"The Dioxanone Approach to (2S, 3R)-2-C-Methylerythritol 4-Phosphate

 and 2,4-Cyclodiphosphate, and Various MEP Analogues."By Chandraiah Lagisetti, Marek Urbansky, and Robert M. Coates*

SUPPORTING INFORMATION

General Aspects S2
Experimental procedures, characterization data, and references for compounds: 10, 11, 24, 25, 26,15 (from 26), 28, 31, 32, 33, 35, tosylate intermediate, 38, 39, and 40 .S3-S14
Reproductions of ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{31} \mathrm{P}$ NMR Spectra of Selected Compounds S15-S66

Note: Some NMR spectra are available in the Supporting Information accompanying the preliminary communication: Urbansky, M.; Davis, C. E.; Surjan, J. D.; Coates, R. M. Org. Lett. 2004, 4, 135-138

General Aspects:

Reactions carried out under anhydrous conditions were performed under N_{2} using oven-dried glassware unless specified otherwise. $\mathrm{Et}_{2} \mathrm{O}$, THF and benzene were distilled from sodium / bezophenone ketyl before use. Pentane, toluene, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and $\mathrm{Et}_{3} \mathrm{~N}$ were distilled from calcium hydride before use. Dibenzyl phosphorochloridate was prepared as described by Buck and Reese. ${ }^{1}$ Dibenzyl N, N-diisopropylphosphoramidite was prepared from PCl_{3} using literature procedures. ${ }^{2}$ Solvents used for chromatography were distilled prior to use. All other reagents and solvents used were reagent grade. Flash column chromatography was performed according to Still's procedure using 100-700 times excess 32-64 $\mu \mathrm{m}$ grade silica gel. ${ }^{3} \mathrm{TLC}$ analysis was performed using glass TLC plates ($0.25 \mathrm{~nm} 60 \mathrm{~F}-254$ silica gel). Visualization of the developed plates was accomplished by staining with ethanolic phosphomolybdic acid, ceric ammonium molybdate, or p-anisaldehyde followed by heating on a hot plate (ca $120^{\circ} \mathrm{C}$).

The following solvents and reference values (ppm) were used for NMR spectroscopy: $\mathrm{CDCl}_{3}\left({ }^{1} \mathrm{H}: 7.26,{ }^{13} \mathrm{C}: 77.0\right), \mathrm{C}_{6} \mathrm{D}_{6}\left({ }^{1} \mathrm{H}\right.$: 7.16, $\left.{ }^{13} \mathrm{C}: 128.0\right), \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\left({ }^{1} \mathrm{H}: 7.19,{ }^{13} \mathrm{C}: 123.5\right)$, THF- $d_{8}\left({ }^{1} \mathrm{H}: 3.58\right)$, acetone- $d_{6}\left({ }^{1} \mathrm{H}: 2.05,{ }^{13} \mathrm{C}: 206.0\right), \mathrm{CD}_{3} \mathrm{OH}\left({ }^{1} \mathrm{H}: 3.31,{ }^{13} \mathrm{C}: 49.0\right)$, $\mathrm{D}_{2} \mathrm{O}\left({ }^{1} \mathrm{H}: 4.80\right) .{ }^{13} \mathrm{C}$ and ${ }^{31} \mathrm{P}$ NMR spectral data taken in $\mathrm{D}_{2} \mathrm{O}$ were externally referenced to aqueous sodium 2,2-dimethyl-2-silapentane-5-sulfonate (DSS) and 85% phosphoric acid (0.00 ppm), respectively. The abbreviation "app" (apparent) in ${ }^{1} \mathrm{H}$ NMR data sets refers to the appearance of the multiplet observed, and the coupling constants deduced in these cases were obtained by first-order coupling analysis. Samples for FT IR analysis were prepared as neat films on NaCl plates, and the data are reported in wave-numbers $\left(\mathrm{cm}^{-1}\right)$. Melting points were determined in open capillary tubes and are uncorrected. Optical rotations were measured using a digital polarimeter with a sodium lamp as $\mathrm{MeOH}, \mathrm{CHCl}_{3}$, water, or pyridine solutions in 0.5 - or 1-dm cells at $24{ }^{\circ} \mathrm{C}$ unless noted otherwise. The University of Illinois Mass Spectroscopy Laboratories collected mass spectral data.

1, 3-Benzylidene-d-threitol (10).

The oxidative cleavage procedure reported by Ueno et al. ${ }^{4}$ was followed with some modifications. A solution of 1, 3benzylidene D-arabitol $(9)^{5}(3.0 \mathrm{~g}, 12.4 \mathrm{mmol})$ in methanol $(70 \mathrm{~mL})$ was stirred and cooled at $0^{\circ} \mathrm{C}$ as a cold aqueous solution $(30 \mathrm{~mL})$ of $\mathrm{NaIO}_{4}(2.9 \mathrm{~g}, 13.7 \mathrm{mmol})$ was added dropwise over 10 min . The resulting white suspension was allowed to stir for 20 min , at which time the $\operatorname{TLC}\left(R_{f} 0.7,10: 90 \mathrm{EtOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ indicated the reaction was completed. The precipitated solids were filtered and washed with methanol (15 mL). The filtrate containing aldehyde was stirred as $\mathrm{NaBH}_{4}(0.47 \mathrm{~g}, 12.4 \mathrm{mmol})$ in water $(3 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added. The resulting milky suspension was stirred for 1 h at $0{ }^{\circ} \mathrm{C}$ after which methanol was removed under reduced pressure, and satd aqueous $\mathrm{NH}_{4} \mathrm{Cl}(100 \mathrm{~mL})$ was added. The product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \times 100 \mathrm{~mL})$, and the combined extracts were dried over MgSO_{4}. Evaporation of the solvent under reduced pressure gave a crude white solid, which was crystallized with 7:3 $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-acetone $(10 \mathrm{~mL})$ to give pure diol $\mathbf{1 0}(1.25 \mathrm{~g})$ as a white crystalline solid. Concentration of the filtrate and purification by chromatography (65:35 acetone- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) gave another 670 mg of pure diol as a white solid; total yield, $1.95 \mathrm{~g}(76 \%)$: $\mathrm{mp} 130-132{ }^{\circ} \mathrm{C}\left[1 \mathrm{lit}{ }^{6} \mathrm{mp} 123{ }^{\circ} \mathrm{C}\right]$; $[\alpha]_{\mathrm{D}}{ }^{25}-3.1^{\mathrm{o}}(c=1.00, \mathrm{MeOH})\left[\mathrm{lit}{ }^{6}[\alpha]_{\mathrm{D}}{ }^{23}-6.0\right]$; TLC $R_{f} 0.5\left(10: 90\right.$ ethanol: $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 3.62(\mathrm{q}, 1 \mathrm{H}, J=$ $1.5 \mathrm{~Hz}) 3.70-3.79(\mathrm{~m}, 2 \mathrm{H}), 4.00(\mathrm{~m}, 1 \mathrm{H}), 4.12(\mathrm{t}, 2 \mathrm{H}, J=1.5 \mathrm{~Hz}), 5.60(\mathrm{~s}, 1 \mathrm{H}), 7.33(\mathrm{~m}, 3 \mathrm{H}), 7.55(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 63.1,64.9,73.7,81.5,102.8,127.6,129.0,129.8,139.9$. The ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OH}\right)$ data correlate well with the literature values. ${ }^{6}$

1, 3-Benzylidene-D-threitol, 4-(t-Butyldimethylsilyl) Ether (11).

A solution of 1, 3-benzylidene threitol $10(2.00 \mathrm{~g}, 9.5 \mathrm{mmol})$ and imidazole ($710 \mathrm{mg}, 10.4 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (170 mL) was stirred and cooled at $0{ }^{\circ} \mathrm{C}$ as t-butyldimethylchlorosilane ($1.8 \mathrm{~g}, 11.9 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added dropwise over 5 min . The resulting milky suspension was stirred for 8 h at ambient temp. Ethanolamine (1.0 mL) was added to scavenge the excess TBDMSCl, and the suspension was allowed to stir for an additional 30 min . Water $(150 \mathrm{~mL})$ was added, and the product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 100 \mathrm{~mL})$. The combined organic layers were washed with brine $(1 \mathrm{x} 150 \mathrm{~mL})$ and dried over MgSO_{4}. Evaporation of the solvent under reduced pressure, and purification of the residue by flash chromatography (20:80 acetone-hexane and 50:50 acetonehexane) gave $2.70 \mathrm{~g}(92 \%)$ of the mono-silyl ether 11 as a colorless solid: mp $43-44{ }^{\circ} \mathrm{C}$; TLC $R_{f} 0.48$ ($30: 70$, acetone:hexane); $[\alpha]_{\mathrm{D}}{ }^{25}$ $-4.46^{\circ}(c=1.0, \mathrm{MeOH}) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 2.84(\mathrm{~d}, 1 \mathrm{H}, J=10.3 \mathrm{~Hz}), 3.73(\mathrm{app} \mathrm{d}$, $1 \mathrm{H}, J=10.2 \mathrm{~Hz}), 3.79(\operatorname{app~dd}, 1 \mathrm{H}, J=10.0,5.1 \mathrm{~Hz}), 3.90(\operatorname{app~dd}, 1 \mathrm{H}, J=10.0,6.8 \mathrm{~Hz}), 3.97(\mathrm{~m}, 1 \mathrm{H}), 4.07(\mathrm{dd}, 1 \mathrm{H}, J=11.9,1.5$ $\mathrm{Hz}), 4.25(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=11.9,1.9 \mathrm{~Hz}), 5.59(\mathrm{~s}, 1 \mathrm{H}), 7.33-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.50(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-5.3,-5.2,18.4$, $26.0,62.6,63.9,72.9,79.9,101.6,126.1,128.4,129.2,137.9$; IR (neat film) v $3446,3019,2955,2930,1857,1521,1406,1215 \mathrm{~cm}^{-1}$; HRMS (FAB) m / z Calcd for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{Si}(\mathrm{M}+1)^{+}: 325.1836$, found 325.1835.

(2S, 4S)-4-(t-Butyldimethylsilyloxymethyl)-5-methylene-2-phenyl-1, 3-dioxane (24).

The Wittig reaction was carried out according to the procedure of Acton et al. ${ }^{7}$ with some modifications. A suspension of methyltriphenylphosphonium bromide $(1.13 \mathrm{~g}, 3.16 \mathrm{mmol})$ in dry THF $(10 \mathrm{~mL})$ was stirred and cooled at $-75^{\circ} \mathrm{C}$ as 1.97 mL of n BuLi ($3.16 \mathrm{mmol}, 1.6 \mathrm{M}$ in hexane) was added dropwise over 3 min . The resulting solution gradually turned yellow. After being stirred for 15 min , the solution was warmed to room temp and stirred an additional 30 min . The solution was again cooled to $-75^{\circ} \mathrm{C}$, keto silyl ether $\mathbf{1 2}(340 \mathrm{mg}, 1.05 \mathrm{mmol})$ in THF (1 mL) was added dropwise, and the solution was warmed to room temp. After 6 h the reaction was quenched with cold water $(5 \mathrm{~mL})$, and the product was extracted with ether $(4 \times 15 \mathrm{~mL})$. The combined extracts were washed with brine (15 mL) and dried over MgSO_{4}. Evaporation of the solvent and purification by silica-gel chromatography (8:92 ethyl acetate:hexane) provided $270 \mathrm{mg}(82 \%)$ of olefin 24 as a liquid: TLC $R_{f} 0.75(20 \% \mathrm{EtOAc}$ in hexane $):[\alpha]^{25}{ }_{\mathrm{D}}-30.8^{\circ}(c=0.5$, $\mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}\right.$, benzene- $\left.d_{6}\right) \delta 0.00(\mathrm{~s}, 6 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 3.87\left(v_{\mathrm{B}} \mathrm{ABX}, 1 \mathrm{H}, J_{\mathrm{AB}}=12.0 \mathrm{~Hz}, J_{\mathrm{BX}}=3.7 \mathrm{~Hz}\right), 3.95\left(\mathrm{v}_{\mathrm{A}}\right.$ $\left.\mathrm{ABX}, 1 \mathrm{H}, J_{\mathrm{AB}}=12.0 \mathrm{~Hz}, J_{\mathrm{AX}}=5.2 \mathrm{~Hz}\right), 4.05$ and $4.19(\mathrm{ABdd}, 2 \mathrm{H}, J=12.3 \mathrm{~Hz}), 4.24\left(\operatorname{app~t}, \mathrm{v}_{\mathrm{X}} \mathrm{ABX}, 1 \mathrm{H}, J_{\mathrm{app}}=5.7 \mathrm{~Hz}\right), 4.68(\mathrm{~s}, 1 \mathrm{H})$, $4.97(\mathrm{~s}, 1 \mathrm{H}), 5.47(\mathrm{~s}, 1 \mathrm{H}), 7.06(\mathrm{t}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 7.14(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 7.61(\mathrm{~d}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}),{ }^{13} \mathrm{C}$ NMR (125 MHz , benzene- d_{6}) $\delta-5.4,-5.3,18.2,25.8,64.0,71.5,78.4,101.2,109.2,126.7,128.1,128.7,139.0,141.0$; IR (neat film) v 3068, 2955, 2929, 2884, 2856, 1472, 1461, 1403, $1253 \mathrm{~cm}^{-1}$; HRMS (FAB) m / z Calcd for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{Si}(\mathrm{M})^{+}: 320.1808$, found 320.1762.

