SUPPORTING INFORMATION

Fluorinated Diphenylpolyenes: Crystal Structures and Emission Properties

Yoriko Sonoda, ${ }^{\dagger}{ }^{\dagger}$ Midori Goto, ${ }^{\dagger}$ Seiji Tsuzuki ${ }^{\S}$ and Nobuyuki Tamaoki ${ }^{\dagger}$

Nanotechnology Research Institute and Technical Center, National Institute of Advanced Industrial Science and Technology (AIST), Higashi 1-1-1, Tsukuba, Ibaraki 305-8565, Japan Research Institute of Computational Sciences, National Institute of Advanced Industrial Science and Technology (AIST), Umezono 1-1, Tsukuba, Ibaraki 305-8568, Japan
${ }^{\dagger}$ Nanotechnology Research Institute.
${ }^{*}$ Technical Center.
${ }^{\text {§ }}$ Research Institute of Computational Sciences.
*Author to whom correspondence should be addressed.
FAX: +81-29-861-4673.
E-mail: y.sonoda@aist.go.jp

Preparation of 14.

Aldehyde $\mathbf{1 0}(1.18 \mathrm{~g}, 6.0 \mathrm{mmol})$ and $\mathbf{1 2}(1.83 \mathrm{~g}, 6.0 \mathrm{mmol})$ were dissolved in toluene (30 mL). The mixture was stirred under nitrogen atmosphere at $90^{\circ} \mathrm{C}$ for 24 h . After cooling, water (350 mL) was added to the reaction mixture. The products were extracted with diethyl ether ($80 \mathrm{~mL} \times 3$ times) and the extract was washed with water (300 mL), and dried over magnesium sulfate. Evaporation of the solvent under reduced pressure gave 14 as brown oil in $70-80 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 9.74(1 \mathrm{H}, \mathrm{d}, J 7.3, \mathrm{CHO}), 7.45$ $\left(1 \mathrm{H}, \mathrm{d}, J 16.6, \mathrm{C}_{6} \mathrm{~F}_{5}-\mathrm{CH}=\right), 6.98(1 \mathrm{H}, \mathrm{dd}, J 16.5$ and $7.3,-\mathrm{CH}=\mathrm{CHO})$.

Crystal and structure refinement data.

2. Of the 8586 reflections which were collected, 5926 were independent $\left(R_{\text {int }}=\right.$ 0.0394). The structure was refined on F^{2} with 361 parameters to $R_{1} 0.0663(I>2 \sigma(I))$, $w R_{2} 0.1642$ (all data).
3. Of the 1904 reflections which were collected, 1453 were independent $\left(R_{\mathrm{int}}=\right.$ $0.0170)$. The structure was refined on F^{2} with 100 parameters to $R_{1} 0.0605(I>2 \sigma(I))$, $w R_{2} 0.1844$ (all data).
4. Of the 2197 reflections which were collected, 1540 were independent $\left(R_{\mathrm{int}}=\right.$ 0.0180). The structure was refined on F^{2} with 109 parameters to $R_{1} 0.0483(I>2 \sigma(I))$, $w R_{2} 0.1352$ (all data).
5. Of the 2370 reflections which were collected, 1656 were independent $\left(R_{\text {int }}=\right.$ 0.0088). The structure was refined on F^{2} with 127 parameters to $R_{1} 0.0422(I>2 \sigma(I))$, $w R_{2} 0.1492$ (all data).
6. Of the 4271 reflections which were collected, 3046 were independent $\left(R_{\mathrm{int}}=\right.$ $0.0275)$. The structure was refined on F^{2} with 208 parameters to $R_{1} 0.0655(I>2 \sigma(I))$, $w R_{2} 0.1910$ (all data).

1/5. Of the 3801 reflections which were collected, 2964 were independent $\left(R_{\text {int }}=\right.$ $0.0158)$. The structure was refined on F^{2} with 208 parameters to $R_{1} 0.0489(I>2 \sigma(I))$, $w R_{2} 0.1622$ (all data).

Figure S1. Absorption and fluorescence spectra of $\mathbf{1}$ and $\mathbf{2}$ in methylcyclohexane.

Figure S2. Fluorescence spectra of 6 in (a) methylcyclohexane ($\phi_{\mathrm{f}}=0.059$), (b) toluene ($\phi_{\mathrm{f}}=0.014$), (c) dichloromethane ($\phi_{\mathrm{f}}=0.006$), and (d) acetonitrile ($\phi_{\mathrm{f}}=0.003$). Excitation wavelength: 350 nm .

