Supporting Information

Serinocyclins A and B, Cyclic Heptapeptides from Metarhizium anisopliae

Stuart B. Krasnoff^{*†}, Ivan Keresztes[‡], Richard E. Gillilan[§], Doletha M.E. Szebenyi[§], Bruno G. G. Donzelli[†], Alice C. L. Churchill[⊥], Donna M. Gibson[†]

[†]USDA-ARS-Plant Protection Research Unit, Ithaca, New York [‡]Department of Chemistry and Chemical Biology, Cornell University, Ithaca New York [§]The Cornell High Energy Synchrotron Source, Ithaca, NY ^LDepartment of Plant Pathology, Cornell University, Ithaca New York

CONTENTS:

Figure S1. ¹H NMR spectrum of **1** (with solvent presaturation)

- **Figure S2.** ¹H NMR spectrum of **1** (with solvent presaturation): amide region
- **Figure S3.** ¹H NMR spectrum of **1** (without solvent presaturation)
- **Figure S4.** ¹H NMR spectrum of **1** (without solvent presaturation): amide region
- **Figure S5.** ¹³C NMR spectrum of **1**
- **Figure S6.** ¹³C NMR spectrum of **1**: carbonyl region
- **Figure S7-9.** ¹³C NMR spectrum of **1**: details 1-3 of sp^3 region
- Figure S10. dqCOSY spectrum of 1
- **Figure S11.** ¹H NMR spectrum of **2** (with solvent presaturation)
- **Figure S12.** ¹H NMR spectrum of **2** (with solvent presaturation): amide region
- Figure S13. ¹H NMR spectrum of 2 (without solvent presaturation)
- Figure S14. ¹H NMR spectrum of 2 (without solvent presaturation): amide region
- Figure S15. ¹³C NMR spectrum of 2
- **Figure S16.** ¹³C NMR spectrum of **2**: carbonyl region
- Figure S17-19. ¹³C NMR spectrum of 2: details 1-3 of sp³ region
- Figure S20. gCOSY spectrum of 2
- Figure S21. Probit plot for effect of 1 on swimming in Aedes aegypti larvae

Figure S22. Comparison of tracks of tail, center, and head from serinocyclin A-treated and untreated *Aedes aegypti* larvae

Table S1. Crystal data and structure refinement for 1.

Table S2. Crystal data: Atomic coordinates (fractional cell) and equivalent isotropic displacement parameters $(Å^2)$ for **1**.

Table S3. Anisotropic displacement parameters (\AA^2) for **1**.

Table S4. Chiral amino acid analysis of hydrolyzates of **1** and **2** using the ligand-exchange method.

Table S5. Chiral amino acid analysis of hydrolyzates of **1** and **2** using two HPLC methods following derivatization with L-FDAA (Marfey's reagent).

 Table S6.
 NMR spectroscopic data (CD₃OH) for serinocyclin B (2)

Figure S1. ¹H NMR spectrum of **1** (with solvent presaturation)

Figure S2. ¹H NMR spectrum of **1** (with solvent presaturation): amide region

Figure S3. ¹H NMR spectrum of **1** (without solvent presaturation)

Figure S4. ¹H NMR spectrum of **1** (without solvent presaturation): amide region

Figure S5. ¹³C NMR spectrum of 1

Figure S6. ¹³C NMR spectrum of **1**: carbonyl region

Figure S7. ¹³C NMR spectrum of 1: detail 1 of sp³ region, detail 1

Figure S8. ¹³C NMR spectrum of **1**: detail 2 of sp³ region

Figure S9. ¹³C NMR spectrum of **1**: detail 3 of sp³ region

Figure S10. dqCOSY spectrum of 1

Figure S11. ¹H NMR spectrum of 2 (with solvent presaturation)

Figure S12. ¹H NMR spectrum of 2 (with solvent presaturation): amide region

Figure S13. ¹H NMR spectrum of 2 (without solvent presaturation)

Figure S14. ¹H NMR spectrum of **2** (without solvent presaturation): amide region