($2 S, 4 S, 5 R$)-cis, cis- and (2S, 4S, 5S)-cis, trans-4-(t-Butyldimethylsilyloxymethyl)-5, 5-oxymethylene-2-phenyl-1, 3-dioxane (25 and 26).

The epoxidation was carried out according to a procedure described by Schneider and Séquin ${ }^{8}$ with modifications. A suspension of $\mathrm{NaHCO}_{3}(0.91 \mathrm{~g}, 10.9 \mathrm{mmol})$ in a solution of olefin $24(0.7 \mathrm{~g}, 2.1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was stirred and cooled at 0 ${ }^{\circ} \mathrm{C}$ as 2.0 equiv of m-chloroperoxybenzoic acid $(900 \mathrm{mg}, 70 \%, 4.2 \mathrm{mmol})$ was added. After 4 h , another 2.0 equiv of peracid $(0.9 \mathrm{~g}$, 70%, 4.2 mmol) was added. After 12 h , satd aq $\mathrm{Na}_{2} \mathrm{SO}_{3}(1.0 \mathrm{~mL})$ and satd aq $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$ were added, and the product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 40 \mathrm{~mL})$. The combined extracts were washed with satd aq $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$ and brine (30 mL), and dried over MgSO_{4}. Evaporation of the solvent under reduced pressure gave the crude product, which was a $2: 1$ mixture of cis,cis and cis, trans epoxides according to ${ }^{1} \mathrm{H}$ NMR analysis. Purification by flash chromatography (10% ethyl acetate-hexane) yielded 350 mg (48%) of the cis,cis epoxide 25 and 180 mg (25%) of the cis,trans epoxide 26 as liquids. Data for the cis,cis epoxide 25: TLC $R_{f} 0.4$ (20:80. EtOAc: hexane); $[\alpha]_{\mathrm{D}}{ }^{25}+10.1^{\circ}(c=1.00, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, benzene- d_{6}, $\delta-0.02(\mathrm{~s}, 3 \mathrm{H}),-0.01(\mathrm{~s}, 3 \mathrm{H}), 0.91(\mathrm{~s}$, $9 \mathrm{H}), 1.96(\mathrm{~d}, 1 \mathrm{H}, J=4.7 \mathrm{~Hz}), 2.85(\mathrm{~d}, 1 \mathrm{H}, J=4.7 \mathrm{~Hz}), 3.41(\mathrm{~d}, 1 \mathrm{H}, J=12.5 \mathrm{~Hz}), 3.70\left(\mathrm{v}_{\mathrm{B}} \mathrm{ABX}, 1 \mathrm{H}, J_{\mathrm{AB}}=10.4 \mathrm{~Hz}, J_{\mathrm{BX}}=4.9 \mathrm{~Hz}\right)$, $3.82\left(v_{\mathrm{A}} \mathrm{ABX}, 1 \mathrm{H}, J_{\mathrm{AB}}=10.0 \mathrm{~Hz}, J_{\mathrm{AX}}=6.9 \mathrm{~Hz}\right), 3.85(\mathrm{~d}, 1 \mathrm{H}, J=12.5 \mathrm{~Hz}), 4.21\left(\mathrm{vx} \mathrm{ABX}, 1 \mathrm{H}, J_{\mathrm{AX}}=6.9 \mathrm{~Hz}, J_{\mathrm{BX}}=4.9 \mathrm{~Hz}\right), 5.4(\mathrm{~s}$, $1 \mathrm{H}), 7.05-7.09(\mathrm{~m}, 1 \mathrm{H}), 7.12-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.60-7.63(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-5.7,-5.5,18.2,25.8,46.5,54.2,61.6$, $72.3,78.1,101.5,126.7,128.1,128.9,138.6$; IR (neat film) $v 2954,2929,2885,2856,1471,1398,1255 \mathrm{~cm}^{-1}$; HRMS (FAB) m / z

Calcd for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{Si}(\mathrm{M}-\mathrm{H})^{+}: 335.1679$, found 335.1679. Data for the cis,trans epoxide 26: TLC $R_{f} 0.6$ (20:80, EtOAc:hexane); $[\alpha]_{\mathrm{D}}{ }^{25}+49.4^{\circ}(c=1.1, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}\right.$, benzene- d_{6}) $\delta 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.96(\mathrm{~s}, 9 \mathrm{H}), 2.21(\mathrm{dd}, 1 \mathrm{H}, J=4.6,1.2$ $\mathrm{Hz}), 2.71(\mathrm{dd}, 1 \mathrm{H}, J=1.7,4.5 \mathrm{~Hz}), 3.44(\mathrm{~d}, 1 \mathrm{H}, J=11.3 \mathrm{~Hz}), 3.62(\mathrm{~d}, 1 \mathrm{H}, J=1.5 \mathrm{~Hz}), 3.63(\mathrm{~s}, 1 \mathrm{H}), 3.84(\mathrm{dd}, 1 \mathrm{H}, J=2.0,11.3 \mathrm{~Hz})$, $4.05\left(\mathrm{appt} \mathrm{t}, 1 \mathrm{H}, J_{\text {app }}=3.8 \mathrm{~Hz}\right), 5.41(\mathrm{~s}, 1 \mathrm{H}), 7.08(\mathrm{~m}, 1 \mathrm{H}), 7.17(\mathrm{~m}, 2 \mathrm{H}), 7.64(\mathrm{~m}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-5.3,-5.2,18.3$, $25.8,51.7,52.0,61.3,71.2,79.6,101.2,126.6,128.2,128.8,138.4$; IR (neat film) v 2953, 2929, 2856, 1471, 1461, 1461, 1349, 1253, 1105, 1033, $972 \mathrm{~cm}^{-1}$; HRMS (FAB) m / z Calcd for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{Si}(\mathrm{M}+\mathrm{H})^{+}: 337.1836$, found 337.1835 .

1, 3-Benzylidene-2-C-methylerythritol (15).

The LiAlH_{4} reduction-desilation of cis,trans epoxide 26 was carried out as described in the Experimental Section for the cis, cis epoxide (25). The weights of the starting epoxide and reagent were as follows: epoxide (40 mg 0.1 mmol) and $\mathrm{LiAlH}_{4}(4.5 \mathrm{mg}, 0.1$ $\mathrm{mmol})$. After work-up, the crude product was purified by silica-gel chromatography ($60 \% \mathrm{EtOAc}$ in hexane) to give $24 \mathrm{mg}(90 \%)$ diol 15 as white solid. The physical and NMR data were in agreement with those reported in the Experimental Section for 1, 3benzylidene 2-C-methylerythritol (15).

2-C-Methyl-D-threitol (28).

To a solution of diol $27(34 \mathrm{mg}, 0.15 \mathrm{mmol})$ in ethanol $(3 \mathrm{~mL})$ containing $\mathrm{HCO}_{2} \mathrm{H}\left(1\right.$ drop) was added $20 \% \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(15$ $\mathrm{mg})$. The suspension was allowed to stir under an H_{2} atmosphere for 12 h . The mixture was diluted with $\mathrm{MeOH}(5 \mathrm{~mL})$ and filtered through celite. Concentration of the filtrate at reduced pressure afforded $20 \mathrm{mg}(98 \%)$ of 2 - C-methylthreitol ($\mathbf{2 8}, \mathbf{2 0} \mathbf{~ m g}, \mathbf{9 8 \%}$) as a colorless oil: $[\alpha]_{\mathrm{D}}{ }^{25}+9.8^{\circ}(c=1.00, \mathrm{MeOH}) ;\left[\mathrm{it}^{9}[\alpha]_{\mathrm{D}}{ }^{25}+7.3^{\circ}(c=0.8, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}\right.$ NMR $\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 1.09(\mathrm{~s}, 3 \mathrm{H}), 3.47$ and $3.53\left(\mathrm{ABdd}, 2 \mathrm{H}, J_{\mathrm{AB}}=11.6 \mathrm{~Hz}\right), 3.50(\mathrm{bd}, 1 \mathrm{H}, \mathrm{J}=11.6 \mathrm{~Hz}), 3.63(\mathrm{dd}, 1 \mathrm{H}, J=8.5,2.8 \mathrm{~Hz}), 3.75(\mathrm{dd}, 1 \mathrm{H}, J=11.8,2.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 19.2,61.9,66.2,74.2,75.2$. The spectral data agree with the reported values. ${ }^{9}$

1, 3-Benzylidene-2-C-methyl-D-threitol 2, 4-Cyclophosphate, Benzyl Ester (31) and 1, 3-Benzylidene-2-C-methyl-d-threitol 2,

 4-diphosphate, Tetrabenzyl Ester (32).The phosphorylation procedure was based on that described by Yu and Fraser-Reid ${ }^{10}$ and on the procedure described in the Experimental Section for diol 15. A solution of dibenzyl N, N-diisopropylphosphoramidite ${ }^{2}$ ($230 \mathrm{mg}, 0.66 \mathrm{mmol}$) and tetrazole (70 mg , $1.0 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(2.0 \mathrm{~mL})$ was allowed to stir for 30 min at room temp. A solution of diol $27(50 \mathrm{mg}, 0.22 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(1.5$
mL) was added dropwise. After 5 h , the reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and m-chloroperoxybenzoic acid (solid, $220 \mathrm{mg}, 2.0$ $\mathrm{mmol}, 77 \%$) was added. The cooling bath was removed, and the reaction mixture was allowed to stir at room temp. After 1 h , the mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(40 \mathrm{~mL})$. The ethereal layer was washed with $10 \% \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}(2 \times 10 \mathrm{~mL})$, satd aq $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$, and brine (10 mL); dried $\left(\mathrm{MgSO}_{4}\right)$; and evaporated to give the crude product as a white solid. Purification by flash chromatography (60% and 75% EtOAc:hexane) gave $25 \mathrm{mg}(35 \%)$ of cyclic phosphate $\mathbf{3 1}$ as white solid and 15 mg (10%) bis(dibenzyl) diphosphate $\mathbf{3 2}$ as a colorless oil. Data for 31: mp 181-182 ${ }^{\circ} \mathrm{C}$ TLC $R_{f} 0.5$ (75:25 EtOAc:hexane); $[\alpha]_{\mathrm{D}}{ }^{25}-57.0^{\circ}\left(c=0.61, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right), \delta 1.35(\mathrm{~s}, 3 \mathrm{H}), 3.72-3.76(\mathrm{~m}, 2 \mathrm{H}), 4.11(\mathrm{~d}, 1 \mathrm{H}, J=12.5 \mathrm{~Hz}), 4.33\left(\operatorname{app} \mathrm{dd}, 1 \mathrm{H}, J_{\text {app }}=12.5,23.5 \mathrm{~Hz}\right), 4.49(\mathrm{~d}, 1 \mathrm{H}, J=12.5$ $\mathrm{Hz}), 5.15(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 5.54(\mathrm{~s}, 1 \mathrm{H}), 7.34-7.40(\mathrm{~m}, 8 \mathrm{H}), 7.55(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 20.0,67.3\left(\mathrm{~d}, J_{\mathrm{cp}}=5.4\right.$ $\mathrm{Hz}), 69.4\left(\mathrm{~d}, J_{\mathrm{cp}}=5.4 \mathrm{~Hz}\right), 73.6\left(\mathrm{~d}, J_{\mathrm{cp}}=7.2 \mathrm{~Hz}\right), 74.7\left(\mathrm{~d}, J_{\mathrm{cp}}=9.1 \mathrm{~Hz}\right), 78.2\left(\mathrm{~d}, J_{\mathrm{cp}}=8.1 \mathrm{~Hz}\right), 101.6,126.8,128.4,128.6,128.9,129.7$, $136.1\left(\mathrm{~d}, J_{\mathrm{cp}}=7.4 \mathrm{~Hz}\right), 137.1$; HRMS (FAB) m / z Calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{6} \mathrm{P}(\mathrm{M}+1)^{+} 377.1154$, found 377.1155. Data for the bis(dibenzyl) diphosphate 32: TLC $R_{f} 0.31$ (75:35 EtOAc-hexane); $[\alpha]_{\mathrm{D}}{ }^{25}+12.9^{\circ}\left(c=1.38, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}\right.$, acetone $\left.d_{6}\right), \delta 1.47(\mathrm{~s}, 3 \mathrm{H})$, 3.94 and $4.77(\mathrm{ABdd}, 2 \mathrm{H}, J=12.7 \mathrm{~Hz}), 4.14-4.24(\mathrm{~m}, 2 \mathrm{H}), 4.32-4.37(\mathrm{~m}, 1 \mathrm{H}), 5.02-5.13(\mathrm{~m}, 8 \mathrm{H}), 5.73(\mathrm{~s}, 1 \mathrm{H}), 7.27-7.38(\mathrm{~m}, 21 \mathrm{H})$, $7.40(\mathrm{~m}, 2 \mathrm{H}),, 7.50(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , acetone- $\left.d_{6}\right) \delta 18.7,66.1\left(\mathrm{~d}, J_{\mathrm{cp}}=4.9 \mathrm{~Hz}\right), 68.8\left(\mathrm{~d}, J_{\mathrm{cp}}=6.2 \mathrm{~Hz}\right), 68.9\left(\mathrm{~d}, J_{\mathrm{cp}}=4.9\right.$ $\mathrm{Hz}), 69.0\left(\mathrm{~d}, J_{\mathrm{cp}}=6.2 \mathrm{~Hz}\right), 72.5,77.4\left(\mathrm{~d}, J_{\mathrm{cp}}=4.9 \mathrm{~Hz}\right), 81.9\left(\mathrm{~d}, J_{\mathrm{cp}}=7.0 \mathrm{~Hz}\right), 82.0\left(\mathrm{~d}, J_{\mathrm{cp}}=7.0 \mathrm{~Hz}\right), 101.0,126.5,127.9,128.0,128.1$, 128.1, 128.2, 128.3, 128.5, 128.5, 128.6, 128.6, 128.6, 128.7, 128.7, 128.9, 136.6, 138.6, 138.7, 138.4; HRMS (FAB) m / z Calcd for $\mathrm{C}_{40} \mathrm{H}_{43} \mathrm{O}_{10} \mathrm{P}_{2}(\mathrm{M}+1)+745.2331$, found 745.2332 .

