Supporting Information for:

Asymmetric LithiationSubstitution of Amines Involving Rearrangement of Borates

lain Coldham, ${ }^{\dagger \dagger}$ Jignesh J. Patel, ${ }^{\dagger}$ Sophie Raimbault, ${ }^{\dagger}$ David T.E. Whittaker, ${ }^{\ddagger}$ Harry Adams, ${ }^{\dagger}$ Guang Y Fang ${ }^{\mathbb{T}}$ and Varinder K. Aggarwal* ${ }^{\star \pi}$
${ }^{\dagger}$ Department of Chemistry, University of Sheffield, Sheffield S3 7HF, UK
${ }^{\text {* AstraZeneca, Mereside, Alderley Park, Macclesfield, Cheshire SK10 4TG }}$
${ }^{\text {y }}$ School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
i.coldham@sheffield.ac.uk

Experimental procedure for the lithiation-substitution-rearrangement of 5:
To a solution of (-)-sparteine (1.2 equivalents) in toluene (concentration 0.2 M) at $-78{ }^{\circ} \mathrm{C}$ was added n - BuLi (1.2 equivalents). After 30 min , a solution of the starting material 5 (1.0 equivalent) in toluene (concentration 0.33 M) was added at $-78{ }^{\circ} \mathrm{C}$. The mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 6 h , and the borane $\mathrm{R}_{3} \mathrm{~B}$ (1.5 equivalents) was added. After 30 min , TMSOTf (1.0 equivalent) was added and the mixture was allowed to warm to room temperature over 3 h . A solution of aqueous $\mathrm{NaOH}(2 \mathrm{~mL}, 2 \mathrm{M})$ followed by $\mathrm{H}_{2} \mathrm{O}_{2}\left(1 \mathrm{~mL}, 30 \%\right.$ in water) was added at $0{ }^{\circ} \mathrm{C}$ and the mixture was allowed to warm to room temperature over 16 h . The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and evaporated. Purification by column chromatography on silica gel, eluting with petrol-EtOAc, gave the alcohols 9 (yields 62$83 \%$) as oils.

Chiral chromatography traces for the alcohols 9 :

Alcohol 9a: 83% yield; er $95: 5(S: R)$; $[\alpha]_{\mathrm{D}}{ }^{22}-47.9$ (c $0.96, \mathrm{CHCl}_{3}$) [lit. (S)-enantiomer er $>99: 1[\alpha]_{\mathrm{D}}{ }^{24}-50.8$ (c 1.03, CHCl_{3}) - see Yang, W.; Xu, J.-H.; Xie, Y.; Xu, Y.; Zhao, G.; Lin, G.-Q. Tetrahedron: Asymmetry 2006, 17, 1769]. Resolution between the enantiomers was achieved using a Beckman system fitted with a Chiralcel OD column ($250 \mathrm{~mm} \times$ 4.6 mm i.d.) as the stationary phase with a mixture of n-hexane: isopropanol $(98: 2 \mathrm{v} / \mathrm{v})$ as the mobile phase at a flow rate of 1 $\mathrm{mL} \cdot \mathrm{min}^{-1}$; ambient temperature, detection by UV absorbance at 254 nm . Injection volume $20 \mu \mathrm{~L}$ of the sample prepared in a $2 \mathrm{mg} . \mathrm{L}^{-1}$ solution of isopropanol. Under these conditions, the components were eluted at 17.2 min (minor enantiomer (R)) and 18.4 min (major enantiomer (S)).