Figure S15. ¹³C NMR spectrum of 2

Figure S16. ¹³C NMR spectrum of 2: carbonyl region

Figure S17. ¹³C NMR spectrum of 2: detail 1 of sp³ region

Figure S18. ¹³C NMR spectrum of **2**: detail 2 of sp³ region

Figure S19. ¹³C NMR spectrum of **2**: detail 3 of sp³ region

Figure S20. gCOSY spectrum of 2

Figure S21. Probit plot for effect of 1 on swimming in Aedes aegypti larvae.

constant = -3.254389 slope = 1.839706

Median * Dose = 58.745268 Confidence interval (No Heterogeneity) = 25.950352 to 82.289173

* Dose for centile 90 = 292.132408 Confidence interval (No Heterogeneity) = 177.678738 to 1548.854659

Chi² (heterogeneity of deviations from model) = 6.405153 (10 df) P = 0.7802

t for slope = 3.362501 (10 df) P = 0.0072

Probit analysis - further statistics

Iterations = 3

Sxx = 3.366044 Sxy = 6.192533 Syy = 17.797591

Variance of B = 0.191735Standard error of B without heterogeneity = 0.547124

Estimated natural response rate (C) = 0.05303Variance of B = without heterogeneity Standard error of B 0.036348 = 1 **Figure S22.** Comparison of tracks of tail, center, and head from serinocyclin A-treated and untreated *Aedes aegypti* larvae. Using a high-speed digital camera (Redlake®) mounted on a compound microscope, videographs were acquired for 2.0 sec at 250 frames/sec of third instar *A. aegypti* larvae swimming in wells of a 24-well plate ca. 16 mm in diameter. Tracks shown were traced by hand by advancing frame-by-frame and marking the position in each frame of (A) the larval tail, the center, (B) first abdominal segment, and (C) the head. Tracks on the left side each panel are from a single untreated larva and those on the right are from a single larva treated with serinocylin A at 100 ppm. The line separating treated from untreated tracks is a 1 cm scale bar. Arrows indicate "forward" progress (i.e. in the direction of the tail).

Compound name Empirical formula Formula weight Temperature Wavelength Crystal system Space group Unit cell dimensions	Serinocyclin A C27 H45 N8 O12 (plus 3 H ₂ O molecules and 1 formate ion) 673.71 100(5) K 0.9179 Å Monoclinic P2 ₁ a = 9.193(10) Å b = 16.074(10) Å c = 11.852(10) Å $\alpha = 90^{\circ}$
Cell volume	$\beta = 97.4(5)^{\circ}$ $\gamma = 90^{\circ}$ $1737(3) \text{ Å}^{3}$
Z	2
Density (calculated)	1.466 Mg/m^3
Absorption coefficient	0.122 mm^{-1}
F(000)	812
Crystal size	0.06 x 0.06 x 0.003 mm ³
θ range for data collection	2.24 to 27.31° (limiting resolution 1.0 Å)
Index ranges	-9<=h<=8, 0<=k<=15, 0<=l<=10
Reflections collected	5536
Independent reflections	1670 (1600 used for refinement, 70 as a test set for R(free))
R(merge)	0.058
Completeness	88.8%
Absorption correction	Order 6 spherical harmonics, in SCALA
Refinement method	Full-matrix least squares on F ²
Data / restraints / parameters	1600 / 94 / 475
Goodness-of-fit on F^2	1.342
Final R values (all data)	R1 = 0.0889, $wR2 = 0.2426$, $R1(free) = 0.1371$
R values $(I > 2sigma(I))$	R1 = 0.0868, $wR2 = 0.2394$, $R1(free) = 0.1354$
Absolute structure parameter	-2.1(35)
Largest DF map peak and hole	$0.47, -0.37 \text{ e}/\text{A}^3$

Table S1. Crystal data and structure refinement for 1.

