Enantioselective Aza-Henry Reaction with an N-Sulfinyl Urea

Organocatalyst

MaryAnn T. Robak, Monica Trincado, and Jonathan A. Ellman*

Department of Chemistry, University of California, Berkeley, California

94720

jellman@berkeley.edu

Supporting Information

Table of Contents

I.	General Methods	S2
II.	Optimization of Reaction Conditions	S3
III.	Synthesis of Sulfinyl Ureas	S4-S22
IV.	Catalytic Aza-Henry Reaction	S23-S30
V.	Stereochemistry of Product 10h	S31-S34
VI.	References	S35
VII.	¹ H NMR spectra	S36-S50
VIII.	NOE spectra	S51-S52
IV.	HPLC data	S53-S62

General Methods. All reagents were obtained from commercial suppliers and used without further purification unless otherwise noted. Tetrahydrofuran (THF), toluene, and methylene chloride (CH_2Cl_2) were passed through columns of activated alumina under nitrogen pressure immediately prior to use. Acetonitrile (MeCN) and N,N-Diisopropylethylamine (*i*-Pr₂NEt) were distilled over calcium hydride under an atmosphere of nitrogen immediately prior to use. Nitroethane and nitromethane were fractionally distilled and stored under nitrogen. Flash column chromatography was carried out either with Merck 60 230-240 mesh silica gel, or using a Biotage SP Flash Purification System (Biotage No. SP1-B1A) with Flash+ cartridges (Biotage No. FPK0-1107-16046). ¹H and ¹³C{¹H} NMR chemical shifts are reported in ppm relative to either the residual solvent peak (¹H, ¹³C) or TMS (¹H) as an internal standard. IR spectra were recorded as thin films on a Nicolet Avatar 360 FTIR spectrometer equipped with an attenuated total reflectance accessory or as KBr pellets on a Nicolet MAGNA-IR 850 spectrometer, and only partial data are listed. Melting points were determined on a Mel-Temp apparatus and are reported uncorrected. Mass spectrometry (HRMS) was carried out by the University of California at Berkeley Mass Spectrometry Facility.

Di-*tert*-butyl tricarbonate and β -phenylnitroethane were prepared according to literature procedures.¹ Imines **9a-9h** were prepared from α -amido sulfone precursors according to literature procedures.² **5a**, **5b**, **8g**, and **8h** are literature compounds.³

Optimization of Reaction Conditions

N ^{_Boo}	; 10 mol% 8a , 5 equiv EtNO ₂ ,			
Ph9a	2 equiv <i>i</i> -Pr ₂ NEt, -40 °C, 13h	Ph 10a	NO ₂ + Ph	11a
Entry	Solvent	Conv. ^a	d.r. (10 : 11) ^b	$ee~(\%)^{b}$
1	CH ₂ Cl ₂	82	80:20	90
2	MeCN	100	82:18	92
3	THF	<5	-	28
4	PhMe	5	87:13	79
5	PhCl	23	84:16	84

Solvent Optimization:

^a Conversion to product was determined by ¹H NMR analysis of crude product relative to hexamethylbenzene as an internal standard ^b Diastereomeric ratio and enantiomeric excess were determined by chiral HPLC.

Base Stoichiometry:

N ^{~ E}	Boc 10 mol% 2 equiv E	8 a , EtNO ₂ ,	HN_ ^{Boc}	ΗŇ	Boc
Ph	<i>i</i> -Pr ₂ NE	t, -38 °C	Ph NO ₂	+ Ph	NO ₂
9a			10a	11;	a
Entry	Equiv	Conv.	Conv.	d.r.	<i>ee</i> (%) ^b
	<i>i</i> -Pr₂NEt	3.5 h ^a	25 h ^a	(10 : 11) ^b	
1	1.0	41	92	86:14	94
2	0.5	28	88	88:12	95
3	0.1	4	31	91:9	96

^a Conversion to product was determined by ¹H NMR analysis of crude product relative to hexamethylbenzene as an internal standard ^b Diastereomeric ratio and enantiomeric excess were determined by chiral HPLC.

General Procedures for the Preparation of Sulfinyl Ureas from Sulfinamides and Isocyanates

Procedure A. A stirred solution of (*R*)-*tert*-butanesulfinamide (121 mg, 1.0 mmol) in THF (10 mL) was cooled in a dry ice/acetone bath under a nitrogen atmosphere. Butyllithium in hexanes (1.1 mmol) was added dropwise, and the solution was stirred for 15 min, and then the cold bath was removed and the solution was stirred at rt for 15 min. The appropriate isocyanate (1.1 equiv) was added dropwise, and stirring was continued at rt for 3-5 h. The reaction was quenched by the addition of water (0.5 mL), and the resulting mixture was concentrated.

Procedure B. A stirred solution of (*R*)-*tert*-butanesulfinamide (1.0 equiv) in THF (0.20 M) was cooled in a dry ice/acetone bath under nitrogen atmosphere. Butyllithium in hexanes (1.0 - 2.0 equiv) was added dropwise, and the solution was stirred for 20 min. The appropriate isocyanate (1.2-1.5 equiv) was added dropwise. The solution was stirred for 30 min, after which time the cold bath was removed and stirring was continued at rt for 1 - 18 h.

(R)-N-(Cyclohexylcarbamoyl)-tert-butanesulfinamide 4a.

General procedure A was followed, using freshly distilled cyclohexyl isocyanate. The residue was diluted with CH_2Cl_2 (75 mL) and extracted with 0.1 M aqueous NaOH (50 mL, then an additional 25 mL). The combined aqueous layer was acidified to pH < 2 with saturated aqueous NaHSO₄ and then extracted with CH_2Cl_2 (3 x 20 mL). The combined extracts were dried over Na₂SO₄, filtered, and concentrated. Crystallization from $CH_2Cl_2/EtOAc$ yielded 145 mg (59%) of white crystalline solid, mp 187-188 °C. IR

(film): 3327, 3202, 2933, 2854, 1695, 1537, 1418, 1031, 1011 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.29 (s, 1H), 5.83 (d, *J* = 7.8 Hz, 1H), 3.66-3.54 (m, 1H), 1.98-1.85 (m, 2H), 1.77-1.65 (m, 2 H), 1.62-1.54 (m, 1H), 1.41-1.29 (m, 2H), 1.28 (s, 9H), 1.27-1.15 (m, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 154.2, 56.8, 49.5, 33.3, 33.3, 25.7, 25.0, 22.5. HRMS (FAB+) calcd for C₁₁H₂₃N₂O₂S [MH]⁺ 247.1480; found 247.1478.

Cyclohexyl isothiocyanate

Cyclohexylamine (1.14 mL, 10.0 mmol) was added to a flask containing CH_2Cl_2 (30 mL) and saturated aqueous NaHCO₃ (30 mL). The mixture was stirred at 0 °C for 5 min, and then the stirring was stopped and thiophosgene (0.84 mL, 11 mmol) was added directly to the bottom (organic) layer via syringe. The reaction mixture was stirred for 30 min, and then the layers were separated. The organic layer was dried with Na₂SO₄ and concentrated. Silica gel chromatography, eluting with hexanes, afforded 0.408 g (29%) of cyclohexyl isothiocyanate as a pale yellow oil. The ¹H and ¹³C NMR spectra are consistent with literature values.⁴

(R)-N-(Cyclohexylcarbamothioyl)-tert-butanesulfinamide 4b.

General procedure A was followed. The crude residue was diluted with 0.1 M aqueous NaOH (50 mL) and extracted with CH_2Cl_2 (2 x 25 mL). The aqueous layer was acidified to pH <2 with saturated aqueous NaHSO₄, and then extracted with CH_2Cl_2 (2 x 30 mL). The organic layers were dried over Na₂SO₄, filtered, and concentrated. The crude

material was recrystallized from EtOAc and collected by vacuum filtration. The mother liquor was reduced in volume and a second crop of crystals was collected, to give a total of 100 mg (38%) of thiourea **4b** as colorless prisms, m.p. 115-118 °C. IR (KBr): 3297, 3158, 2930, 1547, 1497, 1038 cm⁻¹. ¹H NMR (400 MHz, DMSO-d6): δ 8.86 (s, 1H), 8.27 (d, *J* = 7.7 Hz, 1H), 4.05-3.95 (m, 1H), 1.95-1.82 (m, 2H), 1.70-1.60 (m, 2H), 1.58-1.50 (m, 1H), 1.38-1.15 (m, 5 H), 1.18 (s, 9H). ¹³C{¹H} NMR (100 MHz, DMSO-d6): δ 181.8, 56.0, 53.1, 31.9, 25.5, 24.6, 22.8. HRMS (FAB+) calcd for C₁₁H₂₃N₂OS₂ [MH]⁺ 263.1252; found 263.1248.

(R)-N-(Phenylcarbamoyl)-tert-butanesulfinamide 6a.