Alcohol 9b: 82% yield; er 95:5 (S:R); $[\alpha]_{D}{ }^{22}-31.8\left(\right.$ c $\left.1.0, \mathrm{C}_{6} \mathrm{H}_{6}\right)\left[\right.$ lit. (S)-enantiomer er 89:11 $[\alpha]_{\mathrm{D}}{ }^{22}-31.6\left(\mathrm{c} 1.03, \mathrm{CHCl}_{3}\right)-$ see Yong, K.H.; Taylor, N.J.; Chong, J.M. Org. Lett. 2002, 4, 3553]. Resolution between the enantiomers was achieved using a Beckman system fitted with a Chiralcel OD column ($250 \mathrm{~mm} \times 4.6 \mathrm{~mm}$ i.d.) as the stationary phase with a mixture of n-hexane: isopropanol ($98: 2 \mathrm{v} / \mathrm{v}$) as the mobile phase at a flow rate of $1 \mathrm{~mL} . \mathrm{min}^{-1}$; ambient temperature, detection by UV absorbance at 254 nm . Injection volume $20 \mu \mathrm{~L}$ of the sample prepared in a $2 \mathrm{mg} . \mathrm{L}^{-1}$ solution of isopropanol. Under these conditions, the components were eluted at 16.7 min (minor enantiomer (R)) and 17.5 min (major enantiomer (S). .

Alcohol 9c: 82% yield; er 95:5 (S:R); $[\alpha]_{\mathrm{D}}{ }^{22}-21.8$ (c 2.75, EtOH) [lit. (S)-enantiomer er >99:1 $[\alpha]_{\mathrm{D}}{ }^{24}-24.8$ (c 1.0-2.6, EtOH) - see Homann, M.J.; Vail, R.B.; Previte, E.; Tamarez, M.; Morgan, B.; Dodds, D.R.; Zaks, A. Tetrahedron, 2004, 60, 789]. Resolution between the enantiomers was achieved using chiral gas chromatography with a Chiracel-bonded column ($30 \mathrm{~m} \times 0.25 \mathrm{~m}, \beta$-cyclodextrin, permethyl) $\mathrm{T}=130^{\circ} \mathrm{C}$ isothermal, H_{2} carrier gas at 14 psi . Under these conditions, the faster running component (R) and slower running component (S) were eluted at 14.3 min and 14.8 min respectively.

Alcohol 9d: 72\% yield; er 95:5 ($S: R$). Resolution between the enantiomers was achieved using chiral gas chromatography with a Chiracel-bonded column ($30 \mathrm{~m} \times 0.25 \mathrm{~m}, \beta$-cyclodextrin, permethyl) $\mathrm{T}=112{ }^{\circ} \mathrm{C}$ isothermal, H_{2} carrier gas at 14 psi . Under these conditions, the faster running component (S) and slower running component (R) were eluted at 55.8 min and 57.9 min respectively.

Alcohol 9e: 79\% yield; er 95:5 ($S: R$). Resolution between the enantiomers was achieved using chiral gas chromatography with a Chiracel-bonded column ($30 \mathrm{~m} \times 0.25 \mathrm{~m}, \beta$-cyclodextrin, permethyl) $\mathrm{T}=110{ }^{\circ} \mathrm{C}$ isothermal, H_{2} carrier gas at 14 psi . Under these conditions, the faster running component (R) and slower running component (S) were eluted at 8.3 min and 8.9 \min respectively.

Alcohol 9f: 68\% yield; er 92:8 (S:R); $[\alpha]_{D}{ }^{22}-36.7\left(\mathrm{c} 0.6, \mathrm{CHCl}_{3}\right)$. Resolution between the enantiomers was achieved using chiral gas chromatography with a Chiracel-bonded column ($30 \mathrm{~m} \times 0.25 \mathrm{~m}, \beta$-cyclodextrin, permethyl) $\mathrm{T}=100{ }^{\circ} \mathrm{C}$ isothermal, H_{2} carrier gas at 14 psi . Under these conditions, the faster running component (S) and slower running component (R) were eluted at 32.8 min and 36.0 min respectively.

Alcohol 9g: 62\% yield; er 92:8 (S:R); $[\alpha]_{\mathrm{D}}{ }^{22}-25.0$ (c 0.5, EtOH) [lit. (S)-enantiomer er $>99: 1[\alpha]_{\mathrm{D}}{ }^{24}-34.8$ (c 1.0-2.6, EtOH) - see Homann, M.J.; Vail, R.B.; Previte, E.; Tamarez, M.; Morgan, B.; Dodds, D.R.; Zaks, A. Tetrahedron, 2004, 60, 789]. Resolution between the enantiomers was achieved using chiral gas chromatography with a Chiracel-bonded column $\left(30 \mathrm{~m} \times 0.25 \mathrm{~m}, \beta\right.$-cyclodextrin, permethyl) $\mathrm{T}=110^{\circ} \mathrm{C}$ isothermal, H_{2} carrier gas at 14 psi . Under these conditions, the faster running component (R) and slower running component (S) were eluted at 9.2 min and 9.9 min respectively.

