M) in hexanes ($15 \mathrm{~mL}, 37.5 \mathrm{mmol}$) at $-15^{\circ} \mathrm{C}$. The resulting mixture was stirred for 10 min and a solution of $4\left(\mathrm{BrCH}_{2} \mathrm{CH}_{2} \mathrm{CD}_{2} \mathrm{CD}_{2}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{OMOM}\right)(2.30 \mathrm{~g}, 8 \mathrm{mmol})$ in 5 mL of THF was added dropwise at that temperature. Stirring was continued for 6 h at $0^{\circ} \mathrm{C}$ and then 10 h at room temperature. The reaction mixture was then poured into satd. $\mathrm{NaHCO}_{3}(100 \mathrm{ml})$ and extracted with hexane ($3 \times 60 \mathrm{ml}$). Solvent was evaporated and the residue purified by flash chromatography on silica gel using a gradient hexane/MTBE (0 35%) to give the expected alkynols 7 with high yields.
[9,9,10,10- ${ }^{\mathbf{2}} \mathbf{H}_{4}$]-17,19-dioxa-5-icosyn-4-ol (7a). IR 3455, 2930, 2860, 2190, 2095, 1460, $1150,1110,1045,920 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 4.62(\mathrm{~s}, 2 \mathrm{H}), 4.36(\mathrm{~m}, 1 \mathrm{H}), 3.52(\mathrm{t}, J=7 \mathrm{~Hz}, 2 \mathrm{H})$, $3.36(\mathrm{~s}, 3 \mathrm{H}), 2.19\left(\mathrm{dt}, J_{1}=7 \mathrm{~Hz}, J_{2}=2 \mathrm{~Hz}, 2 \mathrm{H}\right), 1.74(\mathrm{bs}, 1 \mathrm{H}), 1.72-1.54(4 \mathrm{H}), 1.54-1.40$ $(4 \mathrm{H}), 1.40-1.18(10 \mathrm{H}), 0.95(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 96.3\left(\mathrm{CH}_{2}\right), 85.4(\mathrm{C}), 81.3(\mathrm{C})$, $67.8\left(\mathrm{CH}_{2}\right), 62.4(\mathrm{CH}), 55.0\left(\mathrm{CH}_{3}\right), 40.3\left(\mathrm{CH}_{2}\right), 29.7\left(\mathrm{CH}_{2}\right), 29.4\left(\mathrm{CH}_{2}\right), 29.4\left(\mathrm{CH}_{2}\right), 29.1$ $\left(\mathrm{CH}_{2}\right), 28.4\left(\mathrm{CH}_{2}\right)$, $28.1\left(\mathrm{CD}_{2}\right.$, quint, $\left.J=19 \mathrm{~Hz}\right), 28.0\left(\mathrm{CD}_{2}\right.$, quint, $\left.J=19 \mathrm{~Hz}\right), 26.2\left(\mathrm{CH}_{2}\right)$, $18.6\left(\mathrm{CH}_{2}\right), 18.5\left(\mathrm{CH}_{2}\right), 13.7\left(\mathrm{CH}_{3}\right) ; \mathrm{MS} \mathrm{m} / \mathrm{z}(\mathrm{CI}) 285\left(\mathrm{M}^{++}+1-\mathrm{H}_{2} \mathrm{O}, 15\right), 269(10), 253$ (100), 241 (50), 151 (15), 139 (22), 125 (20), 111 (20), 97 (25);. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{30}{ }^{2} \mathrm{H}_{4} \mathrm{O}_{3}$: C, 71.47; H, 11.34 Found: C, 71.54; H, 11.37.
(\boldsymbol{S})-(-)-7a. This compound was obtained $(2.10 \mathrm{~g}, 87 \%$ yield) from enantiomerically pure alkynol (S)-(-)-5a $[\alpha]_{D}=-4.0$ (c 2, CHCl $_{3}, 96 \%$ ee).
Enantiomerically enriched $(\boldsymbol{R})-(+)-7 \mathbf{a}$. This compound was obtained ($1.91 \mathrm{~g}, 79 \%$ yield) from enantiomerically enriched alkynol (\boldsymbol{R})-(+)-5a in 90% yield $[\alpha]_{D}=+3.0$ (c $2, \mathrm{CHCl}_{3}$, 76% ee).
[9,9,10,10- ${ }^{\mathbf{2}} \mathbf{H}_{4}$]-17,19-dioxa-5-icosyn-3-ol (7b). IR 3475, 2930, 2855, 2185, 2095, 1455, $1150,1110,1040,920 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 4.62(\mathrm{~s}, 2 \mathrm{H}), 3.62(\mathrm{~m}, 1 \mathrm{H}), 3.52(\mathrm{t}, J=7 \mathrm{~Hz}, 2 \mathrm{H})$, $3.36(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~m}, 1 \mathrm{H}), 2.27(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.13(\mathrm{~m}, 2 \mathrm{H}), 1.98(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}) 1.62-$ $1.51(4 \mathrm{H}), 1.47(\mathrm{t}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 1.40-1.22(10 \mathrm{H}), 0.96(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 96.3$ $\left(\mathrm{CH}_{2}\right), 83.0(\mathrm{C}), 76.0(\mathrm{C}), 71.4(\mathrm{CH}), 67.8\left(\mathrm{CH}_{2}\right), 55.0\left(\mathrm{CH}_{3}\right), 29.7\left(\mathrm{CH}_{2}\right), 29.4\left(\mathrm{CH}_{2}\right), 29.3$ $\left(\mathrm{CH}_{2}\right), 29.1\left(\mathrm{CH}_{2}\right)$, $29.0\left(\mathrm{CH}_{2}\right), 28.7\left(\mathrm{CH}_{2}\right), 28.2\left(\mathrm{CD}_{2}\right.$, quint, $\left.J=19 \mathrm{~Hz}\right), 28.0\left(\mathrm{CD}_{2}\right.$, quint, $J=19 \mathrm{~Hz}), 27.2\left(\mathrm{CH}_{2}\right), 26.1\left(\mathrm{CH}_{2}\right), 18.6\left(\mathrm{CH}_{2}\right), 9.8\left(\mathrm{CH}_{3}\right) ; \mathrm{MS} \mathrm{m} / \mathrm{z} 285\left(\mathrm{M}^{\bullet+}+1-\mathrm{H}_{2} \mathrm{O}, 4\right)$, 271 (100), 253 (40), 241 (20), 213 (25), 195 (10), 181 (5), 167 (10), 153 (15), 139 (15), 125 (20), 111 (20), 97 (20);. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{30}{ }^{2} \mathrm{H}_{4} \mathrm{O}_{3}$: C, 71.47; H, 11.34 Found: C, 71.45; H, 11.58.
$(\boldsymbol{R})-(-)-7 \mathbf{b}$. This compound was obtained $(1.71 \mathrm{~g}, 71 \%$ yield) from enantiomerically pure alkynol ($\boldsymbol{R})-(-)-5 \mathbf{b} ;[\alpha]_{\mathrm{D}}=-4.0\left(\mathrm{c} 2, \mathrm{CHCl}_{3}, 94 \%\right.$ ee $)$.

Enantiomerically enriched (S)-(+)-7b. This compound was obtained ($1.76 \mathrm{~g}, 73 \%$ yield) from enantiomerically enriched alkynol (S)-(+)-5b; $[\alpha]_{D}=+2.5$ (c 2, $\mathrm{CHCl}_{3}, 76 \%$ ee).