General procedure B was followed with (*R*)-*tert*-butanesulfinamide (303 mg, 2.50 mmol), *n*-butyllithium (3.8 mL, 5.0 mmol), and phenyl isocyanate (0.41 mL, 3.8 mmol). After 16 h, the reaction mixture was diluted with CH₂Cl₂ (40 mL) and extracted with water (60 mL). The aqueous layer was rinsed with CH₂Cl₂ (4 x 15 mL) and then acidified to pH < 2 with saturated aqueous NaHSO₄. The aqueous layer was extracted with CH₂Cl₂ (6 x 20 mL), and the combined extracts were dried over Na₂SO₄, filtered, and concentrated. The crude product was crystallized from CH₂Cl₂/EtOAc and isolated by filtration and rinsing on the filter paper with an additional 2 mL of EtOAc to yield 410 mg (68%) of urea **6a** as a white crystalline solid, mp 171-172 °C. IR (film): 3271, 1686, 1443, 1185, 1032, 891, 759, 690 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 8.03 (s, 1H), 7.69 (s, 1 H), 7.36 (d, *J* = 7.6 Hz, 2H), 7.24 (apparent t, *J* = 8 Hz, 2H), 7.03 (t, *J* = 7.4 Hz, 1H), 1.34 (s, 9H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 153.1, 137.7, 129.1, 124.1, 120.0, 56.9, 22.5. HRMS (FAB+) calcd for $C_{11}H_{17}N_2O_2S$ [MH]⁺ 241.1011; found 241.1004.

(R)-N-(Phenylcarbamothioyl)-tert-butanesulfinamide 6b.

General procedure A was followed, using freshly distilled phenyl isothiocyanate. The crude residue was diluted with 0.1 M aqueous NaOH (50 mL) and washed with CH₂Cl₂ (2 x 25 mL). The aqueous layer was then acidified to pH < 2 with aqueous NaHSO₄, and the product was extracted into CH₂Cl₂ (2 x 25 mL). The organic layer was dried over Na₂SO₄ and concentrated. The crude solid was triturated with EtOAc (2 x 2 mL) and isolated by vacuum filtration to yield 133 mg (52%) of thiourea **6b** as a white flaky solid, mp 92.5-93.0 °C. IR (film): 3239, 1483, 1442, 1312, 1169, 1033 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 9.38 (br s, 1H), 8.50 (br s, 1H), 7.49-7.38 (m, 2H), 7.38-7.28 (m, 2H), 7.26-7.17 (m, 1H), 1.33 (s, 9H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 181.8, 137.6, 129.4, 127.2, 125.0, 57.9, 22.9. HRMS (FAB+) calcd for C₁₁H₁₇N₂OS₂ [MH]⁺ 257.0782; found 257.0775.

(R)-N-(3,5-Bis(trifluoromethyl)phenylcarbamoyl)-*tert*-butanesulfinamide 6c.

General procedure A was followed. The crude residue was diluted with water (50 mL), acidified to pH < 2 with aqueous NaHSO₄, and product was extracted into CH₂Cl₂ (50 mL). The organic layer was dried over Na₂SO₄ and concentrated. Flash column chromatography on a Biotage Flash+ cartridge with a gradient of 1% to 10% of MeOH in CH₂Cl₂ afforded 191 mg (50%) of a urea **6c** as a white solid, mp 74-83 °C. IR (film): 3281, 1716, 1575, 1474, 1382, 1276, 1170, 1127, 1039 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 8.45 (s, 1H), 8.15 (s, 1H), 7.83 (s, 2H), 7.49 (s, 1H), 1.39 (s, 9H). ¹³C{¹H} NMR (126 MHz, CD₃OD): δ 154.8, 141.79, 133.3 (q, *J*_{CF} = 33 Hz), 124.6 (q, *J*_{CF} = 272 Hz), 119.9, 117.2, 57.2, 22.6. HRMS (FAB+) calcd for C₁₃H₁₅F₆N₂O₂S [MH]⁺ 377.0758; found 377.0761.

(R)-N-(Butylcarbamoyl)-tert-butanesulfinamide 6d.

General procedure B was followed with (*R*)-*tert*-butanesulfinamide (121 mg, 1.00 mmol), THF (6 mL), butyllithium (0.50 mL, 1.2 mmol), and butyl isocyanate (0.13 mL, 1.2 mmol). After 6 h, the reaction mixture was diluted with CH_2Cl_2 (20 mL) and extracted with 0.2 M NaOH (25 mL). The aqueous layer was rinsed with CH_2Cl_2 (3 x 10 mL) and then acidified to pH < 2 with saturated aqueous NaHSO₄. The aqueous layer was extracted with CH_2Cl_2 (25 mL), and the extract was dried over Na₂SO₄, filtered, and concentrated. Flash column chromatography on a Biotage Flash+ cartridge with a gradient of 12% to 100% of EtOAc in hexanes afforded 76 mg (34%) of a urea **6d** as a clear oil. IR (film): 3340, 2959, 2872, 1655, 1542, 1042 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 6.88 (br s, 1H), 5.65 (br s, 1H), 3.27-3.20 (m, 2H), 1.56-1.47 (m, 2H), 1.41-

-S8-

1.30 (m, 2H), 1.28 (s, 9H), 0.93 (t, J = 7.3 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 155.2, 56.8, 40.5, 32.0, 22.5, 20.2, 14.0. HRMS (FAB+) calcd for C₉H₂₁N₂O₂S [MH]⁺ 221.1324; found 221.1321.

(R)-N-(tert-Butylcarbamoyl)-tert-butanesulfinamide 6e.

General procedure B was followed with (*R*)-*tert*-butanesulfinamide (121 mg, 1.00 mmol), THF (6 mL), butyllithium (0.50 mL, 1.3 mmol), and *tert*-butyl isocyanate (0.14 mL, 1.3 mmol). After 3 h, the reaction mixture was diluted with CH₂Cl₂ (15 mL) and extracted with 0.2 M NaOH (3 x 20 mL). The aqueous layer was acidified to pH < 2 with saturated aqueous NaHSO₄ and then extracted with CH₂Cl₂ (2 x 20 mL), and the combined extracts were dried over Na₂SO₄, filtered, and concentrated. The crude solid was triturated with EtOAc (3 mL) and isolated by filtration and rinsing on the filter with EtOAc (2 x 2 mL) to yield 129 mg (59%) of urea **6d** as a white powdery solid, mp 195-196 °C. IR (film): 3335, 3231, 2963, 1708, 1552, 1412, 1364, 1259, 1030, 1011 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 6.80 (br s, 1H), 5.70 (br s, 1H), 1.36 (s, 9H), 1.27 (s, 9H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 153.8, 56.6, 51.3, 29.1, 22.5. HRMS (FAB+) calcd for C₉H₂₁N₂O₂S [MH]⁺ 221.1324; found 221.1327.

(R)-N-((1R,2R)-2-(Dimethylamino)cyclohexylcarbamoyl)-tert-butanesulfinamide 7a.

(1R,2R)-*N*,*N*-Dimethylcyclohexanediamine (0.537 g, 3.78 mmol) was dissolved in CH₂Cl₂ (20 mL) and added dropwise over 5 min to a solution of di-tert-butyltricarbonate (1.05 g, 4.0 mmol) in CH₂Cl₂ with stirring. After stirring at rt for 30 min, 0.10 mL of pyridine was added, and the solution was concentrated to yield the crude isocyanate.

(R)-tert-Butanesulfinamide (484 mg, 4.00 mmol) was dissolved in 40 mL of THF and cooled to -78 °C. Butyllithium (1.8 mL of a 2.2 M solution in hexanes, 4.0 mmol) was added dropwise, and then the reaction mixture was warmed to rt and stirred for 15 min. The crude isocyanate was dissolved in 3 mL of THF, and the resulting solution was added dropwise, with rinsing with an additional 2 mL of THF. The solution was stirred for an additional 2 h at rt. The reaction was guenched by dropwise addition of water (1.0 mL), and the resulting mixture was then concentrated. The residue was diluted with 10 mL of brine and extracted with ethyl acetate (6 x 25 mL). The organic layers were dried over Na₂SO₄, filtered, and concentrated. Chromatography on silica gel (1%MeOH, 0.1% NH₄OH in CH₂Cl₂ to 10% MeOH, 1% NH₄OH in CH₂Cl₂) gave 357 mg (33%) of urea 7a as a white solid, mp 53-60 °C. IR (KBr): 3337, 2932, 1701, 1655, 1541, 1049 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 6.41 (br s, 1H), 5.76 (br s, 1H), 3.45-3.30 (m, 1H), 2.48-2.38 (m, 1H), 2.32-2.16 (m, 1H), 2.25 (s, 6H), 1.88-1.72 (m, 2 H), 1.70-1.60 (m, 1H), 1.37-1.02 (m, 4H), 1.27 (s, 9H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 155.3, 66.4, 56.5, 51.8, 39.8, 32.7, 25.1, 24.5, 22.1, 21.4. HRMS (FAB+) calcd for $C_{13}H_{28}N_3O_2S$ [MH]⁺ 290.1902; found 290.1897.