(2R, 3S)-3-Benzoyloxy-4-(t-butyldimethylsilyloxy)-2-methylbutan-1, 2-diol (34) and (2R, 3S)-1-Benzoyloxy-4-(t-butyldimethylsilyloxy)-2-methylbutan-2, 3-diol (35)

The ozonolysis was carried out according to a procedure described by Deslongchamps et al. ${ }^{11}$ A solution of silyl ether (250 $\mathrm{mg}, 0.74 \mathrm{mmol})$ in ethyl acetate $(8.0 \mathrm{~mL})$ stirred and cooled at $-75^{\circ} \mathrm{C}$ as an ozone-oxygen mixture was bubbled through the solution for 1.5 h . The residual ozone was removed by flushing with nitrogen. Evaporation of the solvent under reduced pressure gave the crude product, as a 4:1 mixture of primary and secondary alcohol isomers according to ${ }^{1} \mathrm{H}$ NMR analysis. Purification by silica-gel column chromatography (20% ethyl acetate/hexane) afforded 40 mg (20%) of the less polar secondary alcohol $\mathbf{3 5}$ and 195 mg (75%) of the more polar primary alcohol $\mathbf{3 4}$ as liquids. Physical data for 35: TLC $R_{f} 0.35$ (20:80 ethyl acetate: hexane); $[\alpha]_{\mathrm{D}}{ }^{25}+7.2^{\circ}(c=1.9$, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.09(\mathrm{~s}, 6 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{t}, 1 \mathrm{H}, J=5.0 \mathrm{~Hz}), 3.86(\mathrm{~d}, 2 \mathrm{H}, J=5.0 \mathrm{~Hz}), 4.27$ and $4.33\left(\mathrm{ABdd}, 2 \mathrm{H}, J_{\mathrm{AB}}=11.7 \mathrm{~Hz}\right), 7.43\left(\operatorname{app} \mathrm{t}, 2 \mathrm{H}, J_{\text {app }}=6.5 \mathrm{~Hz}\right), 7.58\left(\right.$ app $\left.\mathrm{t}, 1 \mathrm{H}, J_{\text {app }}=7.5 \mathrm{~Hz}\right), 8.05\left(\operatorname{app~d}, 2 \mathrm{H}, J_{\text {app }}=8.0 \mathrm{~Hz}\right)$; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-5.3,-5.4,18.3,21.0,26.0,64.1,69.5,73.1,73.9,128.7,129.9,133.5,167.0$; IR (neat film) $v 3473$, 2955, 2885, 1722, 1463, 1452, 1274, 1112, $837 \mathrm{~cm}^{-1} ;$ HRMS (FAB) m / z Calcd for $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{O}_{5} \mathrm{Si}(\mathrm{M}+1)^{+} 355.1942$, found 355.1940 . Physical data for 34: TLC $R_{f} 0.22$ (20:80 ethyl acetate: hexane); $[\alpha]_{\mathrm{D}}{ }^{25}+6.5^{\circ}\left(c=1.6, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.07(\mathrm{~s}$, $6 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 1.22(\mathrm{~s}, 3 \mathrm{H}), 3.39$ and $3.55\left(\mathrm{ABdd}, 2 \mathrm{H}, J_{\mathrm{AB}}=12.0 \mathrm{~Hz}\right), 4.00\left(v_{\mathrm{B}} \mathrm{ABX}, 1 \mathrm{H}, J_{\mathrm{AB}}=11.0 \mathrm{~Hz}, J_{\mathrm{BX}}=5.5 \mathrm{~Hz}\right), 4.00\left(\mathrm{v}_{\mathrm{A}}\right.$ $\left.\mathrm{ABX}, 1 \mathrm{H}, J_{\mathrm{AB}}=11.0 \mathrm{~Hz}, J_{\mathrm{AX}}=5.0 \mathrm{~Hz}\right), 5.12(\mathrm{t}, 1 \mathrm{H}, J=5.5 \mathrm{~Hz}), 7.47\left(\mathrm{app} \mathrm{t}, 2 \mathrm{H}, J_{\mathrm{app}}=7.5 \mathrm{~Hz}\right), 7.59\left(\mathrm{app} \mathrm{t}, 1 \mathrm{H}, J_{\mathrm{app}}=7.5 \mathrm{~Hz}\right), 8.06$
(app d, 2H, $J_{\text {app }}=8.0 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta-5.4,-5.3,18.2,19.8,25.8,61.9,67.6,73.8,75.5,128.7,129.7,130.0$, 133.7, 166.9; IR (neat film) v 3444, 2954, 2885, 1722, 1471, 1452, 1273, 1125, $837 \mathrm{~cm}^{-1}$; HRMS (FAB) m / z Calcd for $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{O}_{5} \mathrm{Si}$ $(\mathrm{M}+1)^{+} 355.1942$, found 355.1940 .

(2S, 3R)-3-Benzyloxy, 4-(t-butyldimethylsilyloxy)-2-hydroxy-2-methylbut-1-yl Tosylate.

A solution of alcohol $34(145 \mathrm{mg}, 0.41 \mathrm{mmol})$ and triethylamine $(0.6 \mathrm{~mL}, 4.6 \mathrm{mmol})$ in methylene chloride (4.0 mL) was stirred and cooled at $0^{\circ} \mathrm{C}$ as p-toluenesulfonyl chloride ($167 \mathrm{mg}, 0.88 \mathrm{mmol}$) and a catalytic amount of 4-dimethylaminopyridine (4.0 mg) were added. The solution was warmed to room temp and stirred for 10 h . Water (5.0 mL) was added, and the product was extracted with methylene chloride ($2 \times 30 \mathrm{~mL}$). The combined extracts were washed with water (10 mL) and brine (10 mL) and dried over MgSO_{4}. Evaporation of the solvent and purification by flash chromatography (20% ethyl acetate: hexane) gave 180 mg (82%) of the tosylate intermediate as a viscous liquid: TLC $R_{f} 0.75$ (30:70 ethyl acetate- hexane); $[\alpha]_{\mathrm{D}}{ }^{25}-18.2^{\circ}\left(c=1.00, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.00(\mathrm{~s}, 3 \mathrm{H}), 0.01(\mathrm{~s}, 3 \mathrm{H}), 0.83(\mathrm{~s}, 9 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 3.96(\mathrm{~d}, 1 \mathrm{H}, J=9.6 \mathrm{~Hz}), 3.91-4.01(\mathrm{~m}, 2 \mathrm{H})$, $4.06(\mathrm{~d}, 1 \mathrm{H}, J=9.6 \mathrm{~Hz}), 5.08(\mathrm{t}, 1 \mathrm{H}, J=4.3 \mathrm{~Hz}), 7.28(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.47\left(\operatorname{app} \mathrm{t}, 2 \mathrm{H}, J_{\text {app }}=7.5 \mathrm{~Hz}\right), 7.58\left(\operatorname{app~t}, 1 \mathrm{H}, J_{\text {app }}=7.5\right.$ $\mathrm{Hz}), 7.76(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 8.00\left(\mathrm{app} \mathrm{d}, 2 \mathrm{H}, J_{\text {app }}=8.0 \mathrm{~Hz}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-5.6,-5.4,18.1,18.1,21.5,21.8,25.8$, $62.5,73.5,73.7,128.2,128.6,129.8,129.9,130.1,132.5,133.5,145.2,165.7$; IR (neat film) v $3472,2930,2857,1722,1452,1361$, 1270, 1177, 1097, $836 \mathrm{~cm}^{-1}$; HRMS (FAB) m / z Calcd for $\mathrm{C}_{25} \mathrm{H}_{36} \mathrm{O}_{7} \mathrm{SSi}(\mathrm{M}+1)^{+}$509.2027, found 509.2029.

(2R, 3S)- 1-Azido-3-benzoyloxy-4-(t-butyldimethylsilyloxy)-3-methylbutan-3-ol (38)

A solution of the tosylate ($160 \mathrm{mg}, 0.32 \mathrm{mmol}$) and sodium azide ($42 \mathrm{mg}, 0.64 \mathrm{mmol}$) in dry DMF (2.0 mL) was stirred and heated at $75^{\circ} \mathrm{C}$. After 2.5 h , suspension was cooled to $0^{\circ} \mathrm{C}$ and diluted with ether (10 mL) and water (5.0 L). The aqueous layer was separated and extracted with ether ($2 \times 15 \mathrm{~mL}$). The combined ethereal layers were washed with water ($2 \times 5 \mathrm{~mL}$) and brine (5 mL), and dried over MgSO_{4}. Concentration and purification by the flash chromatography (10% ethyl acetate: hexane) afforded 93 mg (76%) of azide 38 as a liquid: TLC $R_{f} 0.47$ (15:85 ethyl acetate: hexane); $[\alpha]_{\mathrm{D}}{ }^{25}-40.4^{\circ}\left(c=1.00, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 3.35(\mathrm{~s}, 2 \mathrm{H}), 3.97\left(v_{\mathrm{B}} \mathrm{ABX}, 1 \mathrm{H}, J_{\mathrm{AB}}=10.0 \mathrm{~Hz}, J_{\mathrm{BX}}=6.0 \mathrm{~Hz}\right), 4.01(\mathrm{bs}$, $1 \mathrm{H}), 4.09\left(v_{\mathrm{A}} \mathrm{ABX}, 1 \mathrm{H}, J_{\mathrm{AB}}=10.0 \mathrm{~Hz}, J_{\mathrm{AX}}=4.0 \mathrm{~Hz}\right), 5.16(\mathrm{dd}, 1 \mathrm{H}, J=4.0,5.5 \mathrm{~Hz}), 7.46\left(\mathrm{app} \mathrm{t}, 2 \mathrm{H}, J_{\mathrm{app}}=8.0 \mathrm{~Hz}\right), 7.46(\mathrm{app} \mathrm{t}, 1 \mathrm{H}$, $\left.J_{\text {app }}=7.5 \mathrm{~Hz}\right), 8.05\left(\mathrm{app} \mathrm{d}, 2 \mathrm{H}, J_{\text {app }}=8.0 \mathrm{~Hz}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-5.5,-5.4,18.2,21.9,25.8,58.6,62.5,73.5,73.8,75.1$, 128.7, 129.8, 129.9, 133.6, 165.7; IR (neat film) v 3477, 2930, 2858, 2104, 1723, 1452, 1269, 1096, $837 \mathrm{~cm}^{-1} ; \mathrm{HRMS}(\mathrm{FAB}) \mathrm{m} / \mathrm{z}$ Calcd for $\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{Si}(\mathrm{M}+1)^{+} 380.2006$, found 380.2005.

