Oxazaborolidinone-Catalyzed Enantioselective Diels-Alder Reaction of Acyclic α, β-Unsaturated Ketones

Ram Shanker Singh, Shinya Adachi, Fumi Tanaka, Toyonao Yamauchi, Chieko Inui, and Toshiro Harada*

Department of Chemistry and Materials Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.

1. General S-2
2. Preparation of OXB Ligand S-2
3. Diels-Alder Adducts 7a-x S-3
4. General. All reactions were performed under an inert atmosphere of dry Ar or N_{2}. Dichloromethane $\left(\mathrm{CaH}_{2}\right), \mathrm{Et}_{2} \mathrm{O}$, and toluene (Na-benzophenone) were freshly distilled from the indicated drying agents. ${ }^{1} \mathrm{H}$ NMR spectra and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on $500 \mathrm{MHz},{ }^{1} \mathrm{H}(126$ $\mathrm{MHz},{ }^{13} \mathrm{C}$) spectrometers. Spectra are referenced to residual chloroform ($\delta 7.26 \mathrm{ppm},{ }^{1} \mathrm{H} ; \delta 77.0 \mathrm{ppm}$, ${ }^{13} \mathrm{C}$).

The following ligands were prepared by a literature method: ${ }^{1} O-p$-biphenoyl- N-tosyl-(L)- allothreonine, O-2-naphthoyl- N-tosyl-(L)-allo-threonine, O-benzoyl- N-tosyl-(L)-allo-threonine, and O-p-anisoyl-N-tosyl-(L)-allo-threonine.

2. Preparation of OXB Ligand.

11
O-(3,5-Di-t-butylbenzoyl)-N-tosyl-(L)-allo-threonine Benzyl Ester (11): Prepared by esterification of N-tosyl-(L)-allo-threonine benzyl ester with 3,5 -di- t-butylbenzoyl chloride in 87% yield accoriding to the procedure reported previously; ${ }^{1}{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.34(18 \mathrm{H}, \mathrm{s}), 1.36(3 \mathrm{H}, \mathrm{d}, J=6.5$ $\mathrm{Hz}), 2.41(3 \mathrm{H}, \mathrm{s}), 4.28(1 \mathrm{H}, \mathrm{dd}, J=4.5$ and 9.6 Hz$), 4.95(2 \mathrm{H}, \mathrm{m}), 5.28(1 \mathrm{H}, \mathrm{dq}, J=4.5$ and 6.5 Hz$)$, $5.41(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=9.6 \mathrm{~Hz}), 7.13(2 \mathrm{H}, \mathrm{m}), 7.18(2 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 7.25-7.32(3 \mathrm{H}, \mathrm{m}), 7.63(1 \mathrm{H}, \mathrm{t}, J=$ $1.9 \mathrm{~Hz}), 7.69(2 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 7.86(2 \mathrm{H}, \mathrm{d}, J=1.9 \mathrm{~Hz})$.

12
\boldsymbol{O}-(3,5-Di-t-butylbenzoyl)- N -tosyl-(L)-allo-threonine (12): Prepared by hydrogenolysis ($10 \% \mathrm{Pd} / \mathrm{C}$) of the benzyl ester in 100% yield; mp $73-79{ }^{\circ} \mathrm{C}$ (recrystallized from benzene); ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.33(18 \mathrm{H}, \mathrm{s}), 1.41(3 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}), 2.36(3 \mathrm{H}, \mathrm{s}), 4.32(1 \mathrm{H}, \mathrm{dd}, J=4.0$ and 9.4 Hz$), 5.28$ $(1 \mathrm{H}, \mathrm{dq}, J=4.0$ and 6.5 Hz$), 5.42(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=9.4 \mathrm{~Hz}), 7.22(2 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 7.64(1 \mathrm{H}, \mathrm{t}, J=1.9$ $\mathrm{Hz}), 7.71(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 7.86(2 \mathrm{H}, \mathrm{d}, J=1.9 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 15.8,21.4,31.3$, $34.9,58.8,70.9,124.0,127.0,127.6,128.7,129.7,136.5,143.9,151.1,166.4$. Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{35} \mathrm{NO}_{6} \mathrm{~S}: \mathrm{C}, 63.78$; H, 7.21. Found: C, 63.64; H, 7.74.

[^0]
3. Diels-Alder Adducts 7a-x.

endo-7a
1-[(1S,2S,4S)-Bicyclo[2.2.1]hept-5-en-2-yl]propan-1-one (7a) ${ }^{2}$: Typical Procedure for Asymmetric Diels-Alder Reaction. To a solution of O-(p-biphenoyl)- N-tosyl-(L)-allo-threonine ${ }^{1}$ ($140 \mathrm{mg}, 0.309$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.5 \mathrm{~mL})$ under argon atmosphere at room temperature was added dichlorophenylborane ($40 \mu \mathrm{~L}, 0.31 \mathrm{mmol}$). After being stirred for 30 min , the mixture was concentrated in vacuo. To a solution of the resulting OXB 3a in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.7 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ were added 2,6 -di-tertbutylpyridine ($17 \mu \mathrm{~L}, 0.77 \mathrm{mmol}$), ethyl vinyl ketone ($260 \mathrm{mg}, 3.09 \mathrm{mmol}$), and 1,3-cyclopentadiene $(1.04 \mathrm{~mL}, 15.5 \mathrm{mmol})$. The resulting solution was stirred at $-78{ }^{\circ} \mathrm{C}$ for 24 h . The mixture was quenched by the addition of saturated aqueous NaHCO_{3} and filtered. The filtrate was extracted three times with ether, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo. The residue was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, gradient elution with $1-2 \%$ ethyl acetate in hexane) to give 408 mg (2.72 mmol , 88%) of the adduct 7a: $[\alpha]_{\mathrm{D}}{ }^{23}-104\left(c 1.1, \mathrm{CHCl}_{3}\right)(92 \% e e) . ~ L i t .{ }^{2}$ for the $(1 R, 2 R, 4 R)$-enantiomer; $[\alpha]_{\mathrm{D}}{ }^{23}+111\left(c 0.76, \mathrm{CHCl}_{3}\right)(97 \% e e)$. Endo-exo ratio was determined by GC analysis using a OV-1 column ($30 \mathrm{~m}, 1.8 \mathrm{~kg} / \mathrm{cm}^{2}$, initial temperature $50^{\circ} \mathrm{C}, 10^{\circ} \mathrm{C} / \mathrm{min}$ ramp to $320^{\circ} \mathrm{C}$); retention times: 6.5 \min (endo), 6.2 min (exo). Enantioselectivity was determined by GC analysis using a Chrompack Cp-Cyclodextrin- $\beta-236-\mathrm{M}-19$ column ($30 \mathrm{~m}, 1.8 \mathrm{~kg} / \mathrm{cm}^{2}$, initial temperature $50^{\circ} \mathrm{C}, 2^{\circ} \mathrm{C} / \mathrm{min}$ ramp to 200 ${ }^{\circ} \mathrm{C}$); retention times: 26.9 min (major), 26.7 min (minor).

endo-7b
1-[(1S,2S,3R,4S)-3-Phenylbicyclo[2.2.1]hept-5-en-2-yl]ethanone (7b). ${ }^{3}$ Purified by flash column chromatography (SiO_{2}, gradient elution with $4-5 \%$ ethyl acetate in hexane); mp 81-81.5 ${ }^{\circ} \mathrm{C}$ (recrystallized from ethyl acetate and hexane); $[\alpha]_{\mathrm{D}}{ }^{23}-95.4$ (c 1.0, $\left.\mathrm{CHCl}_{3}\right)(91 \% e e) ;{ }^{4}{ }^{1} \mathrm{H}$ NMR (500