(S)-N-((1R,2R)-2-(Dimethylamino)cyclohexylcarbamoyl)-tert-butanesulfinamide 7b.

The crude isocyanate was prepared from (1R,2R)-N,N-dimethylcyclohexanediamine (0.553 g, 3.89 mmol) as described above. (R)-tert-Butanesulfinamide (509 mg, 4.20 mmol) was dissolved in 40 mL of THF and cooled to -78 °C. Butyllithium (1.9 mL of a 2.2 M solution in hexanes, 4.2 mmol) was added dropwise, and then the reaction mixture was warmed to rt and stirred for 15 min. The crude isocyanate was dissolved in 6 mL of THF, and the resulting solution was added dropwise, with rinsing with an additional 3 mL of THF. The solution was stirred for an additional 3 h at rt. The reaction was quenched by dropwise addition of acetic acid (3 drops), and the resulting mixture was then concentrated. The residue was diluted with 4 mL of brine and extracted with EtOAc (5 x 5 mL). The organic layers were discarded, and the aqueous layer was made basic by the addition of 0.5 mL of concentrated NH₄OH. This mixture was then extracted with EtOAc (6 x 5 mL). The organic layer was dried over Na₂SO₄ and concentrated to yield a crude oil which crystallized upon standing overnight. The crystals were triturated with EtOAc, collected by vacuum filtration, and rinsed on the filter with EtOAc and hexanes. The filtrate was then concentrated and the procedure was repeated twice, yielding 3 crops of urea 7b (total 336 mg, 30%) as a white solid, mp 150-153 °C. IR (KBr): 3558, 3312, 3248, 2931, 1647, 1533, 1085 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 6.91 (br s, 1H), 6.17 (br s, 1H), 3.48-3.34 (m, 1H), 2.45-2.16 (m, 2H), 2.24 (s, 6H), 1.88-1.72 (m, 2 H), 1.70-1.60 (m, 1H), 1.37-1.05 (m, 4H), 1.27 (s, 9H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ

155.3, 66.4, 56.3, 52.0, 40.0, 32.9, 25.0, 24.6, 22.2, 22.0. HRMS (FAB+) calcd for C₁₃H₂₈N₃O₂S [MH]⁺ 290.1902; found 290.1908.

(1S,2R)-2-(tert-butyldimethylsilyloxy)-2,3-dihydro-1H-inden-1-amine S1

A solution of *tert*-butylchlorodimethylsilane (8.1 g, 54 mmol) in CH₂Cl₂ was added to a stirred solution of (1*S*,2*R*)-cis-1-aminoindan-2-ol (4.00 g, 26.8 mmol), 4dimethylaminopyridine (0.66 g, 5.4 mmol), and triethylamine (7.4 mL, 53 mmol) in CH₂Cl₂ (40 mL). After stirring 18 h, the reaction mixture was extracted with water (50 mL) followed by brine (50 mL). The organic layer was dried over Na₂SO₄ and concentrated. Flash column chromatography on silica gel eluting with 2% to 50% EtOAc in hexanes afforded 7.1 g (100%) of product **S1** as a light brown oil. IR (film): 2954, 2856, 1472, 1254, 1111, 1068 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.40-36 (m, 1H), 7.25-7.16 (m, 3H), 4.44 (apparent q, 1H), 4.12 (d, *J* = 5.3 Hz, 1H), 3.01 (dd, *J* = 5.9 Hz, 15.8 Hz, 1H), 2.88 (dd, *J* = 4.8 Hz, 15.8 Hz, 1H), 1.48 (br s, 2H), 0.90 (s, 9H), 0.12 (s, 3H), 0.12 (s, 3H). ¹³C {¹H} NMR (126 MHz, CDCl₃): δ 144.4, 140.1, 127.6, 126.7, 124.8, 124.6, 75.3, 59.5, 39.2, 25.8, 18.2, -4.6, -4.8. HRMS (FAB+) calcd for C₁₅H₂₆NOSi [MH]⁺ 264.1784; found 264.1791.

(*R*)-N-((1*S*,2*R*)-2-(tert-butyldimethylsilyloxy)-2,3-dihydro-1H-inden-1-ylcarbamoyl)*tert*-butanesulfinamide 8d

Amine S1 (2.46 g, 9.35 mmol) was dissolved in CH_2Cl_2 (100 mL). Saturated aqueous NaHCO₃ (100 mL) was added and the mixture was stirred for 15 min in an ice bath. The stirring was stopped, and a solution of triphosgene (0.925 g, 3.12 mmol) in CH_2Cl_2 (5 mL) was added directly to the CH_2Cl_2 layer via syringe. Stirring was resumed (1 min at slow speed, followed by 1 min at high speed), and then the layers were separated. The organic layer was dried over Na_2SO_4 and concentrated to yield crude isocyanate as a brown oil.

(*R*)-*tert*-Butanesulfinamide (1.13 g, 9.35 mmol) was dissolved in 75 mL of THF and cooled to -78 °C. Butyllithium (4.25 mL of a 2.2 M solution in hexanes, 9.35 mmol) was added dropwise, and then the reaction mixture was warmed to -40 °C and stirred for 15 min. The crude isocyanate was added dropwise, with rinsing with an additional 5 mL of THF. The cold bath was allowed to melt gradually, and the solution was stirred for an additional 16 h at rt. The reaction was quenched by dropwise addition of water (5 mL), and then the resulting mixture was concentrated. The residue was diluted with EtOAc (250 mL) and water (300 mL), and acidified to pH <2 with saturated aqueous NaHSO₄.

The layers were separated, and the organic layer was washed with brine (50 mL) then dried over Na₂SO₄ and concentrated. Flash column chromatography on a Biotage Flash+ cartridge with a gradient of 12% to 60% of EtOAc in hexanes, followed by trituration with 5% EtOAc in hexanes afforded 3.30 g (86%) of urea **8d** as a colorless powder, mp 177-179 °C (phase change at 100°C). IR (KBr): 3356, 2955, 1705, 1653, 1539 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.80 (s, 1H), 7.31 (d, *J* = 7.2 Hz, 1H), 7.22-7.08 (m, 3H), 6.19 (d, *J* = 8.6 Hz, 1H), 5.26 (dd, *J* = 5.2 Hz, 8.4 Hz, 1H), 4.64-4.58 (m, 1H), 3.07 (dd, *J* = 4.9 Hz, 16.2 Hz, 1H), 2.88 (d, *J* = 16.2 Hz, 1H), 1.26 (s, 9H), 0.85 (s, 9H), 0.25 (s, 3H), 0.22 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 155.2, 141.2, 139.7, 127.7, 127.0, 124.7, 124.5, 74.0, 58.1, 56.8, 40.4, 25.8, 22.1, 18.1, -4.8, -4.9. HRMS (FAB+) calcd for C₂₀H₃₅N₂O₃SSi [MH]⁺ 411.2138; found 411.2137.

(S)-N-((1S,2R)-2-(tert-butyldimethylsilyloxy)-2,3-dihydro-1H-inden-1-ylcarbamoyl)*tert*-butanesulfinamide S2

Crude isocyanate was prepared as described above from amine **S1** (1.75 g, 6.65 mmol). (*S*)-*tert*-Butanesulfinamide (812 mg, 6.7 mmol) was dissolved in 30 mL of THF and cooled to -78 °C. Butyllithium (3.05 mL of a 2.2 M solution in hexanes, 6.7 mmol) was added dropwise, and then the reaction mixture was warmed to rt and stirred for 15 min. The crude isocyanate dissolved in 3 mL of THF was added dropwise, and then the solution was stirred for 16 h at rt. The reaction was quenched by dropwise addition of water (1 mL), and then the resulting mixture was concentrated. The residue was diluted with EtOAc (75 mL) and water (100 mL), and acidified to pH <2 with saturated aqueous NaHSO₄. The layers were separated, and the organic layer was washed with brine (100 mL) and then dried over Na₂SO₄ and concentrated. Flash chromatography on silica gel (0% to 5% MeOH in CH₂Cl₂) yielded 2.38 g (87%) of urea **S2** as an off-white foamy solid, mp 74-77 °C. IR (KBr): 3352, 2955, 2928, 2856, 1654, 1526, 1072 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 7.71 (br s, 1H), 7.33 (d, *J* = 7.2 Hz, 1H), 7.25-7.14 (m, 3H), 6.16 (d, *J* = 8.2 Hz, 1H), 5.22 (dd, *J* = 5.4 Hz, 8.0 Hz, 1H), 4.65-4.58 (m, 1H), 3.07 (dd, *J* = 5.1 Hz, 16.2 Hz, 1H), 2.89 (dd, *J* = 1.9 Hz, 16.2 Hz, 1H), 1.28 (s, 9H), 0.87 (s, 9H), 0.10 (s, 3H), 0.10 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 155.4, 141.1, 139.6, 127.9, 126.9, 124.8, 124.7, 73.9, 58.1, 57.1, 40.3, 25.9, 22.2, 18.1, -4.7, -4.8. HRMS (FAB+) calcd for C₂₀H₃₅N₂O₃SSi [MH]⁺ 411.2138; found 411.2133.