Alcohol 9h: 64\% yield; er 92:8 (S:R); $[\alpha]_{D}{ }^{22}-30.0\left(\mathrm{c} 0.95, \mathrm{C}_{6} \mathrm{H}_{6}\right)\left[\right.$ lit. (S)-enantiomer er 95.5:4.5 $[\alpha]_{D}{ }^{24}-34.8\left(\mathrm{c} 2.3, \mathrm{C}_{6} \mathrm{H}_{6}\right)$ - see Soai, K.; Konishi, T.; Shibata, T. Heterocycles 1999, 51, 1421]. Resolution between the enantiomers was achieved using chiral gas chromatography with a Chiracel-bonded column ($30 \mathrm{~m} \times 0.25 \mathrm{~m}, \beta$-cyclodextrin, permethyl) $\mathrm{T}=95{ }^{\circ} \mathrm{C}$ isothermal, H_{2} carrier gas at 14 psi. Under these conditions, the faster running component (S) and slower running component (R) were eluted at 59.1 min and 62.8 min respectively.

Experimental procedure for the lithiation-substitution-rearrangement of $\mathbf{1 0}$:
To a solution of N -Boc-pyrrolidine $\mathbf{1 0}$ (1.0 equivalent) and (-)-sparteine (1.2 equivalents) in $\mathrm{Et}_{2} \mathrm{O}$ (concentration 0.4 M) at $-78^{\circ} \mathrm{C}$ was added sec-BuLi (1.2 equivalents). After $4 \mathrm{~h}, \mathrm{BEt}_{3}$ (1.4 equivalents) was added. After 30 min , freshly distilled TMSOTf (1.0 equivalent) was added and the mixture was warmed to room temperature over a period of 3 h . The mixture was cooled to $0^{\circ} \mathrm{C}$ followed by addition of $\mathrm{NaOH}(2 \mathrm{~mL}, 2 \mathrm{M})$ and $\mathrm{H}_{2} \mathrm{O}_{2}(1 \mathrm{~mL}, 30 \%$ in water $)$ and the mixture was allowed to warm to room temperature over 16 h . The mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 20 \mathrm{ml})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and evaporated. The crude product was dissolved in a small amount of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and stirred for 30 min with a small amount of silica DAVISIL 40-63 (to cleave any trimethylsilyl ether product). Purification was carried out on silica with petrol-EtOAc (2:1) to give the alcohols $\mathbf{1 1 .}$

Data for the product 11a:
58% yield; er $95: 5(S: R) ;[\alpha]_{\mathrm{D}}{ }^{24}+10.0\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right) ; \mathrm{R}_{f} 0.50$ [petrol-EtOAc (1:1)]; $v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 3385,2945,2915$, 2860,$1690 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.70-4.50(1 \mathrm{H}, \mathrm{br}), 3.58-3.47(1 \mathrm{H}, \mathrm{m}), 3.19-3.06(2 \mathrm{H}, \mathrm{m}), 1.75-1.30(6 \mathrm{H}, \mathrm{m}), 1.43(9 \mathrm{H}$, s), $0.92(3 \mathrm{H}, \mathrm{t}, J 7) ; \delta_{\mathrm{C}}\left(63 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 156.1,78.8,72.3,40.3,33.5,30.1,28.2,26.1,9.8$; Found (ES): $\mathrm{MNa}^{+}, 240.1577$. $\mathrm{C}_{11} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{Na}$ requires 240.1576; GCMS m/z (ES) 240 (100%, MNa^{+}).