Kinetic enzymatic resolution of enantiomerically enriched alkynols (\boldsymbol{R})-(+)-7a and (\boldsymbol{S})-$(+)-7 b$. In this case, resolutions were performed using inmobilized lipase from Thermomyces lanuginosus (TL) in 250 ml sealed round bottom flasks. To a mixture of the corresponding enantiomerically enriched alcohol 7 (4 mmol) and inmobilized lipase (EP100, 5 g) in 100 mL of diisopropyl ether was added vinyl acetate ($0.74 \mathrm{~mL}, 8 \mathrm{mmol}$). The resulting mixture was reciprocally shaken (125 rpm) at room temperature. The reaction evolution was followed by GC and quenched according to the initial enantiomeric excess. The suspension was filtered off, the solid support washed with $\mathrm{Et}_{2} \mathrm{O}$ and the solvent was evaporated under vacuum to give a residue that was purified by column chromatography on silica gel. A gradient of MTBE in hexane ($0-30 \%$) allowed the separation of the formed acetate $\mathbf{8}$ from the residual alcohol 7 .
$(\boldsymbol{R})-(+)-\left[9,9,10,10-{ }^{2} \mathbf{H}_{4}\right]-4$-Acetoxy-17,19-dioxa-5-icosyne ($\left.(\boldsymbol{R})-(+)-8 a\right)$. This acetate was obtained as an enantiomerically pure compound ($1.10 \mathrm{~g}, 78 \%$ yield, 82% conversion) starting from $1.21 \mathrm{~g}(4 \mathrm{mmol})$ of alkynol ($\boldsymbol{R})-(+)-7 \mathbf{a}$; IR 2930, 2855, 2190, 2100, 1740, $1460,1370,1225,1150,1105,1045,915 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 5.36\left(\mathrm{tt}, J_{l}=7 \mathrm{~Hz}, J_{2}=2 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 4.62(\mathrm{~s}, 2 \mathrm{H}), 3.52(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 2.19\left(\mathrm{dt}, J_{l}=7 \mathrm{~Hz}, J_{2}=2 \mathrm{~Hz}, 2 \mathrm{H}\right)$, $2.07(\mathrm{~s}, 3 \mathrm{H}), 1.71(\mathrm{~m}, 2 \mathrm{H}), 1.59(\mathrm{~m}, 2 \mathrm{H}), 1.52-1.40(\mathrm{~m}, 4 \mathrm{H}), 1.40-1.20(\mathrm{~m}, 8 \mathrm{H}), 0.94(\mathrm{t}, J=$ $7 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\delta 169.8(\mathrm{CO}), 96.3\left(\mathrm{CH}_{2}\right), 86.0(\mathrm{C}), 77.6(\mathrm{C}), 67.7\left(\mathrm{CH}_{2}\right), 64.3(\mathrm{CH})$, $54.9\left(\mathrm{CH}_{3}\right)$, $37.1\left(\mathrm{CH}_{2}\right)$, $29.6\left(\mathrm{CH}_{2}\right), 29.3\left(\mathrm{CH}_{2}\right)$, $29.3\left(\mathrm{CH}_{2}\right), 29.0\left(\mathrm{CH}_{2}\right), 28.1\left(\mathrm{CH}_{2}\right), 28.0$ $\left(\mathrm{CD}_{2}\right.$, quint, $\left.J=19 \mathrm{~Hz}\right)$, $27.9\left(\mathrm{CD}_{2}\right.$, quint, $\left.J=19 \mathrm{~Hz}\right)$, $26.1\left(\mathrm{CH}_{2}\right), 20.9\left(\mathrm{CH}_{3}\right), 18.5\left(\mathrm{CH}_{2}\right)$, $18.2\left(\mathrm{CH}_{2}\right), 13.5\left(\mathrm{CH}_{3}\right) ; \mathrm{MS} \mathrm{m} / \mathrm{z} 345\left(\mathrm{M}^{++}+1,2\right), 343\left(\mathrm{M}^{\bullet+}-1,3\right), 313(5), 285(15), 271(10)$, 253 (100), 235 (15), 165 (25), 151 (20), 137 (25), 123 (30), 109 (25), 95 (15). Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{32}{ }^{2} \mathrm{H}_{4} \mathrm{O}_{4}$: C, 69.72; H, 10.54 Found: C $69.41 ; \mathrm{H}, 10.66 ;[\alpha]_{\mathrm{D}}=+58.0$ (c $2, \mathrm{CHCl}_{3}$, 98% ee).
(S)-(+)-[9,9,10,10- $\left.{ }^{2} \mathbf{H}_{4}\right]-17,19-d i o x a-5-i \operatorname{cosyn}-3-o l(S)-(+)-7 b$. This alkynol was obtained enantiomerically pure ($0.82 \mathrm{~g}, 68 \%$ yield) starting from alkynol (\boldsymbol{S})-(+)-7b (60% of initial ee) after a 30% enzymatic conversion to the unwanted acetate. IR 3475, 2930, 2855, 2185, 2095, 1455, 1150, 1110, 1040, $920 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 4.62(\mathrm{~s}, 2 \mathrm{H}), 3.62(\mathrm{~m}, 1 \mathrm{H}), 3.52(\mathrm{t}, J=$ $7 \mathrm{~Hz}, 2 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~m}, 1 \mathrm{H}), 2.27(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.13(\mathrm{~m}, 2 \mathrm{H}), 1.98(\mathrm{~d}, J=4.5 \mathrm{~Hz}$, $1 \mathrm{H}) 1.62-1.51(4 \mathrm{H}), 1.47(\mathrm{t}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 1.40-1.22(10 \mathrm{H}), 0.96(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 96.3\left(\mathrm{CH}_{2}\right), 83.0(\mathrm{C}), 76.0(\mathrm{C}), 71.4(\mathrm{CH}), 67.8\left(\mathrm{CH}_{2}\right), 55.0\left(\mathrm{CH}_{3}\right), 29.7\left(\mathrm{CH}_{2}\right), 29.4$ $\left(\mathrm{CH}_{2}\right), 29.3\left(\mathrm{CH}_{2}\right)$, $29.1\left(\mathrm{CH}_{2}\right), 29.0\left(\mathrm{CH}_{2}\right)$, $28.7\left(\mathrm{CH}_{2}\right), 28.2\left(\mathrm{CD}_{2}\right.$, quint, $\left.J=19 \mathrm{~Hz}\right), 28.0$ $\left(\mathrm{CD}_{2}\right.$, quint, $\left.J=19 \mathrm{~Hz}\right), 27.2\left(\mathrm{CH}_{2}\right), 26.1\left(\mathrm{CH}_{2}\right), 18.6\left(\mathrm{CH}_{2}\right), 9.8\left(\mathrm{CH}_{3}\right) ; \mathrm{MS} \mathrm{m} / \mathrm{z} 285$ $\left(\mathrm{M}^{++}+1-\mathrm{H}_{2} \mathrm{O}, 4\right), 271$ (100), 253 (40), 241 (20), 213 (25), 195 (10), 181 (5), 167 (10), 153 (15), 139 (15), 125 (20), 111 (20), 97 (20);. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{30}{ }^{2} \mathrm{H}_{4} \mathrm{O}_{3}: \mathrm{C}, 71.47$; H, 11.34 Found: C, $71.45 ; \mathrm{H}, 11.58 ;[\alpha]_{\mathrm{D}}=+4$ (c $2, \mathrm{CHCl}_{3}, 94 \%$ ee $)$.

Acetate Saponification of $(\boldsymbol{R})-(+)-\mathbf{8 a}$. Alkynol ($\boldsymbol{R})-(+)-7 \mathbf{7 a}(1.03 \mathrm{~g}, 3 \mathrm{mmol})$ was obtained by treatment of acetate $(\boldsymbol{R})-(+)-\mathbf{8 a}$ with a mixture of $\mathrm{K}_{2} \mathrm{CO}_{3}$ in $\mathrm{MeOH}(250 \mathrm{mg} / 10 \mathrm{~mL})$ for 16 h . Neutralization with $\mathrm{HCl}(1 \mathrm{~N})$, followed by the usual work up and purification by flash chromatography on silica gel according the above conditions allowed obtaining the pure alcohol in high yields. $(\boldsymbol{R})-(+)-7 \mathbf{a}(0.81 \mathrm{~g}, 90 \%) ;[\alpha]_{\mathrm{D}}=+4.0$ (c $2,96 \%$ ee).

Hydrogenation of methoxymethane protected alkynols 8. General Procedure.