[^1]$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.61(1 \mathrm{H}, \mathrm{qd}, J=1.7$ and 8.6 Hz$), 1.86(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=8.6 \mathrm{~Hz}), 2.15(3 \mathrm{H}, \mathrm{s}), 3.01(1 \mathrm{H}, \mathrm{br}$ s), $3.07(1 \mathrm{H}, \mathrm{dd}, J=3.6$ and 4.9 Hz$), 3.18(1 \mathrm{H}, \mathrm{dd}, J=1.3$ and 4.9 Hz$), 3.29(1 \mathrm{H}, \mathrm{br}), 6.02(1 \mathrm{H}, \mathrm{dd}, J=$ 2.7 and 5.6 Hz$), 6.40(1 \mathrm{H}, \mathrm{dd}, J=3.2$ and 5.6 Hz$), 7.18(1 \mathrm{H}, \mathrm{m}), 7.24-7.33(4 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR (125.8 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 29.1,45.3,45.5,47.5,48.5,61.3,126.0,127.5,128.5,133.1,139.4,144.4,208.1$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}: \mathrm{C}, 84.86 ; \mathrm{H}, 7.60$. Found: C, $85.11 ; \mathrm{H}, 7.92$. The endo adduct was obtained as a single diastereomer as determined by GC and ${ }^{1} \mathrm{H}$ NMR analysis ($>98: 2$). Enantioselectivity was determined by HPLC analysis using a Chiralcel OD column (9%-PrOH in hexane, $1 \mathrm{~mL} / \mathrm{min}$); retention times: 6.1 min (major), 7.5 min (minor). The absolute stereochemistry was assumed by analogy.

endo-7c
1-[(1S,2S,4S)-Bicyclo[2.2.1]hept-5-en-2-yl]ethanone ${ }^{5}$ (7c). Purified by flash column chromatography (SiO_{2}, gradient elution with $1-2 \%$ ethyl acetate in hexane); ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.34(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 1.45-1.63(2 \mathrm{H}, \mathrm{m}), 1.77(1 \mathrm{H}, \mathrm{ddd}, J=3.8,9.0$, and 11.5 Hz$), 2.15$ $(3 \mathrm{H}, \mathrm{s}), 2.92(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.03(1 \mathrm{H}, \mathrm{td}, J=3.7$ and 8.9 Hz$), 3.26(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 5.87(1 \mathrm{H}, \mathrm{m}), 6.17(1 \mathrm{H}, \mathrm{m})$; ${ }^{13} \mathrm{C}_{\mathrm{NMR}}\left(125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 27.4,29.2,42.6,45.8,49.9,52.3,131.2,137.8,209.0 ;[\alpha]_{\mathrm{D}}{ }^{23}-71.9(c$ 0.55 , ethanol) $(85 \% \mathrm{ee}) . \mathrm{Lit}^{2}{ }^{2}[\alpha]_{\mathrm{D}}{ }^{23}-93.6$ (c 1.23, ethanol). Lit. ${ }^{6}$ for the $(1 R, 2 R, 4 R)$-enantiomer, $[\alpha]_{\mathrm{D}}{ }^{23}$ +65.6 ($c 4.36$, ethanol) $(81 \%$ ee $)$. The endo adduct was obtained as a single diastereomer as determined by GC and ${ }^{1} \mathrm{H}$ NMR analysis (>98:2). Enantioselectivity was determined by GC analysis using a Chrompack Cp-Cyclodextrin- β-236-M-19 column ($30 \mathrm{~m}, 1.8 \mathrm{~kg} / \mathrm{cm}^{2}$, initial temperature $50{ }^{\circ} \mathrm{C}, 2$ ${ }^{\circ} \mathrm{C} / \mathrm{min}$ ramp to $200^{\circ} \mathrm{C}$); retention times: 21.6 min (major), 21.3 min (minor).

endo-7d
1-[(1S, 2S, 3R, 4S)-3-Methylbicyclo[2.2.1]hept-5-en-2-yl]ethanone (7d). ${ }^{7}$ Purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, gradient elution with $3-5 \%$ ethyl acetate in hexane); $[\alpha]_{\mathrm{D}}{ }^{23}-106\left(c 1.07, \mathrm{CHCl}_{3}\right)$ $(87 \% \mathrm{ee})$. Lit. 6 for the $(1 R, 2 R, 3 S, 4 R)$-enantiomer; $+70.4\left(c=1.0, \mathrm{CHCl}_{3}\right)(61 \%$ ee $)$. Endo-exo ratio

[^2]was determined by GC analysis using a OV-1 column ($30 \mathrm{~m}, 1.8 \mathrm{~kg} / \mathrm{cm}^{2}$, initial temperature $50{ }^{\circ} \mathrm{C}, 10$ ${ }^{\circ} \mathrm{C} / \mathrm{min}$ ramp to $320{ }^{\circ} \mathrm{C}$); retention times: 5.9 min (endo), 5.6 min (exo). Enantioselectivity was determined by GC analysis using a Chrompack Cp-Cyclodextrin- $\beta-236-\mathrm{M}-19$ column ($30 \mathrm{~m}, 1.8 \mathrm{~kg} / \mathrm{cm}^{2}$, initial temperature $50^{\circ} \mathrm{C}, 2^{\circ} \mathrm{C} / \mathrm{min}$ ramp to $200^{\circ} \mathrm{C}$); retention times: 23.3 min (major), 24.4 min (minor).

endo-7e
1-[(1S,2S,3R,4S)-3-Methylbicyclo[2.2.1]hept-5-en-2-yl]propan-1-one (7e). ${ }^{6}$ Purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, gradient elution with $3-5 \%$ ethyl acetate in hexane); $[\alpha]_{\mathrm{D}}{ }^{23}-111$ (c 1.0, $\left.\mathrm{CHCl}_{3}\right)(94 \% e e)$. Lit. ${ }^{6}$ for the $(1 R, 2 R, 3 R, 4 R)$-enantiomer; $[\alpha]_{\mathrm{D}}{ }^{23}+101.7\left(c 1.0, \mathrm{CHCl}_{3}\right)(90 \% e e)$. Endo-exo ratio was determined by GC analysis using a $\mathrm{OV}-1$ column ($30 \mathrm{~m}, 1.8 \mathrm{~kg} / \mathrm{cm}^{2}$, initial temperature $50{ }^{\circ} \mathrm{C}, 10^{\circ} \mathrm{C} / \mathrm{min}$ ramp to $320{ }^{\circ} \mathrm{C}$), retention times: 7.2 min (endo), 7.0 min (exo). Enantioselectivity was determined by GC analysis using a Chrompack Cp-Cyclodextrin- β-236-M-19 column ($30 \mathrm{~m}, 1.8 \mathrm{~kg} / \mathrm{cm}^{2}$, initial temperature $50^{\circ} \mathrm{C}, 2{ }^{\circ} \mathrm{C} / \mathrm{min}$ ramp to $200^{\circ} \mathrm{C}$); retention times: 27.7 \min (major), $28.9 \min$ (minor).

