Structure, Vibrations and Raman Modes in Electron Doped Metal Phthalocyanines -Supplement

Jaroslav Tóbik^{1*} and Erio Tosatti^{1,2}

¹ International School for Advanced Studies (SISSA),

and INFM Democritos National Simulation Center,

Via Beirut 2-4, I-34014 Trieste, Italy

² The Abdus Salam International Centre for Theoretical Physics (ICTP)

P.O.Box 586, I-34014 Trieste, Italy

Before giving tables with calculated quantities we would like to make some remarks about symmetry properties of D_{2h} group, the symmetry group of JT distorted molecule. Quantities tabulated in table III are related to this. In the parallel with equation (4) from our paper, proper vibrations can be classified according irreducible representations as follows:

$$\Gamma_{\rm vib} = 28A_{\rm g} + 27B_{1\rm g} + 13B_{2\rm g} + 13B_{3\rm g} + +13A_{\rm u} + 15B_{1\rm u} + 28B_{2\rm u} + 28B_{3\rm u}$$
(1)

Among these, infrared active modes are of B_{1u} , B_{2u} and B_{3u} symmetry.

Raman active modes have A_g , B_{1g} , B_{2g} and B_{3g} symmetry. In parallel with equation (5) from our paper, Raman tensors in D_{2h} symmetry are constrained to have form

$$A_{g}: \begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{pmatrix}, \quad B_{1g}: \begin{pmatrix} 0 & d & 0 \\ d & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad B_{2g}: \begin{pmatrix} 0 & 0 & e \\ 0 & 0 & 0 \\ e & 0 & 0 \end{pmatrix}, \quad B_{3g}: \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & f \\ 0 & f & 0 \end{pmatrix}$$
(2)

Infrared active modes are B_{1u} , B_{2u} and B_{3u} .

In the following tables we give frequency of vibration modes, symmetry assignment and Raman tensor components or amplitude of vibration induced dipole moments. The ordering of tensor components is alphabetical. Atomic units are used in tables, namely $1a_0$ for distance, 1Ry for energy, 1e for charge, and 1amu for mass.

frequency	symmetry	Raman or Infra red intensity	Jahn-Teller parameters
24	E_{g}	Ra $e=0.54$, $f=3.73$	-
35	B_{2g}	Ra d=18.48	k=0.006, q=0.0691, L=0.4
73	B_{2u}	-	-
116	E_{u}	IR 0.121465	-
117	A_{2u}	IR 0.400072	-
125	B_{1u}	-	-
141	E_{g}	Ra $e=0.27$, $f=2.96$	-
146	A_{1u}	-	-
162	B_{2u}	-	-
168	A_{2u}	IR 0.694770	-
184	B_{1g}	Ra c=49.50	k=0.281, q=0.0267, L=7.5
197	A_{2g}	-	-
219	B_{2g}	Ra d=32.85	k=0.581, q=0.0589, L=34.2
232	E_{g}	Ra $e=-0.38$, $f=2.39$	-
232	B_{1u}	-	-
233	B_{2u}	-	-
262	A_{1g}	Ra $a=57.78$, $b=5.18$	k=0.539, q=0.0841 (0.0774), L=45.3 (41.7)
264	A_{2u}	IR 0.177599	-
276	E_{u}	IR 0.302859	-
288	E_{g}	Ra $e=0.79$, $f=-0.20$	-
349	A_{2u}	IR 0.087985	-
415	E_{g}	Ra $e=0.12$, $f=-0.07$	-
421	B_{2u}	-	-
427	E_{u}	IR 0.158089	-
435	A_{1u}	-	-
441	A_{2u}	IR 0.527469	-
477	B_{2g}	$\operatorname{Ra} d=24.06$	k=1.271, q=0.0681, L=86.5