Chiral chromatography:

The alcohol 11a was converted to its p-bromobenzoate ester derivative using p-bromobenzoyl chloride, $\mathrm{Et}_{3} \mathrm{~N}$ and 4dimethylaminopyridine in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The enantiomer ratio of the p-bromobenzoate ester derivative of the alcohol 11a was determined by chiral HPLC. Resolution between the enantiomers was achieved using a Gilson 300 series system fitted with a Chiralcel OD column ($250 \mathrm{~mm} \times 4.6 \mathrm{~mm}$ i.d.) as the stationary phase with a mixture of n-hexane : iso-propanol (97.5:2.5 v / v) as the mobile phase at a flow rate of $0.5 \mathrm{~mL} \cdot \mathrm{~min}^{-1}$; ambient temperature, detection by UV absorbance at 254 nm . Injection volume $25 \mu \mathrm{~L}$ of the sample prepared in a $2-4 \mathrm{mg}_{\mathrm{mL}} \mathrm{mL}^{-1}$ solution of eluent. Under these conditions, the faster running component and slower running component were eluted at 20.2 min (minor) and 22.2 min (major) respectively.

	Reten. Time [min]	Area [mV.s]	Height [mV]	Area [\%]	Height [\%]
1	28.060	13171.925	263.717	5.3	9.5
2	30.027	237599.579	2507.506	94.7	90.5
	Total	250771.504	2771.223	100.0	100.0

Data for the product 11b:
59% yield; er $92: 8(S: R) ;[\alpha]_{\mathrm{D}}{ }^{24}+3.8\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right) ; \mathrm{R}_{f} 0.50$ [petrol-EtOAc (1:1)]; $\boldsymbol{v}_{\max }(f i l m) / \mathrm{cm}^{-1} 3325,2935,2930$, 2860,$1680 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.70-4.50(1 \mathrm{H}, \mathrm{br}), 3.75-3.50(1 \mathrm{H}, \mathrm{m}), 3.30-3.00(2 \mathrm{H}, \mathrm{m}), 1.75-1.15$ ($8 \mathrm{H}, \mathrm{m}$), $1.43(9 \mathrm{H}$, s), $1.00-0.82(5 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}\left(63 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 156.1,79.0,71.5,40.5,37.3,34.2,28.4,27.8,26.3,22.7$, 14.0 ; Found (ES): MNa^{+}, 268.1885. $\mathrm{C}_{13} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{Na}$ requires 268.1889; GCMS m/z (ES) 268 (100%, MNa^{+}).

Chiral chromatography:
The alcohol 11b was converted to its p-bromobenzoate ester derivative using p-bromobenzoyl chloride, $\mathrm{Et}_{3} \mathrm{~N}$ and 4dimethylaminopyridine in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The enantiomer ratio of the p-bromobenzoate ester derivative of the alcohol 11b was determined by chiral HPLC. Resolution between the enantiomers was achieved using a Gilson 300 series system fitted with a Chiralcel OD column ($250 \mathrm{~mm} \times 4.6 \mathrm{~mm}$ i.d.) as the stationary phase with a mixture of n-hexane : iso-propanol (97.5:2.5 v / v) as the mobile phase at a flow rate of $0.5 \mathrm{~mL} \cdot \mathrm{~min}^{-1}$; ambient temperature, detection by UV absorbance at 254 nm . Injection volume $25 \mu \mathrm{~L}$ of the sample prepared in a $2-4 \mathrm{mg}_{\mathrm{mL}} \mathrm{mL}^{-1}$ solution of eluent. Under these conditions, the faster running component and slower running component were eluted at 23.0 min (minor) and 25.4 min (major) respectively (together with a small impurity at 24.3 min).

	Reten. Time [min]	Area [mV.s]	Height [mV]	Area [\%]	Height [\%]
1	23.117	18469.487	373.578	8.0	11.9
2	25.457	212463.858	2758.834	92.0	88.1
	Total	230933.344	3132.412	100.0	100.0