	Х	У	Z	U(eq)	U(iso)	Occupancy
Residue 1, Acc	2					
N_1	0.6930(9)	-0.0534(6)	0.5120(8)	0.034(2)		
CA_1	0.7169(11)	-0.0001(6)	0.4197(10)	0.037(3)		
C_1	0.6233(12)	0.0764(6)	0.4092(9)	0.039(3)		
0_1	0.6762(9)	0.1470(5)	0.3968(7)	0.039(2)		
$\overline{CB1}1$	0.8697(14)	0.0083(9)	0.3858(13)	0.050(4)		
CB2_1	0.7551(13)	-0.0397(8)	0.3132(10)	0.045(3)		
Residue 2, Hyp	D					
N_2	0.4814(9)	0.0668(5)	0.4139(8)	0.035(2)		
CA_2	0.3822(11)	0.1401(5)	0.4040(10)	0.033(3)		
C_2	0.4163(11)	0.2045(7)	0.4948(10)	0.037(3)		
O_2	0.3776(10)	0.2777(5)	0.4780(7)	0.050(2)		
CB_2	0.2299(12)	0.1009(6)	0.4032(12)	0.049(4)		
CG_2	0.2481(12)	0.0201(7)	0.3376(11)	0.050(4)		
OD1_2	0.2422(10)	0.0403(7)	0.2211(9)	0.069(3)		
CD2_2	0.3961(12)	-0.0104(7)	0.3928(11)	0.044(3)		
Residue 3, Ser	1					
N_3	0.4912(10)	0.1793(6)	0.5941(8)	0.038(3)		
CA_3	0.5409(12)	0.2383(7)	0.6856(9)	0.038(3)		
C_3	0.6928(11)	0.2719(6)	0.6822(10)	0.036(3)		
O_3	0.7381(9)	0.3264(6)	0.7517(8)	0.056(2)		
CB_3	0.515(2)	0.2088(10)	0.8011(12)	0.079(5)		
OG_3	0.548(2)	0.1256(11)	0.8212(14)	0.147(7)		
Residue 4, Hy	Lys					
N_4	0.7720(9)	0.2467(6)	0.6017(9)	0.041(3)		
CA_4	0.9180(10)	0.2783(7)	0.5913(9)	0.041(3)		
C_4	1.0382(11)	0.2282(8)	0.6612(9)	0.038(3)		
O_4	1.1610(9)	0.2600(5)	0.6837(8)	0.048(2)		
CB_4	0.9496(10)	0.2782(8)	0.4663(8)	0.038(3)		
CG_4	0.8420(12)	0.3273(7)	0.3849(8)	0.038(3)		
OD1_4	0.8468(9)	0.4125(5)	0.4247(8)	0.046(2)		
CD2_4	0.8747(16)	0.3240(7)	0.2650(9)	0.054(4)		
CE_4a	0.886(4)	0.2400(14)	0.2102(17)		0.031(9)	0.39(2)
NZ_4a	0.800(5)	0.235(2)	0.093(2)		0.065(11)	0.39(2)
CE_4b	0.802(4)	0.2451(17)	0.2041(18)		0.079(9)	0.61(2)
NZ_4b	0.868(3)	0.2433(14)	0.0889(15)		0.071(8)	0.61(2)
Residue 5, β -A	la					
N_5	1.0093(10)	0.1515(7)	0.6903(10)	0.046(3)		
C_5	0.9986(14)	0.0722(11)	0.9265(11)	0.064(4)		
O_5	0.8791(12)	0.1114(7)	0.9196(10)	0.071(3)		
CA_5	1.1317(15)	0.1096(11)	0.8849(11)	0.064(4)		
CB_5	1.1164(13)	0.0975(8)	0.7547(11)	0.050(4)		

Table S2. Crystal data: Atomic coordinates (fractional cell) and equivalent isotropic displacement parameters $(Å^2)$ for **1**.

	Х	У	Z	U(eq)	U(iso)	<u>Occupancy</u>
Residue 6,	Ser2					
N_6	1.0077(11)	-0.0045(7)	0.9698(9)	0.053(3)		
CA_6	0.8820(12)	-0.0486(8)	1.0055(10)	0.055(4)		
C_6	0.8005(12)	-0.0963(9)	0.9052(10)	0.055(4)		
O_6	0.7931(17)	-0.1710(7)	0.9033(10)	0.097(4)		
CB_6	0.9337(16)	-0.1082(9)	1.1031(10)	0.068(5)		
OG_6	1.0427(16)	-0.1611(9)	1.0742(10)	0.108(5)		
Residue 7, J	Ser3					
N_7	0.7424(10)	-0.0482(7)	0.8219(8)	0.047(3)		
$C\overline{A}_7$	0.6788(10)	-0.0821(7)	0.7122(9)	0.040(3)		
C_7	0.7077(10)	-0.0229(8)	0.6182(11)	0.042(4)		
O ⁷	0.7410(9)	0.0518(5)	0.6398(7)	0.048(2)		
$C\overline{B}$ 7	0.5122(11)	-0.0965(8)	0.7067(11)	0.047(3)		
OG_7	0.4308(9)	-0.0203(7)	0.6945(9)	0.070(3)		
Solvent spe	cies: water					
O 8	0.586(2)	0.0968(15)	0.0565(16)	0.161(8)		
O 9	0.423(4)	0.217(3)	0.106(3)	0.272(18)		
O ¹⁰	1.113(3)	0.1815(19)	0.141(2)	0.208(11)		
Solvent spe	cies: formate					
O1 11a	0.706(3)	0.3970(15)	0.025(2)		0.062(9)	0.39(2)
C 11a	0.687(4)	0.471(2)	-0.048(3)		0.083(14)	0.39(2)
$\overline{O2}$ 11a	0.535(3)	0.474(2)	-0.108(3)		0.094(13)	0.39(2)
O1 ^{11b}	0.606(4)	0.3292(15)	0.030(3)		0.133(11)	0.61(2)
C_{11b}	0.589(2)	0.4145(13)	-0.0231(17)		0.046(6)	0.61(2)
O2_11b	0.581(6)	0.487(2)	0.057(4)		0.23(2)	0.61(2)

 Table S2 (continued).

2	7
4	1

	U11	U22	U33	U23	U13	U12
N 1	0.027(5)	0.031(6)	0.045(7)	0.007(5)	0.007(4)	-0.001(5)
CĀ 1	0.012(6)	0.038(8)	0.061(9)	-0.011(6)	0.005(5)	-0.006(6)
CĪ	0.019(7)	0.032(8)	0.063(9)	-0.007(6)	-0.004(5)	-0.007(7)
O_1	0.024(4)	0.029(6)	0.065(6)	-0.001(4)	0.009(4)	0.003(4)
$C\overline{B}1$ 1	0.028(8)	0.034(8)	0.090(10)	0.002(7)	0.015(7)	0.002(6)
CB2 ¹	0.044(8)	0.030(8)	0.061(8)	0.000(6)	0.008(6)	0.002(6)
N 2	0.024(6)	0.026(6)	0.055(7)	-0.002(5)	0.000(4)	-0.008(5)
$C\overline{A}$ 2	0.024(7)	0.028(7)	0.046(8)	0.012(5)	-0.001(5)	0.006(6)
$C \overline{2}$	0.009(6)	0.045(9)	0.057(9)	-0.004(6)	0.008(6)	0.003(6)
0_2	0.054(6)	0.033(6)	0.064(6)	0.004(4)	0.010(4)	0.018(4)
$C\overline{B}$ 2	0.048(9)	0.022(8)	0.071(9)	-0.006(6)	-0.018(7)	0.004(6)
CG ²	0.042(8)	0.039(8)	0.068(11)	-0.011(6)	0.007(7)	-0.003(6)
$OD\overline{1} 2$	0.049(6)	0.087(8)	0.067(8)	-0.017(5)	-0.005(5)	-0.001(5)
$CD2^2$	0.027(7)	0.051(9)	0.055(8)	-0.010(7)	0.010(6)	0.011(7)
N 3	0.028(6)	0.024(5)	0.061(7)	-0.006(5)	-0.002(5)	-0.003(5)
$C\overline{A}$ 3	0.036(8)	0.031(8)	0.049(9)	-0.007(6)	0.007(6)	-0.005(6)
$C \overline{3}$	0.022(7)	0.030(8)	0.053(8)	-0.006(6)	-0.009(6)	0.012(6)
0_3	0.039(5)	0.060(7)	0.068(6)	-0.015(5)	0.000(4)	0.000(5)
$C\overline{B}$ 3	0.085(13)	0.058(13)	0.090(14)	-0.002(9)	0.002(10)	0.008(9)
OG 3	0.144(16)	0.18(2)	0.114(13)	-0.010(12)	-0.014(10)	0.061(15)
N 4	0.021(6)	0.032(6)	0.072(8)	-0.017(5)	0.009(5)	-0.004(5)
$C\overline{A}$ 4	0.022(7)	0.034(8)	0.065(9)	-0.004(6)	0.002(6)	0.000(6)
C 4	0.015(7)	0.039(9)	0.056(8)	-0.010(6)	-0.014(5)	-0.007(6)
04	0.040(6)	0.029(5)	0.073(6)	-0.002(4)	0.007(4)	-0.003(4)
$C\overline{B}$ 4	0.015(6)	0.044(8)	0.057(9)	-0.006(6)	0.010(5)	-0.009(6)
CG ⁴	0.026(6)	0.024(8)	0.063(9)	0.008(6)	0.000(6)	-0.002(6)
$OD\overline{1} 4$	0.033(5)	0.030(5)	0.075(6)	-0.001(4)	0.007(4)0	.004(4)
CD2 ⁴	0.052(9)	0.036(8)	0.072(11)	0.004(6)	0.001(7)	-0.002(6)
N 5	0.024(6)	0.025(7)	0.087(8)	-0.003(5)	-0.006(5)	-0.013(5)
C_5	0.042(10)	0.083(14)	0.063(10)	-0.018(9)	-0.002(7)	0.013(10)
O ⁵	0.067(8)	0.047(6)	0.100(9)	0.008(6)	0.012(6)	0.001(6)
$C\overline{A}$ 5	0.034(8)	0.081(11)	0.075(12)	0.010(8)	-0.003(7)	-0.006(8)
CB ⁵	0.029(7)	0.041(9)	0.077(11)	-0.001(7)	-0.002(6)	0.001(6)
$N\overline{6}$	0.042(7)	0.062(9)	0.053(7)	-0.009(6)	-0.005(5)	0.014(6)
CĀ 6	0.028(7)	0.085(11)	0.051(9)	-0.003(7)	-0.003(6)	0.007(8)
C 6	0.056(9)	0.063(13)	0.043(9)	0.004(8)	-0.001(7)	0.014(8)
0_6	0.174(14)	0.035(8)	0.077(8)	0.005(6)	-0.007(7)	-0.012(7)
$C\overline{B}$ 6	0.063(10)	0.086(13)	0.052(9)	0.002(8)	-0.002(7)	0.043(10)
OG 6	0.119(11)	0.139(13)	0.069(8)	0.006(8)	0.020(7)	0.064(10)
N 7	0.038(6)	0.041(7)	0.056(7)	-0.001(6)	-0.013(5)	0.007(5)
$C\overline{A}$ 7	0.024(7)	0.025(7)	0.068(9)	0.005(6)	-0.001(6)	0.006(5)
C_7	0.010(6)	0.047(10)	0.064(11)	0.015(8)	-0.005(6)	-0.002(6)
O_7	0.042(5)	0.034(6)	0.067(6)	0.004(4)	-0.003(4)	-0.012(4)

Table S3. Anisotropic displacement parameters (Å2) for 1.

Table S3	(continued).
----------	--------------

	U11	U22	U33	U23	U13	U12
CB_7	0.040(8)	0.059(10)	0.044(8)	0.005(6)	0.007(6)	0.012(7)
OG_7	0.038(5)	0.079(8)	0.089(7)	-0.037(6)	-0.007(5)	-0.001(6)
0_8	0.175(16)	0.18(2)	0.138(14)	-0.024(13)	0.039(12)	0.067(15)
0 9	0.26(3)	0.25(3)	0.29(4)	-0.10(3)	0.00(3)	0.12(3)
O_10	0.29(3)	0.21(3)	0.119(15)	0.003(15)	-0.007(16)	-0.02(2)

		hydro	lyzate
Amino Acid	Standard $t_{\rm R}^{a}$	1^{b}	2^{b}
β-Ala	3.18	+	+
L-Lys	3.18		
D-HyLys ^c	3.40	+	
D-Lys	3.50		+
(2 <i>S</i> ,4 <i>R</i>)- Hyp (<i>trans</i> -4-hydroxy-L-proline)	4.18	+	+
L-Ser	4.36	+	+
D-Ser	4.64	+	+
Acc	5.59	+	+
(2 <i>R</i> ,4 <i>R</i>)- Hyp (<i>cis</i> -4-hydroxy-D-proline)	6.27		
(2 <i>R</i> ,4 <i>S</i>)- Hyp (<i>trans</i> -4-hydroxy-D-proline)	6.27		
(2 <i>S</i> ,4 <i>S</i>)- Hyp (<i>cis</i> -4-hydroxy-L-proline)	9.17		

Table S4. Chiral amino acid analysis of hydrolyzates of 1 and 2 using the ligand-exchange method.

^{*a*}HPLC retention times (t_R , min) of underivatized amino acids standards (see Experimental section for details).

^bPresence of amino acids in hydrolyzates of **1** and **2** as confirmed by co-chromatography experiments are indicated (+). ^cStandards of HyLys isomers were not commercially available. The t_R of the 2*R*,*S*- isomer was assigned, *a posteriori*, to a peak present in the chromatogram of **1** that was not present in the chromatogram of **2**.

		Method 1 ^a		Method 2^{b}		
		standard $t_{\rm R}^{c}$		standard $t_{\rm R}^{c}$	hydrolyzate ^d	
Amino Acid	m/z	347 nm ^e	XIC ^f	347 nm	1	2
(2 <i>S</i> ,4 <i>R</i>)-Hyp (<i>trans</i> -4-hydroxy-L-proline)	382	2.98	3.15	3.08	+	+
(2 <i>R</i> ,4 <i>S</i>)-Hyp(<i>trans</i> -4-hydroxy-D-proline)	382	3.28	3.36	3.61		
L-Ser	356	4.11	4.27	4.92	+	+
$(2R,4S)$ -HyLys α -derivative ^g	413	5.01	5.21	6.22	+	
L-Lys α-derivative	397	5.83	6.03	7.28		
D-Ser	356	5.83	5.97	7.77	+	+
D-Lys α-derivative	397	7.74	7.81	10.47		+
β-Ala	340	7.74	8.05	10.96	+	+
HyLys ω-derivative ^{<i>g</i>}	413	9.30	9.49	12.66	+	
Acc	352	11.74	11.87	16.89	+	+
D+L Lys ω -derivatives ^h	397	12.13	12.29	16.89		+

Table S5. Chiral amino acid analysis of hydrolyzates of **1** and **2** using two HPLC methods following derivatization with L-FDAA (Marfey's reagent).

^aPhenomenex Prodigy column with UV diode array and ESIMS detection (see Experimental section for details).

^bPhenomenex Luna column with UV single wavelength detection (see Experimental section for details).

^cHPLC retention times of derivatized standard amino acids using the indicated detection method.

^{*d*}Presence of amino acids in hydrolyzates of **1** and **2** as confirmed by HPLC-ESIMS (Method 1) and co-chromatography experiments (using Method 2) are indicated (+).

^eDetection by diode array with chromatogram extracted at 347 nm (inline with and prior to ESIMS detection).

^{*f*}Detection by ESIMS in negative ion mode using ion chromatograms extracted from the scan range (m/z 180-700) at the m/z indicated (inline with and subsequent to diode array detection).

^gStandards of HyLys isomers were not commercially available. The t_R of the derivatives of the 2*R*,*S*- isomer were assigned, *a posteriori*, to peaks present in the chromatograms of **1** that were not present in the corresponding chromatograms of **2**. ^hD+L Lys ω -derivatives do not resolve (see reference 32, p. 3349)

Unit	position	$\delta_{\rm C}^{\ a}$ (or $\delta_{\rm N}^{\ b}$), n	$\operatorname{hult} \delta \operatorname{H}^{c} (J \text{ in Hz}) [-\Delta \delta / \Delta T \operatorname{ppb} / \mathrm{K}]$	HMBC ^d	NOESY ^e
			A FA 1		
Acc	NH	126.7, NH	9.52, br s		
	α	37.5, qC			
	βla	13.6, CH ₂	1.63, m	C, N, α, β2	
	β1b		0.73, ddd (10.3, 7.5, 4.8)	C, N, α, β2	NH; β-Ala NH, β2
	β2a	13.0, CH ₂	1.34, ddd (10.4, 7.5, 5.6)	C, N, α, β1	Нур δ2
	β2b		1.05, ddd (10.4, 7.5, 5.6)	C, N, α, β1	Нур δ2
	C=O	174.7, qC			
Нур	N	129.1, tN			
	α	62.4, CH	4.45, m	C, N; Acc C	
	β1	38.8, CH ₂	2.30, m	Ν, γ, δ	
	β2		1.92, m	C, α	δ1, Ser1 NH
	γ	71.1, CH	4.49, m	α, δ	β1,2
	δ1	57.8, CH ₂	4.05, m	Acc C	β2, Ser1 NH
	δ2		3.72, m	α, β, γ	Acc β2a, b
	C=O	175.2, qC			
Ser-1	NH	109.8, NH	7.52, d (7.8)	α, β; Hyp C	β1,2; Hyp-β2, δ1
	α	58.0, CH	4.42, m	C, N, β ; Lys N	
	β1	63.2, CH ₂	4.20, dd (12.0, 5.5)	C, N, α	
	β2		3.84, m	C, N, α	
	C=O	172.9, qC			
Lys	NH	120.5, NH	7.53, d (7.7)	α, β; Ser-1 C	α , β , γ 1 , 2, ε ; β -Ala NH
-	α	56.0, CH	4.30, ddd (7.6, 7.6, 7.6)	C, N, β , γ ; Ser-1 C, β -Ala N	β, γ 1 ,2
	β	31.8, CH ₂	1.92, m	Ν, γ, δ	β-Ala NH
	γ1	24.3, CH ₂	1.61, m	α, δ	1
	γ2	, <u>-</u>	1.46, m	α, β, ε	
	δ	27.9, CH ₂	1.70, m	β, γ, ε, ε-Ν	
	3	40.8, CH ₂	2.90, t (7.1)	γ. δ. ε-Ν	β. γ 1 .2. δ
	ε-NH ₃	31.3 , NH_3^+		δ, γ, ε-Ν	F) ()) -
	C=O	174.7. aC			
ß-Ala	NH	114.0. NH	7.99. m	β: Lvs C	HyLys NH. 6: Acc 61b
r	β1	37.6. CH ₂	3.73. m	C. N. α: Lvs C	J J
	β2		3.04. m	α: Lvs C	Acc B1b
	α^{-1}	37.1. CH ₂	2.38. ddd (9.2. 6.7. 1.6)	C , N, β	Ser-2 NH
	α2		2.27. m	C. N. β: Ser-2 N	
	C=O	175.2. aC		-,-,,p,~	
Ser-2	NH	123 2 NH	8 45 d (8 8)	α	β1 2 · β-ala α1
501 -	a	55.9 CH	4 44 m	\tilde{C} β β -Ala C	p1,=, p uu o1
	б1	61 2 CH	3.86 m	$C N \alpha$	
	B2	01.2, 0112	3 75 m	$C N \alpha$	
	C=0	172.3 gC	5.75, 11	0, 11, 0	
Ser-3	NH	115.8 NH	797 m	C B: Ser-2 C	ß1 2
501-5	α.	55 5 CH	4 51 m	$C N \beta$	P+,=
	ß1	64.8 CH	4.02 dd(11.2, 3.0)	$C N \alpha^{f}$	
	рт В2	0 1 .0, C11 <u>2</u>	3.93 dd (11.2, 3.0)	$C N \alpha$	
	C=0	174.2 gC	5.75, uu (11.2, 2.7)	C, 11, u	
	0.0	171.2, YC			

Table S6. NMR spectroscopic data (CD₃OH) for serinocyclin B (2)

^aAssigned from ¹³C (125 mHz). ^bAssigned from ¹⁵N HSQC and ¹⁵N HMBC (600 mHz).

^c500 mHz

^dCorrelations, optimized for 5, 8 Hz (H \rightarrow ¹³C) and 4, 8 Hz (H \rightarrow ¹⁵N), are from proton(s) stated to carbon or nitrogen at indicated position. Correlations to Acc carbons and nitrogens observed at -6 and 4 °C respectively.

Stronger correlation to one member of a geminal pair indicated in bold

^eInter-residual correlations are indicated for both partners and, thus, appear twice in column; intra-residual correlations are indicated once.

^fWeak correlation.