Figure S3. ORTEP representations for the molecular structures of (a) $\mathbf{1}$ (b) 2, (c) 3, (d) $\mathbf{4}$, (e) 5, (f) $\mathbf{6}$, and (g) $\mathbf{1 / 5}$.
(a)

(b) molecule 1)

molecule 2)

1) and 2): two crystallographically independent molecules

Figure S3. (continued)
(c)

(d)

(e)

Figure S3. (continued)
(f)

(g)

Table S1: Calculated Energy Levels of HOMO-1, HOMO, LUMO and LUMO+1
HF/6-31G*

HF/6-31G* level optimized geometry was used

Table S1: (continued)
B3LYP/6-311G**

		1		2		3		4		5		6	
HOMO-1	(AU)	-0.24509	BG	-0.24499	BG	-0.24946	BG	-0.25585	BG	-0.2692	BG	-0.25737	$\mathrm{A}^{\prime \prime}$
HOMO	(AU)	-0.19971	AU	-0.20201	AU	-0.20486	AU	-0.20918	AU	-0.22406	AU	-0.21144	A"
LUMO	(AU)	-0.07022	BG	-0.07266	BG	-0.07392	BG	-0.07884	BG	-0.09472	BG	-0.0831	$\mathrm{A}^{\prime \prime}$
LUMO+1	(AU)	-0.02436	AU	-0.02822	AU	-0.02754	AU	-0.03315	AU	-0.04848	AU	-0.03618	A"
HOMO-LUMO	(AU)	0.12949		0.12935		0.13094		0.13034		0.12934		0.12834	
gap	$\left(\mathrm{cm}^{-1}\right)$	28419.7271		28389.001		28737.965		28606.28		28386.806		28167.332	
	(nm)	351.87		352.25		347.97		349.57		352.28		355.02	
HOMO-LUMO+1	(AU)	0.17535		0.17379		0.17732		0.17603		0.17558		0.17526	
gap	$\left(\mathrm{cm}^{-1}\right)$	38484.8185		38142.439		38917.183		38634.061		38535.298		38465.066	
	(nm)	259.84		262.18		256.96		258.84		259.50		259.98	
HOMO-1-LUMO	(AU)	0.17		0.17		0.18		0.18		0.17		0.17	
gap	$\left(\mathrm{cm}^{-1}\right)$	38379.4708		37822.006		38526.519		38849.146		38293.876		38247.786	
	(nm)	260.56		264.40		259.56		257.41		261.14		261.45	

HF/6-31G* level optimized geometry was used

Table S2: Calculated Excitation Energy to Singlet States
CIS/6-311G**

		1			2			3			4			5			6		
Excited state		(nm)		f															
	1	282.02	BU	2.4396	279.44	BU	2.4184	274.06	BU	2.6235	273.79	BU	2.6042	276.21	BU	2.5886	280.84	A^{\prime}	2.5000
	2	220.49	AG	0	219.57	AG	0	210.25	AG	0	209.41	AG	0	209.45	AG	0	215.91	A^{\prime}	0.0374
	3	211.36	AG	0	212.59	BU	0.0814	209.04	BU	0.0221	204.42	BU	0.0149	202.88	BU	0.0147	211.52	A^{\prime}	0.0029
TD-B3LYP/6-311G**																			
Excited state	1	360.38	BU	1.9206	360.62	BU	1.9128	355.23	BU	2.0086	356.91	BU	1.983	359.28	BU	1.9829	363.4	A^{\prime}	1.8874
	2	296.15	AG	0	298.71	AG	0	292.52	AG	0	293.35	AG	0	295.58	AG	0	295.19	A^{\prime}	0.0738
	3	277.82	AG	0	286.68	BU	0.0639	284.66	AG	0	279.28	AG	0	293.06	BU	0.0179	285.77	A^{\prime}	0.0062

All ground-state molecular geometries were optimized at the HF/6-31G* level, assuming planar $C_{2 h}$ symmetry for 1-5 and C_{s} symmetry for $\mathbf{6}$.
f: oscillator strength

Table S3: Mean Deviation from the Least-Squares Plane and Ar-CH= Torsion Angle

compound	mean deviation from the least-squares plane ${ }^{a}(\AA)$	$\mathrm{Ar}-\mathrm{CH}=$ torsion angle (degree)
1	$0.007^{\text {b }}$	C2-C3-C4-C9 $=-2.1{ }^{\text {b }}$
2	0.143 (molecule 1) ${ }^{\text {c }}$	C1-C6-C7-C8 $=-0.1$ (5)
		C11-C12-C13-C14 $=1.6(5)$
	0.111 (molecule 2) ${ }^{\text {c }}$	C19-C24-C25-C26 = 6.3(6)
		C29-C30-C31-C32 = -6.1(6)
3	0.038	C1-C6-C7-C8 $=12.1(8)$
4	0.029	C1-C6-C7-C8 $=11.9(2)$
5	0.008	C1-C6-C7-C8 $=-2.6(3)$
6	0.025	C1-C6-C7-C8 $=-5.8(5)$
		C11-C12-C13-C14 = 4.4(4)
1/5	0.015 (molecule 1)	$\mathrm{C} 10-\mathrm{C} 15-\mathrm{C} 16-\mathrm{C} 17=3.3(3)$
	0.023 (molecule 5)	C1-C6-C7-C8 $=9.8$ (3)

${ }^{a}$ Defined by the DPH moiety of each molecule, ${ }^{b}$ from the reported structure (ref 52, CSD\#ZZZQNK02) and ${ }^{c}$ for the two crystallographically independent molecules, 1) and 2).