fue		Domon on Infra and inter "	r John Tollon nonemators
requency s	symmetry E	P name of mira red intensit	y Jann-Tener parameters
500	Eg F	na = 0.10, I = 0.53	-
000 E06	ь Б	IN 0.200044	-
020 561	D _{1u} P	-	$ k = 2.628$ $\alpha = 0.0121$ J $= 21.0$
501 576	D_{1g}	Ra C=29.10	k=2.028, q=0.0121, L=51.9
0/0 570	A _{2g}	- IR 0.404420	-
519 519	Lu A	$\begin{array}{c} 111 & 0.404423 \\ R_{2} & 2 - 1.28 \\ h = 0.06 \end{array}$	- $k = 3.927$ $a = 0.0287(0.0285)$ I $= 0.2.6(02.0)$
009 614	A_{1g}	Ra a = 1.28, b = -0.90	k=5.227, q=0.0287(0.0285), L=92.0(92.0)
627	A2g	-	-
654	E Alu	- IR 0.033807	-
655	Γ_{u}	$R_{0} = 0.12 f = 0.03$	-
676	L'g A.	$R_{a} = 0.12, 1 = -0.03$ $R_{a} = -20.41$ $h = -3.83$	- k=4.321 a=0.0605(0.0602) I=261.4(260.1)
692	R _{1g}	$R_a a = 20.41, b = -3.65$ $R_a d = 16.86$	k=4.521, q=0.0005(0.0002), L=201.4(200.1) k=3.533, q=0.0027, L=9.5
703	E.	Ba $e=0.34$ f=-0.05	к=0.000, q=0.0021, н=0.0
704	B ₁	-	_
701	B ₂	_	_
759	B_{1-}	Ba c=59.00	k=6.061 $a=0.0393$ L=238.1
760	E.,	IB 0 470902	
769	A ₂	IR 1 179033	_
778	B211		_
779	E_{σ}	Ra e=0.03, f=2.80	-
794	B ₁ g	Ra c = 10.93	k=4.440, q=0.0247. L=109.7
798	A_{1n}	-	-
802	B ₁ ,,	-	-
803	E	Ra e=2.49, f=1.42	-
809	A211	IR 0.912525	-
817	En	IR 0.319912	-
839	Alg	Ra a=52.92, b=8.03	k=5.339, q=0.0104 (0.0082), L=55.5(43.9)
850	A_{2g}	-	-
877	E	Ra e=0.09, f=1.04	_
877	B_{1u}	-	-
878	A_{1u}	-	-
894	E_{u}	IR 0.369663	-
934	B_{2g}	Ra d=0.38	k=9.163, q=0.0183, L=167.7
951	B_{2u}	-	-
951	E_{g}	Ra $e=0.00$, $f=0.36$	-
952	A_{2u}	IR 0.206490	-
983	A_{1u}	-	-
983	E_{g}	Ra $e=0.24$, $f=0.08$	-
984	B_{1u}	-	-
1000	E_{u}	IR 0.525074	-
1002	B_{1g}	Ra $c=13.50$	k=1.839, q=0.0063, L=11.6
1014	A_{1g}	Ra a=23.91, b= 3.03	k=1.865, q=0.0139(0.0161), L=25.9(30.1)
1038	B_{2g}	Ra d=6.88	k=8.233, q=0.0052, L=42.7
1066	E_{u}	IR 0.059541	-
1079	A_{2g}	-	-
1092	B_{2g}	Ra d=13.23	k=1.655, q=0.0414, L=68.4
1102	E_{u}	IR 0.353613	-
1117	A_{1g}	Ra a=17.80, b= 2.31	
1121	B_{1g}	Ra c=12.63	k=1.535, q=0.0532, L=81.6
1124	E_{u}	IR 0.003464	-
1157	A_{2g}	-	-
1158	A_{1g}	Ra $a=36.42$, $b=2.04$	k=3.123, q=0.0286(0.0305), L=89.2(95.4)
1176	E_{u}	IR 0.255071	-
1193	A_{2g}	-	-
1195	E_{u}	IR 0.202789	-
1195	B_{1g}	Ra c=67.84	k=5.271, q=0.0263, L=138.4
1210	B_{2g}	Ra d=4.87	k=3.880, q=0.0587, L=227.6
1277	E_{u}	IR 0.226052	-
1279	A_{2g}	-	-
1289	B_{2g}	Ra d=14.26	k=3.789, q=0.0533, L=202.1
1328	B_{1g}	Ra c=238.92	k=18.812, q=0.0108, L=203.4
1344	E_{u}	IR 1.429662	-