Experimental procedure for the lithiation-substitution-rearrangement of $\mathbf{1 2}$:
To a solution of N-Boc-indoline $\mathbf{1 2}$ (1.0 equivalent) and (-)-sparteine (1.3 equivalents) in cumene (concentration 0.4 M) at $-78^{\circ} \mathrm{C}$ was added sec - BuLi (1.3 equivalents). After $5 \mathrm{~h}, \mathrm{BEt}_{3}$ (1.4 equivalents) was added. After 30 min , freshly distilled TMSOTf (1.0 equivalent) was added and the mixture was warmed to room temperature over a period of 3 h . The mixture was cooled to $0^{\circ} \mathrm{C}$ followed by addition of $\mathrm{NaOH}(2 \mathrm{~mL}, 2 \mathrm{M})$ and $\mathrm{H}_{2} \mathrm{O}_{2}(1 \mathrm{~mL}, 30 \%$ in water $)$ and the mixture was allowed to warm to room temperature over 16 h . The mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 20 \mathrm{ml})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and evaporated. The crude product was dissolved in a small amount of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and stirred for 30 min with a small amount of silica DAVISIL 40-63 (to cleave any trimethylsilyl ether product). Purification was carried out on silica with petrol-EtOAc (2:1) to give the alcohols 13.

Data for the product 13a:
67% yield; er $97: 3(S: R) ;[\alpha]_{\mathrm{D}}{ }^{24}-8.4\left(\mathrm{c} 1.8, \mathrm{CHCl}_{3}\right)$; m.p. $76-78{ }^{\circ} \mathrm{C} ; \mathrm{R}_{f} 0.50$ [petrol-EtOAc (4:1)]; $v_{\text {max }}(\mathrm{film}) / \mathrm{cm}^{-1} 3445$, $3280,2960,2925,2875,1690 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.99(1 \mathrm{H}, \mathrm{br}), 7.72-7.69(1 \mathrm{H}, \mathrm{br}), 7.30-6.90(3 \mathrm{H}, \mathrm{m}), 3.90-3.60(1 \mathrm{H}$, $\mathrm{m}), 2.80-2.62(2 \mathrm{H}, \mathrm{m}), 2.37(1 \mathrm{H}, \mathrm{br}), 1.70-1.40(2 \mathrm{H}, \mathrm{m}), 1.50(9 \mathrm{H}, \mathrm{s}), 0.97(3 \mathrm{H}, \mathrm{t}, J 7.5) ; \delta_{\mathrm{C}}\left(63 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 153.8,137.3$, $130.8,130.1,127.0,123.7,122.9,79.8,75.3,38.7,30.1,28.3,10.0$; Found (ES): MNa^{+}, 288.1582. $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{Na}^{2}$ requires 288.1576; GCMS m/z (ES) 288 (100%, MNa ${ }^{+}$); Found: C, 67.84 ; H, 9.02 ; N, $5.20 ; \mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NO}_{3}$ requires C, $67.90 ; \mathrm{H}, 8.74$; N, 5.28 .

Chiral chromatography:

The enantiomer ratio of the product 13a was determined by chiral HPLC. Resolution between the enantiomers was achieved using a Gilson 300 series system fitted with a Chiralcel OD column ($250 \mathrm{~mm} \times 4.6 \mathrm{~mm}$ i.d.) as the stationary phase with a mixture of n-hexane : iso-propanol ($97.5: 2.5 \mathrm{v} / \mathrm{v}$) as the mobile phase at a flow rate of $0.5 \mathrm{~mL} . \mathrm{min}^{-1}$; ambient temperature, detection by UV absorbance at 254 nm . Injection volume $25 \mu \mathrm{~L}$ of the sample prepared in a $2-4 \mathrm{mg} . \mathrm{mL}^{-1}$ solution of eluent. Under these conditions, the faster running component and slower running component were eluted at 28.2 \min (major) and 47.5 min (minor) respectively (together with a small impurity at 31.5 min).

	Reten. Time [min]	Area [mV.s]	Height [mV]	Area [\%]	Height [\%]
1	28.187	45565.659	646.119	96.9	97.3
2	47.463	1456.652	17.704	3.1	2.7
	Total	47022.312	663.823	100.0	100.0