(R)-N-((1S,2R)-2-hydroxy-2,3-dihydro-1H-inden-1-ylcarbamoyl)-tert-

butanesulfinamide 8a

Urea **8d** (398 mg, 0.969 mmol) was dissolved in 3 mL of THF. To this solution was added 3 mL of a 1.0 M solution of tetrabutylammonium fluoride in THF. After 16 h, the reaction mixture was diluted to 25 mL with EtOAc, and washed with water (15 mL) followed by brine (15 mL). The aqueous layers were combined and extracted with EtOAc (3 x 10 mL). The organic layers were combined, dried over Na₂SO₄, filtered, and concentrated. Silica gel chromatography (50% EtOAc in hexanes to 100% EtOAc) followed by recrystallization from EtOAc yielded 246 mg (86%) of urea **8a** as a white solid, mp 172-173 °C. IR (KBr): 3512, 3324, 2946, 1635, 1541, 1066 cm⁻¹. ¹H NMR (400 MHz, CD₃CN): δ 7.34 (br s, 1H), 7.28-7.15 (m, 4H), 6.22 (d, *J* = 8.2 Hz, 1H), 5.14 (dd, *J* = 8.4 Hz, 4.9 Hz, 1H), 4.50-4.42 (m, 1H), 3.41 (br s, 1H), 3.10 (dd, *J* = 16.4 Hz, 4.8 Hz, 1H), 2.83 (d, *J* = 16.5 Hz, 1H), 1.22 (s, 9H). ¹³C{¹H} NMR (100 MHz, CD₃CN): δ 156.6, 142.9, 141.6, 128.7, 127.8, 126.2, 125.1, 73.8, 59.3, 56.3, 40.5, 22.7. HRMS (FAB+) calcd for C₁₄H₂₁N₂O₃S [MH]⁺ 297.1273; found 297.1271.

(S)-N-((1S,2R)-2-hydroxy-2,3-dihydro-1H-inden-1-ylcarbamoyl)-tert-

butanesulfinamide 8c

Urea **S2** (1.64 g, 4.00 mmol) was dissolved in 12 mL of THF. To this solution was added 12 mL of a 1.0 M solution of tetrabutylammonium fluoride in THF. After 16 h, the reaction mixture was concentrated, and then the residue was diluted with 40 mL of water. This mixture was extracted with CH_2Cl_2 (50 mL followed by 2 x 10 mL). The organic layers were combined, dried over Na_2SO_4 , filtered, and concentrated. The crude residue was purified by flash chromatography on silica gel (0% to 5% MeOH in CH_2Cl_2) to yield 891 mg (75%) of urea **8c** as a white solid, mp 116-119 °C. IR (KBr): 3336, 2961, 1654, 1541, 1226, 1052 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 8.41 (br s, 1H), 7.28-7.11 (m, 4H), 6.76 (d, *J* = 8.8 Hz, 1H), 5.32-5.25 (m, 1H), 5.18 (d, *J* = 4.0 Hz, 1H), 4.63-4.57 (m, 1H), 3.12 (dd, J = 5.0 Hz, 16.4 Hz, 1H), 2.98 (d, J = 16.3 Hz, 1H), 1.29 (s, 9H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ .156.4, 140.9, 140.3, 127.8, 126.7, 125.1, 124.2, 72.8, 58.6, 56.4, 39.5, 22.5 .HRMS (FAB+) calcd for C₁₄H₂₁N₂O₃S [MH]⁺ 297.1273; found 297.1271.

(R)-N-((1S,2R)-2-(tert-butyldimethylsilyloxy)-2,3-dihydro-1H-inden-1-

ylcarbamothioyl)-tert-butanesulfinamide S3

Amine **S1** (3.50 g, 13.3 mmol) was dissolved in CH_2Cl_2 (150 mL). Aqueous K_2CO_3 (0.5 M, 150 mL) was added and the mixture was stirred for 15 min at rt. The stirring was stopped, and thiophosgene (2.04 mL, 26.6 mmol) was added directly to the CH_2Cl_2 layer via syringe. The biphasic mixture was stirred for 1.5 h, and then the layers were separated. The organic layer was dried over Na_2SO_4 and concentrated to yield crude isothiocyanate as a brown oil.

(*R*)-*tert*-Butanesulfinamide (812 mg, 6.7 mmol) was dissolved in 30 mL of THF and cooled to -78 °C. Butyllithium (3.05 mL of a 2.2 M solution in hexanes, 6.7 mmol) was added dropwise, and then the reaction mixture was warmed to rt and stirred for 15 min. Half of the crude isothiocyanate (6.65 mmol) dissolved in 3 mL of THF was added dropwise, and then the solution was stirred for 45 h at rt. The reaction was quenched by dropwise addition of water (1 mL), and then the resulting mixture was concentrated. The

residue was diluted with EtOAc (125 mL) and water (150 mL), and acidified to pH <2 with saturated aqueous NaHSO₄. The layers were separated, and the organic layer was washed with water (100 mL) followed by brine (100 mL) and then dried over Na₂SO₄ and concentrated. The crude residue was purified by flash chromatography on silica gel (0% to 5% MeOH in CH₂Cl₂), followed by trituration with EtOAc/hexanes. The mixed fractions were collected separately and subjected to a second purification under the same conditions to yield a total of 1.41 g (50%) of thiourea **S3** as a pale brown solid, mp 122-124 °C. IR (KBr):3273, 2955, 2928, 1491, 1254, 1041 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 8.22 (br s, 1H), 7.76 (d, *J* = 8.7 Hz, 1H), 7.46 (d, *J* = 6.3 Hz, 1H), 7.29-7.19 (m, 3H), 6.03 (dd, *J* = 5.0, 8.5 Hz, 1H) 4.74 (apparent t, 1H), 3.14 (dd, *J* = 4.7 Hz, 16.4 Hz, 1H), 2.92 (d, *J* = 16.4 Hz, 1H), 1.29 (s, 9H), 0.86 (s, 9H), 0.12 (s, 3H), 0.10 (s, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃): δ 182.4, 140.2, 139.7, 128.0, 127.3, 124.9, 124.5, 73.8, 63.1, 58.1, 40.7, 25.8, 22.2, 18.1, -4.8, -4.8. HRMS (FAB+) calcd for C₂₀H₃₅N₂O₃S₂Si [MH]⁺ 427.1909; found 427.1916.

(*R*)-N-((1*S*,2*R*)-2-hydroxy-2,3-dihydro-1H-inden-1-ylcarbamothioyl)-*tert*butanesulfinamide 8b

Thiourea **S3** (300 mg, 0.71 mmol) was dissolved in 10 mL of THF. To this solution was added 2.13 mL of a 1.0 M solution of tetrabutylammonium fluoride in THF. The solution was stirred for 16 h at rt, and then diluted with saturated aqueous ammonium chloride.

The resulting mixture was extracted twice with CH₂Cl₂. The organic layer was dried over Na₂SO₄ and concentrated. The crude material was purified by reverse phase chromatography on a Biotage C18 column using a gradient of 5% to 95% MeCN in H₂O (with 0.1% TFA) to yield thiourea **8b** (209 mg, 94%) as a white solid, mp 65-67 °C. IR (KBr): 3403, 3284, 2937, 1502, 1048 cm⁻¹. ¹H NMR (400 MHz, DMSO-d6): δ 9.49 (br s, 1H), 8.75 (d, J = 8.3 Hz, 1H), 7.32-7.14 (m, 4H), 5.73 (dd, J = 8.1 Hz, 5.0 Hz, 1H), 5.49 (d, J = 4.2, 1H), 4.56-4.48 (m, 1H), 3.12 (dd, J = 16.4 Hz, 4.6 Hz, 1H), 2.83 (d, J = 16.3 Hz, 1H), 1.22 (s, 9H). ¹³C{¹H} NMR (100 MHz, CD₃CN): δ 185.0, 141.8, 141.7, 129.0, 127.7, 126.3, 125.4, 73.6, 63.8, 57.4, 40.7, 22.9. HRMS (FAB+) calcd for C₁₄H₂₁N₂O₂S₂ [MH]⁺ 313.1044; found 313.1044.

(R)-N-((R)-2,3-dihydro-1H-inden-1-ylcarbamoyl)-*tert*-butanesulfinamide 8e

 CH_2Cl_2 (12 mL) and saturated aqueous NaHCO₃ (12 mL) were added to a flask containing (*R*)-1-aminoindane hydrochloride salt (209 mg, 1.23 mmol), and the mixture was stirred for 15 min in an ice bath. The stirring was stopped, and a solution of triphosgene (0.122 g, 0.411 mmol) in CH_2Cl_2 (1.2 mL) was added directly to the CH_2Cl_2 layer via syringe. Stirring was resumed (3 min at slow speed, followed by 2 min at high speed), and then the layers were separated. The organic layer was dried over Na_2SO_4 and concentrated to yield crude isocyanate as a brown oil.