(2R, 3S)-1-Azido-4-benzoyloxy-2-methylbutan-2, 3-diol (39).
A solution of silyl-protected azide $38(60 \mathrm{mg}, 0.15 \mathrm{mmol})$ in dry THF $(1.0 \mathrm{~mL})$ was stirred and cooled at $0^{\circ} \mathrm{C}$ as $\mathrm{nBu} \mathrm{n}_{4} \mathrm{NF}(0.16$ $\mathrm{mL}, 0.15 \mathrm{mmol}, 1 \mathrm{M}$ in THF) was added dropwise. After 25 min , water (4 mL) was added, and the product was extracted with ether ($3 \times 5 \mathrm{~mL}$). The ethereal extracts were combined and dried over MgSO_{4}. Evaporation of the solvent and purification of the residual oil by flash chromatography (40% EtOAc:hexane) afforded 37 mg (91%) of azido diol 39 as a liquid: TLC $R_{f} 0.2$ (30:70 EtOAc: hexane); $[\alpha]_{\mathrm{D}}{ }^{25}+13.0^{\circ}\left(c=1.00, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.28(\mathrm{~s}, 3 \mathrm{H}), 2.49(\mathrm{~s}, 1 \mathrm{H}), 2.93(\mathrm{bd}, 1 \mathrm{H}, J=3.5 \mathrm{~Hz}), 3.34(\mathrm{~d}, 1 \mathrm{H}, J=$ $12.4 \mathrm{~Hz}), 3.64(\mathrm{~d}, 1 \mathrm{H}, J=12.0 \mathrm{~Hz}), 3.94(\mathrm{bd}, 1 \mathrm{H}, J=7.4 \mathrm{~Hz}), 4.41(\mathrm{dd}, 1 \mathrm{H}, J=7.5,12.0 \mathrm{~Hz}), 4.61(\mathrm{dd}, 1 \mathrm{H}, J=2.5,12.0 \mathrm{~Hz}), 7.46$ (m, 2H), $7.58(\mathrm{~m}, 1 \mathrm{H}), 8.05(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 20.7,58.2,66.4,73.7,74.3,128.7,129.7,129.9,133.6,165.7$; IR (neat film) $v 3448,2932,2106,1704,1602,1451,1278,1122,1026 \mathrm{~cm}^{-1}$; HRMS (FAB) m / z Calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{4}(\mathrm{M}+1)^{+}$266.1149; found 266.1141.

(2R, 3S)-4-Azido-3-methylbutane-1, 2, 3-triol (40).

A solution of azido diol $39(25 \mathrm{mg}, 0.09 \mathrm{mmol})$ and $\mathrm{BaO}(29 \mathrm{mg}, 0.18 \mathrm{mmol})$ in MeOH^{12} was stirred for 40 min at room temp with TLC monitoring. Evaporation of the MeOH and purification of the residue by silica-gel chromatography (80% ethyl acetate/hexane) gave $12 \mathrm{mg}(92 \%)$ of azido triol 40 as a viscous oil: TLC $R_{f} 0.17$ (80:20 EtOAc:hexane); $[\alpha]_{\mathrm{D}}{ }^{25}+13.8^{\circ}(c=0.78$,
$\mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.25(\mathrm{~s}, 3 \mathrm{H}), 3.32(\mathrm{~d}, 1 \mathrm{H}, J=12.0 \mathrm{~Hz}), 3.53(\mathrm{~d}, 1 \mathrm{H}, J=12.3 \mathrm{~Hz}), 3.63(\mathrm{dd}, 1 \mathrm{H}, J=4.0,6.2$ $\mathrm{Hz}), 3.72(\mathrm{dd}, 1 \mathrm{H}, J=6.0,11.2 \mathrm{~Hz}), 3.83(\mathrm{dd}, 1 \mathrm{H}, J=3.7,11.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.7,58.1,62.9,74.3,75.0$; IR (neat film) v 3391, 2932, 2106, 1289, 1088, $1024 \mathrm{~cm}^{-1} ;$ HRMS (FAB) m / z Calcd for $\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{3}(\mathrm{M}+1)^{+}$162.0881, found 162.0879.

References

1. Buck, I. M.; Reese, C. B. J. Chem. Soc., Perkin Trans. 1 1990, 2937-2942.
2. (a) Tanaka, T.; Tamatsukuri, S.; Ikehara, M. Tetrahedron Lett. 1986, 27, 199-202. (b) Dreef, C. E.; Tulnman, R. J.; Lefeber, A. W.
M.; Elle, C. J. J.; van der Marel, G. A.; van Boom, J. H. Tetrahedron 1991, 47, 4709-4722.
3. Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923-2925.
4. Ueno, Y.; Tadano, K.; Ogawa, S.; McLaughlin, J. L.; Alkofahi, A. Bull. Chem. Soc. Jpn. 1989, 62, 2328-2337.
5. Haskins, W. T.; Hann, R. M.; Hudson, C. S. J. Am. Chem. Soc. 1943, 65, 1663-1667.
6. Lehmann, J.; Wagenknecht, H.-A. Carbohydr. Res. 1995, 276, 215-218.
7. Acton, E. M.; Goerner, R. N.; Uh, H. S.; Ryan, K. J.; Henry, D. W.; Cass, C. E.; LePage, G. A. J. Med. Chem., 1979, 22, 518-525.
8. Schneider, A.; Séquin, U. Tetrahedron 1985, 41, 949-953.
9. Fontana, A.; Messina, R.; Spinella, A.; Cimino, G.; Tetrahedron Lett. 2000, 41, 7559-7562.
10. Yu, K.-L.; Fraser-Reid, B. Tetrahedron Lett. 1988, 29, 979-982.
11. Deslongchamps, P; Moreu, C.; Fréhel; D.; Chênevert, R. Can. J. Chem. 1975, 53, 1204-1210.
12. Hsu, D-S.; Matsumoto, T.; Suzuki, K. Synlett 2005, 801-804.

C: \Program Files $\backslash N U T S \backslash d a t a \backslash \$ L C-01-80-p u r e-d i o l-4-18-04-1 H . f i d ~$
LC-01-80-pure-diol-4-18-04-1H
Apr 182004
USER:
SOLVENT: CD3OD
Experiment $=$ s2pul
Pulse length $=9.625$ usec
Recycle delay $=0.000 \mathrm{sec}$
NA = 32
PTS1d $=65536$
F1 = 399.952240 MHz
$\mathrm{F} 2=399.952667 \mathrm{MHz}$
SW1 $=8000.00 \mathrm{~Hz}$
$\mathrm{AT1}=8.19 \mathrm{sec}$
Hz per Pt 1stD $=0.12 \mathrm{~Hz}$
SW2 $=1.00 \mathrm{~Hz}$
Hz per $\mathrm{Pt} 2 \mathrm{ndD}=1.00 \mathrm{~Hz}$
$\mathrm{O1}=1999.7465 \mathrm{~Hz}$
$\mathrm{O} 2=-0.5000 \mathrm{~Hz}$
$\mathrm{LB} 1=0.00 \mathrm{~Hz}$
TP A = -189.61
$B=103.36$
$C=0.00$

[^0]
LC-01-80diol-4-18-04-13C
Apr 182004
USER:
SOLVENT: CD3OD
Experiment $=$ s2pul
Pulse length $=3.925$ usec
Recycle delay $=1.000 \mathrm{sec}$
NA = 381
PTS1d = 65536

$\mathrm{F} 1=100.579140 \mathrm{MHz}$
$\mathrm{F} 2=399.951599 \mathrm{MHz}$
SW1 $=25000.00 \mathrm{~Hz}$
AT1 $=2.62 \mathrm{sec}$
Hz per Pt 1stD $=0.38 \mathrm{~Hz}$
SW2 = $\quad 1.00 \mathrm{~Hz}$
Hz per $\mathrm{Pt} 2 \mathrm{ndD}=1.00 \mathrm{~Hz}$
$01=11589.9336 \mathrm{~Hz}$
$\mathrm{O} 2=-0.5000 \mathrm{~Hz}$
LB1 $=0.00 \mathrm{~Hz}$
TP $\quad A=-207.89$
$B=175.78$
$C=0.00$

C: \Program Files $\backslash N U T S \backslash d a t a \backslash \$ l c-01-84-T B S-4-25-04-1 H . f i d ~$

```
lc-01-84-TBS-4-25-04-1H
```

Apr 252004
USER:
SOLVENT: CDCl3
Experiment $=s 2 p u l$
Pulse length $=9.625$ usec
Recycle delay $=0.000 \mathrm{sec}$
$\mathrm{NA}=32$
PTS1d $=65536$
$\mathrm{F} 1=399.950684 \mathrm{MHz}$
$\mathrm{F} 2=399.951111 \mathrm{MHz}$
SW1 $=8000.00 \mathrm{~Hz}$
AT1 = 8.19 sec
Hz per Pt 1stD $=0.12 \mathrm{~Hz}$
SW2 $=1.00 \mathrm{~Hz}$
Hz per Pt $2 \mathrm{ndD}=1.00 \mathrm{~Hz}$
$\mathrm{O} 1=1999.7390 \mathrm{~Hz}$
$\mathrm{O} 2=\quad-0.5000 \mathrm{~Hz}$
LB1 $=0.00 \mathrm{~Hz}$
$\mathrm{TP} \quad \mathrm{A}=146.30$
$B=112.00$
$C=0.00$

C:\Program FilesINUTS\data
\$Ic-01-84-TBS-4-25-04-13C.fid
Ic-01-84-TBS-4-25-04-13C
Apr 252004
USER:
SOLVENT: CDCI3
Experiment = s2pul
Pulse length = 3.925 usec
Recycle delay $=1.000 \mathrm{sec}$
$\mathrm{NA}=224$
PTS1d $=65536$
$\mathrm{F} 1=100.578743 \mathrm{MHz}$
$\mathrm{F} 2=399.950012 \mathrm{MHz}$
SW1 = 25000.00 Hz
AT1 = 2.62 sec
Hz per $\mathrm{Pt} 1 \mathrm{stD}=0.38 \mathrm{~Hz}$
SW2 $=1.00 \mathrm{~Hz}$

Hz per Pt 2ndD $=1.00 \mathrm{~Hz}$
$\mathrm{O} 1=11589.8672 \mathrm{~Hz}$
$\mathrm{O} 2=-0.5000 \mathrm{~Hz}$
LB1 $=0.00 \mathrm{~Hz}$
TP $A=47.89$
$B=204.00$
$\mathrm{C}=0.00$

e004PHldidram Files \NUTS \backslash data $\backslash \$ 1 \mathrm{c}-01$ - keto-TBS-3-28-2004-1H. fid
1c-01-keto-TBS-3-28-2004-1H
Mar 282004
USER:
SOLVENT: Benzene
Experiment $=$ s 2 pul
Pulse length $=5.250$ usec
Recycle delay $=0.000 \mathrm{sec}$
NA = 32
PTS1d $=32768$
F1 $=499.698975 \mathrm{MHz}$
$\mathrm{F} 2=499.698975 \mathrm{MHz}$
SW1 $=7024.94 \mathrm{~Hz}$
AT1 $=4.66 \mathrm{sec}$
Hz per Pt 1stD $=0.21 \mathrm{~Hz}$
SW2 = 1.00 Hz
Hz per Pt $2 \mathrm{ndD}=1.00 \mathrm{~Hz}$
$\mathrm{O}=2518.8293 \mathrm{~Hz}$
$\mathrm{O} 2=-0.5000 \mathrm{~Hz}$
$\mathrm{LB} 1=0.00 \mathrm{~Hz}$
$\mathrm{TP} \quad \mathrm{A}=145.30$
$B=2.00$

PEAK	POINT	HEIGHT	REL. HT	HZ	PPM
1	7178 ल	46739 K	5.73	25600.91	
2	25143	71307K	8.74	17331.56	
3	27566	217851K	26.71	16216.30	
4	27791	324999 K	39.85	16112.88	
5	27801	38832 K	4.76	16108.02	
6	27828	782023 K	95.89	16095.61	
7	27880	791292 K	97.03	16071.52	
8	27907	22908K	2.81	16059.33	
9	27933	809885K	99.31	16047.4	
10	28258	363354 K	44.55	15897.84	
11	35779	139910K	17.16	12435.55	
12	39821	230942 K	28.32	10575.21	
13	42991	174353K	21.38	9115.94	72.543
14	45638	201488K	24.71	7897.65	62.848
15	55741	36393 K	4.46	3247.47	25.843
16	55744	505748K	62.01	3245.69	25.829
17	55746	51067 K	6.26	3245.15	25.824
18	55748	23084 K	2.83	3244.30	25.818
19	57786	103410K	12.68	2305.90	18.350
20	64248	104818K	12.85	-668.79	-5.322
21	64283	129466 K	15.87	-684.77	-5.449

$$
128.086
$$

$$
126.512
$$

84.156

$$
127.894
$$

$$
127.797
$$

$$
127.702
$$

$$
98.960
$$

€1H.fidrogram Files \NUTS \data
\$lc-02-100-methyl-OTBs-1-15-04-1H.fid STANDARD PROTON PARAMETERS
Jan 152005
USER:
SOLVENT: Benzene
Experiment $=$ s2pul