To a mixture of alkynol $7(0.76 \mathrm{~g}, 2,5 \mathrm{mmol})$ and $275 \mathrm{mg}(0.3 \mathrm{mmol})$ of $\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}$, was added 15 mL of degassed benzene. The reaction mixture was purged passing a stream of H_{2} through, then H_{2} atmosphere was kept from the balloon and the solution was stirred for 48 h . The mixture was filtered through a bed of Celite and the solvent was evaporated. The residue was purified by flash chromatography on silica gel ($0-30 \%$ MTBE/hexane) to give the pure stereoisomer 9 (64-86\% yields).
[9,9,10,10- ${ }^{\mathbf{2}} \mathbf{H}_{\mathbf{4}}$]-17,19-dioxaicosan-4-ol (9a). IR 3440, 2930, 2850, 2185, 2090, 1460, 1150, 1110, 1045, $915 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 4.62(\mathrm{~s}, 2 \mathrm{H}), 3.59(\mathrm{~m}, 1 \mathrm{H}), 3.52(\mathrm{t}, J=7 \mathrm{~Hz}, 2 \mathrm{H})$, $3.36(\mathrm{~s}, 3 \mathrm{H}), 1.65-1.51(2 \mathrm{H}), 1.51-1.20(18 \mathrm{H}), 0.93(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 96.3$ $\left(\mathrm{CH}_{2}\right), 71.6(\mathrm{CH}), 67.8\left(\mathrm{CH}_{2}\right), 55.0\left(\mathrm{CH}_{3}\right), 39.6\left(\mathrm{CH}_{2}\right), 37.5\left(\mathrm{CH}_{2}\right), 29.7\left(\mathrm{CH}_{2}\right), 29.6\left(\mathrm{CH}_{2}\right)$, $29.5\left(\mathrm{CH}_{2}\right), 29.4\left(\mathrm{CH}_{2}\right), 29.3\left(\mathrm{CH}_{2}\right), 29.3\left(\mathrm{CH}_{2}\right), 28.8$ (quint, $J=18 \mathrm{~Hz}, \mathrm{CD}_{2}$), 28.5 (quint, J $\left.=18 \mathrm{~Hz}, \mathrm{CD}_{2}\right), 26.2\left(\mathrm{CH}_{2}\right), 25.6\left(\mathrm{CH}_{2}\right), 18.8\left(\mathrm{CH}_{2}\right), 14.1\left(\mathrm{CH}_{3}\right) ; \mathrm{MS} \mathrm{m} / \mathrm{z} 289\left(\mathrm{M}^{++}+1-\mathrm{H}_{2} \mathrm{O}\right.$, 15), 273 (35), 257 (100), 245 (75), 231 (25), 207 (20), 151 (30), 137 (35), 111 (45), 97 (70); Calcd for $\mathrm{C}_{18} \mathrm{H}_{34}{ }^{2} \mathrm{H}_{4} \mathrm{O}_{3}$: C, 70.53; H, 12.50 Found: C $70.60 ; \mathrm{H}, 12.56$; Compounds $(S)-9 \mathbf{a}\left(0.47 \mathrm{~g}, 62 \%\right.$ yield; $[\alpha]_{\mathrm{D}}=+0.5\left(\mathrm{c}=3, \mathrm{CHCl}_{3}\right)$ and $(R)-9 \mathbf{a}\left(0.48 \mathrm{~g}, 64 \%\right.$ yield; $[\alpha]_{\mathrm{D}}=-$ 0.7 ($\mathrm{c}=2, \mathrm{CHCl}_{3}$) were obtained from compounds (S)-7a and (R)-7a, respectively.
[9,9,10,10- ${ }^{\mathbf{2}} \mathbf{H}_{\mathbf{4}}$]-17,19-dioxaicosan-3-ol (9b). IR 3430, 2925, 2855, 2185, 2085, 1460, 1150, 1105, 1035, $920 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 4.62(\mathrm{~s}, 2 \mathrm{H}), 3.59(\mathrm{~m}, 1 \mathrm{H}), 3.52(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H})$, $3.36(\mathrm{~s}, 3 \mathrm{H}), 1.65-1.20(20 \mathrm{H}), 0.94(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 96.3\left(\mathrm{CH}_{2}\right), 73.2(\mathrm{CH})$, $67.8\left(\mathrm{CH}_{2}\right)$, $55.0\left(\mathrm{CH}_{3}\right), 36.9\left(\mathrm{CH}_{2}\right), 30.1\left(\mathrm{CH}_{2}\right), 29.7\left(\mathrm{CH}_{2}\right), 29.5\left(\mathrm{CH}_{2}\right), 29.5\left(\mathrm{CH}_{2}\right), 29.4$ $\left(\mathrm{CH}_{2}\right), 29.3\left(\mathrm{CH}_{2}\right), 28.5$ (quint, $\left.J=18 \mathrm{~Hz}, \mathrm{CD}_{2}\right)$, $26.2\left(\mathrm{CH}_{2}\right), 25.6\left(\mathrm{CH}_{2}\right), 9.8\left(\mathrm{CH}_{3}\right)$; MS $\mathrm{m} / \mathrm{z} 289\left(\mathrm{M}^{\cdot+}+1-\mathrm{H}_{2} \mathrm{O}, 10\right), 273$ (40), 257 (100), 245 (80), 229 (20), 216 (10), 169 (10), 155 (15), 138 (30), 127 (25), 113 (30), 99 (35); Calcd for $\mathrm{C}_{18} \mathrm{H}_{34}{ }^{2} \mathrm{H}_{4} \mathrm{O}_{3}$: C, 70.53; H, 12.50 Found: C 70.47; H, 12.36; Compounds (S)-9b ($0.62 \mathrm{~g}, 82 \%$ yield; $[\alpha]_{\mathrm{D}}=+4.5(\mathrm{c}=3$, $\left.\mathrm{CHCl}_{3}\right)$ and $(R)-9 b\left(0.64 \mathrm{~g}, 84 \%\right.$ yield; $[\alpha]_{\mathrm{D}}=-4.6\left(\mathrm{c}=3, \mathrm{CHCl}_{3}\right)$ were obtained from compounds (S)-7b and $(R)-\mathbf{7 b}$, respectively.

Preparation of Mesyl Esters 10. General Procedure These products were prepared by the procedure described by Abad et al. ${ }^{6}$ A solution of saturated alcohol $9(0.45 \mathrm{~g}, 1.5 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(675 \mu \mathrm{~L}, 4.5 \mathrm{mmol})$ in 20 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was treated with $\mathrm{CH}_{3} \mathrm{SO}_{2} \mathrm{Cl}(160 \mu \mathrm{~L}, 2 \mathrm{mmol})$ and the mixture was stirred under argon for 2 h at ambient temperature (TLC monitoring). The reaction mixture was washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 5 \mathrm{~mL})$, dried, concentrated and the residue purified by flash chromatography on silica gel using as eluent hexane/MTBE 85:15 to give the expected products in $87-90 \%$ yields).
[9,9,10,10- $\left.{ }^{\mathbf{}} \mathrm{H}_{4}\right]$-17,19-dioxaicosan-4-yl methanesulfonate 10a. IR 2930, 2850, 2185, 2090, $1460,1355,1170,1110,1045,905 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 4.71(\mathrm{~m}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~s}, 2 \mathrm{H})$, $3.52(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 3.00(\mathrm{~s}, 3 \mathrm{H}), 1.76-1.54(6 \mathrm{H}), 1.50-1.20(14 \mathrm{H}), 0.95(\mathrm{t}$, $J=7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 96.2\left(\mathrm{CH}_{2}\right), 83.9\left(\mathrm{CH}_{2}\right), 67.7\left(\mathrm{CH}_{2}\right), 54.9\left(\mathrm{CH}_{2}\right), 38.5\left(\mathrm{CH}_{3}\right), 36.4$ $\left(\mathrm{CH}_{2}\right), 34.4\left(\mathrm{CH}_{2}\right)$, $34.3\left(\mathrm{CH}_{2}\right)$, $29.6\left(\mathrm{CH}_{2}\right)$, $29.4\left(\mathrm{CH}_{2}\right)$, $29.3\left(\mathrm{CH}_{2}\right)$, $29.2\left(\mathrm{CH}_{2}\right)$, $29.2\left(\mathrm{CH}_{2}\right)$, $29.1\left(\mathrm{CH}_{2}\right), 28.4$ (quint, $J=19 \mathrm{~Hz}, \mathrm{CD}_{2}$), 28.3 (quint, $J=19 \mathrm{~Hz}, \mathrm{CD}_{2}$), $26.1\left(\mathrm{CH}_{2}\right), 24.8$ $\left(\mathrm{CH}_{2}\right), 18.2(\mathrm{C}), 13.7\left(\mathrm{CH}_{3}\right)$; Compounds $(S)-(-)-10 \mathrm{a}\left(0.52 \mathrm{~g}, 90 \% ;[\alpha]=-3.0\left(\mathrm{c}=3, \mathrm{CHCl}_{3}\right)\right.$ and $(R)-(+)-\mathbf{1 0 a}\left(502 \mathrm{mg}, 87 \% ;[\alpha]_{\mathrm{D}}=+3.0\left(\mathrm{c}=3, \mathrm{CHCl}_{3}\right)\right.$ were obtained from $(\boldsymbol{S})-\mathbf{9 a}$ and (R)-9a, respectively.
[9,9,10,10- $\left.{ }^{2} \mathbf{H}_{4}\right]$-17,19-dioxaicosan-3-yl methanesulfonate 10b. IR 2930, 2850, 2185, 2090, $1460,1355,1170,1110,1045,905 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 4.66$ (quint, $J=6 \mathrm{~Hz}, 1 \mathrm{H}$), $4.62(\mathrm{~s}, 2 \mathrm{H})$, $3.52(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 3.00(\mathrm{~s}, 3 \mathrm{H}), 1.81-1.54(6 \mathrm{H}), 1.50-1.20(14 \mathrm{H}), 0.98(\mathrm{t}$, $J=7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 96.3\left(\mathrm{CH}_{2}\right), 85.2(\mathrm{CH}), 67.8(\mathrm{CH}), 54.9\left(\mathrm{CH}_{3}\right), 38.5\left(\mathrm{CH}_{3}\right), 33.9$ $\left(\mathrm{CH}_{2}\right), 29.7\left(\mathrm{CH}_{2}\right), 29.5\left(\mathrm{CH}_{2}\right), 29.4\left(\mathrm{CH}_{2}\right), 29.3\left(\mathrm{CH}_{2}\right), 29.2\left(\mathrm{CH}_{2}\right), 29.2\left(\mathrm{CH}_{2}\right), 28.5$ (quint, $\left.J=19 \mathrm{~Hz}, \mathrm{CD}_{2}\right), 27.3\left(\mathrm{CH}_{2}\right), 26.1\left(\mathrm{CH}_{2}\right), 24.9\left(\mathrm{CH}_{2}\right), 9.1\left(\mathrm{CH}_{3}\right)$; Compounds (S)-10b $(0.51$ $\left.\mathrm{g}, 88 \% ;[\alpha]_{\mathrm{D}}= \pm 0.0\left(\mathrm{c}=3, \mathrm{CHCl}_{3}\right)\right)$ and $(R) \mathbf{- 1 0 b}\left(504 \mathrm{mg}, 87 \% ;[\alpha]_{\mathrm{D}}= \pm 0.0\left(\mathrm{c}=3, \mathrm{CHCl}_{3}\right)\right)$ were obtained from $(\boldsymbol{S})-\mathbf{9 b}$ and $(\boldsymbol{R})-\mathbf{9 b}$, respectively.