(R)-tert-Butanesulfinamide (149 mg, 1.23 mmol) was dissolved in 12 mL of THF, and the resulting solution was cooled to -78 °C. Butyllithium (0.60 mL of a 2.2M solution in hexanes, 1.3 mmol) was added dropwise, and then the reaction mixture was warmed to rt and stirred for 15 min. The crude isocyanate dissolved in 1 mL of THF was added dropwise, with rinsing with an additional 1 mL of THF. The solution was stirred for an additional 5 h at rt. The reaction was quenched by dropwise addition of water (0.5 mL), and then the resulting mixture was concentrated. The residue was diluted with 0.01 M aqueous NaOH (50 mL), and the resulting solution washed with CH₂Cl₂ (3 x 25 mL). The aqueous layer was then acidified to pH < 2 with saturated aqueous NaHSO₄ and then extracted with CH₂Cl₂ (3 x 20 mL). The organic layer was dried over Na₂SO₄ and concentrated. The residue was redissolved in EtOAc and then concentrated to give a brown oil which crystallized upon standing. The crystals were collected by vacuum filtration and rinsed with EtOAc (2x3 mL) on the filter to yield 83 mg (28%) of product as colorless needles, mp 178-180 °C (dec). IR (KBr): 3326, 3221, 2965, 1702, 1536, 1035 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.52 (br s, 1H), 7.38-7.32 (m, 1H), 7.24-7.16 (m, 3H), 6.04 (d, J = 7.8 Hz, 1H), 5.31 (apparent q, 1H), 3.00-2.90 (m, 1H), 2.88-2.77 (m, 2H), 2.88-2.771H), 2.60-2.50 (m, 1H), 1.88-1.73 (m, 1H), 1.24 (s, 9H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 154.8, 143.2, 142.8, 128.0, 127.0, 124.7, 124.1, 56.9, 55.9, 34.2, 30.1, 22.2. HRMS (FAB+) calcd for $C_{14}H_{20}LiN_2O_2S$ [MLi]⁺ 287.1406; found 287.1408.

N-((1*S*,2*R*)-2-(tert-butyldimethylsilyloxy)-2,3-dihydro-1H-inden-1-ylcarbamoyl)-*tert*butanesulfonamide S4

RuCl₃ (1 mg) and NaIO₄ (321 mg, 1.5 mmol) were added in one portion to a stirred solution of urea **8d** (411 mg, 1.00 mmol) in MeCN (3 mL), CH₂Cl₂ (3 mL), and water (4.5 mL) at 0 °C. After 5 min, the ice bath was removed and stirring was continued for 20 min at rt. The reaction mixture was then diluted with EtOAc (25 mL) and washed with water (10 mL) followed by brine (10 mL). The organic layer was dried over Na₂SO₄ and concentrated. The residue was redissolved in EtOAc, filtered through a plug of silica, and concentrated to give 405 mg (95%) of product **S4** as a colorless powder, mp 216-219 °C. IR (KBr): 3350, 2933, 1680, 1523, 1332, 1127 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 9.02 (br s, 1H), 7.53 (d, *J* = 7.5 Hz, 1H), 7.30 (d, *J* = 7.2 Hz, 1H), 7.25-7.15 (m, 3H), 5.25-5.20 (m, 1H), 4.66-4.61 (m, 1H), 3.07 (dd, *J* = 5.3 Hz, 16.1 Hz, 1H), 2.91 (dd, *J* = 3.1 Hz, 16.1 Hz, 1H), 1.46 (s, 9H), 0.88 (s, 9H), 0.13 (s, 3H), 0.12 (s, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃): δ 153.4, 140.8, 139.9, 128.0, 126.8, 124.9, 73.7, 61.9, 58.0, 40.3, 25.8, 24.1, 18.1, -4.7, -5.0. HRMS (FAB+) calcd for C₂₀H₃₅N₂O₄SSi [MH]⁺ 427.2087; found 427.2091.

N-((1*S*,2*R*)-2-hydroxy-2,3-dihydro-1H-inden-1-ylcarbamoyl)-*tert*-butanesulfonamide 8f.

Tetrabutylammonium fluoride (0.75 mL of a 1.0 M solution in THF) was added to a flask containing compound **S4** (107 mg, 0.250 mmol) and the solution was stirred for 20 h. An additional 1 mL of THF was added and the solution was stirred for 2 days. The mixture was diluted with EtOAc (30 mL) and washed with water (15 mL) followed by brine (15 mL). The organic layer was dried over Na₂SO₄, filtered, and concentrated. Crystallization from EtOAc yielded 38.3 mg (49%) of product **8f** as a white solid, mp 170-173 °C. IR (KBr): 3347, 2989, 2823, 1683, 1529, 1328, 1125 cm⁻¹. ¹H NMR (400 MHz, DMSO-d6): δ 10.20 (br s, 1H), 7.25-7.13 (m, 5 H), 5.37 (d, *J* = 4.6 Hz, 1H), 5.04 (dd, J = 8.1 Hz, 5.1 Hz, 1H), 4.42 (apparent q, 1H), 3.06 (dd, J = 16.3 Hz, 4.8 Hz, 1H), 2.77 (d, J = 16.2, 1H), 1.37 (s, 9H). ¹³C{¹H} NMR (100 MHz, CD₃CN): δ 153.6, 143.0, 141.0, 129.2, 128.1, 126.6, 125.5, 73.9, 63.1, 59.4, 41.0, 24.8. HRMS (FAB+) calcd for C₁₄H₂₀LiN₂O₄S [MLi]⁺ 319.1304; found 319.1300.

Representative procedure for the enantioselective aza-Henry reaction (catalyst screening conditions)

tert-Butyl (1*R*,2*S*)-2-nitro-1-phenylpropylcarbamate 10a.

A dry vial containing 0.025 mmol of a potential catalyst under nitrogen was charged with 1.0 mL of a freshly prepared stock solution of imine (0.25 M) and hexamethylbenzene (0.013 M) in CH₂Cl₂. After stirring for 10 min, the vial was cooled to -40 °C, and *i*-Pr₂NEt (87 μ L, 0.50 mmol) and EtNO₂ (90 μ L, 1.25 mmol) were added sequentially. The solution was stirred at -40 °C for 13 h. The vial was removed from the cold bath, the reaction was quenched with 1 M aqueous HCl (3 mL), and the resulting mixture was extracted with CH₂Cl₂ (2 x 4 mL). The extract was dried over Na₂SO₄ and decanted. A 4 mL aliquot of the extract was concentrated for ¹H NMR analysis, while a 0.2 mL aliquot of the extract was filtered through a plug of silica gel, eluting with CH₂Cl₂ followed by concentration for HPLC analysis. The conversion to product was determined by integration relative to the hexamethylbenzene internal standard. The dr and ee were determined by chiral HPLC analysis (Chiralpak AD-H, hexanes/iPrOH 90/10, 1 mL min⁻¹): t_R (1*R*,2*S*) = 9.9 min, t_R (1*S*,2*R*) = 11.2 min, t_R (*anti*) = 12.5 min, 14.9 min.

General Procedures for the Enantioselective Aza-Henry Reaction.

To obtain reproducible results, the catalyst was dried under vacuum over P_2O_5 overnight prior to use.

Procedure C. An oven dried vial containing 0.05 mmol of catalyst and 0.50 mmol of imine **9** under nitrogen was charged with MeCN (2.0 mL). The mixture was stirred at rt for 15 min, then cooled in a -78 °C bath. Nitroalkane (2.5 mmol) and *i*-Pr₂NEt (44 μ L, 0.25 mmol) were added, and then the vial was transferred to a bath at -40 °C and the solution was stirred for 28 h. The reaction vial was removed from the cold bath and the reaction was quenched with 1 M aqueous HCl (4 mL). The resulting mixture was extracted with EtOAc (12 mL, then 2 x 4 mL). The organic layers were dried over Na₂SO₄ and concentrated. The crude residue was purified by chromatography.

Procedure D. An oven dried flask containing 0.05 mmol of catalyst and 0.50 mmol of imine **9** under nitrogen was charged with MeCN (2.0 mL) followed by *i*-Pr₂NEt (44 μ L, 0.25 mmol). The solution was stirred at -40 °C for 10 min, and then EtNO₂ (180 μ L, 2.5 mmol) was added. After stirring for 27 h, the reaction was quenched with 1 M aqueous HCl (4 mL), and the resulting mixture was extracted with CH₂Cl₂ (12 mL, then 2 x 4 mL). The organic layers were dried over Na₂SO₄ and concentrated. The crude residue was purified by silica gel chromatography, eluting with EtOAc/hexanes.

General procedure D was followed, affording 117 mg (84%) of an 85:15 mixture of diastereomers **10a** to **11a** as a white solid after chromatography. The ¹H NMR spectrum

-S24-

is consistent with values previously reported in the literature.^{5a,b} The ee of major diastereomer **10a** was determined to be 95% by chiral HPLC analysis (Chiralpak AD-H, hexanes/*i*PrOH 90/10, 1 mL min⁻¹): t_R (major) = 10.4 min, t_R (minor) = 11.8 min. The ee of minor diastereomer **11a** was determined to be 53% ee under the same analysis conditions: t_R (minor) = 13.6 min, t_R (major) = 16.4 min.