frequency	symmetry	Raman or Infra red intensity	Jahn-Teller parameters
1379	A_{1g}	Ra $a=200.59$, $b=2.08$	k=23.275, q=0.0048(0.0060), L=112.6(140.5)
1403	E_{u}	IR 0.729572	-
1406	B_{1g}	Ra $c=29.48$	k=10.570, q=0.0170, L=180.0
1407	A_{1g}	Ra a= 29.84 , b= 2.56	k=5.630, q=0.0019(0.0017), L=10.6(9.7)
1411	E_{u}	IR 0.654896	-
1437	A_{1g}	Ra a= 21.46 , b= 2.21	k=16.936, q=0.0013(0.0014), L=16.9(16.9)
1443	B_{1g}	Ra $c=33.20$	k=7.829, q=0.0373, L=292.7
1447	B_{2g}	Ra d=37.92	k=14.366, q=0.0223, L=320.7
1467	A_{2g}	-	-
1467	E_u	IR 0.492994	-
1477	B_{2g}	Ra d=27.75	k=9.204, q=0.0013, L=12.0
1492	E_{u}	IR 0.761032	-
1518	A_{2g}	-	-
1521	A_{1g}	Ra $a=74.16$, $b=-1.94$	k=23.937, q=0.0139(0.0123), L=332.2(295.3)
1533	E_u	IR 0.132082	-
1587	B_{1g}	Ra $c=405.18$	k=29.069, q=0.0443, L=1287.6
1604	E_u	IR 0.024565	-
1606	B_{1g}	Ra $c=40.20$	k=21.857, q=0.0176, L=358.3
1606	A_{1g}	Ra a=19.89, b=-1.94	k=20.514, q=0.0038(0.0040), L=77.7 (81.4)
1628	A_{2g}	-	-
1630	E_{u}	IR 0.338197	-
1632	B_{2g}	$\operatorname{Ra} d=6.60$	k=22.065, q=0.0067, L=148.2
3076	B_{2g}	Ra d=28.26	k=10.577, q=0.0000, L=0.0
3076	A_{2g}	-	-
3076	E_{u}	IR 0.101160	-
3086	A_{1g}	Ra a=27.38, b=-0.46	k=10.684, q=0.000, L=0.0
3086	B_{1g}	Ra $c=46.79$	k=10.683, q=0.000, L=0.0
3087	E_{u}	IR 0.141285	-
3096	A_{2g}	-	-
3096	E_{u}	IR 0.051209	-
3097	B_{2g}	Ra d=39.61	k=10.812, q=0.000, L=0.0
3101	B_{1g}	Ra $c=52.22$	k=10.889, q=0.000, L=0.0
3102	A_{1g}	Ra a= 88.43 , b= 8.62	k=10.892, q=0.000, L=0.0
3103	E_{u}	IR 0.401503	-

TABLE I: Vibration spectra of MgPc neutral molecule. In the first column is energy of the vibration in cm^{-1} , next column is assignment of irreducible representation of the mode (we note that E_g and E_u modes are two–fold degenerated), then Raman tensor components for Raman active modes and induced dipole momenta per displacement amplitude for infra–red active modes. Atomic units are used (Ry for energy, e for charge, a_0 for distance and amu for mass). Notation of tensor components follows equation (5) in the paper. Last column contains parameters for linear Jahn-Teller effect - force constant k in eV/a_0^2 , displacement qafter addition of one electron in a_0 , linear coupling constant L in eV/a_0 . For A_{1g} modes is possible to obtain coupling constants from the position of the minima as well as from the saddle point (in brackets).