Reduction of mesylates . General Procedure. Mesyl derivative $\mathbf{1 0}$ was dissolved in $\mathrm{Et}_{2} \mathrm{O}$ (14 ml) and treated with LiAlD_{4} (8 molar equiv.) for 36 h at $20^{\circ} \mathrm{C}$ (TLC monitoring). The reaction mixture was quenched by carefully adding of stechiometric amounts of $\mathrm{H}_{2} \mathrm{O}$, the resulting white precipitate was filtered out through Celite and the organic layer concentrated to give a residue that after purification by flash chromatography on silica gel using a gradient of $0-10 \%$ MTBE in hexane, gave the corresponding pure deuterated products $\mathbf{1 1}$ with $93-98 \%$ yields.
[11,11,12,12,17- $\left.{ }^{\mathbf{2}} \mathbf{H}_{\mathbf{5}}\right]$-2,4-dioxaicosane (11a). Compounds (S)-11a (362 mg, 93\%) and (R)11a ($360 \mathrm{mg}, 95 \%$) were obtained from $0.52 \mathrm{~g}(1.35 \mathrm{mmol})$ of $(S)-\mathbf{1 0 a}$ and $0.50 \mathrm{~g}(1.30$ $\mathrm{mmol})$ of (R)-10a, respectively; IR 2955, 2925, 2855, 2185, 2140, 2090, 1730, 1465, 1375, $1150,1100,1045,915 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 4.62(\mathrm{~s}, 2 \mathrm{H}), 3.52(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H})$ $1.63-1.55(2 \mathrm{H}), 1.40-1.18(17 \mathrm{H}), 0.88(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 96.4\left(\mathrm{CH}_{2}\right), 67.8\left(\mathrm{CH}_{2}\right)$, $55.0\left(\mathrm{CH}_{3}\right), 31.8\left(\mathrm{CH}_{2}\right), 29.7\left(\mathrm{CH}_{2}\right), 29.7\left(\mathrm{CH}_{2}\right), 29.6\left(\mathrm{CH}_{2}\right), 29.5\left(\mathrm{CH}_{2}\right), 29.4\left(\mathrm{CH}_{2}\right), 29.3$ $\left(\mathrm{CH}_{2}\right), 28.9\left(\mathrm{t}, J=19 \mathrm{~Hz}, \mathrm{CHD}\right.$), 28.7 (quint, $J=19 \mathrm{~Hz}, \mathrm{CD}_{2}$), 28.6 (quint, $J=19 \mathrm{~Hz}, \mathrm{CD}_{2}$), $26.2\left(\mathrm{CH}_{2}\right), 22.6\left(\mathrm{CH}_{2}\right), 14.0\left(\mathrm{CH}_{3}\right) ; \mathrm{MS} \mathrm{m} / \mathrm{z} 309\left(\mathrm{M}^{\bullet+}+28+1,5\right), 290\left(\mathrm{M}^{++}-1,20\right), 274(10)$, 260 (100), 246 (20), 230 (45); Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{33}{ }^{2} \mathrm{H}_{5} \mathrm{O}_{2}$: C, 74.16; H, 13.15. Found: C, 74.03; H, 13.19.
[11,11,12,12,18- $\left.{ }^{2} \mathbf{H}_{5}\right]$-2,4-dioxaicosane (11b). Compounds (S)-11b ($378 \mathrm{mg}, 98 \%$) and (R) 11b ($361 \mathrm{mg}, 94 \%$) were obtained from $0.51 \mathrm{~g}(1.35 \mathrm{mmol})$ of $(S)-\mathbf{1 0 b}$ and $0.50 \mathrm{~g}(1.30$ $\mathrm{mmol})$ of (R)-10b, respectively; IR 2925, 2850, 2185, 2140, 2090, 1465, 1380, 1210, 1150, $1110,1045,920 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 4.62(\mathrm{~s}, 2 \mathrm{H}), 3.52(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}) 1.63-$ $1.55(2 \mathrm{H}), 1.40-1.18(17 \mathrm{H}), 0.88(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 96.3\left(\mathrm{CH}_{2}\right), 67.8\left(\mathrm{CH}_{2}\right), 55.0$ $\left(\mathrm{CH}_{3}\right), 31.5(\mathrm{t}, J=19 \mathrm{~Hz}, \mathrm{CHD}), 29.7\left(\mathrm{CH}_{2}\right), 29.7\left(\mathrm{CH}_{2}\right), 29.7\left(\mathrm{CH}_{2}\right), 29.6\left(\mathrm{CH}_{2}\right), 29.6$ $\left(\mathrm{CH}_{2}\right), 29.6\left(\mathrm{CH}_{2}\right), 29.4\left(\mathrm{CH}_{2}\right), 29.3\left(\mathrm{CH}_{2}\right), 28.9$ (quint, $J=19 \mathrm{~Hz}, \mathrm{CD}_{2}$), 28.6 (quint, $J=19$ $\left.\mathrm{Hz}, \mathrm{CD}_{2}\right), 26.2\left(\mathrm{CH}_{2}\right), 22.6\left(\mathrm{CH}_{2}\right), 14.0\left(\mathrm{CH}_{3}\right)$; MS $m / z 309\left(\mathrm{M}^{++}+28+1,5\right), 290\left(\mathrm{M}^{++}-1,25\right)$, $274\left(\mathrm{M}^{\bullet+}-2,90\right), 260(100), 246$ (20), 230 (45), 128 (15), 113 (10), 99 (15). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{33}{ }^{2} \mathrm{H}_{5} \mathrm{O}_{2}$: C, 74.16; H, 13.15. Found: C, 74.03; H, 13.19.

Alcohol deprotection. General Procedure. Enantiotopically deuterated compounds 11a and 11b were deprotected to the corresponding alcohols by treatment with a 0.5 M solution of HCl in MeOH for 36 h at ambient temperature ($1 \mathrm{mmol} / 10 \mathrm{~mL}$). The solution was neutralized with saturated aqueous NaHCO_{3}, concentrated and the residue extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, dried, and purified by flash chromatography on silica gel using a gradient of 0-30\% MTBE in hexane, obtaining the corresponding pure deuterated alcohols in $83-90 \%$ yields.
[7,7,8,8,13- ${ }^{\mathbf{2}} \mathbf{H}_{5}$]-1-hexadecanol (12a) Compounds (S)-12a ($212 \mathrm{mg}, 86 \%$) and (R)-12a (220 $\mathrm{mg}, 89 \%$) were isolated from 292 mg of $(\boldsymbol{S}) \mathbf{- 1 1 a}$ and $(R)-11 a$, respectively; m.p. $48-49^{\circ} \mathrm{C}$; IR 3260, 2960, 2915, 2850, 2175, 2130, 2075, 1460, 1210, 1060, $755 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 3.63$
$(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.64-1.48(2 \mathrm{H}), 1.48-1.18(21 \mathrm{H}), 0.88(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 62.7$ $\left(\mathrm{CH}_{2}\right)$, $32.7\left(\mathrm{CH}_{2}\right), 31.8\left(\mathrm{CH}_{2}\right), 29.7\left(\mathrm{CH}_{2}\right), 29.6\left(\mathrm{CH}_{2}\right), 29.6\left(\mathrm{CH}_{2}\right), 29.5\left(\mathrm{CH}_{2}\right), 29.5\left(\mathrm{CH}_{2}\right)$, $29.4\left(\mathrm{CH}_{2}\right), 29.3\left(\mathrm{CH}_{2}\right), 28.9(\mathrm{t}, J=19 \mathrm{~Hz}, \mathrm{CHD}), 28.6$ (quint, $\left.J=19 \mathrm{~Hz}, \mathrm{CD}_{2}\right), 25.8\left(\mathrm{CH}_{2}\right)$, $22.6\left(\mathrm{CH}_{2}\right), 14.0\left(\mathrm{CH}_{3}\right) ; \mathrm{MS} \mathrm{m} / \mathrm{z} 246\left(\mathrm{M}^{\bullet+}-1,100\right), 230(95), 187(5), 173(10), 158(15), 144$ (10), 129 (10), 114 (10), 100 (15). Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{29}{ }^{2} \mathrm{H}_{5} \mathrm{O}: \mathrm{C}, 77.65$; H, 13.86. Found: C, 77.57; H, 13.69.
[7,7,8,8,14- $\left.{ }^{2} \mathbf{H}_{5}\right]$-1-hexadecanol (12b) Compounds (S)-12b ($230 \mathrm{mg}, 93 \%$) and (R)-12b ($223 \mathrm{mg}, 90 \%$) were obtained from 292 mg of $(\boldsymbol{S}) \mathbf{- 1 1 b}$ and $(\boldsymbol{R}) \mathbf{- 1 1 b}$, respectively; m.p. 48$50^{\circ} \mathrm{C}$; IR 3330, 2955, 2915, 2850, 2175, 2135, 2080, 1460, 1210, 1060, $755 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 3.64(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.64-1.48(2 \mathrm{H}), 1.48-1.18(21 \mathrm{H}), 0.88(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 62.8\left(\mathrm{CH}_{2}\right), 32.7\left(\mathrm{CH}_{2}\right), 31.5(\mathrm{t}, J=19 \mathrm{~Hz}, \mathrm{CHD}), 29.7\left(\mathrm{CH}_{2}\right), 29.6\left(\mathrm{CH}_{2}\right), 29.6\left(\mathrm{CH}_{2}\right)$, $29.6\left(\mathrm{CH}_{2}\right), 29.4\left(\mathrm{CH}_{2}\right), 29.3\left(\mathrm{CH}_{2}\right), 29.2\left(\mathrm{CH}_{2}\right), 28.9$ (quint, $J=19 \mathrm{~Hz}, \mathrm{CD}_{2}$), 28.6 (quint, J $\left.=19 \mathrm{~Hz}, \mathrm{CD}_{2}\right), 25.7\left(\mathrm{CH}_{2}\right), 22.5\left(\mathrm{CH}_{2}\right), 14.0\left(\mathrm{CH}_{3}\right)$; MS m/z $246\left(\mathrm{M}^{++}-1,100\right), 230(95), 187$ (5), 173 (10), 158 (15), 144 (10), 129 (10), 114 (10), 100 (15); Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{29}{ }^{2} \mathrm{H}_{5} \mathrm{O}$: C, 77.65; H, 13.86 Found: C, 77.58; H, 13.71.