General procedure C was followed, affording 99 mg (64%) of a 90:10 mixture of diastereomers **10b** to **11b** as a white solid after chromatography. The ¹H NMR spectrum is consistent with values previously reported in the literature.^{5c} The ee of major diastereomer **10b** was determined to be 95% by chiral HPLC analysis (Chiralpak AD-H, hexanes/*i*PrOH 90/10, 1 mL min⁻¹): t_R (major) = 15.5 min, t_R (minor) = 16.3 min. The ee of minor diastereomer **11b** was determined to be 23% ee under the same analysis conditions: t_R (minor) = 18.4 min, t_R (major) = 23.0 min.

General procedure D was followed, affording 102 mg (68%) of an 79:21 mixture of diastereomers **10c** to **11c** as a white solid after chromatography. The ¹H NMR spectrum is consistent with values previously reported in the literature. ^{5c} The ee of major

diastereomer **10c** was determined to be 95% by chiral HPLC analysis (Chiralpak AD-H, hexanes/*i*PrOH 90/10, 1 mL min⁻¹): t_R (major) = 9.6 min, t_R (minor) = 10.7 min. The ee of minor diastereomer **11c** was determined to be 60% ee under the same analysis conditions: t_R (minor) = 11.4 min, t_R (major) = 13.1 min.

General procedure C was followed, affording 161 mg (92%) of a 77:23 mixture of diastereomers **10d** to **11d** as a white solid after chromatography. The ¹H NMR spectrum is consistent with values previously reported in the literature. ^{5b} The ee of major diastereomer **10d** was determined to be 92% by chiral HPLC analysis (Chiralpak AD-H, hexanes/EtOH 95/05, 1 mL min⁻¹): t_R (major) = 11.4 min, t_R (minor) = 14.2 min. The ee of minor diastereomer **11d** was determined to be 23% ee under the same analysis conditions: t_R (minor) = 16.4 min, t_R (major) = 27.6 min.

General procedure C was followed, affording 139 mg (88%) of an 80:20 mixture of diastereomers **10e** to **11e** as a white solid after chromatography. The ¹H NMR spectrum is consistent with values previously reported in the literature. ^{5c} The ee of major

diastereomer **10e** was determined to be 94% by chiral HPLC analysis (Chiralpak AD-H, hexanes/*i*PrOH 90/10, 1 mL min⁻¹): t_R (minor) = 11.0 min, t_R (major) = 13.0 min. The ee of minor diastereomer **11e** was determined to be 87% ee under the same analysis conditions: t_R (minor) = 9.6 min, t_R (major) = 17.3 min.

General procedure D was followed, affording 132 mg (80%) of an 84:16 mixture of diastereomers **10f** to **11f** as a white solid after chromatography. The ¹H NMR spectrum is consistent with values previously reported in the literature. ^{5c} The ee of major diastereomer **10f** was determined to be 93% by chiral HPLC analysis (Chiralpak AD-H, hexanes/*i*PrOH 90/10, 1 mL min⁻¹): t_R (major) = 13.8 min, t_R (minor) = 15.4 min. The ee of minor diastereomer **11f** was determined to be 22% ee under the same analysis conditions: t_R (minor) = 17.7 min, t_R (major) = 20.2 min.

General procedure C was followed on 0.25 mmol scale, affording 52 mg (80%) of a 92:8 mixture of diastereomers **10g** to **11g** as a white solid after chromatography. The ee of major diastereomer **10g** was determined to be 96% and the ee of **11g** was determined to

be 70% by chiral HPLC analysis (Chiralpak AS, hexanes/EtOH 99/1, 1 mL min⁻¹): t_R (10g minor) = 9.7 min, t_R (10g major) = 11.1 min, t_R (11g major) = 6.7 min, t_R (11g minor) = 7.4 min.

The diastereomers were separated by silica gel chromatography for NMR analysis. **10g**: ¹H NMR (400 MHz, CDCl₃, 80:20 mixture of rotamers): 4.75-4.60 (m, 1.6H), 4.55-4.38 (m, 0.4H), 4.11-4.00 (m, 0.2H), 4.00-3.90 (m, 0.8H), 1.53 (d, J = 6.9 Hz, 3H), 1.45 (s, 9H), 1.61-1.20 (m, 6H), 0.95-0.83 (m, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 155.4, 85.6, 80.1, 53.5, 29.2, 28.3, 28.1, 22.2, 15.1, 13.9. **11g**: ¹H NMR (400 MHz, CDCl₃ 90:10 mixture of rotamers): δ 4.98-4.85 (m, 0.9H),

4.78-4.70 (m, 0.9H), 4.68-4.53 (m, 0.2H), 3.96-3.78 (m, 1H), 1.57 (d, J = 6.8 Hz, 3H), 1.42 (s, 9H), 1.61-1.20 (m, 6H), 0.95-0.82 (m, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 155.8, 85.6, 79.9, 52.7, 31.9, 28.3, 28.1, 22.3, 16.4, 13.9. HRMS (FAB+) calcd for C₁₂H₂₅N₂O₄ [MH]⁺ 261.1814; found 261.1809.

General procedure C was followed on 0.25 mmol scale, affording 49 mg (75%) of a 93:7 mixture of diastereomers **10h** to **11h** as a white solid after chromatography. The ee of major diastereomer **10h** was determined to be 96% by chiral HPLC analysis (Chiralpak AS, hexanes/EtOH 99/1, 1 mL min⁻¹): t_R (**10h** minor) = 7.7 min, t_R (**10h** major) = 9.6 min, t_R (**11h**) = 5.8 min. The ee of **11h** was not determined. The diastereomers were separated for NMR analysis by silica gel chromatography.

10h: ¹H NMR (400 MHz, CDCl₃, 82:18 mixture of rotamers): δ 4.85-4.75 (m, 0.18 H), 4.75-4.62 (m, 1.64H), 4.50-4.40 (m, 0.18H), 4.22-4.12 (m, 0.18H), 4.08-3.96 (m, 0.82H), 1.78-1.60 (m, 1H), 1.52 (d, *J* = 6.8 Hz, 3H), 1.45 (s, 9H), 1.27 (apparent t, 2H), 0.98-0.88 (m, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 155.2, 85.8, 80.0, 51.8, 38.4, 28.2, 24.7, 23.4, 21.3, 15.1. HRMS (FAB+) calcd for C₁₂H₂₅N₂O₄ [MH]⁺ 261.1814; found 261.1821. **11h** ¹H NMR (400 MHz, CDCl₃, 85:15 mixture of rotamers): δ 4.97-4.82 (m, 0.85 H), 4.76-4.65 (m, 1H), 4.65-4.55 (m, 0.15H), 4.08-3.88 (m, 1H), 1.78-1.62 (m, 1H), 1.57 (d, *J* = 6.3 Hz, 3H), 1.45 (s, 9H), 1.42-1.16 (m, 2H), 1.02-0.85 (m, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 155.6, 86.0, 79.8, 50.8, 41.0, 28.2, 24.7, 23.0, 21.8, 16.3.

General procedure C was followed, affording 104 mg (62%) of an 88:12 mixture of diastereomers **10i** to **11i** as a white solid after reverse phase chromatography (Biotage C18 25+M cartridge, 30% to 100% MeCN in H₂O with 0.1% TFA). The ee of major diastereomer **10i** was determined to be 96% by chiral HPLC analysis (Chiralpak AD-H, hexanes/EtOH 97/3, 1 mL min⁻¹): t_R (**10i** major) = 8.6 min, t_R (**10i** minor) = 16.2 min, t_R (**11i**) = 7.0 min. The ee of **11i** was not determined. The diastereomers were separated for analysis by silica gel chromatography.

10i: ¹H NMR (400 MHz, CDCl₃, 77:23 mixture of rotamers): δ 7.31-7.18 (m, 3H), 7.18-7.11 (d, J = 7.1 Hz, 2H), 5.40 (d, J = 8.9 Hz, 0.23H), 4.92-4.83 (m, 0.77H), 4.73-4.60 (m, 1H), 4.19-4.08 (m, 1H), 3.33 (dd, J = 10.7 Hz, 14.6 Hz, 1H), 3.15-3.00 (m, 1H), 1.80-

1.60 (m, 1H), 1.45 (s, 9H), 1.42-1.20 (m, 2H), 0.98-0.87 (m, 6H). ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃, mixture of rotamers, major rotamer peaks reported): δ 155.2,135.5, 128.7, 128.7, 127.3, 92.6, 80.1, 51.3, 38.7, 36.0, 28.2, 24.6, 23.4, 21.1. mp 132-133 °C. HRMS (FAB+) calcd for C₁₈H₂₈N₂O₄Na [MNa]⁺ 359.1947; found 359.1956. IR (NaCl): 3355, 2960, 2929, 1680, 1545, 1160 cm⁻¹.