Pulse length $=5.800$ usec Recycle delay $=0.000 \mathrm{sec}$
NA = 16
PTS1d $=65536$
F1 = 499.698975 MHz
$\mathrm{F} 2=499.698975 \mathrm{MHz}$
SW1 $=7024.94 \mathrm{~Hz}$
$\mathrm{AT} 1=9.33 \mathrm{sec}$
Hz per Pt 1 stD $=0.11 \mathrm{~Hz}$
SW2 = 1.00 Hz
Hz per Pt $2 \mathrm{ndD}=1.00 \mathrm{~Hz}$
$01=2517.7644 \mathrm{~Hz}$
$\mathrm{O} 2=-0.5000 \mathrm{~Hz}$
LB1 $=0.00 \quad \mathrm{~Hz}$
TP A $=95.16$
$B=5.63$
$C=0.00$

$\begin{array}{llllllll}4.00 & 3.95 & 3.90 & 3.85 & 3.80 & 3.75 & 3.70 & 3.65\end{array}$

C:IProgram FilesINUTSIdata
\$Ic-02-100-methyl-OTBS-1-15-05-13C.fid c-02-100-methyl-OTBS-1-15-05-13C
Jan 152005
USER:
SOLVENT: Benzene
Experiment = s2pul
Pulse length = 4.300 usec
Recycle delay $=1.000 \mathrm{sec}$
NA = 225
PTS1d = 65536
$\mathrm{F} 1=125.662575 \mathrm{MHz}$
$\mathrm{F} 2=499.698151 \mathrm{MHz}$
SW1 = 30165.91
AT1 $=2.17 \mathrm{sec}$
Hz per $\mathrm{Pt} 1 \mathrm{stD}=0.46 \mathrm{~Hz}$
SW2 $=1.00 \mathrm{~Hz}$
Hz per $\mathrm{Pt} 2 \mathrm{ndD}=1.00 \mathrm{~Hz}$
O1 = 13821.7314 Hz
$\mathrm{O} 2=-0.5000 \mathrm{~Hz}$
$L B 1=0.00 \quad \mathrm{~Hz}$
TP $\quad A=-163.98$
$B=129.00$
$C=0.00$

13

C: \Program Files \backslash NUTS \backslash data $\backslash \$$ upper-Me-OH-4-20-07-1H.fid
upper-Me-OH-4-20-07-1H
Apr 202007
USER:
SOLVENT: Benzene
Experiment $=$ s2pul
Pulse length $=6.500$ usec
Recycle delay $=0.000 \mathrm{sec}$
NA = 32
PTS1d $=65536$
$\mathrm{F} 1=499.698975 \mathrm{MHz}$
$\mathrm{F} 2=499.698975 \mathrm{MHz}$
SW1 $=7024.94 \mathrm{~Hz}$
AT1 $=9.33 \mathrm{sec}$
Hz per Pt 1stD $=0.11 \mathrm{~Hz}$
SW2 = 1.00 Hz
Hz per $\mathrm{Pt} 2 \mathrm{ndD}=1.00 \mathrm{~Hz}$
$\mathrm{O} 1=2518.8926 \mathrm{~Hz}$
$\mathrm{O} 2=-0.5000 \mathrm{~Hz}$
LB1 $=0.00 \mathrm{~Hz}$
$\mathrm{TP} \quad \mathrm{A}=175.31$
$B=-7.03$
$C=0.00$

C:\Program FilesINUTS\datal\$upper-MeOH-TBS-4-20-07-13C.fid upper-Me-OH-4-20-07-13C
Apr 202007
USER:
SOLVENT: Benzene
Experiment = s2pul
Pulse length $=6.000$ usec
Recycle delay $=1.000 \mathrm{sec}$
NA = 245
PTS1d $=65536$
F1 $=125.662575 \mathrm{MHz}$
$\mathrm{F} 2=499.698151 \mathrm{MHz}$
SW1 $=30165.91 \mathrm{~Hz}$
AT1 $=2.17 \mathrm{sec}$
Hz per Pt 1stD $=0.46 \mathrm{~Hz}$
SW2 = 1.00 Hz
Hz per Pt $2 \mathrm{ndD}=1.00 \mathrm{~Hz}$
$\mathrm{O} 1=13821.7314 \mathrm{~Hz}$
$\mathrm{O} 2=-0.5000 \mathrm{~Hz}$
LB1 $=0.00 \mathrm{~Hz}$
TP $\quad \mathrm{A}=-81.63$
$B=154.00$
$C=0.00$

lc-03-2C-ME-7-16-05-1H
Jul 162005
USER:
SOLVENT: pyridne
Experiment $=\mathrm{s} 2 \mathrm{pul}$
Pulse length $=5.800$ usec
Recycle delay $=0.000 \mathrm{sec}$
$\mathrm{NA}=16$
PTS1d $=65536$
F1 $=499.700073 \mathrm{MHz}$
$\mathrm{F} 2=499.700073 \mathrm{MHz}$
SW1 $=7024.94 \mathrm{~Hz}$
AT1 $=9.33 \mathrm{sec}$
Hz per Pt 1 stD $=0.11 \mathrm{~Hz}$
SW2 $=1.00 \mathrm{~Hz}$
Hz per $\mathrm{Pt} 2 \mathrm{ndD}=1.00 \mathrm{~Hz}$
$\mathrm{O}=3616.0020 \mathrm{~Hz}$
$\mathrm{O} 2=-0.5000 \mathrm{~Hz}$
LB1 $=0.00 \quad \mathrm{~Hz}$
$T P \quad A=66.68$
$B=12.66$
$C=0.00$

15

B	$=12.66$
C	$=0.00$

C:IProgram FilesINUTSIdata
\$Ic-03-1-3-benz-2C-ME-7-16-05-13C.fid
Ic-03-1,3-benz-2C-ME-7-16-05-13C
Jul 162005
USER:
SOLVENT: pyridine
Experiment = s2pul
Pulse length $=4.300$ usec
Recycle delay $=1.000 \mathrm{sec}$
NA = 203
PTS1d $=65536$
$\mathrm{F} 1=125.662521 \mathrm{MHz}$
$\mathrm{F} 2=499.697968 \mathrm{MHz}$
SW1 $=30165.91 \mathrm{~Hz}$

AT1 $=2.17 \mathrm{sec}$
Hz per Pt 1stD $=0.46 \mathrm{~Hz}$
SW2 = 1.00 Hz
Hz per Pt $2 \mathrm{ndD}=1.00 \mathrm{~Hz}$
$\mathrm{O} 1=13821.6904 \mathrm{~Hz}$
$01=13821.6904 \mathrm{~Hz}$
$\mathrm{O} 2=-0.5000 \mathrm{H}$
LB1 $=0.00 \quad \mathrm{~Hz}$
TP $\quad A=-59.06$
$B=172.00$
$C=0.00$

C: \Program Files \backslash NUTS \backslash data $\backslash \$ 1 \mathrm{c}$ - 03--benz-ery-mono-phosho-5-24-05-31P.fid
1c-03--benz-ery-mono-phosho-5-24-05-31P
May 242005
USER:
SOLVENT: Acetone
Experiment $=$ s2pul
Pulse length $=4.700$ usec
Recycle delay $=1.000 \mathrm{sec}$
NA = 141
PTS1d $=65536$
$\mathrm{F} 1=161.903473 \mathrm{MHz}$
F2 = 399.952087 MHz
SW1 $=40000.00 \mathrm{~Hz}$
AT1 $=1.64 \mathrm{sec}$
Hz per Pt 1stD $=0.61 \mathrm{~Hz}$
SW2 = $\quad 1.00 \mathrm{~Hz}$
Hz per Pt $2 \mathrm{ndD}=1.00 \mathrm{~Hz}$
$01=625.2930 \mathrm{~Hz}$
$\mathrm{O} 2=-0.5000 \mathrm{~Hz}$
$\mathrm{LB} 1=0.00 \mathrm{~Hz}$
$\mathrm{TP} \quad \mathrm{A}=140.43$
$B=5.00$
$C=0.00$

C: \Program Files \backslash NUTS \backslash data $\backslash \$ 1 \mathrm{c}-03$--2C-MEP-5-24-05-1H.fid
1c-03--2C-MEP-5-24-05-1H
May 242005
USER:
SOLVENT: D2O
Experiment = s2pul
Pulse length $=5.800$ usec
Recycle delay $=0.000 \mathrm{sec}$
NA $=16$
PTS1d $=65536$
F1 $=499.700226 \mathrm{MHz}$
F2 $=499.700226 \mathrm{MHz}$
SW1 $=7024.94 \mathrm{~Hz}$
AT1 $=9.33 \mathrm{sec}$
Hz per Pt 1stD $=0.11 \mathrm{~Hz}$
SW2 = $\quad 1.00 \mathrm{~Hz}$
Hz per Pt $2 \mathrm{ndD}=1.00 \mathrm{~Hz}$
$01=2496.0183 \mathrm{~Hz}$
$\mathrm{O} 2=-0.5000 \mathrm{~Hz}$
LB1 $=0.00 \mathrm{~Hz}$
$\mathrm{TP} \quad \mathrm{A}=40.47$
$\mathrm{B}=1.00$
$\mathrm{C}=0.00$
$\mathrm{B}=1.00$
$\mathrm{C}=0.00$

2

C:\Program FilesINUTS\data
\$Ic-03--2C-MEP-5-24-05-31P.fid
Ic-03--2C-MEP-5-24-05-31P
May 242005
USER:
SOLVENT: D2O
Experiment = s2pul
Pulse length $=4.825$ usec
Recycle delay $=1.000 \mathrm{sec}$
$\mathrm{NA}=117$
PTS1d = 65536
F1 $=202.284744 \mathrm{MHz}$
F2 $=499.699402 \mathrm{MHz}$
SW1 = 50000.00 Hz
AT1 $=1.31 \mathrm{sec}$
Hz per $\mathrm{Pt} 1 \mathrm{stD}=0.76 \mathrm{~Hz}$
SW2 $=\quad 1.00 \mathrm{~Hz}$

Hz per Pt $2 \mathrm{ndD}=1.00 \mathrm{~Hz}$
$\mathrm{O} 1=3622.5781 \mathrm{~Hz}$
$\mathrm{O} 2=-0.5000 \mathrm{~Hz}$
LB1 $=0.00 \mathrm{~Hz}$
TP $\quad A=374.06$
$B=-378.28$
$C=0.00$

C: \Program Files \backslash NUTS \backslash DATA $\backslash \$$ URA598-RC.fid URA598-RC
May 62003
USER:
SOLVENT: D2O
Experiment = s2pul
Pulse length $=5.637$ usec Recycle delay $=0.000 \mathrm{sec}$ NA $=8$ PTS1d $=65536$
F1 = 499.700226 MHz
$\mathrm{F} 2=499.700226 \mathrm{MHz}$
SW1 $=7024.94 \mathrm{~Hz}$
AT1 $=9.33 \mathrm{sec}$
Hz per $\mathrm{Pt} 1 \mathrm{stD}=0.11 \mathrm{~Hz}$
SW2 = 1.00 Hz
Hz per $\mathrm{Pt} 2 \mathrm{ndD}=1.00 \mathrm{~Hz}$
$01=2488.6506 \mathrm{~Hz}$
$\mathrm{O} 2=-0.5000 \mathrm{~Hz}$
LB1 $=0.00 \mathrm{~Hz}$
$\mathrm{TP} \quad \mathrm{A}=-52.50$
$B=8.09$
$C=0.00$

Experiment = s2pul
Pulse length $=4.500$ usec
Recycle delay $=1.000 \mathrm{sec}$
$N A=499$
PTS1d $=65536$
F1 $=125.662888 \mathrm{MHz}$
$\mathrm{F} 2=499.699402 \mathrm{MHz}$
SW1 = 30165.91 Hz
AT1 $=2.17 \mathrm{sec}$
Hz per Pt $1 \mathrm{stD}=0.46 \mathrm{~Hz}$
Hz per Pt 1stD $=0.46$
SW2 $=\quad 1.00 \mathrm{~Hz}$

Hz per Pt 2ndD $=1.00 \mathrm{~Hz}$
$\mathrm{O} 1=13821.7246 \mathrm{~Hz}$
$\mathrm{O} 2=-0.5000 \mathrm{~Hz}$
LB1 $=0.00 \mathrm{~Hz}$
TP $\quad A=-101.72$
$B=56.25$
$C=0.00$