Preparation of Carboxylic Acids. Compounds 1 were prepared according to a method previously reported involving the alcohol oxidation in two steps. ${ }^{3}$
[7,7,8,8,13- ${ }^{\mathbf{2}} \mathbf{H}_{5}$]-hexadecanoic acid 1a. Compounds (S)-1a (102 mg, 78\%) and (R)-1a (106 $\mathrm{mg}, 81 \%)$ were obtained from $124 \mathrm{mg}(0.5 \mathrm{mmol})$ of alcohols $(S)-\mathbf{1 2 a}$ and (R)-12a, respectively. m.p. 60-62; IR 3020, 2915, 2850, 2175, 2125, 2080, 1695, 1460, 1405, 1295, $1200,935,755 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 2.35(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.68-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.16$ $(21 \mathrm{H}), 0.88(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 180.5(\mathrm{CO}), 34.1\left(\mathrm{CH}_{2}\right), 31.8\left(\mathrm{CH}_{2}\right), 29.7\left(\mathrm{CH}_{2}\right)$, $29.7\left(\mathrm{CH}_{2}\right)$, $29.6\left(\mathrm{CH}_{2}\right), 29.4\left(\mathrm{CH}_{2}\right), 29.2\left(\mathrm{CH}_{2}\right), 29.1\left(\mathrm{CH}_{2}\right), 28.9(\mathrm{t}, J=19 \mathrm{~Hz}, \mathrm{CHD}), 28.6$ (quint, $J=19 \mathrm{~Hz}, \mathrm{CD}_{2}$), 28.6 (quint, $J=19 \mathrm{~Hz}, \mathrm{CD}_{2}$), $24.7\left(\mathrm{CH}_{2}\right), 22.7\left(\mathrm{CH}_{2}\right)$, $14.1\left(\mathrm{CH}_{3}\right)$; MS m/z (Methyl ester), 304 (20, $\mathrm{M}^{++}+28$), $276\left(100, \mathrm{M}^{++}+1\right.$); Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{27}{ }^{2} \mathrm{H}_{5} \mathrm{O}_{2}$: C, 73.50; H, 12.34 Found: C, 73.44; H, 12.14.
$\left[7,7,8,8,14-{ }^{2} \mathbf{H}_{5}\right]$-hexadecanoic acid 1b. Compounds $(S) \mathbf{- 1 b}(104 \mathrm{mg}, 79 \%)$ and (R) - $\mathbf{1 b}$ (105 $\mathrm{mg}, 80 \%)$ were obtained from $124 \mathrm{mg}(0.5 \mathrm{mmol})$ of $(S) \mathbf{- 1 2 b}$ and (R) - $\mathbf{1 2 b}$, respectively. m.p. $60-62^{\circ}$; IR 3020, 2915, 2850, 2180, 2135, 2080, 1700, 1460, 1405, 1295, 1210, 940, $755 \mathrm{~cm}^{-}$ ${ }^{1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 2.35(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.68-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.16(21 \mathrm{H}), 0.88(\mathrm{t}, J=7 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 180.5(\mathrm{CO}), 34.1\left(\mathrm{CH}_{2}\right), 31.5(\mathrm{t}, \mathrm{J}=19 \mathrm{~Hz}, \mathrm{CHD}),\left(\mathrm{CH}_{2}\right), 29.7\left(\mathrm{CH}_{2}\right), 29.6$ $\left(\mathrm{CH}_{2}\right), 29.4\left(\mathrm{CH}_{2}\right), 29.3\left(\mathrm{CH}_{2}\right), 29.2\left(\mathrm{CH}_{2}\right), 29.1\left(\mathrm{CH}_{2}\right), 28.7$ (quint, $\left.J=19 \mathrm{~Hz}, \mathrm{CD}_{2}\right), 28.6$ (quint, $\left.J=19 \mathrm{~Hz}, \mathrm{CD}_{2}\right), 24.7\left(\mathrm{CH}_{2}\right)$, $22.6\left(\mathrm{CH}_{2}\right), 14.0\left(\mathrm{CH}_{3}\right) ; \mathrm{MS} \mathrm{m} / \mathrm{z}$ (Methyl ester), 304 (20, $\mathrm{M}^{\bullet+}+28$), $276\left(100, \mathrm{M}^{\bullet+}+1\right.$); Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{27}{ }^{2} \mathrm{H}_{5} \mathrm{O}_{2}$: C, $73.50 ; \mathrm{H}, 12.34$ Found: C, 73.46; H, 12.10.