				1183 E_u IR 1.50
freq.	sym.	Ra or IR	678 A_{1g} Ra -8.15, -4.12	1187 B_{2g} Ra 4.03
2.56i	$A_{2\mathrm{u}}$	IR 1.13	685 B_{2g} Ra -15.83	$1205 E_u IR 0.08$
0.19i	E_{g}	Ra -0.05, -0.18	686 B _{1u} -	1208 A_{2g} -
0.11i	$\mathrm{B}_{1\mathrm{u}}$	-	697 B _{2u} -	1263 B_{2g} Ra 9.15
0.11i	$A_{1u} \\$	-	733 $\rm B_{1g}$ Ra -77.01	$1272 E_u IR 0.19$
0.08i	$\mathrm{B}_{2\mathrm{u}}$	-	$757 E_u IR 1.58$	1275 A _{2g} -
0.06i	E_{g}	Ra 1.59, -2.46	764 B _{2u} -	1289 $\rm B_{1g}~Ra$ -160.27
93	$\mathrm{E}_{\mathbf{u}}$	IR 0.26	772 E_g Ra 4.70, 0.27	$1329 E_u IR 0.31$
103	B_{2g}	Ra -16.89	774 A_{2u} IR 0.84	1350 B_{1g} Ra 44.86
137	$A_{2u} \\$	IR 1.28	793 A _{1u} -	1369 $\rm A_{1g}$ Ra -163.90, -1.86
178	$B_{2\mathrm{u}}$	-	795 B _{1u} -	1399 E_u IR 0.22
178	$B_{1g} \\$	$\mathrm{Ra}\;60.14$	795 E_g Ra -1.50, 1.50	1404 ${\rm A}_{1g}$ Ra 32.46, 2.77
201	$A_{\rm 2g}$	-	800 B_{1g} Ra 14.92	1405 B_{1g} Ra -0.52
205	$\mathrm{B}_{1\mathrm{u}}$	-	$812 E_u IR 0.44$	1412 E_u IR 1.65
218	$\rm E_g$	Ra $0.18,0.06$	841 ${\rm A}_{1g}$ Ra -41.84, -6.31	1433 $\rm B_{2g}$ Ra -32.17
221	$\mathrm{B}_{2\mathrm{g}}$	Ra 44.78	848 A _{2g} -	1433 ${\rm A}_{1{\rm g}}$ Ra 60.48, 3.89
224	$A_{1g} \\$	Ra 61.08, 4.81	861 B _{1u} -	1466 E_u IR 1.32
242	$\mathrm{B}_{2\mathrm{u}}$	-	862 A _{1u} -	1469 $\rm A_{2g}$ -
244	$A_{2u} \\$	IR 0.52	864 E_g Ra 0.65, -0.07	1480 B_{2g} Ra 28.56
269	$\mathbf{E}_{\mathbf{u}}$	IR 0.38	893 E_u IR 0.48	1482 B_{1g} Ra 57.07
271	E_{g}	Ra 1.02, 0.06	926 B_{2g} Ra 8.25	1487 E_u IR 2.36
347	$A_{2u} \\$	IR 0.38	935 A_{2u} IR 0.05	1515 ${\rm A_{1g}}$ Ra 57.82, -3.10
363	$A_{2\mathrm{u}}$	IR 0.66	938 E_g Ra -0.06, -2.10	1518 E_u IR 0.67
414	E_{g}	Ra -0.01, -0.01	938 B _{2u} -	1520 A _{2g} -
416	A_{1u}	-	964 A _{1u} -	1590 B_{1g} Ra 72.49
422	E_{u}	IR 0.09	965 E_g Ra -0.04, 0.18	$1590 E_{\rm u} \text{ IR } 0.93$
423	B_{2u}	-	965 B _{1u} -	1593 A_{1g} Ra -53.02, 1.89
475	B_{2g}	Ra -24.81	984 A_{1g} Ra -29.91, -3.34	1612 A _{2g} -
494	E_{g}	Ra -0.04, 0.06	991 B_{1g} Ra 17.24	$1615 E_{\rm u} \ {\rm IR} \ 0.38$
505	E_{u}	IR 0.85	995 E_u IR 0.73	1616 B_{2g} Ra -23.29
527	B_{1u}	-	$1030 \ B_{2g} \ Ra \ 3.89$	3061 A _{2g} -
565	A_{2u}	IR 1.23	$1068 E_{\rm u} \ {\rm IR} \ 0.98$	$3061 E_{\rm u} IR 0.17$
568	B_{1g}	Ra -34.79	1084 A _{2g} -	$3061 \text{ B}_{2g} \text{ Ra } 35.39$
575	A_{2g}	-	1090 B _{2g} Ra 18.31	$3075 E_{\rm u}$ IR 0.29
578	E_{u}	IR 0.46	$1098 E_{\rm u} \ {\rm IR} \ 0.81$	$3075 B_{1g} Ra - 59.18$
586	A_{1g}	Ra -11.35, 1.17	1099 B _{1g} Ra -20.20	3076 A_{1g} Ra -45.11, -0.61
612	A_{2g}	-	1116 A_{1g} Ra -15.33, -2.04	$3092 B_{2g} Ra 38.26$
630	A_{1u}	-	$1120 E_{\rm u} IR 0.17$	$3093 E_{\rm u}$ IR 0.51
635	E_{g}	Ra -1.14, -1.36	1152 A_{1g} Ra -32.35, -2.26	3094 A_{1g} Ra 84.52, 7.69
645	E_{u}	IR 0.23	1158 A _{2g} -	$3095 B_{1g} Ra 48.02$
665	E_g	Ra -0.69, 2.44	1177 B _{1g} Ra 46.43	$3098 E_{\rm u}$ IR 0.36
				3100 A _{2g} -