endo-7f
1-[(1S,2S,3R,4S)-3-(4-Fluorophenyl)bicyclo[2.2.1]hept-5-en-2-yl]ethanone (7f). Purified by flash column chromatography (SiO_{2}, gradient elution with $4-10 \%$ ethyl acetate in hexane); $\mathrm{mp} .66 .5-67{ }^{\circ} \mathrm{C}$ (recrystallized from hexane and ethyl acetate); $[\alpha]_{\mathrm{D}}{ }^{23}-73.3$ (c 1.0, CHCl_{3}) ($89 \% e e$) ${ }^{8}{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.62(1 \mathrm{H}, \mathrm{brd}, J=8.6 \mathrm{~Hz}), 1.81(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=8.6 \mathrm{~Hz}), 2.15(3 \mathrm{H}, \mathrm{s}), 2.96-2.99(2 \mathrm{H}, \mathrm{m})$, $3.16(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=4.7 \mathrm{~Hz}), 3.33(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 6.01(1 \mathrm{H}, \mathrm{dd}, J=2.7$ and 5.6 Hz$), 6.38(1 \mathrm{H}, \mathrm{dd}, J=3.3$ and $5.6 \mathrm{~Hz}), 6.94-6.98(2 \mathrm{H}, \mathrm{m}), 7.18-7.22(2 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 29.0,44.4,46.5,47.5$, $48.4,61.4,115.1(\mathrm{~d}, J=21.0 \mathrm{~Hz}), 128.7,128.8,139.4,140.1(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 161.2(\mathrm{~d}, J=244 \mathrm{~Hz})$, 207.8. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{OF}$: C, 78.23 ; H, 6.57. Found: C, 77.82 ; $\mathrm{H}, 6.78$. The endo adduct was obtained as a single diastereomer as ${ }^{1} \mathrm{H}$ NMR analysis ($>98: 2$). Enantioselectivity was determined by

[^3]HPLC analysis using a Chiralcel OJ column (hexane, $1 \mathrm{~mL} / \mathrm{min}$); retention times: 63.8 min (major), 54.9 min (minor). The absolute stereochemistry was assumed by analogy.

endo-7g
1-[(1S,2S,3R,4S)-3-(4-Chlorophenyl)bicyclo[2.2.1]hept-5-en-2-yl]ethanone (7g). Purified by flash column chromatography (SiO_{2}, gradient elution with 4-8\% ethyl acetate in hexane); $\mathrm{mp} 91.5-92.5^{\circ} \mathrm{C}$ (recrystallized from ether); $[\alpha]_{\mathrm{D}}{ }^{23}-73.4\left(c 1.0, \mathrm{CHCl}_{3}\right)(90 \% e e) ;{ }^{9}{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.62$ $(1 \mathrm{H}, \mathrm{qd}, J=1.7$ and 8.6 Hz$), 1.80(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=8.6 \mathrm{~Hz}), 2.16(3 \mathrm{H}, \mathrm{s}), 2.96-3.00(2 \mathrm{H}, \mathrm{m}), 3.17(1 \mathrm{H}, \mathrm{dd}$, $J=1.2$ and 4.8 Hz$), 3.34(1 \mathrm{H}, \mathrm{br}), 6.02(1 \mathrm{H}, \mathrm{dd}, J=2.7$ and 5.7 Hz$), 6.39(1 \mathrm{H}, \mathrm{dd}, J=3.2$ and 5.7 Hz$)$, $7.18(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 7.25(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 29.0,44.5,46.5$, 47.6, 48.3, 61.3, 128.5, 128.8, 131.6, 133.1, 139.4, 143.0, 207.7. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{OCl}$: C, 73.02 ; H, 6.13. Found: C, 73.24; H, 6.33. The endo adduct was obtained as a single diastereomer as ${ }^{1} \mathrm{H}$ NMR analysis (>98:2). Enantioselectivity was determined by HPLC analysis using a Chiralcel OJ column ($0.3 \% i-\mathrm{PrOH}$ in hexane, $1 \mathrm{~mL} / \mathrm{min}$); retention times: 36.9 min (major), 29.9 min (minor).

The absolute stereochemistry was determined by X-ray crystallographic analysis. Single crystals suitable for X-ray analysis were obtained by recrystallization from ether as colorless needles. Crystal data: $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{OCl}, M=246.74$, orthorhombic, space group $P 2_{1} 2_{1} 2_{1}, a=8.0660(9) \AA, b=28.263(2) \AA, c$ $=5.5141(7) \AA, V=1257.0(2) \AA^{3}, Z=4$. Of the 2412 reflections that were collected, 1617 were unique. The structure was solved by direct methods and expanded using Fourier techniques. The anisotropic and isotropic temperature factors were applied to the non-hydrogen atoms and the hydrogen atoms, respectively. The final cycle of full-matrix least-squares refinement was based on 1617 observed reflections ($I>2.00 \sigma(I)$) and converged with unweighted and weighted agreement factors of $R=0.040$ and $R_{\mathrm{w}}=0.102$, respectively, for solution using the $1 S, 2 S, 3 R, 4 S$ enantiomer model, Flack parameter $=-$ 0.007 (19).

[^4]
endo-7h
1-[(1S,2S,3R,4S)-3-(3-Chlorophenyl)bicyclo[2.2.1]hept-5-en-2-yl]ethanone (7h). Purified by flash column chromatography (SiO_{2}, gradient elution with 3-6\% ethyl acetate in hexane); $[\alpha]_{\mathrm{D}}{ }^{23}-45.7$ (c 1.02, CHCl_{3}) $\left(91 \%\right.$ ee); ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.63(1 \mathrm{H}, \mathrm{qd}, J=1.6$ and 8.7 Hz$), 1.82(1 \mathrm{H}, \mathrm{d}, J=8.7$ $\mathrm{Hz}), 2.17(3 \mathrm{H}, \mathrm{s}), 2.99-3.02(2 \mathrm{H}, \mathrm{m}), 3.17(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=4.7 \mathrm{~Hz}), 3.35(1 \mathrm{H}, \mathrm{br}), 6.02(1 \mathrm{H}, \mathrm{dd}, J=2.7$ and 5.6 Hz$), 6.39(1 \mathrm{H}, \mathrm{dd}, J=3.2$ and 5.6 Hz$), 7.12-7.28(4 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 29.1, 44.7, 46.6, 47.6, 48.2, 61.2, 125.8, 126.1, 127.5, 129.7, 133.1, 134.3, 139.3, 146.6, 207.6; MS (EI) m / z (relative intensity) $246\left(\mathrm{M}^{+}, 2\right), 215(89), 181$ (100); HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{OCl}, 246.0811$, found: 246.0801. The endo adduct was obtained as a single diastereomer by the ${ }^{1} \mathrm{H}$ NMR analysis ($>98: 2$). Enantioselectivity was determined by HPLC analysis using a Chiralcel OD column ($0.3 \% i$-PrOH in hexane, $1 \mathrm{~mL} / \mathrm{min}$); retention times: 15.5 min (major), 25.6 min (minor). The absolute stereochemistry was assumed by analogy.