11i ¹H NMR (400 MHz, CDCl₃, 9:1 mixture of rotamers): δ δ 7.33-7.22 (m, 3H), 7.18-7.11 (m, 2 H), 5.00 (d, J = 10.2 Hz, 0.9H), 4.82-4.72 (m, 1.1H), 4.20-4.10 (m, 0.9 H)
4.00-3.90 (m, 0.1 H), 3.31 (dd, J = 9.9 Hz, 14.5 Hz, 1H), 3.15 (dd, J = 4.5 Hz, 14.5 Hz, 1H), 1.75-1.62 (m, 1H), 1.48 (s, 9H), 1.40-1.24 (m, 2H), 0.95-0.87 (m, 6H). ¹³C {¹H}
NMR (100 MHz, CDCl₃): δ 155.6,135.3, 128.9, 128.8, 127.5, 92.9, 80.0, 49.9, 41.5, 37.0, 28.3, 24.7, 22.8, 21.9.

HN^{Boc} NO₂ 10j

General procedure C was followed on 0.25 mmol scale, affording 39.5 mg (64%) of **10**j as a white solid, mp 67-69 °C, after silica gel chromatography (10% EtOAc in Hexanes). The ee was determined to be 95% by chiral HPLC analysis (Chiralpak AS, hexanes/*i*PrOH 98/2, 1 mL min⁻¹): t_R (**10**j major) = 10.1 min, t_R (**10**j minor) = 12.2 min. ¹H NMR (400 MHz, CDCl₃, 85:15 mixture of rotamers): δ 4.95-4.70 (m, 1H), 4.58-4.46 (m, 1.7H), 4.45-4.35 (m, 0.3H), 4.25-4.14 (m, 1H), 1.80-1.60 (m, 1H), 1.44 (s, 9H), 1.45-1.22 (m, 2H), 0.98-0.92 (m, 6H). ¹³C {¹H} NMR (100 MHz, CDCl₃): δ 155.0, 80.0, 78.7, 47.4, 40.5, 28.2, 24.7, 22.7, 21.8. HRMS (FAB+) calcd for C₁₁H₂₃N₂O₄ [MH]⁺ 247.1658; found 247.1655. IR (NaCl): 3340, 2963, 1684, 1557, 1167 cm⁻¹.

Reduction of nitro group and removal of Boc group:

Racemic 10h (260 mg, 1.00 mmol) was dissolved in MeOH (7.5 mL) and cooled to 0 °C. NiCl₂ (135 mg, 1.04 mmol) was added to the solution with stirring, followed by addition of NaBH₄ (188 mg, 5.1 mmol). After stirring for 15 min, the reaction was quenched with sat. aqueous NH₄Cl (20 mL). The mixture was extracted with CH₂Cl₂ (4 x 30 mL). The combined organic layers were washed with brine (75 mL), dried over Na₂SO₄, and concentrated. The crude residue was filtered through a short plug of silica, eluting with 90:10:1 CH₂Cl₂:MeOH:NH₄OH, and then was concentrated. The white solid obtained was redissolved in a mixture of MeOH (3.5 mL) and conc. HCl (1.5 mL) and was stirred at rt for 16 h. The mixture was diluted with 1N aqueous NaOH (40 mL), and extracted with CH₂Cl₂ (5 x 40 mL). The combined organic layers were dried over Na₂SO₄, filtered, and concentrated to yield 101 mg (77% over two steps) of diamine S5 in approximately 95% purity by ¹H NMR.¹H NMR (400 MHz, CDCl₃): δ 2.86-2.78 (m, 1H), 2.72-2.64 (m, 1H), 1.78-1.64 (m, 1H), 1.38 (br s, 4H), 1.20-1.12 (m, 2H), 0.99 (d, J = 6.5 Hz, 3H), 0.94 $(d, J = 6.6 \text{ Hz}, 3\text{H}), 0.89 (d, J = 6.6 \text{ Hz}, 3\text{H})^{13}\text{C}{}^{1}\text{H}$ NMR (100 MHz, CDCl₃): δ 53.9, 51.0, 42.5, 24.5, 23.6, 21.4, 17.4.

Racemic 11h (260 mg, 1.00 mmol) was dissolved in MeOH (7.5 mL) and cooled to 0 °C. NiCl₂ (135 mg, 1.04 mmol) was added to the solution with stirring, followed by addition of NaBH₄ (188 mg, 5.1 mmol). After stirring for 15 min, the reaction was quenched with sat. aqueous NH₄Cl (20 mL). The mixture was extracted with CH₂Cl₂ (4 x 30 mL). The combined organic layers were washed with brine (75 mL), dried over Na_2SO_4 , and concentrated. The crude residue was filtered through a short plug of silica, eluting with 90:10:1 CH₂Cl₂:MeOH:NH₄OH, and then was concentrated. The clear oil obtained was redissolved in a mixture of MeOH (3.5 mL) and conc. HCl (1.5 mL) and was stirred at rt for 4 h. The mixture was diluted with 1N aqueous NaOH (40 mL), and extracted with CH₂Cl₂ (5 x 40 mL). The combined organic layers were dried over Na₂SO₄, filtered, and concentrated to yield 120 mg (91% over two steps) of diamine S6 in approximately 95% purity by ¹H NMR.¹H NMR (400 MHz, CDCl₃): δ 2.72-2.64 (m, 1H), 2.55-2.47 (m, 1H), 1.80-1.68 (m, 1H), 1.34 (br s, 4H), 1.30-1.12 (m, 2H), 1.07 (d, J = 6.4 Hz, 3 H), 0.94 (d, J= 6.6 Hz, 3H), 0.89 (d, J = 6.6 Hz, 3H) ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 54.4, 51.2, 43.6, 24.5, 23.6, 21.3, 20.6.

Cyclization:

Diamine **S5** (52 mg, 0.49 mmol) was dissolved in CH_2Cl_2 (5 mL). A solution of di*-tert* butyl tricarbonate (155 mg, 0.59 mmol) in CH_2Cl_2 (5 mL) was added dropwise over 10 min to the diamine solution with stirring. The mixture was stirred an additional 10 min, and then was concentrated. The crude residue was purified by silica gel chromatography (100% CH_2Cl_2 to 5% MeOH in CH_2Cl_2) to yield 45 mg (59%) of the cyclized product **S7** as a white solid. NMR (400 MHz, $CDCl_3$): δ 5.73 (br s, 1H), 5.62 (br s, 1H), 3.85-3.75

-S32-

(m, 2H), 1.67-1.55 (m, 1H), 1.55-1.45 (m, 1H), 1.26-1.18 (m, 1H), 1.11 (d, J = 5.8 Hz, 3H), 0.95 (d, J = 6.6 Hz, 3H), 0.91 (d, J = 6.6 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 164.1, 53.7, 51.4, 38.3, 25.0, 23.5, 21.6, 15.7. HRMS (FAB+) calcd for C₈H₁₇N₂O [MH]⁺ 157.1341; found 157.1340.

Diamine **S6** (52 mg, 0.40 mmol) was dissolved in CH₂Cl₂ (4 mL). A solution of di*-tert* butyl tricarbonate (125 mg, 0.48 mmol) in CH₂Cl₂ (4 mL) was added dropwise over 10 min to the diamine solution with stirring. The mixture was stirred an additional 10 min, and then was concentrated. The crude residue was purified by silica gel chromatography (100% CH₂Cl₂ to 5% MeOH in CH₂Cl₂) to yield 43 mg (69%) of the cyclized product **S8** as a white solid. NMR (400 MHz, CDCl₃): δ 5.78 (br s, 1H), 5.72 (br s, 1H), 3.45-3.35 (m, 1H), 3.35-3.27 (m, 1H), 1.75-1.60 (m, 1H), 1.52-1.43 (m, 1H), 1.36-1.27 (m, 1H), 1.22 (d, *J* = 6.1 Hz, 3H), 0.93 (d, *J* = 6.7 Hz, 3H), 0.91 (d, *J* = 6.6 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 163.5, 58.5, 54.6, 44.4, 24.8, 23.2, 21.9, 20.8. HRMS (FAB+) calcd for C₈H₁₇N₂O [MH]⁺ 157.1341; found 157.1338.

Synthesis of Ketone:

Compound **10h** (130 mg, 0.50 mmol) was dissolved in 1 mL of MeOH. A solution of NaOMe in MeOH (1.0 mmol in 1.0 mL, freshly prepared from Na and MeOH) was added, followed by an additional 3 mL of MeOH. The mixture was cooled in a -78 °C

bath, and ozone was bubbled through until a pale blue color persisted. The solution was stirred for 1 h, and then purged with dry N₂. Dimethylsulfide (0.5 mL) was added, and then the cold bath was removed and the mixture was stirred for 16 h at rt. The solution was concentrated, then diluted with 5 mL of water and extracted with 5 mL of CH₂Cl₂. The organic layer was washed with brine (2 x 5 mL), dried over Na₂SO₄, and concentrated. Flash column chromatography on a Biotage Flash+ cartridge with a gradient of 3% to 24% EtOAc in hexanes provided 61.3 mg (53%) of ketone **S9** as a thick oil which solidified upon standing. The ¹H NMR spectrum is consistent with literature data.⁶ The product was determined to be 91% ee by chiral HPLC analysis (Chiralpak AS, hexanes/EtOH 99/1, 1 mL min⁻¹): t_R (major) = 7.0 min, t_R (minor) = 9.5 min. [α]²⁶_D = + 34.7° (*c* = 1, CHCl₃).