Aryl acetic esters preparation of the different stereoisomers of alkynols 5 and 7 (13 and 14). Carbodiimide (ECD, 0.14 mmol) was added to a mixture of the corresponding alcohol (0.10 mmol), DMAP $(0.10 \mathrm{mmol})$ and $(R)-(-)-\mathrm{MPA}($ or $9-A M A)(0.14 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 ml). The mixture was stirred for 2 h at room temperature, washed with saturated aqueous NaHCO_{3} solution and the organic layer concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel using a gradient of $0-20 \%$ MTBE in hexane ($75-90 \%$ isolated yields).
(S)-3-Hex-1-ynyl-(R)- α-O-methyl- α-phenyl acetate (Ester (S)-13a) (From CALB resolved acetate). IR 3290, 2960, 2930, 2870, 1750 (CO), 1450, 1240, 1170, 1100, $990 \mathrm{~cm}^{-}$ ${ }^{1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 7.50-7.41(2 \mathrm{H}), 7.40-7.30(3 \mathrm{H}), 5.40\left(\mathrm{dt}, J_{1}=6.5 \mathrm{~Hz}, J_{2}=2 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.79(\mathrm{~s}$, $1 \mathrm{H}), 3.43(\mathrm{~s}, 3 \mathrm{H}), 2.46(\mathrm{~d}, J=2 \mathrm{~Hz}, 1 \mathrm{H}), 1.68-1.55(2 \mathrm{H}), 1.29-1.12(2 \mathrm{H}), 0.78(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 169.6(\mathrm{CO}), 135.9(\mathrm{C}), 128.7(\mathrm{CH}), 128.5(\mathrm{CH}), 127.2(\mathrm{CH}), 82.2$ $(\mathrm{CH}), 80.7(\mathrm{CH}), 73.9(\mathrm{C}), 64.1(\mathrm{CH}), 57.3\left(\mathrm{CH}_{3}\right), 36.3\left(\mathrm{CH}_{2}\right), 17.7\left(\mathrm{CH}_{2}\right), 13.3\left(\mathrm{CH}_{3}\right) ;[\alpha]_{\mathrm{D}}$ $=-112.0\left(\mathrm{c} 2, \mathrm{CHCl}_{3}, 96 \% \mathrm{de}\right)$.
(\boldsymbol{R})-3-Hex-1-ynyl- $(\boldsymbol{R})-\alpha$-O-methyl- α-phenyl acetate (Ester (\boldsymbol{R})-13a) (From CALB residual alcohol). IR 3290, 2960, 2930, 2870, 1750 (CO), 1450, 1240, 1170, 1110, $990 \mathrm{~cm}^{-}$ ${ }^{1} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.50-7.42(2 \mathrm{H}), 7.42-7.30(3 \mathrm{H}), 5.40\left(\mathrm{dt}, J_{1}=6.5 \mathrm{~Hz}, J_{2}=2 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.79(\mathrm{~s}$, $1 \mathrm{H}), 3.43(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~d}, J=2 \mathrm{~Hz}, 1 \mathrm{H}), 1.82-1.70(2 \mathrm{H}), 1.48-1.36(2 \mathrm{H}), 0.92(\mathrm{t}, J=6.5$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 169.6(\mathrm{CO}), 135.6(\mathrm{C}), 128.6(\mathrm{CH}), 128.4(\mathrm{CH}), 127.0(\mathrm{CH}), 82.4$ $(\mathrm{CH}), 80.3(\mathrm{CH}), 73.8(\mathrm{C}), 64.3(\mathrm{CH}), 57.2\left(\mathrm{CH}_{3}\right), 36.3\left(\mathrm{CH}_{2}\right), 18.0\left(\mathrm{CH}_{2}\right), 13.4\left(\mathrm{CH}_{3}\right) ;[\alpha]_{\mathrm{D}}$ $=-10.6$ (c $2, \mathrm{CHCl}_{3}, 60 \%$ de $)$.
(\boldsymbol{R})-3-Hex-5-ynyl-(\boldsymbol{R})- α-O-methyl- $\alpha-$ phenyl acetate (Ester (\boldsymbol{R})-13b) (From CALB resolved acetate). IR 3300, 2975, 2940, 2875, 1750 (CO), 1460, 1260, 1185, $1100 \mathrm{~cm}^{-1} ;{ }^{-1} \mathrm{H}$ NMR $\delta 7.50-7.42(2 \mathrm{H}), 7.42-7.30(3 \mathrm{H}), 4.94(\mathrm{~m}, 1 \mathrm{H}), 4.78(\mathrm{~s}, 1 \mathrm{H}), 3.44(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~m}$, $2 \mathrm{H}), 1.81(\mathrm{t}, J=3 \mathrm{~Hz}, 1 \mathrm{H}), 1.80-1.62(2 \mathrm{H}), 0.88(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 170.4$ (CO), $136.2(\mathrm{C}), 128.6(\mathrm{CH}), 128.5(\mathrm{CH}), 127.1(\mathrm{CH}), 82.6(\mathrm{CH}), 79.1(\mathrm{CH}), 73.8(\mathrm{C}), 70.3$ $(\mathrm{CH}), 57.3\left(\mathrm{CH}_{3}\right), 25.9\left(\mathrm{CH}_{2}\right), 23.2\left(\mathrm{CH}_{2}\right), 9.3\left(\mathrm{CH}_{3}\right) ;[\alpha]_{\mathrm{D}}=-62.0\left(\mathrm{c} 1, \mathrm{CHCl}_{3}, 94 \%\right.$ de $)$.
(S)-3-Hex-5-ynyl-(R)- α-O-methyl- α-phenyl acetate (Ester (S)-13b) (From CALB residual alcohol). IR 3310, 2975, 2940, 1745 (CO), 1460, 1245, 1180, $1100 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.50-7.42(2 \mathrm{H}), 7.42-7.30(3 \mathrm{H}), 4.92(\mathrm{~m}, 1 \mathrm{H}), 4.78(\mathrm{~s}, 1 \mathrm{H}), 3.43(\mathrm{~s}, 3 \mathrm{H}), 2.48(\mathrm{~m}, 2 \mathrm{H})$, $1.97(\mathrm{t}, J=3 \mathrm{~Hz}, 1 \mathrm{H}), 1.68-1.50(2 \mathrm{H}), 0.63(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 170.3(\mathrm{CO})$, $136.3(\mathrm{C}), 128.7(\mathrm{CH}), 128.5(\mathrm{CH}), 127.2(\mathrm{CH}), 82.5(\mathrm{CH}), 79.4(\mathrm{CH}), 73.8(\mathrm{C}), 70.4(\mathrm{CH})$, $57.3\left(\mathrm{CH}_{3}\right), 25.9\left(\mathrm{CH}_{2}\right), 23.6\left(\mathrm{CH}_{2}\right), 9.0\left(\mathrm{CH}_{3}\right) ;[\alpha]_{\mathrm{D}}=-100.6\left(\mathrm{c} 1, \mathrm{CHCl}_{3}, 64 \% \mathrm{de}\right)$.
(S)-[9,9,10,10- $\left.{ }^{2} \mathrm{H}_{4}\right]$-17,19-dioxa-4-eico-5-ynyl-(R)- α-O-methyl- α-phenyl acetate (Ester (S)-14a) (From CALB resolved acetate). IR 2935, 2850, 2190, 2090, 1750 (CO), 1455, $1245,1150,1110,1050,920 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.47-7.41(2 \mathrm{H}), 7.39-7.28(3 \mathrm{H}), 5.41\left(\mathrm{tt}, J_{1}=\right.$ $\left.6.5 \mathrm{~Hz}, J_{2}=2 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.78(\mathrm{~s}, 1 \mathrm{H}), 4.62(\mathrm{~s}, 2 \mathrm{H}), 3.52(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.42(\mathrm{~s}, 3 \mathrm{H}), 3.36$ $(\mathrm{s}, 3 \mathrm{H}), 2.17\left(\mathrm{dt}, J_{1}=7 \mathrm{~Hz}, J_{2}=2 \mathrm{~Hz}, 2 \mathrm{H}\right), 1.65-1.52(4 \mathrm{H}), 1.45(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 1.42-1.10$ (10H), 0.77 (t, $J=7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 169.7(\mathrm{CO}), 136.1(\mathrm{C}), 128.6(\mathrm{CH}), 128.5(\mathrm{CH})$, $127.2(\mathrm{CH}), 96.3\left(\mathrm{CH}_{2}\right), 86.6(\mathrm{C}), 82.3(\mathrm{CH}), 77.3(\mathrm{C}), 67.8\left(\mathrm{CH}_{2}\right), 65.0(\mathrm{CH}), 57.3\left(\mathrm{CH}_{3}\right)$, $55.0\left(\mathrm{CH}_{3}\right), 36.9\left(\mathrm{CH}_{2}\right), 29.7\left(\mathrm{CH}_{2}\right), 29.4\left(\mathrm{CH}_{2}\right), 29.4\left(\mathrm{CH}_{2}\right), 29.1\left(\mathrm{CH}_{2}\right), 28.1\left(\mathrm{CH}_{2}\right), 26.1$ $\left(\mathrm{CH}_{2}\right), 18.5\left(\mathrm{CH}_{2}\right), 17.9\left(\mathrm{CH}_{2}\right), 13.3\left(\mathrm{CH}_{3}\right) ;[\alpha]_{\mathrm{D}}=-60.6\left(\mathrm{c} 2, \mathrm{CHCl}_{3}, 96 \% \mathrm{de}\right)$.
(R)-[9,9,10,10- $\left.{ }^{2} \mathrm{H}_{4}\right]$-17,19-dioxa-4-eico-5-ynyl-(\boldsymbol{R})- α-O-methyl- α-phenyl-acetate (Ester (R)-14a) (From CALB residual alcohol). IR 2935, 2850, 2190, 2090, 1750 (CO), 1455, $1245,1150,1110,1050,920 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.47-7.41(2 \mathrm{H}), 7.39-7.28(3 \mathrm{H}), 5.40\left(\mathrm{tt}, J_{1}=\right.$ $\left.6.5 \mathrm{~Hz}, J_{2}=2 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.78(\mathrm{~s}, 1 \mathrm{H}), 4.62(\mathrm{~s}, 2 \mathrm{H}), 3.52(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.43(\mathrm{~s}, 3 \mathrm{H}), 3.36$ (s, 3H), $2.09\left(\mathrm{dt}, J_{1}=7 \mathrm{~Hz}, J_{2}=2 \mathrm{~Hz}, 2 \mathrm{H}\right), 1.72(\mathrm{~m}, 2 \mathrm{H}), 1.59(\mathrm{~m}, 2 \mathrm{H}), 1.46-1.16(14 \mathrm{H})$, $0.90(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 169.8(\mathrm{CO}), 135.9(\mathrm{C}), 128.5(\mathrm{CH}), 128.4(\mathrm{CH}), 127.1$ $(\mathrm{CH}), 96.3\left(\mathrm{CH}_{2}\right), 86.5(\mathrm{C}), 82.6(\mathrm{CH}), 76.9(\mathrm{C}), 67.8\left(\mathrm{CH}_{2}\right), 65.3(\mathrm{CH}), 57.3\left(\mathrm{CH}_{3}\right), 55.0$
$\left(\mathrm{CH}_{3}\right), 36.9\left(\mathrm{CH}_{2}\right), 29.7\left(\mathrm{CH}_{2}\right), 29.4\left(\mathrm{CH}_{2}\right), 29.4\left(\mathrm{CH}_{2}\right), 29.1\left(\mathrm{CH}_{2}\right), 28.1\left(\mathrm{CH}_{2}\right), 26.1\left(\mathrm{CH}_{2}\right)$, $18.4\left(\mathrm{CH}_{2}\right), 18.2\left(\mathrm{CH}_{2}\right), 13.5\left(\mathrm{CH}_{3}\right) ;[\alpha]_{\mathrm{D}}=+15.0\left(\mathrm{c} 0.5, \mathrm{CHCl}_{3}, 96 \% \mathrm{de}\right)$.
(\boldsymbol{R}) - $\left.\mathbf{9 , 9 , 1 0 , 1 0 -}{ }^{2} \mathrm{H}_{4}\right]$-17,19-dioxa-3-eico-5-ynyl-(R)- α-O-methyl- α-phenyl acetate (Ester (\boldsymbol{R})-14b) (From CALB resolved acetate). IR 2930, 2850, 2190, 2095, 1745 (CO), 1450, 1255, 1175, 1105, 1040, $920 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 7.49-7.42(2 \mathrm{H}), 7.39-7.28(3 \mathrm{H}), 4.90(\mathrm{~m}$, $1 \mathrm{H}), 4.77(\mathrm{~s}, 1 \mathrm{H}), 4.62(\mathrm{~s}, 2 \mathrm{H}), 3.52(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.44(\mathrm{~s}, 3 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~m}$, $2 \mathrm{H}), 2.00(\mathrm{~m}, 2 \mathrm{H}), 1.80-1.50(4 \mathrm{H}), 1.42-1.16(10 \mathrm{H}), 0.87(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 170.3(\mathrm{CO}), 136.3(\mathrm{C}), 128.4(\mathrm{CH}), 128.4(\mathrm{CH}), 127.0(\mathrm{CH}), 96.3\left(\mathrm{CH}_{2}\right), 82.7(\mathrm{CH}), 82.4$ $(\mathrm{C}), 74.7(\mathrm{C}), 74.6(\mathrm{CH}), 67.8\left(\mathrm{CH}_{2}\right), 57.3\left(\mathrm{CH}_{3}\right), 55.0\left(\mathrm{CH}_{3}\right), 29.7\left(\mathrm{CH}_{2}\right), 29.4\left(\mathrm{CH}_{2}\right), 29.4$ $\left(\mathrm{CH}_{2}\right), 29.1\left(\mathrm{CH}_{2}\right), 28.6\left(\mathrm{CH}_{2}\right), 26.1\left(\mathrm{CH}_{2}\right), 25.9\left(\mathrm{CH}_{2}\right), 23.5\left(\mathrm{CH}_{2}\right), 18.5\left(\mathrm{CH}_{2}\right), 9.3\left(\mathrm{CH}_{3}\right)$; $[\alpha]_{\mathrm{D}}=-13.0$ (c 1, $\left.\mathrm{CHCl}_{3}, 94 \% \mathrm{de}\right)$.
(S)-[9,9,10,10- $\left.{ }^{2} \mathrm{H}_{4}\right]$-17,19-dioxa-3-eico-5-ynyl-(R)- α-O-methyl- α-phenyl acetate (Ester $(S)-14 b)$ (From CALB and TL residual alcohol). IR 2930, 2850, 2190, 2095, 1745 (CO), 1450, 1255, 1175, 1105, 1040, $920 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.49-7.42(2 \mathrm{H}), 7.39-7.28(3 \mathrm{H}), 4.87$ $(\mathrm{m}, 1 \mathrm{H}), 4.77(\mathrm{~s}, 1 \mathrm{H}), 4.62(\mathrm{~s}, 2 \mathrm{H}), 3.51(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.42(\mathrm{~s}, 3 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 2.43$ $(\mathrm{m}, 2 \mathrm{H}), 2.10(\mathrm{~m}, 2 \mathrm{H}), 1.70-158(4 \mathrm{H}), 1.43(\mathrm{t}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 1.40-1.18(10 \mathrm{H}), 0.62(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 170.2(\mathrm{CO}), 136.4(\mathrm{C}), 128.5(\mathrm{CH}), 128.4(\mathrm{CH}), 127.2(\mathrm{CH}), 96.3$ $\left(\mathrm{CH}_{2}\right), 82.6(\mathrm{CH}), 82.4(\mathrm{CH}), 74.9(\mathrm{C}), 74.5(\mathrm{CH}), 67.8\left(\mathrm{CH}_{2}\right), 57.2\left(\mathrm{CH}_{3}\right), 54.9\left(\mathrm{CH}_{3}\right), 36.9$ $\left(\mathrm{CH}_{2}\right), 29.7\left(\mathrm{CH}_{2}\right), 29.4\left(\mathrm{CH}_{2}\right), 29.3\left(\mathrm{CH}_{2}\right), 29.1\left(\mathrm{CH}_{2}\right), 28.6\left(\mathrm{CH}_{2}\right), 26.1\left(\mathrm{CH}_{2}\right), 25.9$ $\left(\mathrm{CH}_{2}\right), 23.8\left(\mathrm{CH}_{2}\right), 18.6\left(\mathrm{CH}_{2}\right), 8.9\left(\mathrm{CH}_{3}\right) ;[\alpha]_{\mathrm{D}}=-50.1\left(\mathrm{c} 2, \mathrm{CHCl}_{3}, 94 \%\right.$ de $)$.