endo-7i
1-[(1S,2S,3R,4S)-3-(4-Trifuloromethylphenyl)bicyclo[2.2.1]hept-5-en-2-yl]ethanone (7i). Purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, gradient elution with 4-8\% ethyl acetate in hexane); mp 63-64 ${ }^{\circ} \mathrm{C}$ (recrystallized from ether); $[\alpha]_{\mathrm{D}}{ }^{23}-62.1\left(c 1.0, \mathrm{CHCl}_{3}\right)(88 \% e e) ;{ }^{10} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $1.66(1 \mathrm{H}, \mathrm{qd}, J=1.6$ and 8.6 Hz$), 1.82(1 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 2.17(3 \mathrm{H}, \mathrm{s}), 3.01(1 \mathrm{H}, \mathrm{dd}, J=3.8$ and 4.7 $\mathrm{Hz}), 3.05(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.27(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=4.7 \mathrm{~Hz}), 3.38(1 \mathrm{H}, \mathrm{br}), 6.03(1 \mathrm{H}, \mathrm{dd}, J=2.7$ and 5.6 Hz$), 6.41$ $(1 \mathrm{H}, \mathrm{dd}, J=3.3$ and 5.6 Hz$), 7.36(2 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 7.53(2 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (125.8 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 29.1,44.8,46.6,47.6,47.9,61.2,124.2(\mathrm{q}, J=272 \mathrm{~Hz}), 125.3(\mathrm{q}, J=3.8 \mathrm{~Hz}), 127.7,128.1(\mathrm{q}$, $J=32 \mathrm{~Hz}$), 133.1 139.3, 148.7, 207.6. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{OF}_{3}$: C, 68.56; H, 5.39. Found: C, 68.66; $\mathrm{H}, 5.51$. The endo adduct was obtained as a single diastereomer as ${ }^{1} \mathrm{H}$ NMR analysis ($>98: 2$). Enantioselectivity was determined by HPLC analysis using a Chiralcel OJ column $(0.3 \% i$-PrOH in

[^5]hexane, $1 \mathrm{~mL} / \mathrm{min}$); retention times: 35.8 min (major), 30.3 min (minor). The absolute stereochemistry was assumed by analogy.

endo-7j
1-[(1S,2S,3R,4S)-3-(3-Trifluoromethylphenyl)bicyclo[2.2.1]hept-5-en-2-yl]ethanone
Purified by flash column chromatography $\left(\mathrm{SiO}_{2}, 5 \%\right.$ ethyl acetate in hexane); $[\alpha]_{\mathrm{D}}{ }^{23}-70.0$ (c 1.00, CHCl_{3}) $\left(93 \%\right.$ ee); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.66(1 \mathrm{H}, \mathrm{qd}, J=1.6$ and 8.7 Hz$), 1.83(1 \mathrm{H}, \mathrm{d}, J=8.7$ $\mathrm{Hz}), 2.18(3 \mathrm{H}, \mathrm{s}), 3.01-3.06(2 \mathrm{H}, \mathrm{m}), 3.27(1 \mathrm{H}, \mathrm{d}, J=3.8 \mathrm{~Hz}), 3.38(1 \mathrm{H}, \mathrm{br}), 6.04(1 \mathrm{H}, \mathrm{dd}, J=2.7$ and $5.7 \mathrm{~Hz}), 6.41(1 \mathrm{H}, \mathrm{dd}, J=3.2$ and 5.6 Hz$), 7.35-7.49(4 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\left(125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 29.0$, $44.8,46.6,47.6,48.2,61.2,122.8(\mathrm{q}, ~ J=3.8 \mathrm{~Hz}), 122.8(\mathrm{q}, J=3.9 \mathrm{~Hz}), 124.2(\mathrm{q}, J=272 \mathrm{~Hz}), 128.9$, $130.8\left(\mathrm{q}, J=32 \mathrm{~Hz}\right.$), 131.3, 133.1, 139.3, 145.5, 207.4; MS (EI) m / z (relative intensity) $261\left(\mathrm{M}^{+}, 2\right)$, 261 (8), 215 (100); HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{OF}_{3}, 280.1075$, found: 280.1094. The endo adduct was obtained as a single diastereomer by the ${ }^{1} \mathrm{H}$ NMR analysis ($>98: 2$). Enantioselectivity was determined by GC analysis using a Chrompack Cp-Cyclodextrin- β-236-M-19 column ($30 \mathrm{~m}, 1.8 \mathrm{~kg} / \mathrm{cm}^{2}$, temperature at $140{ }^{\circ} \mathrm{C}$); retention times: 30.4 min (major), 32.1 min (minor). The absolute stereochemistry was assumed by analogy.

endo-7k
1-[(1S,2S,3R,4S)-3-(4-Methylphenyl)bicyclo[2.2.1]hept-5-en-2-yl]ethanone (7k). Purified by flash column chromatography (SiO_{2}, gradient elution with 4-8\% ethyl acetate in hexane); mp 33-34 ${ }^{\circ} \mathrm{C}$ (recrystallized from ether); $[\alpha]_{\mathrm{D}}{ }^{23}-93.0\left(c 1.0, \mathrm{CHCl}_{3}\right)(88 \% e e) ;{ }^{11} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.60$ $(1 \mathrm{H}, \mathrm{qd}, J=1.7$ and 8.5 Hz$), 1.86(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=8.5 \mathrm{~Hz}), 2.15(3 \mathrm{H}, \mathrm{s}), 2.33(3 \mathrm{H}, \mathrm{s}), 2.98(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.06$ $(1 \mathrm{H}, \mathrm{dd}, J=3.5$ and 4.7 Hz$), 3.15(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=4.5 \mathrm{~Hz}), 3.33(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 6.03(1 \mathrm{H}, \mathrm{dd}, J=2.7$ and 5.6 $\mathrm{Hz}), 6.40(1 \mathrm{H}, \mathrm{dd}, J=3.2$ and 5.6 Hz$), 7.12(2 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 7.17(2 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (125.8 MHz, CDCl_{3}) $\delta 20.9,29.2,45.0,46.4,47.5,48.8,61.1,127.4,129.2,133.1,135.5,139.4,141.3$,

[^6]208.2. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}: \mathrm{C}, 84.91 ; \mathrm{H}, 8.02$. Found: C, 84.86; H, 8.13. The endo adduct was obtained as a single diastereomer as ${ }^{1} \mathrm{H}$ NMR analysis ($>98: 2$). Enantioselectivity was determined by HPLC analysis using a Chiralcel OJ column ($0.3 \% i-\mathrm{PrOH}$ in hexane, $1 \mathrm{~mL} / \mathrm{min}$); retention times: 45.2 \min (major), 32.4 min (minor). The absolute stereochemistry was assumed by analogy.

endo-71
1-[(1S,2S,3R,4S)-3-(4-Methoxyphenyl)bicyclo[2.2.1]hept-5-en-2-yl]ethanone (71). Purified by flash column chromatography $\left(\mathrm{SiO}_{2}, 4 \%\right.$ ethyl acetate in hexane); mp $125-126^{\circ} \mathrm{C}$ (recrystallized from ether); $[\alpha]_{\mathrm{D}}{ }^{23}-95.5\left(c \quad 1.0, \mathrm{CHCl}_{3}\right)(91 \% e e) ;{ }^{12}{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.60(1 \mathrm{H}, \mathrm{qd}, J=1.7$ and $8.6 \mathrm{~Hz}), 1.84(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=8.6 \mathrm{~Hz}), 2.14(3 \mathrm{H}, \mathrm{s}), 2.94(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.02(1 \mathrm{H}, \mathrm{dd}, J=3.6$ and 4.8 Hz$), 3.12$ $(1 \mathrm{H}, \mathrm{d}, J=4.7 \mathrm{~Hz}), 3.31(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.78(3 \mathrm{H}, \mathrm{s}), 6.02(1 \mathrm{H}, \mathrm{dd}, J=2.7$ and 5.6 Hz$), 6.38(1 \mathrm{H}, \mathrm{dd}, J=3.2$ and 5.6 Hz$), 6.85(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 7.19(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 29.1$, 44.6, 46.4, 47.5, 48.8, 55.2, 61.2, 113.9, 128.4, 133.1, 136.4, 139.4, 157.8, 208.2. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{2}: \mathrm{C}, 79.31 ; \mathrm{H}, 7.49$. Found: C, 79.38; H, 7.58. The endo adduct was obtained as a single diastereomer as ${ }^{1} \mathrm{H}$ NMR analysis (>98:2). Enantioselectivity was determined by HPLC analysis using a Chiralcel OD column (9% - PrOH in hexane, $1 \mathrm{~mL} / \mathrm{min}$); retention times: 13.0 min (major), 15.3 min (minor). The absolute stereochemistry was assumed by analogy.