Data for the product 13b:
64% yield; er $96: 4(S: R) ;[\alpha]_{\mathrm{D}}{ }^{24}-10.4\left(\mathrm{c} 2.0, \mathrm{CHCl}_{3}\right) ;$ m.p. $86-88^{\circ} \mathrm{C} ; \mathrm{R}_{f} 0.50$ [petrol-EtOAc (4:1)]; $v_{\max }($ film $) / \mathrm{cm}^{-1} 3420$, $3255,2985,2925,2860,1685,1590 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.10-7.90(1 \mathrm{H}, \mathrm{br}), 7.80-7.60(1 \mathrm{H}, \mathrm{br}), 7.30-6.96(3 \mathrm{H}, \mathrm{m})$, $4.00-3.70(1 \mathrm{H}, \mathrm{m}), 2.90-2.60(2 \mathrm{H}, \mathrm{m}), 2.45-2.20(1 \mathrm{H}, \mathrm{br}), 1.70-1.20(6 \mathrm{H}, \mathrm{m}), 1.50(9 \mathrm{H}, \mathrm{s}), 1.00-0.80(3 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}(63 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 153.8,137.4,130.8,130.1,127.0,123.7,122.8,79.8,73.9,39.2,37.0,28.3,27.9,22.6,14.0$; Found (ES): MNa ${ }^{+}$, 316.1894. $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{Na}$ requires 316.1889 ; GCMS m / z (ES) 316 (100%, MNa^{+}); Found: C, 69.65; H, 9.30; N, 4.65; $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{NO}_{3}$ requires C, 69.59; H, 9.28; N, 4.77.

Chiral chromatography:
The enantiomer ratio of the product 13b was determined by chiral HPLC. Resolution between the enantiomers was achieved using a Gilson 300 series system fitted with a Chiralcel OD column ($250 \mathrm{~mm} \times 4.6 \mathrm{~mm}$ i.d.) as the stationary phase with a mixture of n-hexane : iso-propanol ($97.5: 2.5 \mathrm{v} / \mathrm{v}$) as the mobile phase at a flow rate of $0.5 \mathrm{~mL} \cdot \mathrm{~min}^{-1}$; ambient temperature, detection by UV absorbance at 254 nm . Injection volume $25 \mu \mathrm{~L}$ of the sample prepared in a $2-4 \mathrm{mg} . \mathrm{mL}^{-1}$ solution of eluent. Under these conditions, the faster running component and slower running component were eluted at 22.8 \min (major) and 33.0 min (minor) respectively.

	Reten. Time [min]	Area [mV.s]	Height [mV]	Area [\%]	Height [\%]
1	22.843	71542.666	1327.726	96.5	96.9
2	33.033	2619.154	42.129	3.5	3.1
	Total	74161.821	1369.855	100.0	100.0

Crystallographic data for compound 13b:

Crystal data for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O} ; \mathrm{M}=250.29$. Crystallises from dichloromethane as colourless blocks; crystal dimensions 0.30 x 0.21 x 0.16 mm . Monoclinic, $a=7.0720(10), b=10.2888(13), c=11.8871(17) \AA, \beta=90.800^{\circ}(7), U=864.8(2) \AA^{3}, Z=2$, $D_{c}=1.127 \mathrm{Mg} / \mathrm{m}^{3}$, space group $\mathrm{P} 2_{1}\left(C_{2}{ }^{2} \mathrm{No} .4\right)$, Mo-K K_{α} radiation $(\bar{\lambda}=0.71073 \AA), \mu\left(\mathrm{Mo}-\mathrm{K}_{\alpha}\right)=0.076 \mathrm{~mm}^{-1}, \mathrm{~F}(000)=320$.

Data collected were measured on a Bruker Smart CCD area detector with Oxford Cryosystems low temperature system. Cell parameters were refined from the setting angles of 9281 reflections (θ range $1.71<27.49^{\circ}$).