In Vivo Gland Culture Procedure. In these experiments, newly-emerged virgin T. pityocampa females were briefly anesthetized on ice and pheromone glands were everted and impregnated ($1 \mu \mathrm{~L}$ every 3 hours x 4 times) with the DMSO solutions of stereospecifically deuterated probes $\mathbf{1}(10 \mathrm{mg} / \mathrm{mL}$ each). The in vivo incubation proceeded for 36 h . In order to obtain the methyl ester derivatives of the gland lipids for analysis, the pheromone glands were excised and soaked in chloroform methanol (2:1) at $25^{\circ} \mathrm{C}$ for 1 h and base-methanolized in 0.5 M KOH for 1 h . After this time, the organic solution was neutralized with 1 N HCl , washed with satd. NaHCO_{3} aqueous solution, extracted with hexane, concentrated and the residue was treated with a freshly prepared diazomethane solution. Ten glands were used for each assay.

Instrumental Analysis of the Biological Extracts. The GC-MS analysis of biological extracts was performed by Chemical Ionization (CI) using methane as ionization gas. The system was equipped with a non-polar HP5-MS capillary column ($30 \mathrm{~m} \times 0.25 \mathrm{~mm}$ I.D, $0.25 \mu \mathrm{~m}$ stationary phase thickness) and using the following program: from $100^{\circ} \mathrm{C}$ to 220 ${ }^{\circ} \mathrm{C}$ at $5^{\circ} \mathrm{C} / \mathrm{min}$ and then to $300^{\circ} \mathrm{C}$ at $7{ }^{\circ} \mathrm{C} / \mathrm{min}$ after an initial delay of 1 min . Analyses were carried out on methanolyzed lipidic extracts from pheromone glands with the equipment and conditions described above. Kinetic isotope effects were calculated from the ratios of formed products from each probe which afforded a cluster of ions, analyzed as methyl esters, and are based on the abundance of the respective molecular ions in the range m / z 265-274 in which the most abundant ones corresponded to the molecular ion of the resulting isotopomers.

NMR Spectra

1a $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHDCH}_{2} \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2}\left(\mathrm{CD}_{2}\right)_{2}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{COOH}$ ${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

DEPT 1(CH)

DEPT $2\left(\mathrm{CH}, \mathrm{CH}_{3} / \mathrm{CH}_{2}\right)$

1b $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHDCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2}\left(\mathrm{CD}_{2}\right)_{2}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{COOH}$ ${ }^{1}$ H NMR

${ }^{13} \mathrm{C}$ NMR

DEPT 1(CH)

DEPT $2\left(\mathrm{CH}, \mathrm{CH}_{3} / \mathrm{CH}_{2}\right)$

$2 \mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{C}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{OMOM}$

${ }^{1}$ H NMR

${ }^{13} \mathrm{C}$ NMR

DEPT

$3 \mathrm{HO}\left(\mathrm{CH}_{2}\right)_{2}\left(\mathrm{CD}_{2}\right)_{2}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{OMOM}$
${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

$4 \mathrm{Br}\left(\mathrm{CH}_{2}\right)_{2}\left(\mathrm{CD}_{2}\right)_{2}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{OMOM}$

${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

DEPT

6a $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CHOAcC} \equiv \mathrm{C}$
 ${ }^{1}$ H NMR

${ }^{13} \mathrm{C}$ NMR

DEPT $2\left(\mathrm{CH}, \mathrm{CH}_{3} / \mathrm{CH}_{2}\right)$

6b $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHOAc}^{2} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{C}$
${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

DEPT 1(CH)

DEPT $2\left(\mathrm{CH}, \mathrm{CH}_{3} / \mathrm{CH}_{2}\right)$

7a $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CHOHC} \equiv \mathrm{C}\left(\mathrm{CH}_{2}\right)_{2}\left(\mathrm{CD}_{2}\right)_{2}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{OMOM}$
${ }^{1}$ H NMR

oxpl ${ }^{\text {c2p }}$	
	$\underbrace{\text { dim }}_{\substack{\text { dinf } \\ \text { diseg }}}$
	${ }_{\text {dres }}^{\text {dres }}$ nomo ${ }^{\text {di.0 }}$
	${ }_{\text {utfr }}^{\text {Fractessims }}$
喿 4.0	$\underbrace{\text { not used }}_{\substack{\text { proc } \\ \text { noth }}}$
${ }_{\text {ctiock }}^{\text {ctioc }}$	verr
${ }_{\text {gain }}^{\text {alacs }}$ fot used	wit wit
sp wi 5064.7.	
ins 100.000	

${ }^{13} \mathrm{C}$ NMR

DEPT $2\left(\mathrm{CH}, \mathrm{CH}_{3} / \mathrm{CH}_{2}\right)$

7b $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHOHCH}_{2} \mathrm{C} \equiv \mathrm{C}\left(\mathrm{CH}_{2}\right)_{2}\left(\mathrm{CD}_{2}\right)_{2}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{OMOM}$ ${ }^{1}$ H NMR

${ }^{13}$ C NMR

DEPT 1(CH)

DEPT $2\left(\mathrm{CH}, \mathrm{CH}_{3} / \mathrm{CH}_{2}\right)$

8a $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CHOAcC} \equiv \mathrm{C}\left(\mathrm{CH}_{2}\right)_{2}\left(\mathrm{CD}_{2}\right)_{2}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{OMOM}$

${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

DEPT 1(CH)

DEPT $2\left(\mathrm{CH}, \mathrm{CH}_{3} / \mathrm{CH}_{2}\right)$

9a $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CHOHCH}_{2} \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2}\left(\mathrm{CD}_{2}\right)_{2}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{OMOM}$
${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

DEPT 1(CH)

DEPT $2\left(\mathrm{CH}, \mathrm{CH}_{3} / \mathrm{CH}_{2}\right)$

9b $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHOHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2}\left(\mathrm{CD}_{2}\right)_{2}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{OMOM}$ ${ }^{1}$ H NMR

${ }^{13} \mathrm{C}$ NMR

DEPT 1(CH)