endo-7m
1-[(1S,2S,3R,4S)-3-Phenylbicyclo[2.2.1]hept-5-en-2-yl]propan-1-one (7m). Purified by flash column chromatography (SiO_{2}, gradient elution with 4-5\% ethyl acetate in hexane); mp $55-55.5^{\circ} \mathrm{C}$ (recrystallized from ether); $[\alpha]_{\mathrm{D}}{ }^{23}-92.7\left(c 1.0, \mathrm{CHCl}_{3}\right)(90 \% e e) ;{ }^{131} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.95$ $(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}), 1.52(1 \mathrm{H}, \mathrm{qd}, J=1.7$ and 8.6 Hz$), 1.77(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=8.6 \mathrm{~Hz}), 2.30-2.44(2 \mathrm{H}, \mathrm{m})$, $2.92(1 \mathrm{H}, \mathrm{br}$ s), $2.98(1 \mathrm{H}, \mathrm{dd}, J=3.5$ and 5.0 Hz$), 3.12(1 \mathrm{H}, \mathrm{dd}, J=1.4$ and 5.0 Hz$), 3.23(1 \mathrm{H}, \mathrm{br} \mathrm{s})$, $5.92(1 \mathrm{H}, \mathrm{dd}, J=2.8$ and 5.6 Hz$), 6.31(1 \mathrm{H}, \mathrm{dd}, J=3.2$ and 5.6 Hz$), 7.10(1 \mathrm{H}, \mathrm{m}), 7.17-7.23(4 \mathrm{H}, \mathrm{m})$,

[^7]minor exo isomer resonated at 5.87 and $6.28 ;{ }^{13} \mathrm{C}$ NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.8,34.8,45.4,45.5$, $47.5,48.5,60.0,152.9,127.4,128.4,133.2,139.2,144.5,210.6$; FTIR (neat film) 1697, 1134, 1107, 1028, 743, 729, $698 \mathrm{~cm}^{-1}$; MS (EI) m / z (relative intensity) $226\left(\mathrm{M}^{+}, 2\right), 161$ (100), 131 (63); HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}$ 226.1358, found: 226.1351. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}: \mathrm{C}, 84.91 ; \mathrm{H}, 8.02$. Found: C, 84.90; H, 8.07. Endo-exo ratio was determined by ${ }^{1} \mathrm{H}$ NMR analysis. Enantioselectivity was determined by HPLC analysis using a Chiralcel OD column ($7 \% i$-PrOH in hexane, $1 \mathrm{~mL} / \mathrm{min}$); retention times: 5.5 min (major), 5.1 min (minor). The absolute stereochemistry was assumed by analogy.

2-Methyl-1-[(1S,2S,3R,4S)-3-phenylbicyclo[2.2.1]hept-5-en-2-yl]propan-1-one (7n). Purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, gradient elution with $4-5 \%$ ethyl acetate in hexane); $[\alpha]_{\mathrm{D}}{ }^{23}-64.7$ (c 1.0, CHCl_{3}) (61% ee); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.04(3 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}$), $1.06(3 \mathrm{H}, \mathrm{d}, J=7.0$ $\mathrm{Hz}), 1.60(1 \mathrm{H}, \mathrm{qd}, J=1.6$ and 8.6 Hz$), 1.86(1 \mathrm{H}, \operatorname{br} \mathrm{d}, J=8.6 \mathrm{~Hz}), 2.74(1 \mathrm{H}$, septet, $J=6.8 \mathrm{~Hz}), 3.02$ $(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.18(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=c a .5 \mathrm{~Hz}), 3.21(1 \mathrm{H}, \mathrm{dd}, J=3.3$ and 5.0 Hz$), 3.29(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 5.95(1 \mathrm{H}, \mathrm{dd}$, $J=2.7$ and 5.6 Hz$), 6.39(1 \mathrm{H}, \mathrm{dd}, J=3.2$ and 5.6 Hz$), 7.17(1 \mathrm{H}, \mathrm{m}), 7.21-7.32(4 \mathrm{H}, \mathrm{m})$, minor exo isomer resonated at 6.03 and $6.37 ;{ }^{13} \mathrm{C}$ NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 18.9,19.1,39.4,45.5,46.8,47.7$, $48.4,58.4,125.8,127.3,128.4,133.2,139.0,144.6,214.1$; IR (neat film) $1700,1025,745,720,695 \mathrm{~cm}^{-}$ ${ }^{1}$; MS (EI) m / z (relative intensity) $226\left(\mathrm{M}^{+}, 2\right), 175$ (96), 131 (100); HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}$ 240.1514, found: 240.1504. Endo-exo ratio was determined by ${ }^{1} \mathrm{H}$ NMR analysis. Enantioselectivity was determined by HPLC analysis using a Chiralcel OD column ($2 \% i$-PrOH in hexane, $1 \mathrm{~mL} / \mathrm{min}$); retention times: 4.9 min (major), 5.3 min (minor). The absolute stereochemistry was assumed by analogy.

endo-7o
endo-3-Phenylbicyclo[2.2.1]hept-5-ene-2-carbaldehyde (70): ${ }^{14}$ Purified by flash column chromatography $\left(\mathrm{SiO}_{2}, 5 \%\right.$ ethyl acetate in hexane); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.62(1 \mathrm{H}, \mathrm{m}), 1.81$ $(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=8.7 \mathrm{~Hz}), 2.98(1 \mathrm{H}, \mathrm{m}), 3.07(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=4.7 \mathrm{~Hz}), 3.13(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.38(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 6.18$ $(1 \mathrm{H}, \mathrm{dd}, J=2.8$ and 5.6 Hz$), 6.42(1 \mathrm{H}, \mathrm{dd}, J=3.3$ and 5.6 Hz$), 7.17-7.35(5 \mathrm{H}, \mathrm{m}), 9.60(1 \mathrm{H}, \mathrm{d}, J=2.2$

[^8]$\mathrm{Hz})$; [minor exo isomer resonated at $\delta 6.07(1 \mathrm{H}, \mathrm{dd}, J=3.3$ and 5.6 Hz$), 6.34(1 \mathrm{H}, \mathrm{dd}, J=3.0$ and 5.6 $\mathrm{Hz}), 9.93(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz})$. Endo-exo ratio was determined by ${ }^{1} \mathrm{H}$ NMR analysis. Enantioselectivity was determined by acetalization with $(-)-(2 R, 4 R)$-pentanediol and ${ }^{1} \mathrm{H}$ NMR analysis $[4.40(1 \mathrm{H}$ for minor endo ennatiomer, d, $J=8.0 \mathrm{~Hz}$), $4.47(1 \mathrm{H}$ for major endo enantiomer, $\mathrm{d}, J=8.2 \mathrm{~Hz}), 4.84(1 \mathrm{H}$ for major exo enantiomer, d, $J=6.5 \mathrm{~Hz}$), and $4.86(1 \mathrm{H}$ for minor exo enantiomer, d, $J=5.4 \mathrm{~Hz})]^{.}$The absolute stereochemistry was not established.