C: \Program Files \backslash NUTS \backslash DATA $\backslash \$ U R A 598-R C _31 P . f i d ~$
URA598-RC
May 62003
USER:
SOLVENT: D2O
Experiment $=$ s2pul
Pulse length $=4.375$ usec
Recycle delay $=1.000 \mathrm{sec}$
NA = 209
PTS1d $=65536$
F1 = 202.284744 MHz
$\mathrm{F} 2=499.699402 \mathrm{MHz}$
SW1 $=50000.00 \mathrm{~Hz}$
AT1 = 1.31 sec
Hz per Pt 1 stD $=0.76 \mathrm{~Hz}$
SW2 $=\quad 1.00 \mathrm{~Hz}$
Hz per Pt $2 \mathrm{ndD}=1.00 \mathrm{~Hz}$
$01=3622.5781 \mathrm{~Hz}$
$\mathrm{O} 2=-0.5000 \mathrm{~Hz}$
$\mathrm{LB} 1=0.00 \mathrm{~Hz}$
$\mathrm{TP} \quad \mathrm{A}=140.16$
$B=-119.53$
$C=0.00$

C: \Program Files \NUTS \backslash data $\backslash \$ 1 \mathrm{c}$-02-76-olefin-12-10-04-1H.fid 1c-02-76-olefin-12-10-04-1H
Dec 102004
USER:
SOLVENT: Benzene
Experiment $=$ s2pul
Pulse length $=5.800$ usec
Recycle delay $=0.000 \mathrm{sec}$
NA = 16
PTS1d $=65536$
F1 = 499.698975 MHz
F2 $=499.698975 \mathrm{MHz}$
SW1 $=7024.94 \mathrm{~Hz}$
AT1 $=9.33 \mathrm{sec}$
Hz per Pt 1stD $=0.11 \mathrm{~Hz}$
SW2 $=1.00 \mathrm{~Hz}$
Hz per Pt $2 \mathrm{ndD}=1.00 \mathrm{~Hz}$
$01=2496.0598 \mathrm{~Hz}$
$\mathrm{O} 2=-0.5000 \mathrm{~Hz}$
LB1 $=0.00 \mathrm{~Hz}$
$\mathrm{TP} \quad \mathrm{A}=125.46$
$B=13.00$
$C=0.00$

$\begin{array}{llllllll}4.25 & 4.20 & 4.15 & 4.10 & 4.05 & 4.00 & 3.95 & 3.90\end{array}$

C:IProgram FilesINUTSIdatal\$Ic-02-76-olefin-12-10-04-13C.fid
Ic-02-76-olefin-12-10-04-13C
Dec 102004
USER:
SOLVENT: Benzene
Experiment = s2pul
Pulse length $=4.300$ usec
Recycle delay $=1.000 \mathrm{sec}$
NA = 232
PTS1d $=65536$
F1 $=125.662575 \mathrm{MHz}$
F2 409.698151
SW1 $=30165.91 \mathrm{~Hz}$
AT1 $=2.17 \mathrm{sec}$
Hz per $\mathrm{Pt} 1 \mathrm{stD}=0.46 \mathrm{~Hz}$
SW2 $=1.00 \mathrm{~Hz}$
Hz per Pt 2ndD $=1.00 \mathrm{~Hz}$
$\mathrm{O} 1=13821.7314 \mathrm{~Hz}$
$\mathrm{O} 2=-0.5000 \mathrm{~Hz}$
LB1 $=0.00 \mathrm{~Hz}$
TP $\quad A=-154.77$
$B=129.00$
$\mathrm{C}=0.00$

24

C: \Program Files \NUTS \data
\$lc-02-79-lower-epox-12-09-04-1H.fid 1c-02-79-1ower-epox-12-09-04-1H
Dec 92004
USER:
SOLVENT: Benzene
Experiment $=$ s2pul
Pulse length $=8.975$ usec
Recycle delay $=0.000 \mathrm{sec}$
NA = 32
0.000 sec

PTS1d = 65536
F1 $=399.950714 \mathrm{MHz}$
$\mathrm{F} 2=399.951141 \mathrm{MHz}$
SW1 $=8000.00 \mathrm{~Hz}$
AT1 $=8.19 \mathrm{sec}$
Hz per Pt 1stD $=0.12 \mathrm{~Hz}$
SW2 = 1.00 Hz
Hz per Pt $2 \mathrm{ndD}=1.00 \mathrm{~Hz}$
$01=1999.7439 \mathrm{~Hz}$
$\mathrm{O} 2=-0.5000 \mathrm{~Hz}$
LB1 $=0.00 \mathrm{~Hz}$
$\mathrm{TP} \quad \mathrm{A}=149.13$
$B=58.00$
$C=0.00$

25

C:IProgram FilesINUTSIDATAI\$Ic-02-79-lower-epox-12-09-04-13C.fid Ic-02-79-Iower-epox-12-09-04-13C
Dec 92004
USER:
SOLVENT: Benzene
Experiment = s2pul
Pulse length = 7.075 usec
Recycle delay $=1.000 \mathrm{sec}$
NA = 248
PTS1d $=65536$
F1 $=100.578751 \mathrm{MHz}$
$\mathrm{F} 2=399.950043 \mathrm{MHz}$
SW1 $=25000.00 \mathrm{~Hz}$
AT1 $=2.62 \mathrm{sec}$
Hz per $\mathrm{Pt} 1 \mathrm{stD}=0.38 \mathrm{~Hz}$
$\mathrm{SW} 2=1.00 \mathrm{~Hz}$
Hz per Pt 2ndD $=1.00 \mathrm{~Hz}$
$\mathrm{O} 1=11589.9160 \mathrm{~Hz}$
$\mathrm{O} 2=-0.5000 \mathrm{~Hz}$
LB1 $=0.00 \mathrm{~Hz}$
TP $\quad \mathrm{A}=62.54$
$B=221.00$
$C=0.00$

25

lc-02-79-upper-epox-12-09-04-1H
Dec 92004
USER:
SOLVENT: Benzene
Experiment $=$ s2pul
Pulse length $=5.800$ usec
Recycle delay $=0.000 \mathrm{sec}$
NA $=16$
PTS1d = 65536
F1 = 499.698975 MHz
$\mathrm{F} 2=499.698975 \mathrm{MHz}$
SW1 $=7024.94 \mathrm{~Hz}$
AT1 $=9.33 \mathrm{sec}$
Hz per Pt 1stD $=0.11 \mathrm{~Hz}$
$\mathrm{SW} 2=\quad 1.00 \mathrm{~Hz}$
Hz per Pt $2 \mathrm{ndD}=1.00 \mathrm{~Hz}$
$\mathrm{O1}=2517.8965 \mathrm{~Hz}$
$\mathrm{O} 2=-0.5000 \mathrm{~Hz}$
LB1 $=0.00 \mathrm{~Hz}$
TP $\quad A=124.60$
$B=4.00$
$C=0.00$

Dec 92004

USER:
SOLVENT: Benzene
Experiment = s2pul
Pulse length $=4.300$ usec
Recycle delay $=1.000 \mathrm{sec}$
NA = 106
PTS1d $=65536$
$\mathrm{F} 1=125.662575 \mathrm{MHz}$
F2 $=499.698151 \mathrm{MHz}$
SW1 $=30165.91 \mathrm{~Hz}$
AT1 $=2.17 \mathrm{sec}$
Hz per Pt 1stD $=0.46 \mathrm{~Hz}$
SW2 $=\quad 1.00 \mathrm{~Hz}$
Hz per Pt $2 \mathrm{ndD}=1.00 \mathrm{~Hz}$
$01=13821.7314 \mathrm{~Hz}$
$02=-0.5000 \mathrm{~Hz}$
LB1 $=0.00 \quad \mathrm{~Hz}$
TP $\quad A=-159.11$

$$
B=134.00
$$

$$
\mathrm{C}=0.00
$$

C: \Program Files \backslash NUTS \backslash DATA $\backslash \$ 1 \mathrm{c}$-02-82-LAH=threo-diol-12-16-04-1H.fid
lc-02-82-LAH=threo-diol-12-16-04-1H
Dec 162004
USER:
SOLVENT: Benzene
Experiment $=$ s 2 pul
Pulse length $=8.975$ usec
Recycle delay $=0.000 \mathrm{sec}$
NA = 8
PTS1d $=65536$
F1 $=399.950714 \mathrm{MHz}$
F2 = 399.951141 MHz
SW1 $=8000.00 \mathrm{~Hz}$
$\mathrm{AT1}=8.19 \mathrm{sec}$
Hz per Pt 1stD $=0.12 \mathrm{~Hz}$
SW2 $=1.00 \mathrm{~Hz}$
Hz per Pt $2 \mathrm{ndD}=1.00 \mathrm{~Hz}$
$\mathrm{O} 1=2017.5828 \mathrm{~Hz}$
$\mathrm{O} 2=\quad-0.5000 \mathrm{~Hz}$
LB1 $=0.00 \mathrm{~Hz}$
$\mathrm{TP} \quad \mathrm{A}=148.74$
$B=59.00$
$C=0.00$

C:IProgram FilesINUTSIdata
\$Ic-02-83-lah-threo-12-16-04-13C.fid Ic-02-83-lah-threo-12-16-04-13C
Dec 162004
USER:
SOLVENT: Benzene
Experiment = s2pul
Pulse length $=7.075$ usec
Recycle delay $=1.000 \mathrm{sec}$
$\mathrm{NA}=279$
PTS1d $=65536$
F1 $=100.578751 \mathrm{MHz}$
F2 $=399.950043 \mathrm{MHz}$
SW1 $=25000.00 \mathrm{~Hz}$
AT1 $=2.62 \mathrm{sec}$
Hz per Pt 1stD $=0.38 \mathrm{~Hz}$ SW2 $=\quad 1.00 \mathrm{~Hz}$
Hz per $\mathrm{Pt} 2 \mathrm{ndD}=1.00 \mathrm{~Hz}$
$\mathrm{O} 1=11589.9160 \mathrm{~Hz}$
$\mathrm{O} 2=-0.5000 \mathrm{~Hz}$
LB1 $=0.00 \mathrm{~Hz}$
TP $\quad \mathrm{A}=70.84$
$B=207.00$
$C=0.00$

27

C: \Program Files \backslash NUTS \backslash DATA $\backslash \$ 1 \mathrm{c}$-02-88-threio-tetrol-12-21-04-1H.fid
lc-02-88-threio-tetrol-12-21-04-1H
Dec 212004
USER:
SOLVENT: D2O
Experiment $=$ s2pul
Pulse length $=5.800$ usec
Recycle delay $=0.000 \mathrm{sec}$
NA = 16
PTS1d $=65536$
$\mathrm{F} 1=499.700226 \mathrm{MHz}$
F2 = 499.700226 MHz
SW1 $=7024.94 \mathrm{~Hz}$
AT1 $=9.33 \mathrm{se}$
Hz per Pt 1stD $=0.11 \mathrm{~Hz}$
SW2 = $\quad 1.00 \mathrm{~Hz}$
Hz per Pt $2 \mathrm{ndD}=1.00 \mathrm{~Hz}$
$01=2496.0183 \mathrm{~Hz}$
$\mathrm{O} 2=\quad-0.5000 \mathrm{~Hz}$
LB1 $=0.00 \mathrm{~Hz}$
TP $\quad \mathrm{A}=143.85$
$B=6.00$
$\mathrm{C}=0.00$


```
C:\Program Files\NUTS\DATA\$lc-02-86-threio-tetrol-12-21-04-13C.fid N N
lc-02-86-threio-tetrol-12-21-04-13C
Dec 21 2004
USER:
SOLVENT: D2O
Experiment = s2pul
Pulse length = 4.300 usec
Recycle delay = 1.000 sec
NA = 483
PTS1d = 65536
F1 = 125.662888 MHz
F2 = 499.699402 MHz
SW1 = 30165.91 Hz
AT1 = 2.17 sec
Hz per Pt 1stD = 0.46 Hz
SW2 = 1.00 Hz
Hz per Pt 2ndD = 1.00 Hz
01 = 13821.7246 Hz
O2 = -0.5000 Hz
LB1 = 0.00 Hz
TP A = 21.20
    B = 117.00
    C = 0.00
```


C: \Program Files \backslash NUTS \backslash DATA $\backslash \$ 1 \mathrm{c}-02$-threio-dibenzylphosph-1-4-04=1h.fid
STANDARD PROTON PARAMETERS
Jan 42005
USER:
SOLVENT: Benzene
Experiment $=$ s2pul
Pulse length $=5.800$ usec
Recycle delay $=0.000 \mathrm{sec}$
NA = 4
PTS1d $=65536$