TABLE II: Vibration spectra of symmetrized $\mathrm{D_{4h}~MgPc^{-}}$ anion.

freq.	sym.	Ra or IR	679 B_{1g} Ra -54.28	
1.85i	$B_{1u} \\$	IR 1.13	$684 B_{1u} IR 0.18$	1199 ${\rm B_{1g}}$ Ra 5.39
0.66i	A_{u}	-	723 B_{3g} Ra 0.77	1200 B _{3u} IR 0.82
0.64i	B_{3g}	Ra -2.61	747 B_{1u} IR 0.25	1252 B_{1g} Ra 17.03
0.27i	B_{1u}	IR 0.46	749 A _u -	1270 B _{3u} IR 0.23
0.19i	B_{2g}	Ra 0.84	$750 \mathrm{B}_{2\mathrm{g}} \mathrm{Ra} 3.37$	$1277 B_{2u} IR 0.77$
0.13i	A_{u}	-	751 B _{3u} IR 1.48	1280 B _{1g} Ra -2.33
112	B_{1g}	Ra 29.50	754 B_{2u} IR 1.46	1307 A _g Ra 107.81, -285.42, 7.08
113	B_{3u}	IR 0.29	755 A _g Ra -2.30, -63.88, 7.30	1315 B_{2u} IR 0.25
115	B_{1u}	IR 1.05	760 B_{3g} Ra 1.52	1338 B_{3u} IR 0.36
119	B_{2u}	IR 0.34	773 B _{1u} IR 0.45	1366 Ag Ra 137.39, 124.04, -5.92
133	B_{2g}	Ra -5.33	783 B _{3g} Ra -3.03	1394 B _{3u} IR 0.14
165	Au	-	784 B _{1g} Ra -487.12	1394 Ag Ra -25.24, -7.92, -4.09
174	B_{1g}	Ra -49.67	789 A _g Ra 24.12, 8.67, -4.02	1395 B_{2u} IR 1.98
176	Ag	Ra -59.94, 58.78, 0.33	796 A _u -	1404 B_{2u} IR 0.79
180	B_{1u}	IR 0.64	799 B _{2g} Ra 0.99	1406 B _{1g} Ra -47.32
191	B _{3g}	Ra 0.36	804 B _{3u} IR 0.80	1408 A _g Ra -45.71, -42.31, 0.42
195	B _{3g}	Ra -3.06	814 B _{2u} IR 0.04	1424 B _{3u} IR 1.90
201	B _{1g}	Ra 7.09	829 A _g Ra 34.44, 46.85, 8.85	1432 A _g Ra 28.86, -1.99, 10.80
205	B_{1u}	IR 0.58	837 A _u -	1442 A _g Ra 61.72, 64.28, -7.51
212	B ₃	Ra 3.79	839 B _{3e} Ra -0.08	1461 B _{2u} IR 1.47
214	B ₂	Ra 5.74	841 B _{1g} Ra -0.97	1462 B _{3u} IR 2.60
225	A _o	Ra -63.40, -55.35, -0.51	864 A _u -	1466 B _{1g} Ra -7.29
249	B11	IR 0.63	865 B ₂ Ra -0.45	1472 B _{3u} IR 1.16
261	B ₂ g	Ra 1.63	889 B _{2n} IR 0.87	1480 B _{1g} Ra -30.81
284	- 25 B21	IR 0.48	$894 B_{3n}$ IR 0.09	$1485 B_{2n}$ IR 0.87
293	- 2u B31	IR 0.23	906 B_{11} IR 0.18	1506 A _g Ra 40.75, -99.25, 8.09
323	— эц В1,,	IR 0.27	919 A ₁₁ -	1526 B ₃₁ IR 1.72
324	A.	-	923 B ₃ Ra -0.35	1533 B _{1g} Ba 102.84
328	B1,,	IR 0.60	$932 B_{10} IR 0.05$	1547 B ₂₉ IR 1.65
356	B ₃ _a	Ra -2.44	$934 B_{3\sigma} Ra - 0.95$	$1577 B_{3y}$ IR 0.96