endo-7p

13
(1S,2S,7S,8R)-Tricyclo[6.2.1.0 $\left.\mathbf{0}^{2,7}\right]$ undec-9-en-3-one (7p). ${ }^{2,6}$ Purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, gradient elution with $3-4 \%$ ethyl acetate in hexane); $[\alpha]_{\mathrm{D}}{ }^{23}-45.1$ (c 0.43, $\left.\mathrm{CHCl}_{3}\right)(44 \% e e) . \quad$ Lit. ${ }^{2}$ for the $(1 R, 2 R, 3 R, 4 S)$-enantiomer; $[\alpha]_{\mathrm{D}}{ }^{23}+233\left(c 0.99, \mathrm{CHCl}_{3}\right)(95 \% e e)$. Lit. ${ }^{6}$ for the $(1 R, 2 R, 3 R, 4 S)$-enantiomer; $[\alpha]_{\mathrm{D}}{ }^{23}+120.6\left(c 1.00, \mathrm{CHCl}_{3}\right)(63 \% e e)$. The endo adduct was obtained as a single diastereomer as determined by ${ }^{1} \mathrm{H}$ NMR analysis ($>98: 2$).
Reduction of the adduct with LiAlH_{4} and purification of the crude alcohol by silica gel column chromatography afforded the tetracyclic ether 13: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.13(1 \mathrm{H}, \mathrm{d}, J=10.0$ $\mathrm{Hz}), 1.21-1.45(4 \mathrm{H}, \mathrm{m}), 1.52-1.73(4 \mathrm{H}, \mathrm{m}), 1.78(1 \mathrm{H}, \mathrm{m}), 1.88(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 2.03(1 \mathrm{H}, \mathrm{m}), 2.70(1 \mathrm{H}, \mathrm{t}, J=$ $4.9 \mathrm{~Hz}), 4.11\left(1 \mathrm{H}, \mathrm{br}\right.$ s), $4.28(1 \mathrm{H}, \mathrm{dd}, J=5.4$ and 7.4 Hz$) ;{ }^{13} \mathrm{C}$ NMR ($\left.125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 16.8,24.9$, $27.7,36.0,36.5,37.3,38.8,40.4,49.5,76.2,79.8$. Enantioselectivity of ether $\mathbf{1 3}$ was determined by using a Chrompack Cp-Cyclodextrin- $\beta-236-\mathrm{M}-19$ column ($30 \mathrm{~m}, 1.8 \mathrm{~kg} / \mathrm{cm}^{2}$, initial temperature $75^{\circ} \mathrm{C}$, $1{ }^{\circ} \mathrm{C} / \mathrm{min}$ ramp to $200^{\circ} \mathrm{C}$); retention times: 35.0 min (major), 45.5 min (minor).

endo-7q
1-[(1S,2S,4S)-Bicyclo[2.2.2]oct-5-en-2-yl]propan-1-one (7q). ${ }^{15}$ Purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, gradient elution with $1-2 \%$ ethyl acetate in hexane); $[\alpha]_{\mathrm{D}}{ }^{23}-15.7\left(c 1.0, \mathrm{CHCl}_{3}\right)$ ($88 \% e e$) ; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.02(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}), 1.21-1.34(2 \mathrm{H}, \mathrm{m}), 1.50(1 \mathrm{H}, \mathrm{m})$, $1.59(1 \mathrm{H}, \mathrm{m}), 1.65(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 1.66(1 \mathrm{H}, \mathrm{br}$ s), $2.35-2.50(2 \mathrm{H}, \mathrm{m}), 2.60(1 \mathrm{H}, \mathrm{m}), 2.68(1 \mathrm{H}, \mathrm{dt}, J=1.9$ and $7.8 \mathrm{~Hz}), 2.87(1 \mathrm{H}, \mathrm{m}), 6.10(1 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}), 6.27(1 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.0,24.4,25.8,28.8,29.5,32.0,33.8,50.4,131.1,134.9,212.3$; IR (neat film) $1705,1125,700 \mathrm{~cm}^{-1}$; MS (EI) m / z (relative intensity) $164\left(\mathrm{M}^{+}, 33\right), 107$ (32), 79 (100); HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}$ 164.1201,

[^9]found: 164.1203. Endo-exo ratio was determined by GC analysis using a OV-1 column ($30 \mathrm{~m}, 1.8$ $\mathrm{kg} / \mathrm{cm}^{2}$, initial temperature $50^{\circ} \mathrm{C}, 10^{\circ} \mathrm{C} / \mathrm{min}$ ramp to $320^{\circ} \mathrm{C}$); retention times: 8.5 min (endo), 8.3 min (exo). Enantioselectivity was determined by GC analysis using a Chrompack Cp-Cyclodextrin- β-236-M-19 column ($30 \mathrm{~m}, 1.8 \mathrm{~kg} / \mathrm{cm}^{2}$, initial temperature $50^{\circ} \mathrm{C}, 2{ }^{\circ} \mathrm{C} / \mathrm{min}$ ramp to $200^{\circ} \mathrm{C}$); retention times: 35.6 min (major), 35.3 min (minor). The absolute stereochemistry was assumed by analogy.

1-[(S)-3,4-Dimethylcyclohex-3-enyl]propan-1-one (7r). ${ }^{16},{ }^{17}$ Purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, gradient elution with $2-3 \%$ ethyl acetate in hexane); $[\alpha]_{\mathrm{D}}{ }^{23}-25.5$ (c 1.15,
 Enantioselectivity as well as the absolute stereochemistry was determined by reduction with LiAlH_{4} to the corresponding alcohol (ca. 1:1 diastereomer mixture) and conversion to the (R)-MTPA ester derivative $[0.72(3 \mathrm{H}$ for minor enantiomer, $\mathrm{t}, J=7.5 \mathrm{~Hz}$) and $0.74(3 \mathrm{H}$ for major enantiomer, $\mathrm{t}, J=7.5$ $\mathrm{Hz})$. ${ }^{10}$

1-[(1S,2R,5R)-2,5-Dimethylcyclohex-3-enyl]propan-1-one (7s). Purified by flash column chromatography (gradient elution with 2-3\% ethyl acetate in hexane); $[\alpha]_{\mathrm{D}}{ }^{23}-19.1\left(c 1.1, \mathrm{CHCl}_{3}\right)(80 \%$ $e e) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.72(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}), 0.94(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}), 0.99(3 \mathrm{H}, \mathrm{t}, J=$ $7.2 \mathrm{~Hz}), 1.24(1 \mathrm{H}, \mathrm{dt}, J=11.1$ and 13.1 Hz$), 1.68(1 \mathrm{H}, \mathrm{m}), 2.08(1 \mathrm{H}, \mathrm{m}), 2.32(1 \mathrm{H}, \mathrm{m}), 2.46(1 \mathrm{H}, \mathrm{m})$, $2.58(1 \mathrm{H}, \mathrm{br}), 2.70(1 \mathrm{H}, \mathrm{ddd}, J=2.4,5.4$, and 12.8 Hz$), 5.40(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=c a .10 \mathrm{~Hz}), 5.55(1 \mathrm{H}, \mathrm{ddd}, J$ $=2.5,4.9$, and 9.8 Hz), minor diastereomer resonated at 5.31 and $5.49 ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.7,16.4,21.6,27.2,31.1,31.2,34.1,50.4,131.0,132.8,213.5$; IR (neat film) $1710,1110,755 \mathrm{~cm}^{-1}$; MS (EI) m / z (relative intensity) $165\left(\mathrm{M}^{+}-\mathrm{H}, 28\right), 123$ (100), 107 (94); HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{O}\left(\mathrm{M}^{+}-\right.$ H) 165.1279, found: 165.1284. Diastereomer ratio was determined by ${ }^{1} \mathrm{H}$ NMR analysis. Enantioselectivity was determined by GC analysis using a Chrompack Cp-Cyclodextrin- β-236-M-19 column ($30 \mathrm{~m}, 1.8 \mathrm{~kg} / \mathrm{cm}^{2}$, initial temperature $50^{\circ} \mathrm{C}, 2{ }^{\circ} \mathrm{C} / \mathrm{min}$ ramp to $200^{\circ} \mathrm{C}$); retention times: 27.1 \min (major), 27.6 min (minor). The absolute stereochemistry was assumed by analogy.