29
$\mathrm{F} 1=499.698975 \mathrm{MHz}$
$\mathrm{F} 2=499.698975 \mathrm{MHz}$
SW1 $=7024.94 \mathrm{~Hz}$
AT1 $=9.33 \mathrm{sec}$
Hz per Pt 1stD $=0.11 \mathrm{~Hz}$
$\mathrm{SW} 2=1.00 \mathrm{H}$
Hz per Pt $2 \mathrm{ndD}=1.00 \mathrm{~Hz}$
$\mathrm{O} 1=2517.0835 \mathrm{~Hz}$
$\mathrm{O} 2=-0.5000 \mathrm{~Hz}$
LB1 = 0.00 Hz
$T P \quad A=108.30$ $B=2.00$
$\mathrm{C}=0.00$

C: \Program Files \backslash NUTS \backslash DATA| $\$ 1 \mathrm{c}$-02-threio-dibenzylphospho-mono-1-4-05-13C.fid STANDARD CARBON PARAMETERS
Jan 42005
USER:
SOLVENT: Benzene
Experiment = s2pul
Pulse length $=4.300$ usec
Recycle delay $=1.000 \mathrm{sec}$
$\mathrm{NA}=363$
PTS1d $=65536$
$\mathrm{F} 1=125.662575 \mathrm{MHz}$
$\mathrm{F} 2=499.698151 \mathrm{MHz}$

SW1 $=30165.91 \mathrm{~Hz}$
AT1 $=2.17 \mathrm{sec}$
Hz per Pt 1stD $=0.46 \mathrm{~Hz}$
$\mathrm{SW} 2=1.00 \mathrm{~Hz}$
Hz per Pt $2 \mathrm{ndD}=1.00 \mathrm{~Hz}$
$01=13821.7314 \mathrm{~Hz}$
$02=-0.5000 \mathrm{~Hz}$
LB1 $=0.00 \quad \mathrm{~Hz}$
$\mathrm{TP} \quad \mathrm{A}=188.89$
$B=134.00$
C $=0.00$

C: \Program Files $\backslash N U T S \backslash d a t a \backslash \$ 1 c-02-91$-threio-4-phospho-ammon-1-4-05-1H.fid
lc-02-91-threio-4-phospho-ammon-1-4-05-1H
Jan 42005
USER:
SOLVENT: D2O
Experiment $=$ s2pul
Pulse length $=5.800$ usec
Recycle delay $=0.000 \mathrm{sec}$
NA = 8
PTS1d $=65536$

30

F1 $=499.700226 \mathrm{MHz}$
$\mathrm{F} 2=499.700226 \mathrm{MHz}$
SW1 $=7024.94 \mathrm{~Hz}$
AT1 $=9.33 \mathrm{sec}$
Hz per Pt 1stD $=0.11 \mathrm{~Hz}$
SW2 = $\quad 1.00 \mathrm{~Hz}$
Hz per Pt $2 \mathrm{ndD}=1.00 \mathrm{~Hz}$
$01=2496.0183 \mathrm{~Hz}$
$\mathrm{O} 2=-0.5000 \mathrm{~Hz}$
LB1 $=0.00 \mathrm{~Hz}$
$\mathrm{TP} \quad \mathrm{A}=140.65$
$B=14.00$
$C=0.00$

C: \Program Files \backslash NUTS \backslash data $\backslash \$ 1 \mathrm{c}$-02-91-threio-4-phosphoammo-1-4-04-13C.fid
STANDARD CARBON PARAMETERS
Jan 42005
USER:
SOLVENT: D2O
Experiment $=$ s2pul
Pulse length $=4.300$ usec
Recycle delay $=1.000$ sec
NA = 396

PTS1d $=65536$
30
F1 = 125.662888 MHz
$\mathrm{F} 2=499.699402 \mathrm{MHz}$
SW1 $=30165.91 \mathrm{~Hz}$
AT1 $=2.17 \mathrm{sec}$
Hz per Pt 1stD $=0.46 \mathrm{~Hz}$
SW2 = 1.00 Hz
Hz per Pt $2 \mathrm{ndD}=1.00 \mathrm{~Hz}$
$\mathrm{O1}=13821.7246 \mathrm{~Hz}$
$\mathrm{O} 2=-0.5000 \mathrm{~Hz}$
$\mathrm{LB} 1=0.00 \mathrm{~Hz}$
$\mathrm{TP} \quad \mathrm{A}=53.24$
$B=69.00$
$C=0.00$

C:IProgram FilesINUTSIdata
\$Ic-02-91-threio-4-phosphoammo-1-4-04-31P.fid P31 TRIPHENYLPHOSPHATE PARAMETERS
Jan 42005
USER:
SOLVENT: D2O
Experiment $=$ s2pul
Pulse length $=4.825$ usec
Pulse length $=4.825 \mathrm{usec}$
Recycle delay $=1.000 \mathrm{sec}$
NA $=102$
F1 $=202.284744 \mathrm{MHz}$
F1 $=202.284744 \mathrm{MHz}$
$2=499.699402 \mathrm{MHz}$
AT1 = 1.31 sec
$\mathrm{AT} 1=1.31 \mathrm{sec}$
Hz per $\mathrm{Pt} 1 \mathrm{stD}=0.76$
Hz per Pt 1stD $=0.76$
$\mathrm{SW} 2=\quad 1.00 \mathrm{~Hz}$

Hz per $\mathrm{Pt} 2 \mathrm{ndD}=1.00 \mathrm{~Hz}$
$\mathrm{O} 1=3622.5781 \mathrm{~Hz}$
$\mathrm{O} 2=-0.5000 \mathrm{~Hz}$
LB1 $=0.00 \mathrm{~Hz}$
TP $A=226.00$
$B=0.00$
$\mathrm{C}=0.00$
$\mathbb{C}-1 A . f d o g r a m$ Files $\backslash N U T S \backslash D A T A \backslash \$ t h r e i-m o n o-c y c l o p h o s-5-27-07-1 H . f i d ~$
threi-mono-cyclophos-5-27-07-1H
May 272007
USER:
SOLVENT: CDCl3
Experiment $=$ s2pul
Pulse length $=6.500$ usec
Recycle delay $=0.000 \mathrm{sec}$
NA = 8

PTS1d $=65536$
31
F1 = 499.698944 MHz
F2 $=499.698944 \mathrm{MHz}$
SW1 $=7024.94 \mathrm{~Hz}$
AT1 $=9.33 \mathrm{sec}$
Hz per Pt 1stD $=0.11 \mathrm{~Hz}$
SW2 = $\quad 1.00 \mathrm{~Hz}$
Hz per Pt $2 \mathrm{ndD}=1.00 \mathrm{~Hz}$
$\mathrm{O} 1=2496.0322 \mathrm{~Hz}$
$\mathrm{O} 2=-0.5000 \mathrm{~Hz}$
$\mathrm{LB} 1=0.00 \mathrm{~Hz}$
$\mathrm{TP} \quad \mathrm{A}=-123.75$
$B=4.57$
$C=0.00$

C: \Program Files \NUTS \backslash DATA $\backslash \$$ threi-mono-cyclophos-5-27-07-13C.fid
threi-mono-cyclophos-5-27-07-13C
May 272007
USER:
SOLVENT: CDCl3
Experiment = s2pul
Pulse length $=6.000$ usec
Recycle delay = 1.000 sec
NA $=558$
PTS1d $=65536$
F1 = 125.662560 MHz
$\mathrm{F} 2=499.698120 \mathrm{MHz}$
SW1 $=30165.91 \mathrm{~Hz}$
AT1 = 2.17 sec

31

Hz per Pt 1stD $=0.46 \mathrm{~Hz}$
SW2 = $\quad 1.00 \mathrm{~Hz}$
Hz per Pt $2 \mathrm{ndD}=1.00 \mathrm{~Hz}$
$01=13821.7402 \mathrm{~Hz}$
$02=\quad-0.5000 \mathrm{~Hz}$
LB1 $=0.00 \mathrm{~Hz}$
TP $\quad \mathrm{A}=-10.31$
$B=125.16$
$C=0.00$

C: \Program Files \NUTS \backslash DATA $\backslash \$$ threi-mono-cyclo-phos-5-27-07-31P.fid
threi-mono-cyclo-phos-5-27-07-31P
May 272007
USER:
SOLVENT: CDCl3
Experiment $=$ s2pul
Pulse length $=3.875$ usec
Recycle delay $=1.000 \mathrm{sec}$
NA = 32
PTS1d $=65536$
$\mathrm{F} 1=202.284225 \mathrm{MHz}$
$\mathrm{F} 2=499.698120 \mathrm{MHz}$

31

SW1 $=50000.00 \mathrm{~Hz}$
AT1 $=1.31 \mathrm{sec}$
Hz per Pt 1stD $=0.76 \mathrm{~Hz}$
$\mathrm{SW} 2=\quad 1.00 \mathrm{~Hz}$
Hz per Pt $2 \mathrm{ndD}=1.00 \mathrm{~Hz}$
$\mathrm{O}=3519.5469 \mathrm{~Hz}$
$\mathrm{O} 2=-0.5000 \mathrm{~Hz}$
LB1 $=0.00 \mathrm{~Hz}$
$\mathrm{TP} \quad \mathrm{A}=154.69$
$B=35.16$
$C=0.00$

©H.fiథrogram Files \backslash NUTS \backslash DATA $\backslash \$$ threi=bis-dibenz-phos-4-20-07-1H.fid
threi=bis-dibenz-phos-4-20-07-1H
Apr 202007
USER:
SOLVENT: Acetone
Experiment $=$ s2pul
Pulse length $=6.500$ usec
Recycle delay $=0.000 \mathrm{sec}$
NA = 32
PTS1d $=65536$
F1 = 499.701538 MHz
F2 $=499.701538 \mathrm{MHz}$
SW1 $=7024.94 \mathrm{~Hz}$

AT1 = 9.33 sec
32
Hz per Pt 1stD $=0.11 \mathrm{~Hz}$
SW2 = $\quad 1.00 \mathrm{~Hz}$
Hz per $\mathrm{Pt} 2 \mathrm{ndD}=1.00 \mathrm{~Hz}$
$01=2496.0129 \mathrm{~Hz}$
$\mathrm{O} 2=-0.5000 \mathrm{~Hz}$
LB1 $=0.00 \mathrm{~Hz}$
$\mathrm{TP} \quad \mathrm{A}=145.31$
$B=5.63$
$C=0.00$

C:\Program FilesINUTS\DATA
\$threi=bis-dibenz-phos-4-20-07-13C.fid threi=bis-dibenz-phos-4-20-07-1C
Apr 202007
USER:
SOLVENT: Acetone
Experiment $=$ s2pul
Pulse length $=6.00 \phi$ usec
Recycle delay $=1.000 \mathrm{sec}$
$\mathrm{NA}=512$
NA $=12$
PTS1d $=65536$
$\mathrm{F} 1=125.663216 \mathrm{MHz}$
$\mathrm{F} 2=499.700714 \mathrm{MHz}$
SW1 $=30165.91 \mathrm{~Hz}$
AT1 $=2.17 \mathrm{sec}$
Hz per Pt 1stD $=0.46 \mathrm{~Hz}$
SW2 $=1.00 \mathrm{~Hz}$
Hz per Pt 2ndD $=1.00 \mathrm{~Hz}$
$\mathrm{O} 1=13821.8242 \mathrm{~Hz}$
$\mathrm{O} 2=-0.5000 \mathrm{~Hz}$
LB1 $=0.00 \mathrm{~Hz}$
TP $\quad A=49.79$
$B=149.00$
$C=0.00$

32

C: \Program Files \backslash NUTS \backslash DATA $\backslash \$$ threi=bis-dibenz-phos-4-20-07-31P.fid
P31 TRIPHENYLPHOSPHATE PARAMETERS
Apr 202007
USER:
SOLVENT: Acetone
Experiment $=$ s2pul
Pulse length $=3.875$ usec
Recycle delay $=1.000 \mathrm{sec}$
PTS1d $=65536$
F1 $=202.285278 \mathrm{MHz}$
$\mathrm{F} 2=499.700714 \mathrm{MHz}$

SW1 $=50000.00 \mathrm{~Hz}$
AT1 $=1.31 \mathrm{sec}$
Hz per Pt 1stD $=0.76 \mathrm{~Hz}$
SW2 = $\quad 1.00 \mathrm{~Hz}$
Hz per Pt $2 \mathrm{ndD}=1.00 \mathrm{~Hz}$
$01=3622.5039 \mathrm{~Hz}$
$02=-0.5000 \mathrm{~Hz}$
LB1 $=0.00 \quad \mathrm{~Hz}$
TP $\quad A=-95.86$
$B=61.17$
$\mathrm{C}=0.00$