Ketone **S9** was also prepared from Boc-Leucine according to the literature procedure⁶ in >99% ee. $[\alpha]_{D}^{26} = +38.9^{\circ}$ (*c* = 1, CHCl₃)

References

(a) Nagai, A.; Sato, D; Ishikawa, J.; Ochiai, B.; Kudo, H.; Endo, T.
 Macromolecules 2004, *37*, 2332. (b) Bhattacharjya, A.; Mukhopadhyay, R.; Pakrashi, S.
 C. Synthesis 1985, 886.

2) (a) Song, J.; Wang, Y.; Deng, L. J. Am. Chem. Soc. 2006, 128, 6048. (b) Trost, B.
M.; Jaratjaroonphong, J.; Reutrakul, V. J. Am. Chem. Soc. 2006, 128, 2778. (c) Wenzel,
A. E.; Jacobsen, E. N. J. Am. Chem. Soc. 2002, 124, 12964.

3) (a) Herrera, Raquel P.; Sgarzani, Valentina; Bernardi, Luca; Ricci, Alfredo. *Angew. Chem. Int. Ed* 2005, 44, 6576. (b) Okino, T.; Hoashi, Y.; Furukawa, T.; Xu, X.; and Takemoto, Y. J. Am. Chem. Soc. 2005, 127, 119.

4) Bian, G.; Shan, W.; Su, W. J. Chem. Res. 2005, 9, 585.

5) (a) Xu, X.; Furukawa, T.; Okino, T.; Miyabe, H.; Takemoto, Y. Chem. Eur. J.

2006, 12, 466. (b) Nugent, B. M.; Yoder, R. A.; Johnston, J. N. J. Am. Chem. Soc. 2004,

126, 341. (c) Yoon, T. P.; Jacobsen, E. N. Angew. Chem. Int. Ed. 2005, 44, 466.

Kawai, M.; Boparai, A. S.; Bernatowicz, M. S.; Rich, D. J. J. Org. Chem., 1983, 48, 1876.

4a

-S37-

-S40-

-S41-

-S45-

-S46-

-S47-

-S49-

-S51-

-S52-

ata File C:\HPCHEM\2\DATA\MROBAK~1\11060606.D

Area Percent Report

Sorted By		:	Sigr	nal	
Multiplier		:	1.00	000	
Dilution		:	1.00	000	
Use Multiplier	&	Dilution	Factor	with	ISTDs

Signal 1: MWD1 C, Sig=210,8 Ref=360,100

Totals :

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	10.388	MM	0.2884	1262.36047	72.95079	82.6072
2	11.803	MM	0.3033	25.65276	1.40983	1.6787
3	13.609	MM	0.3382	51.47518	2.53673	3.3685
4	16.417	MM	0.4829	188.65916	6.51136	12.3456

1528.14758

Results obtained with enhanced integrator!

83.40871

. •

Sort	ced By		:	Sigr	nal	
Mult	ciplier		:	1.00	000	
Dilu	ution		:	1.00	000	
Use	Multiplier	&	Dilution	Factor	with	ISTDs

Signal 1: MWD1 C, Sig=210,8 Ref=360,100

Peak RetTime	туре	Width	Area	Height	Area
# [min]		[min]	[mAU*s]	[mAU]	%
$\begin{array}{c c} & \\ 1 & 15.549 \\ 2 & 16.369 \\ 3 & 18.429 \\ 4 & 22.995 \end{array}$	MF FM MM	0.4280 0.4170 0.4460 0.6529	2557.30713 61.59914 93.44327 172.88620	99.57829 2.46214 3.49186 4.41343	 88.6343 2.1350 3.2387 5.9921

HN^{Boc} NO₂ MeO 10b

Totals : 2885.23573 109.94572

Results obtained with enhanced integrator!

, P

ata File C:\HPCHEM\2\DATA\MROBAK~1\11060608.D

Area Percent Report

Sort	ted By		:	Sigr	nal	
Mult	tiplier		:	1.00	000	
Dilu	ution		:	1.00	000	
Use	Multiplier	&	Dilution	Factor	with	ISTDs

Signal 1: MWD1 C, Sig=210,8 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	9.614	MM	0.2684	4135.30078	256.77518	78.3208
2	10.741	MF	0.2696	89.02940	5.50397	1.6862
3	11.357	FM	0.2804	206.02855	12.24541	3.9021
4	13.065	MM	0.3667	849.59418	38.61240	16.0909

Totals : 5279.95290 313.13696

Results obtained with enhanced integrator!

<u>د</u> د

Sorted By		:	Signal	
Multiplier		:	1.0000	
Dilution		:	1.0000	
Use Multiplier	&	Dilution	Factor with	ISTDs

Signal 1: MWD1 C, Sig=210,8 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	11.446	MM	0.2909	1043.70447	59.80339	76.1635
2	14.167	MM	0.2773	44.41248	2.66914	3.2410
3	16.363	MM	0.4348	94.72878	3.63076	6.9128
4	27.572	MM	1.0105	187.50082	3.09269	13.6827

1370.34656

Totals :

69.19598

<u>к</u> Ч

3

Sort	ed By		:	Signal	
Mult	iplier		:	1.0000	
Dilu	ution		:	1.0000	
Use	Multiplier	δc	Dilution	Factor with	ISTDs

Signal 1: MWD1 C, Sig=210,8 Ref=360,100

Totals :

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area ۶
1	9.609	MM	0.2717	148.93532	9.13453	1.3799
2	10.998	MM	0.3094	265.16974	14.28284	2.4568
3	12.990	MM	0.3778	8356.55859	368.69659	77.4248
4	17.301	MM	0.5572	2022.47070	60.49460	18.7385

1.07931e4

452.60856

analytical HPLC 7/20/2007 2:40:11 PM

2

9985.65790 392.90986

Sort	ed By		:	Sigr	nal	
Mult	iplier		:	1.00	000	
Dilu	tion		:	1.00	000	
Use 1	Multiplier	&	Dilution	Factor	with	ISTDs

Signal 1: MWD1 C, Sig=210,8 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
				0110 00400	221 75671	81 3067
⊥ 2	15.434	MM	0.4042	309.37054	11.84688	3.0981
3	17.665	MM	0.5114	619.12488	20.17776	6.2001
4	20.176	MM	0.5984	938.15759	26.12850	9.3951

Results obtained with enhanced integrator!

Totals :

<u>,</u> •

HŊ^{~Boc}

10g

NO₂

Area Percent Report

Sorted By		:	Sigr	nal	
Multiplier		:	1.00	000	
Dilution		:	1.00	000	
Use Multiplier	&	Dilution	Factor	with	ISTDs

Signal 1: MWD1 C, Sig=210,8 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
 1 2 3	6.728 7.363 9.768	MF FM MM	0.2916 0.4074 0.4126	779.93005 140.71454 228.22646	44.58244 5.75628 9.21856	6.6419 1.1983 1.9436
4	11.118	MM	0.5693	1.05936e4	310.14392	90.2161

Totals : 1.17425e4 369.70120

Results obtained with enhanced integrator!

.

7865.05101 263.30907

-

Sorted By	:	Signal	
Multiplier	:	1.0000	
Dilution	:	1.0000	
Use Multiplier &	Dilution	Factor with	ISTDs

Signal 1: MWD1 C, Sig=210,8 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
	-					
1	5.775	MM	0.2684	536.80463	33.33732	6.8252
2	7.709	MM	0.3171	144.00175	7.56919	1.8309
3	9.632	MM	0.5384	7184.24463	222.40256	91.3439

Totals :

Results obtained with enhanced integrator!

analytical HPLC 7/20/2007 2:36:57 PM

-S60-

Data File C:\HPCHEM\2\DATA\MROBAK\10150704.D

Area Percent Report

Sorted By	:	Signal	
Multiplier	:	1.0000	
Dilution	:	1.0000	
Use Multiplier &	Dilution	Factor with	ISTDs

Signal 1: MWD1 A, Sig=222,64 Ref=360,100

HN^{Boc} NO₂ 10i Ph

Signal 2: MWD1 B, Sig=254,16 Ref=360,100

Signal 3: MWD1 C, Sig=210,8 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	6.983	MM	0.3181	2078.24146	108.89008	
2	8.619	MM	0.2587	1.52549e4	982.77380	86.7478
3	16.185	MM	0.6039	252.20430	6.96066	1.4342

Totals :

1.75853e4 1098.62454

Sample Name: MTR3-134

20

min

10

15

5

0