[^10]

1-[(1S,2R)-2-(Phenylsulfanyl)cyclohex-3-en-1-yl]propan-1-one (7t). Purified by flash column chromatography (2% ethyl acetate in toluene); $[\alpha]_{\mathrm{D}}{ }^{23}-280\left(c 0.500, \mathrm{CHCl}_{3}\right)(76 \% e e) .{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.87(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 1.84-1.88(2 \mathrm{H}, \mathrm{m}), 2.03(1 \mathrm{H}, \mathrm{m}), 2.06(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=18.0 \mathrm{~Hz})$, $2.34(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}), 2.89(1 \mathrm{H}, \mathrm{td}, 4.5$ and 10.4 Hz$), 4.10(1 \mathrm{H}, \mathrm{m}), 5.78(1 \mathrm{H}, \mathrm{m}), 5.92(1 \mathrm{H}, \mathrm{m}), 7.20-$ $7.29(3 \mathrm{H}, \mathrm{m}), 7.40-7.42(2 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.4,19.4,24.8,34.2,47.0,50.9$, $127.3,127.4,128.8,128.9,132.9,134.9,210.6$; MS (EI) m / z (relative intensity) $246\left(\mathrm{M}^{+}, 37\right), 137$ (100), 109 (66); HRMS (EI) calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{OS}$ 246.1078, found: 246.1079. Enantioselectivity was determined by HPLC analysis using a Chiralcel OD column ($0.2 \% i-\mathrm{PrOH}$ in hexane, $1 \mathrm{~mL} / \mathrm{min}$); retention times: 23.8 min (major), 27.7 min (minor). The absolute stereochemistry was assumed by analogy.

Benzyl (1S,2R)-6-propionylcyclohex-2-en-1-ylcarbamate (7u): ${ }^{6}$ Purified by flash column chromatography (gradient elution with $5-15 \%$ ethyl acetate in hexane); $[\alpha]_{D}{ }^{23}-111$ (c $\left.0.500, \mathrm{CHCl}_{3}\right)$ ($86 \% \mathrm{ee}$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.00(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 1.70(1 \mathrm{H}, \mathrm{m}), 1.82(1 \mathrm{H}, \mathrm{m}), 1.92-$ $2.08(2 \mathrm{H}, \mathrm{m}), 2.42(1 \mathrm{H}, \mathrm{qd}, J=7.2$ and 17.9 Hz$), 2.68(1 \mathrm{H}, \mathrm{qd}, J=7.3$ and 17.9 Hz$), 2.86(1 \mathrm{H}, \mathrm{m}), 4.63$ ($1 \mathrm{H}, \mathrm{br}$ s), 4.97-5.07 (3H, m), $5.70(1 \mathrm{H}, \mathrm{m}), 5.82(1 \mathrm{H}, \mathrm{m}), 7.26-7.39(5 \mathrm{H}, \mathrm{m})$. Enantioselectivity was determined by HPLC analysis using a Chiralcel AD-H column ($3 \% i-\mathrm{PrOH}$ in hexane, $1 \mathrm{~mL} / \mathrm{min}$); retention times: 31.9 min (major), 23.8 min (minor). The absolute stereochemistry was assumed by analogy.

endo-7v

exo-7v

endo-14

exo-14
($1 S, 2 S, 4 S$)- and ($1 R, 2 S, 4 R$)-1-(7-Oxabicyclo[2.2.1]hept-5-en-2-yl)propan-1-one (endo- and exo7v): Typical Procedure for Asymmetric Diels-Alder Reaction with Furan. To a solution of O-(benzoyl)-N-tosyl-(L)-allo-threonine ${ }^{1}$ ($75.5 \mathrm{mg}, 0.200 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ under argon atmosphere at room temperature was added dichlorophenylborane ($28.5 \mu \mathrm{~L}, 0.22 \mathrm{mmol}$). After being stirred for 30 min , the mixture was concentrated in vacuo. To a mixture of the resulting OXB 3c in toluene (6.4 mL) at $-78{ }^{\circ} \mathrm{C}$ were added ethyl vinyl ketone ($168 \mathrm{mg}, 2.00 \mathrm{mmol}$), and furan $(0.73 \mathrm{~mL}, 10 \mathrm{mmol})$. The resulting
solution was stirred at $-78{ }^{\circ} \mathrm{C}$ for 20 min . The mixture was quenched by the addition of saturated aqueous NaHCO_{3} and filtered. The filtrate was extracted three times with ether, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo. The toluene solution of the crude product was subjected to a flash chromatography (SiO_{2}, gradient elution with $0-25 \% \mathrm{Et}_{2} \mathrm{O}$ in hexane) to obtain $269 \mathrm{mg}(1.77 \mathrm{mmol}$, 88%) of a $93: 7$ mixture of endo- $\mathbf{7 v}$ and exo-7v. The endo and exo adducts were isolated by flash chromatography. endo-7v $(98 \% \mathrm{ee}): \mathrm{R}_{\mathrm{f}} 0.33\left(\mathrm{SiO}_{2}, 30 \%\right.$ ethyl acetate in hexane); $[\alpha]_{\mathrm{D}}{ }^{23}-75.2$ (c 1.00, $\left.\mathrm{CHCl}_{3}\right)(96 \% e e) ;{ }^{18}{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.03(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 1.59(1 \mathrm{H}, \mathrm{dd}, J=4.0$ and $11.2 \mathrm{~Hz}), 2.00(1 \mathrm{H}, \mathrm{ddd}, J=4.8,9.1$, and 11.3 Hz$), 2.33-2.50(2 \mathrm{H}, \mathrm{m}), 3.20(1 \mathrm{H}, \mathrm{td}, J=4.3$ and 9.0 Hz$)$, $5.01(1 \mathrm{H}, \mathrm{dd}, J=1.1$ and 4.7 Hz$), 5.17(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=4.7 \mathrm{~Hz}), 6.15(1 \mathrm{H}, \mathrm{dd}, J=1.5$ and 5.9 Hz$), 6.40$ $\left(1 \mathrm{H}, \mathrm{dd}, J=1.7\right.$ and 5.9 Hz); ${ }^{13} \mathrm{C}$ NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.6,27.4,35.8,50.8,78.9,79.2,134.8$, 136.8, 208.9; HRMS (EI) calcd for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}_{2}$ 152.0837, found: 152.0838. exo- 7 v (36% ee): ${ }^{19} \mathrm{R}_{\mathrm{f}} 0.27$ $\left(\mathrm{SiO}_{2}, 30 \%\right.$ ethyl acetate in hexane); ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.08(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}), 1.51(1 \mathrm{H}$, dd, $J=8.5$ and 11.4 Hz), $1.62(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 2.03(1 \mathrm{H}, \mathrm{td}, J=4.4$ and 11.4 Hz$), 2.47-2.61(2 \mathrm{H}, \mathrm{m}), 5.07$ $(1 \mathrm{H}, \operatorname{br} \mathrm{d}, J=4.4 \mathrm{~Hz}), 5.09(1 \mathrm{H}, \mathrm{d}, J=1.0 \mathrm{~Hz}), 6.36(1 \mathrm{H}, \mathrm{dd}, J=1.6$ and 5.8 Hz$), 6.38(1 \mathrm{H}, \mathrm{dd}, J=1.6$ and 5.8 Hz); ${ }^{13} \mathrm{C}$ NMR $\left(125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.9 .28 .4,34.5,49.8,78.0,79.9,134.9,136.8,210.9$; HRMS (EI) calcd for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}_{2}$ 152.0837, found: 152.0832.
Endo-exo ratio was determined by $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR analysis. The absolute stereochemistry was assumed by analogy. A 93:7 mixture of the endo and exo adduct was hydrogenated in the presence of $\mathrm{Pd} / \mathrm{C}(10 \%)$ in hexane to give a mixture of endo- $\mathbf{1 4}$ and exo-14. Enantioselectivity was determined by GC analysis using a BETA DEX ${ }^{\mathrm{TM}} 225(\mathrm{~m})$ column $\left(30 \mathrm{~m}, 1.8 \mathrm{~kg} / \mathrm{cm}^{2}\right.$, initial temperature $90{ }^{\circ} \mathrm{C}, 1$ ${ }^{\circ} \mathrm{C} / \mathrm{min}$ ramp to $170{ }^{\circ} \mathrm{C}$); retention times: 26.3 min (major endo enantiomer), 28.2 min (minor endo enantiomer), 37.9 min (major exo enantiomer), 36.9 min (minor exo enantiomer). ($1 S, 2 S, 4 S$)-1-(7-Oxabicyclo[2.2.1]hept-2-yl)propan-1-one (endo-14): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.06(3 \mathrm{H}, \mathrm{t}, J=7.4$ $\mathrm{Hz}), 1.38(1 \mathrm{H}, \mathrm{m}), 1.50(1 \mathrm{H}, \mathrm{m}), 1.58(1 \mathrm{H}, \mathrm{m}), 1.63-1.77(2 \mathrm{H}, \mathrm{m}), 1.98(1 \mathrm{H}, \mathrm{dd}, J=4.7$ and 11.8 Hz$)$, $2.33-2.48(2 \mathrm{H}, \mathrm{m}), 3.18(1 \mathrm{H}, \mathrm{m}), 4.59(1 \mathrm{H}, \mathrm{t}, J=5.3 \mathrm{~Hz}), 4.76(1 \mathrm{H}, \mathrm{t}, J=5.2 \mathrm{~Hz})$, a minor exo-isomer resonates at $4.64(1 \mathrm{H}, \mathrm{t}, J=5.0 \mathrm{~Hz})$ and $4.72(1 \mathrm{H}, \mathrm{d}, J=4.9 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.6$, 20.1, 29.9, 31.6, 36.6, 55.7, 77.4, 78.1, 209.2.