Reflections were measured from a hemisphere of data collected of frames each covering 0.3 degrees in omega. Of the 24577 reflections measured, all of which were corrected for Lorentz and polarisation effects and for absorption by semi empirical methods based on symmetry-equivalent and repeated reflections (minimum and maximum transmission coefficients 0.9775 and 0.9879) 2072 independent reflections exceeded the significance level $\mid \mathrm{FF} / \sigma(\mathrm{IFI})>4.0$. The structure was solved by direct methods and refined by full matrix least squares methods on F^{2}. Hydrogen atoms were placed geometrically and refined with a riding model (including torsional freedom for methyl groups) and with $\mathrm{U}_{\text {iso }}$ constrained to be 1.2 (1.5 for methyl groups) times U_{eq} of the carrier atom. Refinement converged at a final $\mathrm{R}=0.0270\left(\mathrm{wR}_{2}=0.0733\right.$, for all 2100 data, 196 parameters, mean and maximum $\delta / \sigma 0.000,0.000$) with allowance for the thermal anisotropy of all nonhydrogen atoms. Minimum and maximum final electron density -0.232 and $0.223 \mathrm{e} . \AA^{-3}$. A weighting scheme $\mathrm{w}=1 /\left[\sigma^{2}\left(\mathrm{Fo}^{2}\right)\right.$ $\left.+(0.0488 * \mathrm{P})^{2}+0.1184 * \mathrm{P}\right]$ where $\mathrm{P}=\left(\mathrm{Fo}^{2}+2 * \mathrm{Fc}^{2}\right) / 3$ was used in the latter stages of refinement. Complex scattering factors were taken from the program package SHELXTL.

Detailed results are deposited at the Cambridge Crystallographic Data Centre. Structure Number CCDC-646310.

Crystal data for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{Br}_{2} \mathrm{NO}_{3} ; \mathrm{M}=$ 531.24. Crystallises from dichloromethane-petrol as colourless blocks; crystal dimensions $0.2 \times 0.03 \times 0.02 \mathrm{~mm}$. Monoclinic, $a=12.9163(5), b=4.9093(2), c=16.8768(6) \AA, \mathrm{b}=96.978^{\circ}(2)$, $U=$ $1062.23(7) \AA^{3}, Z=2, D_{c}=1.661 \mathrm{Mg} / \mathrm{m}^{3}$, space group $\mathrm{P} 2_{1}\left(C_{2}^{2} \operatorname{No.4}\right)$, Mo-K K_{α} radiation $(\bar{\lambda}=0.71073 \AA), \mu\left(\mathrm{Mo}-\mathrm{K}_{\alpha}\right)=1.661$ $\mathrm{mm}^{-1}, \mathrm{~F}(000)=532$.

Data collected were measured on a Bruker-Nonius APEX II CCD camera on k-goniostat with Oxford Cryosystems low temperature system. Cell parameters were refined from the setting angles of 11701 reflections (θ range $3.06<27.50^{\circ}$).

Reflections were measured from a hemisphere of data collected of frames each covering 2.0 degrees in omega. Of the 11793 reflections measured, all of which were corrected for Lorentz and polarisation effects and for absorption by semi empirical methods based on symmetry-equivalent and repeated reflections (minimum and maximum transmission coefficients 0.5137 and 0.9271) 2388 independent reflections exceeded the significance level $|\mathrm{F}| / \sigma(|\mathrm{F}|)>4.0$. The structure was solved by direct methods and refined by full matrix least squares methods on F^{2}. Hydrogen atoms were placed geometrically and refined with a riding model (including torsional freedom for methyl groups) and with $\mathrm{U}_{\text {iso }}$ constrained to be 1.2 (1.5 for methyl groups) times U_{eq} of the carrier atom. Refinement converged at a final $\mathrm{R}=0.0440\left(\mathrm{wR}_{2}=0.0900\right.$, for all 2714 data, 273 parameters, mean and maximum $\delta / \sigma 0.000,0.000$) with allowance for the thermal anisotropy of all nonhydrogen atoms. Minimum and maximum final electron density -0.603 and $0.571 \mathrm{e} . \AA^{-3}$. A weighting scheme $\mathrm{w}=1 /\left[\sigma^{2}\left(\mathrm{Fo}^{2}\right)\right.$ $\left.+(0.0000 * \mathrm{P})^{2}+2.0845 * \mathrm{P}\right]$ where $\mathrm{P}=\left(\mathrm{Fo}^{2}+2 * \mathrm{Fc}^{2}\right) / 3$ was used in the latter stages of refinement. Complex scattering factors were taken from the program package SHELXTL.

Detailed results are deposited at the Cambridge Crystallographic Data Centre. Structure Number CCDC-664981.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra for products 11a, 11b, 13a and 13b:

13a