DEPT $2\left(\mathrm{CH}, \mathrm{CH}_{3} / \mathrm{CH}_{2}\right)$

10a $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CHOMsCH}_{2} \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2}\left(\mathrm{CD}_{2}\right)_{2}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{OMOM}$ ${ }^{1}$ H NMR

${ }^{13} \mathrm{C}$ NMR

standari carbon parameters			
exp2 ${ }^{\text {sppul }}$			
siven		${ }_{\text {din }}^{\text {dive }}$	
${ }^{\text {tn }}$. 13	dmm	1350
${ }_{\text {np }}^{\text {at }}$			
$\substack { \text { sw } \\ \begin{subarray}{c}{\text { sen }{ \text { sw } \\ \begin{subarray} { c } { \text { sen } } } \end{subarray}$	${ }^{29996.3} 17000$	dres	1.0
	${ }_{52}$		${ }_{\text {processing }}^{1.00}$
			- 1.00
	608		
glock not used sio werr			
11 flass ${ }_{\text {in }}^{\text {n wit }}$			
$\mathrm{dp}_{\text {dp }}^{\text {di }}$			
	25212.88		
wc ${ }^{\text {wr }}$			
180			
Ffp 9677.0			
${ }_{\text {ins }}$	100.000		
	nm		

DEPT 1(CH)

DEPT $2\left(\mathrm{CH}, \mathrm{CH}_{3} / \mathrm{CH}_{2}\right)$

10b $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHOMsCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2}\left(\mathrm{CD}_{2}\right)_{2}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{OMOM}$ ${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

DEPT 1(CH)

DEPT $2\left(\mathrm{CH}, \mathrm{CH}_{3} / \mathrm{CH}_{2}\right)$

11a $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CHDCH}_{2} \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2}\left(\mathrm{CD}_{2}\right)_{2}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{OMOM}$
${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

DEPT 1(CH)

DEPT $2\left(\mathrm{CH}, \mathrm{CH}_{3} / \mathrm{CH}_{2}\right)$

11b $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHDCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2}\left(\mathrm{CD}_{2}\right)_{2}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{OMOM}$
${ }^{1} \mathrm{H}$ NMR

${ }^{13}$ C NMR

standard carbon parameters			
exp2 ${ }^{\text {a }}$ 2pul			
	sample	dec	
dote		${ }_{\text {din }}^{\substack{\text { fra } \\ \text { did }}}$	${ }^{499.805}$
${ }_{\text {Pe }}$	quisition ${ }^{\text {exp }}$	${ }_{\text {dor }}^{\text {dipur }}$ dot	$-1.000 .08$
${ }_{\text {sw }}^{\text {sw }}$	${ }_{29996.8}$	${ }_{\text {dres }}^{\substack{\text { dieg } \\ \text { dres }}}$	
ni	15000	nath	
${ }^{\text {ct }}$ (10ck ${ }^{2912}$			
	flaos		
$\stackrel{\text { ip }}{\text { nis }}$	号		
display			
rfo min			
ins 100.000			

| | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 180 | 160 | 140 | 120 | 100 | 80 | 60 | 40 | |

DEPT 1(CH)

DEPT $2\left(\mathrm{CH}, \mathrm{CH}_{3} / \mathrm{CH}_{2}\right)$

12a $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHDCH}_{2} \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2}\left(\mathrm{CD}_{2}\right)_{2}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{OH}$

 ${ }^{1}$ H NMR
${ }^{13} \mathrm{C}$ NMR

DEPT 1(CH)

DEPT $2\left(\mathrm{CH}, \mathrm{CH}_{3} / \mathrm{CH}_{2}\right)$

12b $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHDCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2}\left(\mathrm{CD}_{2}\right)_{2}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{OH}$
${ }^{1}$ H NMR

${ }^{13} \mathrm{C}$ NMR

stancard carbor parameters		
exp 2 s2pu		
	sanple	dec. a vi
${ }_{\text {date }}$ solvent	ant ${ }^{\text {Jun }} 15{ }^{2005}$	${ }_{\text {din }}^{\text {difa }}$
${ }^{511}$	cuisition exp	dipwr
	125.689	dm yyy
$cat at at$		cosmm
${ }_{\text {np }}$		dis 1.0
fb	-17009	homo processing "
${ }_{\text {buw }}^{\text {bs }}$	${ }_{5}^{32}$	$16{ }^{\text {Processing }} 0.50$
${ }_{\text {did }}^{\text {pre }}$	6.0	${ }_{\substack{\text { witile } \\ \text { proc }}}^{\text {at }}$
tof	1700.0	${ }_{i n} 262144$
${ }_{\text {nt }}^{\text {nt }}$	15000 3488	math f
${ }_{\text {gain }}$	not used	wexp
	flas	
in		
${ }_{\text {dr }}^{\text {di }}$		
Nucher		
ins	100.008	
	ph	

DEPT $2\left(\mathrm{CH}, \mathrm{CH}_{3} / \mathrm{CH}_{2}\right)$

(R)-13a CH ${ }_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CHO}[\operatorname{MPA}-(R)] \mathrm{C} \equiv \mathrm{C}$

${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

DEPT 1(CH)

DEPT $2\left(\mathrm{CH}, \mathrm{CH}_{3} / \mathrm{CH}_{2}\right)$

DQCOSY

HSQC

standard prgto parameters
Patse Sequence: ghspac

(S)-13a CH $\mathbf{H}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CHO}[$ MPA- $(R)] \mathrm{C} \equiv \mathrm{C}$
${ }^{1}$ H NMR

${ }^{13} \mathrm{C}$ NMR

DEPT 1(CH)

DEPT $2\left(\mathrm{CH}, \mathrm{CH}_{3} / \mathrm{CH}_{2}\right)$

DQCOSY

HSQC

(\boldsymbol{R})-13b $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}[$ MPA- $(R)] \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{C}$
${ }^{1}$ H NMR

${ }^{13} \mathrm{C}$ NMR

DEPT 1(CH)

DEPT $2\left(\mathrm{CH}, \mathrm{CH}_{3} / \mathrm{CH}_{2}\right)$

DQCOSY

HSQC

(S)-13b CH ${ }_{3} \mathrm{CH}_{2} \mathrm{CHO}[$ MPA- $(R)] \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{C}$
${ }^{1}$ H NMR

${ }^{13} \mathrm{C}$ NMR

DEPT 1(CH)

DEPT $2\left(\mathrm{CH}, \mathrm{CH}_{3} / \mathrm{CH}_{2}\right)$

DQCOSY

(R)-14a CH 3 ($\left.\mathrm{CH}_{2}\right)_{2} \mathrm{CHO}[\operatorname{MPA}-(R)] \mathrm{CH}_{2} \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2}\left(\mathrm{CD}_{2}\right)_{2}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{OMOM}$ ${ }^{1}$ H NMR

${ }^{13} \mathrm{C}$ NMR

DEPT 1(CH)

DEPT $2\left(\mathrm{CH}, \mathrm{CH}_{3} / \mathrm{CH}_{2}\right)$

DQCOSY

HSQC

(S)-14a CH $33\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CHO}[\operatorname{MPA}-(R)] \mathrm{CH}_{2} \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2}\left(\mathrm{CD}_{2}\right)_{2}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{OMOM}$ ${ }^{1}$ H NMR

${ }^{13} \mathrm{C}$ NMR

DEPT 1(CH)

DEPT $2\left(\mathrm{CH}, \mathrm{CH}_{3} / \mathrm{CH}_{2}\right)$

DQCOSY

HSQC

standard proton parameters
Pulsa sequence: ghsec

(R)-14b CH $3_{3} \mathrm{CH}_{2} \mathrm{CHO}[$ MPA- $(R)] \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2}\left(\mathrm{CD}_{2}\right)_{2}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{OMOM}$ ${ }^{1}$ H NMR

${ }^{13} \mathrm{C}$ NMR

DEPT 1(CH)

DEPT $2\left(\mathrm{CH}, \mathrm{CH}_{3} / \mathrm{CH}_{2}\right)$

DQCOSY

HSQC

(S)-14b CH $3_{3} \mathrm{CH}_{2} \mathrm{CHO}[$ MPA- $(R)] \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2}\left(\mathrm{CD}_{2}\right)_{2}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{OMOM}$ ${ }^{1}$ H NMR

${ }^{13} \mathrm{C}$ NMR

DEPT 1(CH)

DEPT $2\left(\mathrm{CH}, \mathrm{CH}_{3} / \mathrm{CH}_{2}\right)$

DQCOSY

HSQC

stancard proton parameters
Pulse sequence: patsoc

References

1. Gitlesen, T.; Bauer, M.; Adlercreutz, P., Lipid Metab. 1997, 1345, 188-196.
2. Abad, J.-L.; Soldevila, C.; Clapès, P.; Camps, F., J. Org. Chem. 2003, 68, 53515356.
3. Abad, J. L.; Serra, M.; Camps, F.; Fabriàs, G., J. Org. Chem. 2007, 72, 760-764.
4. Abad, J.-L.; Fabriàs, G.; Camps, F., Lipids 2004, 39, 397-401.
5. Bates, H. A.; Farina, J.; Tong, M., J. Org. Chem. 1986, 51, 2637-2641.
6. Abad, J.-L.; Fabriàs, G.; Camps, F., J. Org. Chem. 2000, 65, 8582-8588.