364	Bog	Ba -0.89	934 B ₂ Ra -1.48	1577 A _g Ba 81.15, -95.85, 8.42
402	B ₁ _g	Ra 171.94	963 A ₁₁ -	1592 A _g Ba 196.21, 527.85, -48.35
415	B1.,	IR 0.13	964 B ₂₇ Ba 0.82	1599 B ₂₂ , IB 0.67
421	B2.,	IR 0.26	979 B ₁ Ba -266.85	1602 A _z Ba -68.87123.31. 21.10
423	B ₂₋	Ra 0.32	$993 B_{20}$ IR 0.77	1612 B ₁ Ba 45.58
428	Bo.	IR 0.03	995 A _z Ba -36 18 -3 72 -0 44	1614 B ₂₂ , IB 0 76
468	Δ	-	1000 B_{22} IB 0.51	1618 B ₁₋ Ba -114 80
500	Ba	IR 1.09	$1001 A_{-} B_{2} 9 82 26.07 2.49$	1624 B ₂₂ IB 0 14
500	Bo.	Ra 0.31	$1038 B_1$ Ba -37.21	$3071 B_1$ Ba -12.41
504	B_{2g}	IR 0.56	$1052 B_{0} IB 0.98$	$3071 B_{0} IB 0.06$
550	A_	Ba - 38 21 30 43 3 29	$1062 B_{2u}$ IR 0.52	$3074 B_{2u}$ IR 0.18
555	B1	IR 1 13	$1073 B_{1-} B_{2-} 0.42$	3074 B ₁₋ Ba -8 79
565	Ba	Ro -1 11	$1096 B_{2}$ IR 0.63	$3075 B_2 IB 0.26$
572	D _{3g} Ba	IB 0.36	$1097 B_2$ IR 1.39	3077 A B ₂ -64.26 38.52 0.92
575	B_{3u}	Ro 18 32	$1110 B_1 B_2 36 26$	3079 B ₁ B ₂ 8 77
576	Δ	11a 10.92	1116 A $B_{2} 20.21 - 2.49 - 2.47$	$3080 B_{2} IB 0.09$
578	Au B.	- IR 0.54	1110 A_g Ita 20.21, 2.43, 2.47	$3081 B_{-}$ IR 0.45
502	Δ^{2u}	Ra_1.60 96.95 19.45	$1123 \text{ A} = B_{2} 20.12 26.00 1.82$	3082 A Ba 15.83 -57.79 1.06
611	л _g В-	Ra 0 30	1120 Mg 10a 20.12, 20.09, -1.00	3082 B_{\circ} IR 0.31
619	\mathbf{D}_{1g}	Ro 2.34	1120 D_{2u} III 0.40 1153 B_{e} B_{2} 4 70	$3087 B_{\star} B_{2} 49.89$
694	D_{2g}	11a -0.04 IR 0.22	1153 Δ B_{0} 90 /1 91 90 0.17	$3000 B_{1g} Ra 42.02$
034 647	ы _{3u} Р	IR 0.13	1100 A_g Ra -20.41, -31.20, 0.17 1181 B_a ID 1.57	3000 B_{2} IR 0.55
650	\mathbf{D}_{2u}	ni 0.10 Ro 9.78	1101 D_{2u} III 1.07 1188 P_{a} IP 0.84	3032
009	D_{2g}	11d - 2.10 Ro 16.86 8.00 8.00	1100 D_{3u} IN U.04 1101 A P_0 20.19 74.49 4.09	3033 Ag Ra 42.71 , -40.08 , 0.383006 A B ₂ 06 27 00 22 2 07
677	Ag A	na 10.00, 0.92, 0.92	1191 Ag Ra 50.15, -74.45 , 4.85	5050 Ag na 50.27, 50.62, 6.07
077	A_{u}	-	119/ D2u IR 0.14	

TABLE III: Vibration frequencies, symmetry and Raman tensor components or induced dipole moment for $MgPc^{-}$ Jahn–Teller distorted D_{2h} anion.