C: \Program Files \backslash NUTS \backslash DATA $\backslash \$ O B z-T B S-1-O H-9-10-06-1 H . f i d$
OBz-TBS - 1 -OH-9-10-06-1H
Sep 102006
USER:
SOLVENT: CDCl3
Experiment $=$ s2pul
Pulse length $=6.500$ usec
Recycle delay $=0.000 \mathrm{sec}$
NA = 59
PTS1d $=65536$
F1 = 499.698944 MHz
$\mathrm{F} 2=499.698944 \mathrm{MHz}$
SW1 = 7024.94 Hz
AT1 $=9.33 \mathrm{sec}$
Hz per Pt 1stD $=0.11 \mathrm{~Hz}$
SW2 = 1.00 Hz
Hz per $\mathrm{Pt} 2 \mathrm{ndD}=1.00 \mathrm{~Hz}$
$\mathrm{O}=2496.2346 \mathrm{~Hz}$
$\mathrm{O} 2=-0.5000 \mathrm{~Hz}$
LB1 $=0.00 \mathrm{~Hz}$
TP A $=-71.66$
$B=-1.00$
$\mathrm{C}=0.00$

OBz-2nd-OH-TBS - 9-12-06-1H
Sep 122006
USER:
SOLVENT: CDCl3
Experiment $=$ s2pul
Pulse length $=6.500$ usec
Recycle delay $=0.000 \mathrm{sec}$
NA = 31
PTS1d $=65536$
F1 = 499.698944 MHz
$\mathrm{F} 2=499.698944 \mathrm{MHz}$
SW1 $=7024.94 \mathrm{~Hz}$
AT1 $=9.33 \mathrm{sec}$
Hz per Pt 1stD $=0.11 \mathrm{~Hz}$
SW2 = 1.00 Hz
Hz per $\mathrm{Pt} 2 \mathrm{ndD}=1.00 \mathrm{~Hz}$
$\mathrm{O}=2496.1350 \mathrm{~Hz}$
$\mathrm{O} 2=-0.5000 \mathrm{~Hz}$
$\mathrm{LB} 1=0.00 \mathrm{~Hz}$
$\mathrm{TP} \quad \mathrm{A}=-109.93$
$B=9.00$
$C=0.00$

OBz OH
35

C:\Program FilesINUTS\DATA1\$OBz-2nd-OH-TBs-9-12-06-13C.fid
OBz-2nd-OH-9-12-06-13C
Sep 122006
USER:
SOLVENT: CDCI3
Experiment = s2pul
Pulse length $=3.325$ usec
Recycle delay $=1.000 \mathrm{sec}$
NA $=290$
PTS1d = 65536
$\mathrm{F} 1=125.662560 \mathrm{MHz}$
$\mathrm{F} 2=499.698120 \mathrm{MHz}$
SW1 = 30165.91 Hz
AT1 = 2.17 sec
Hz per Pt 1stD $=0.46 \mathrm{~Hz}$
SW2 $=1.00 \mathrm{~Hz}$
Hz per Pt 2ndD $=1.00 \mathrm{~Hz}$
$\mathrm{O} 1=13821.7402 \mathrm{~Hz}$
$\mathrm{O} 2=-0.5000 \mathrm{~Hz}$
LB1 $=0.00 \mathrm{~Hz}$
TP $\quad \mathrm{A}=68.05$
$B=127.00$
$C=0.00$

OBz-OTs-TBS-9-12-06-1H
Sep 122006
USER:
SOLVENT: CDCl3
Experiment $=$ s2pul
Pulse length $=6.500$ usec
Recycle delay $=0.000 \mathrm{sec}$
NA $=16$
PTS1d $=65536$
F1 $=499.698944 \mathrm{MHz}$
F2 = 499.698944 MHz
SW1 $=7024.94 \mathrm{~Hz}$
AT1 $=9.33 \mathrm{sec}$
Hz per Pt 1stD $=0.11 \mathrm{~Hz}$
SW2 = $\quad 1.00 \mathrm{~Hz}$
Hz per $\mathrm{Pt} 2 \mathrm{ndD}=1.00 \mathrm{~Hz}$
$01=2495.9207 \mathrm{~Hz}$
$\mathrm{O} 2=-0.5000 \mathrm{~Hz}$
LB1 $=0.00 \mathrm{~Hz}$
$\mathrm{TP} \quad \mathrm{A}=257.45$
$B=15.00$
$C=0.00$

C:IProgram FilesINUTSIDATAI\$OBz-OTs-TBS-9-12-06-13C.fid
OBz-OTs-TBS-9-12-06-13C
Sep 122006
USER:
SOLVENT: CDCl3
Experiment = s2pu
Pulse length = 3.325 usec
Recycle delay $=1.000$ sec
NA $=201$
PTS1d $=65536$
F1 $=125.662560 \mathrm{MHz}$
F2 $=499.698120 \mathrm{MHz}$
SW1 = 30165.91 Hz
AT1 = 2.17 sec
Hz per $\mathrm{Pt} 1 \mathrm{stD}=0.46 \mathrm{~Hz}$
SW2 $=1.00 \mathrm{~Hz}$
Hz per $\mathrm{Pt} 2 \mathrm{ndD}=1.00 \mathrm{~Hz}$
$01=13821.7402 \mathrm{~Hz}$
O2 = -0.5000 Hz
LB1 $=0.00 \mathrm{~Hz}$
TP $A=142.48$ $B=53.00$
$=0.00$

Sep 142006
USER:
SOLVENT: CDCl3
Experiment $=$ s2pul
Pulse length $=6.500$ usec
Recycle delay $=0.000 \mathrm{sec}$
$\mathrm{NA}=32$
PTS1d = 65536
$\mathrm{F} 1=499.698944 \mathrm{MHz}$
$\mathrm{F} 2=499.698944 \mathrm{MHz}$

SW1 = 7024.94 Hz
AT1 $=9.33 \mathrm{sec}$
Hz per Pt 1stD $=0.11 \mathrm{~Hz}$
SW2 = 1.00 Hz
Hz per $\mathrm{Pt} 2 \mathrm{ndD}=1.00 \mathrm{~Hz}$
$\mathrm{O} 1=2496.0322 \mathrm{~Hz}$
$\mathrm{O} 2=-0.5000 \mathrm{~Hz}$
LB1 $=0.00 \mathrm{~Hz}$
TP $A=270.58$
$B=29.00$
$C=0.00$

C:\Program FilesINUTSIDATA
\$OBz-N3-TBS-9-14-06-13C.fid
OBz-N3-TBS-9-14-06-13C
Sep 142006
USER:
SOLVENT: CDCI3
Experiment = s2pul
Pulse length = 3.325 usec
Recycle delay $=1.000 \mathrm{sec}$
NA = 198
PTS1d = 65536
$\mathrm{F} 1=125.662560 \mathrm{MHz}$
$\mathrm{F} 2=499.698120 \mathrm{MHz}$
SW1 = 30165.91 Hz
AT1 = 2.17 sec

Hz per Pt 1stD $=0.46 \mathrm{~Hz}$
SW2 $=1.00 \mathrm{~Hz}$
Hz per Pt $2 \mathrm{ndD}=1.00 \mathrm{~Hz}$
$\mathrm{O} 1=13821.7402 \mathrm{~Hz}$
$\mathrm{O} 2=-0.5000 \mathrm{~Hz}$
LB1 $=0.00 \mathrm{~Hz}$
TP $\quad A=139.33$
$B=64.00$
$C=0.00$

©id \backslash Program Files \backslash NUTS \backslash DATA $\backslash \$ O B z-N 3$-diol-9-14-06-1H.fid
OBz-N3-diol-9-14-06-1H
Sep 152006
USER:
SOLVENT: CDCl3
Experiment $=$ s2pul
Pulse length $=6.500$ usec
Recycle delay $=0.000 \mathrm{sec}$
NA = 28
PTS1d = 65536
$\mathrm{F} 1=499.698944 \mathrm{MHz}$
F2 = 499.698944 MHz
SW1 $=7024.94 \mathrm{~Hz}$
AT1 $=9.33 \mathrm{sec}$
Hz per Pt 1stD $=0.11 \mathrm{~Hz}$
SW2 $=\quad 1.00 \mathrm{~Hz}$
Hz per Pt $2 \mathrm{ndD}=1.00 \mathrm{~Hz}$
$\mathrm{O1}=2496.0322 \mathrm{~Hz}$
$\mathrm{O} 2=\quad-0.5000 \mathrm{~Hz}$
LB1 $=0.00 \mathrm{~Hz}$
$T P \quad A=-66.57$
$B=2.00$
$C=0.00$

C:\Program FilesINUTSIDATA
\$Obz-N3-diol-9-14-06-13C.fid
Obz-N3-diol-9-14-06-13C
Sep 152006
USER:
SOLVENT: CDCI3
Experiment = s2pul
Pulse length $=3.325$ usec
Recycle delay $=1.000$ sec
NA = 451
PTS1d $=65536$
$\mathrm{F} 1=125.662560 \mathrm{MHz}$
$\mathrm{F} 2=499.698120 \mathrm{MHz}$
SW1 $=30165.91 \mathrm{~Hz}$
AT1 $=2.17 \mathrm{sec}$
Hz per Pt 1stD $=0.46 \mathrm{~Hz}$
SW2 = 1.00 Hz
Hz per $\mathrm{Pt} 2 \mathrm{ndD}=1.00 \mathrm{~Hz}$
$\mathrm{O} 1=13821.7402 \mathrm{~Hz}$
$\mathrm{O} 2=-0.5000 \mathrm{~Hz}$
LB1 $=0.00 \mathrm{~Hz}$
TP $\quad A=143.24$
$B=69.00$
$\mathrm{C}=0.00$

39

C: \Program Files \backslash NUTS \backslash DATA $\backslash \$ N 3$-triol-9-17-06-1H.fid
N3-triol-9-17-06-1H
Sep 172006
USER:
SOLVENT: CDCl3
Experiment $=$ s2pul
Pulse length $=5.825$ usec
Recycle delay $=0.000 \mathrm{sec}$
NA $=88$

PTS1d $=65536$
F1 $=399.950684 \mathrm{MHz}$
F2 = 399.951111 MHz
SW1 $=8000.00 \mathrm{~Hz}$
AT1 $=8.19 \mathrm{sec}$
Hz per Pt 1stD $=0.12 \mathrm{~Hz}$
SW2 $=\quad 1.00 \mathrm{~Hz}$
Hz per Pt $2 \mathrm{ndD}=1.00 \mathrm{~Hz}$
$01=2000.4019 \mathrm{~Hz}$
$\mathrm{O} 2=-0.5000 \mathrm{~Hz}$
LB1 $=0.00 \mathrm{~Hz}$
$\mathrm{TP} \quad \mathrm{A}=37.84$
$B=65.00$
$C=0.00$

C:\Program FilesINUTSIDATA
\$N3-triol-9-17-06-13C.fid
N3-triol-9-17-06-13C
Sep 172006
USER:
SOLVENT: CDCI3
Experiment = s2pul
Pulse length $=3.325$ usec
Recycle delay $=1.000$ se
NA $=1000$
PTS1d $=65536$
$\mathrm{F} 1=125.662560 \mathrm{MHz}$
$\mathrm{F} 2=499.698120 \mathrm{MHz}$
SW1 $=30165.91 \mathrm{~Hz}$
AT1 $=2.17 \mathrm{sec}$
Hz per Pt 1stD $=0.46 \mathrm{~Hz}$
SW2 $=1.00 \mathrm{~Hz}$
Hz per $\mathrm{Pt} 2 \mathrm{ndD}=1.00 \mathrm{~Hz}$
O1 = 13821.7402 Hz
$\mathrm{O} 2=-0.5000 \mathrm{~Hz}$
LB1 $=0.00 \mathrm{~Hz}$
TP A = -7.98
$B=268.00$
$\mathrm{C}=0.00$

```
C:\Program Files\NUTS\DATA\$amino-triol-5-28-05-1H.fid
```

amino-triol-5-28-05-1H
Sep 282005
USER:
SOLVENT: D2O
Experiment = s2pul
Pulse length $=7.350$ usec
Recycle delay $=0.000 \mathrm{sec}$
NA $=44$
PTS1d $=65536$
F1 $=399.951721 \mathrm{MHz}$
F2 $=399.952118 \mathrm{MHz}$
SW1 $=8000.00 \mathrm{~Hz}$
AT1 $=8.19 \mathrm{sec}$
Hz per $\mathrm{Pt} 1 \mathrm{stD}=0.12 \mathrm{~Hz}$
SW2 = $\quad 1.00 \mathrm{~Hz}$
Hz per Pt $2 \mathrm{ndD}=1.00 \mathrm{~Hz}$
$01=2057.9751 \mathrm{~Hz}$
$\begin{array}{ll}\mathrm{O} 2 & = \\ \mathrm{LB} 1 & =0.00 \mathrm{Ha} \mathrm{Hz}\end{array}$
$\begin{array}{cc}\mathrm{O} 2= & -0.5000 \mathrm{~Hz} \\ \text { LB1 }=0.00 \mathrm{~Hz}\end{array}$
$\mathrm{TP} \quad \mathrm{A}=94.86$
$B=8.00$
$C=0.00$

[^0]:

