Supporting Information

A Helix-Turn-Helix Supersecondary Structure Based on Oligo(Phenanthroline Dicarboxamide)s

Hai-Yu Hu,^{a,b} Jun-Feng Xiang,^a Yong Yang,^a and Chuan-Feng Chen^{a,*}

^aBeijing National Laboratory for Molecular Sciences, Center for Chemical Biology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, China. ^bGraduate School, Chinese Academy of Sciences, Beijing 100049, China.

Email: cchen@iccas.ac.cn

Contents

1.	Experimental section S2
2.	¹ H NMR and ¹³ C NMR spectra of new compoundsS8
3.	TOCSY and NOESY spectra of compounds (S)-1 and (S)-2S17
4.	Comparison of partial ¹ H NMR spectra for (S)-1 and (S)-2 in CDCl ₃ S21
5.	UV-vis spectra of compounds (±)-1-3 and (S)-7S22
6.	CD spectra of compounds (S)-1-3 and (S)-7S25
7.	Crystal packing of (±)-2S28

1. Experimental section

Scheme S1. Synthesis of compound (±)-7.

Scheme S2. Synthesis of the oligomers 1~3.

Compound 5. To the solution of 1, 1'-binaphthyl-2, 2'-diol **4** (5.72 g, 20 mmol) in acetic acid and dichloromethane (50 mL, 1:1 v/v) was added dropwise nitric acid (100%, 2.58 g, 40.1 mmol) in acetic acid (2 mL). The resulting mixture was then stirred at room temperature for 16 h during which the color of the solution changed from white to black and finally to yellow. The mixture was poured into ice-water (1000 mL), filtered, and

then washed with methanol and chloroform to yield product **5** (5.74 g, 73.6%) as a yellow solid. Mp > 300 °C. ¹H NMR (DMSO-*d*₆, 300 MHz): δ 10.31 (s, 2H, -O*H*), 8.98 (d, *J* = 2.4 Hz, 2H), 8.29 (d, *J* = 9.0 Hz, 2H), 7.98 (dd, *J* = 2.4, 9.3 Hz, 2H), 7.54 (d, *J* = 9.0 Hz, 2H), 7.09 (d, *J* = 9.3 Hz, 2H). ¹³C NMR (DMSO-*d*₆, 75 MHz): δ 157.1, 142.4, 137.0, 132.1, 126.3, 125.5, 125.2, 120.6, 119.6, 115.0. EI MS: *m*/*z* 376 [M]⁺. Anal. Calcd. for C₂₀H₁₂N₂O₆·0.5H₂O: C, 62.34; H, 3.40; N, 7.27. Found: C, 62.62; H, 3.40; N, 7.19.

Compound 6. To a suspension of compound **5** (3.76 g, 10 mmol) in acetone (100 mL) was added potassium carbonate (5.52 g, 40 mmol) and methyl iodide (4.26 g, 30 mmol), and the reaction mixture was refluxed for 24 h. After the solvent was evaporated to leave a volume of 30 mL, the mixture was cooled to 25 °C, treated with water (160 mL), and then filtered. The resulting solid was washed with water and dried to afford 3.96 g (98%) of **6** as a yellow powder. Mp > 300 °C. ¹H NMR (CDCl₃, 300 MHz): δ 8.87 (s, 2H), 8.22 (d, *J* = 9.1 Hz, 2H), 7.99 (dd, *J* = 9.3, 2.2 Hz, 2H), 7.61 (d, *J* = 9.1 Hz, 2H), 7.13 (d, *J* = 9.3 Hz, 2H), 3.84 (s, 6H). ¹³C NMR (CDCl₃, 75 MHz): δ 158.0, 143.9, 136.5, 132.5, 127.2, 126.1, 125.3, 120.1, 118.4, 115.2, 56.5. EI MS: *m*/*z* 404 [M]⁺. Anal. Calcd. for C₂₂H₁₆N₂O₆·0.5H₂O: C, 63.92; H, 4.15; N, 6.78. Found: C, 64.41; H, 4.01; N, 6.77.

(\pm)-2,2'-Dimethoxy-1,1'-binaphthyl-6,6'-diamine (\pm)-7. A mixture of the nitro precursor 6 (4.85 g, 8 mmol) dissolved in DMF (50 mL) and 10% Pd/C (0.29 g) was stirred at ambient temperature under a 4 bar atmosphere of hydrogen for 4 h. The reaction mixture was filtered through Celite, and concentrated. The product was characterized by

¹H NMR and used without further purification. Mp 217-218 °C. ¹H NMR (CDCl₃, 300 MHz): δ 7.69 (d, J = 9.0 Hz, 2H), 7.34 (d, J = 9.0 Hz, 2H), 7.02 (d, J = 2.3 Hz, 2H), 6.96 (d, J = 8.9 Hz, 2H), 7.13 (dd, J = 8.9, 2.3 Hz, 2H), 3.70 (s, 6H). ¹³C NMR (CDCl₃, 75 MHz): δ 152.8, 142.2, 130.6, 128.5, 127.0, 126.8, 120.5, 119.0, 115.5, 109.0, 57.3. EI MS: m/z 344 [M]⁺. Anal. Calcd. for C₂₂H₂₀N₂O₂·0.5H₂O: C, 74.77; H, 5.99; N, 7.93. Found: C, 75.11; H, 5.79; N, 7.93.

General Method for **Synthesis** of **Oligomers.** То the solution of 2,2'-dimethoxyl-1,1'-binaphthyl-6,6'-diamine (344 mg, 1.0 mmol) in CH₂Cl₂ (50 mL) was added the acid (2.0 mmol), 1-hydroxylbenzotriazole (HOBt) (383 mg, 2.5 mmol), and DCC (515 mg, 2.5 mmol). The reaction mixture was stirred at room temperature until the starting material was completely consumed in TLC. The precipitates were removed by filtration through the Celite. The solution was concentrated, and the residue was washed with MeOH. The solid was purified by silica-gel column chromatography (ethyl acetate/petrol ether 1:1) to give the product as a yellow solid.

(±)-1. Yield: 83%. Mp 279-284 °C. ¹H NMR (CDCl₃, 600MHz): δ10.94 (s, 2H, NH),
10.68 (s, 2H, NH), 8.71-7.01 (m, 28H), 4.17 (d, J = 5.0 Hz, 4H), 4.09 (d, 4H, J = 4.1 Hz),
3.88 (s, 6H), 2.34-2.26 (m, 4H), 1.17-1.14 (m, 24H). ¹³C NMR (CDCl₃, 75 MHz): δ163.2,
163.1, 161.94, 161.89, 154.7, 150.84, 150.76, 144.4, 137.8, 133.6, 131.5, 129.8, 129.4,
129.1, 126.4, 124.3, 122.5, 120.6, 120.3, 119.7, 119.5, 116.5, 115.0, 101.4, 75.4, 57.0,

28.1, 19.2. TOF MS: *m*/*z* 1284 [M+H]⁺. Anal. Calcd. for C₇₈H₇₄N₈O₁₀·2H₂O: C, 71.00; H, 5.96; N, 8.49. Found: C, 70.93; H, 5.91; N, 8.34.

(±)-2. Yield: 75%. Mp 273-276 °C. ¹H NMR (CDCl₃, 600 MHz): δ 11.24 (s, 2H, N*H*), 10.87 (s, 2H, N*H*) 10.74 (s, 2H, N*H*), 10.10 (s, 2H, N*H*), 8.50-6.98 (m, 44H), 4.01 (bs, 4H), 3.81 (s, 6H), 3.72-3.21 (m, 12H), 2.31-2.02 (m, 6H), 1.96-1.92 (m, 2H), 1.25-0.94 (m, 48H). ¹³C NMR (CDCl₃, 75 MHz): δ 163.0, 162.8, 162.7, 162.6, 162.3 162.2, 161.7, 161.2, 154.5, 151.0, 150.6, 150.5, 149.7, 144.7, 144.6, 144.3, 144.0, 137.6, 133.6, 131.2, 129.9, 129.5, 129.4, 128.8, 126.3, 125.7, 124.6, 123.9, 123.7, 122.6, 122.3, 122.0, 121.7, 120.6, 120.3, 120.0, 119.5, 119.3, 116.4, 114.9, 101.7, 101.2, 100.7, 75.4, 75.1, 75.0, 74.5, 57.0, 28.2, 28.12, 28.07, 28.0, 19.3 19.2, 19.14, 19.10, 19.0. TOF MS: *m*/*z* 2252 [M+H]⁺. Anal. Calcd. for C₁₃₄H₁₃₀N₁₆O₁₈·2H₂O: C, 70.32; H, 5.90; N, 9.79. Found: C, 70.42; H, 5.95; N, 9.77.

(±)-**3.** Yield: 50%. Mp 296-298 °C. ¹H NMR (CDCl₃, 600 MHz): δ10.91-10.27 (m, 12H, N*H*), 8.21-6.90 (m, 60H), 4.14-3.52 (m, 30H), 2.37-2.00 (m, 12H), 1.22-0.93 (m, 72H). ¹³C NMR (CDCl₃, 75 MHz): δ 163.1, 163.0, 162.8, 162.5, 162.2, 161.8, 154.5, 150.5, 150.3, 150.1, 144.9, 144.8, 144.5, 137.6, 131.5, 131.2, 129.4, 129.3, 128.6, 126.0, 125.5, 125.2, 124.8, 123.7, 122.9, 122.8, 122.4, 122.1, 120.7, 120.1, 119.5, 119.3, 114.6, 101.6, 101.1, 75.4, 74.8, 56.9, 28.3, 28.11, 28.08, 19.3, 19.2, 19.09, 19.06. TOF MS: *m*/*z* 3322 [M+H]⁺. Anal. Calcd. for C₁₉₀H₁₈₆N₂₄O₂₆·2H₂O: C, 70.05; H, 5.88; N, 10.32. Found: C, 69.70; H, 5.89; N, 10.29. (*S*)-1. Yield: 86%. Mp 276-278 °C. $[\alpha]^{20}_{D}$ = +90 (c=1.0, CH₂Cl₂). ¹H NMR (CDCl₃, 300 MHz): δ 10.89 (s, 2H, N*H*), 10.61 (s, 2H, N*H*), 8.71-7.00 (m, 28H), 4.14 (d, *J* = 6.5 Hz, 4H), 4.09 (d, 4H, *J* = 6.5 Hz), 3.86 (s, 6H), 2.37-2.27 (m, 4H), 1.17-1.12 (m, 24H). ¹³C NMR (CDCl₃, 75 MHz): δ 163.4, 163.3, 162.1, 162.0, 154.8, 150.9, 144.6, 137.8, 133.5, 131.5, 129.8, 129.4, 129.1, 126.5, 124.4, 122.7, 120.7, 120.5, 119.7, 119.6, 116.5, 115.1, 101.5, 101.4, 75.5, 57.0, 28.1, 19.20, 19.18. TOF MS: *m/z* 1284 [M+H]⁺. Anal. Calcd. for C₇₈H₇₄N₈O₁₀·2H₂O: C, 71.00; H, 5.96; N, 8.49. Found: C, 70.93; H, 5.81; N, 8.48.

(*S*)-2. Yield: 74%. Mp 274-275 °C. $[\alpha]^{20}_{D}$ = +54 (c=1.0, CH₂Cl₂). ¹H NMR (CDCl₃, 300 MHz): δ 11.29 (s, 2H, NH), 10.85-10.80 (m, 4H, NH), 10.14 (s, 2H, NH), 8.52-6.96 (m, 44H), 4.09-4.08 (m, 8H), 3.79 (s, 6H), 3.52-3.48 (m, 4H), 3.21-3.20 (m, 4H), 2.36-1.89 (m, 8H), 1.18-0.92 (m, 48H). ¹³C NMR (CDCl₃, 75 MHz): δ 162.9, 162.72, 162.67, 162.5, 162.4, 162.1, 161.6, 161.1, 154.5, 151.0, 150.7, 150.4, 149.8, 144.6, 144.5, 144.3, 144.0, 137.6, 133.6, 131.2, 129.8, 129.7, 129.5, 129.4, 128.7, 126.2, 125.7, 124.5, 123.8, 122.5, 122.3, 121.9, 121.7, 120.6, 120.5, 120.3, 119.9, 119.6, 119.2, 116.5, 114.9, 101.8, 101.2, 100.8, 75.3, 75.1, 74.9, 74.5, 56.9, 28.2, 28.1, 28.0, 19.23, 19.18, 19.11, 19.07, 19.0. TOF MS: m/z 2252 [M+H]⁺. Anal. Calcd. for C₁₃₄H₁₃₀N₁₆O₁₈·2H₂O: C, 70.32; H, 5.90; N, 9.79. Found: C, 69.00; H, 5.87; N, 9.35.

(S)-3. Yield: 62%. Mp 303-304 °C. $[\alpha]^{20}{}_{D}$ = +258 (c=2.0, CH₂Cl₂). ¹H NMR (CDCl₃, 300 MHz): δ 11.02-10.17 (m, 12H, N*H*), 8.43-6.99 (m, 60H), 4.12 (d, *J* = 6.0 Hz, 4H), 3.98 (d, *J* = 5.2 Hz, 4H), 3.85 (s, 6H), 3.60-3.32 (m, 16H), 2.67-1.99 (m, 12H), 1.22-0.92 (m,

S6

72H). ¹³C NMR (CDCl₃, 75 MHz): & 163.5, 163.4, 162.71, 162.66, 162.5, 162.4, 162.1, 161.4, 161.2, 160.7, 160.2, 159.0, 154.4, 153.7, 151.3, 151.1, 150.9, 150.8, 150.3, 149.7, 145.0, 144.8, 144.7, 144.6, 144.4, 144.0, 143.2, 138.5, 137.6, 134.1, 133.7, 131.7, 131.1, 130.8, 129.4, 128.4, 127.7, 125.9, 125.8, 125.4, 125.0, 124.3, 123.4, 122.9, 122.8, 122.4, 122.1, 122.02, 121.99, 121.6, 121.4, 121.0, 120.7, 120.6, 120.4, 120.2, 119.9, 119.7, 119.3, 119.1, 117.1, 114.4, 102.2, 102.1, 101.8, 101.2, 75.4, 74.8, 57.1, 56.8, 28.5, 28.3, 28.1, 27.6, 27.2, 19.7, 19.5, 19.4, 19.3, 19.2, 19.10, 19.05, 18.9, 18.5, 18.1. MALDI-TOF MS: m/z 3221 [M+H]⁺. Anal. Calcd. for C₁₉₀H₁₈₆N₂₄O₂₆·4H₂O: C, 69.28; H, 5.94; N, 10.21. Found: C, 69.24; H, 5.91; N, 10.13.

2. ¹H NMR and ¹³C NMR spectra of new compounds

Figure S1. The ¹H NMR spectrum of compound 5.

Figure S2. The ¹³C NMR spectrum of compound 5.

Figure S3. The ¹H NMR spectrum of compound 6.

Figure S4. The ¹³C NMR spectrum of compound 6.

Figure S5. The ¹H NMR spectrum of compound 7.

Figure S6. The ¹³C NMR spectrum of compound 7.

Figure S7. The ¹H NMR spectrum of compound (±)-1.

Figure S8. The ¹³C NMR spectrum of compound (±)-1.

Figure S9. The 1H NMR spectrum of compound (±)-2.

Figure S10. The ¹³C NMR spectrum of compound (±)-2.

Figure S11. The ¹H NMR spectrum of compound (±)-3.

Figure S12. The ¹³C NMR spectrum of compound (±)-3.

Figure S13. The ¹H NMR spectrum of compound (*S*)-1.

Figure S14. The ¹³C NMR spectrum of compound (S)-1.

Figure S16. The ¹³C NMR spectrum of compound (S)-2.

Figure S17. The ¹H NMR spectrum of compound (*S*)-3.

Figure S18. The ¹³C NMR spectrum of compound (S)-3.

3. TOCSY and NOESY spectra of compounds (S)-1 and (S)-2

Figure S19. The TOCSY spectrum of compound (S)-1.

HHY-135 NOESY 20071003

Figure S20. The NOESY spectrum of compound (S)-1.

Figure S21. The TOCSY spectrum of compound (*S*)-2.

Figure S22. The NOESY spectrum of compound (*S*)-2.

4. Comparison of partial ¹H NMR spectra for (S)-1 and (S)-2 in CDCl₃

Figure S23. Partial ¹H NMR spectra (600 MHz) of (S)-1 and (S)-2 in CDCl₃.

5. UV-vis spectra of compounds (\pm) -1-3 and (S)-7

Figure S24. Representative UV spectra for compound (±)-7 in CH₃CN at various concentrations.

Figure S25. Representative UV spectra for compound (±)-1 in CH₃CN at various concentrations.

Figure S26. Representative UV spectra for compound (±)-2 in CH₃CN at various

concentrations.

Figure S27. Representative UV spectra for compound (±)-3 in CH₃CN at various concentrations.

Figure S28. UV spectra of the molecular strands (±)-1 (red), (±)-2 (blue), (±)-3 (black) and (±)-7 (green) in CH₃CN (c = 10^{-5} M).

Figure S29. CD spectra for (S)-7 in CH₃CN at various concentrations.

Figure S30. CD spectra for (S)-1 in CH₃CN at various concentrations.

Figure S31. CD spectra for (S)-2 in CH₃CN at various concentrations.

Figure S32. CD spectra for (S)-3 in CH₃CN at various concentrations.

Figure S33. Circular dichroism spectra of the molecular strands (S)-1 (red), (S)-2, (blue) (S)-3 (black) and (S)-7 (green) in CH₃CN ($c = 10^{-5}$ M).

7. Crystal packing of (±)-2

(a)

Figure S34. (a) Crystal packing of (\pm) -2 with the hydrogen bonding interactions between the oligomer and 2-propanol molecules (blue dotted lines); (b) view of a 2D layer structure of (\pm) -2. Solvent molecules not involved in the interactions, isobutyl chains, and hydrogen atoms were omitted for clarity.