endo-7w

exo-7w

endo-15

exo-15

[^11](1S,2S,4S)-1-(7-Oxabicyclo[2.2.1]hept-5-en-2-yl)ethanone (endo- and exo-7w). ${ }^{20}$ endo-7w: R_{f} $0.27\left(\mathrm{SiO}_{2}, 30 \%\right.$ ethyl acetate in hexane); $[\alpha]_{\mathrm{D}}{ }^{23}-88.8\left(c 0.750, \mathrm{CHCl}_{3}\right)(93 \% e e) ;{ }^{1} \mathrm{H} \mathrm{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 1.59(1 \mathrm{H}$, dd, $J=4.0$ and 11.3 Hz$), 2.01(1 \mathrm{H}$, ddd, $J=4.8,9.0$, and 11.3 Hz$), 2.14(3 \mathrm{H}, \mathrm{s})$, $3.19(1 \mathrm{H}, \mathrm{td}, J=4.3$ and 9.0 Hz$), 5.01(1 \mathrm{H}, \mathrm{dd}, J=1.5$ and 4.7 Hz$), 5.18(1 \mathrm{H}, \mathrm{dd}, J=0.6$ and 4.7 Hz$)$, $6.19(1 \mathrm{H}, \mathrm{dd}, J=1.5$ and 5.9 Hz$), 6.40(1 \mathrm{H}, \mathrm{dd}, J=1.7$ and 5.9 Hz$) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(125.8 \mathrm{MHz}, \mathrm{CDCl} l_{3}\right) \delta$ 27.3, 29.8, 52.0, 78.8, 79.2, 131.7, 137.0, 206.1. exo-7w: $\mathrm{R}_{\mathrm{f}} 0.20\left(\mathrm{SiO}_{2}, 30 \%\right.$ ethyl acetate in hexane $) ; ~ \delta$ $1.52(1 \mathrm{H}, \mathrm{dd}, J=8.6$ and 11.5 Hz$), 2.01(1 \mathrm{H}, \mathrm{td}, J=4.2$ and 11.5 Hz$), 2.23(3 \mathrm{H}, \mathrm{s}), 2.47(1 \mathrm{H}, \mathrm{td}, J=4.1$ and 8.6 Hz$), 5.07(1 \mathrm{H}, \mathrm{d}, J=4.4 \mathrm{~Hz}), 5.10(1 \mathrm{H}, \mathrm{d}, J=1.2 \mathrm{~Hz}), 6.35(1 \mathrm{H}, \mathrm{dd}, J=1.7 \mathrm{and} 5.8 \mathrm{~Hz}), 6.38$ $(1 \mathrm{H}, \mathrm{dd}, J=1.6$ and 5.8 Hz$) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 28.40,28.44,50.82,78.0,79.8,134.8$, 136.8, 208.6.

Endo-exo ratio was determined by $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR analysis. The absolute stereochemistry was assumed by analogy. A 77:23 mixture of the endo and exo adduct was hydrogenated in the presence of $\mathrm{Pd} / \mathrm{C}(10 \%)$ in hexane to give a mixture of endo-15 ${ }^{21}$ and exo-16. Enantioselectivity was determined by GC analysis using a BETA DEX ${ }^{\mathrm{TM}} 225(\mathrm{~m})$ column $\left(30 \mathrm{~m}, 1.8 \mathrm{~kg} / \mathrm{cm}^{2}\right.$, initial temperature $90^{\circ} \mathrm{C}, 1$ ${ }^{\circ} \mathrm{C} / \mathrm{min}$ ramp to $170^{\circ} \mathrm{C}$); retention times: 20.3 min (major endo enantiomer), 22.0 min (minor endo enantiomer), 32.5 min (major exo enantiomer), 31.4 min (minor exo enantiomer). ($1 S, 2 S, 4 S$)-1-(7-Oxabicyclo[2.2.1]hept-2-yl)ethanone (endo-15): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.42(1 \mathrm{H}, \mathrm{m}), 1.50(1 \mathrm{H}$, $\mathrm{m}), 1.63(1 \mathrm{H}, \mathrm{m}), 1.65-1.77(2 \mathrm{H}, \mathrm{m}), 1.96(1 \mathrm{H}, \mathrm{dd}, J=4.6$ and 11.8 Hz$), 2.16(3 \mathrm{H}, \mathrm{s}), 3.19(1 \mathrm{H}, \mathrm{m})$, $4.60(1 \mathrm{H}, \mathrm{t}, J=5.3 \mathrm{~Hz}), 4.76(1 \mathrm{H}, \mathrm{t}, J=5.2 \mathrm{~Hz}) .(1 R, 2 S, 4 R)-1-(7-\mathrm{Oxabicyclo}[2.2 .1] \mathrm{hept}-2-\mathrm{yl})$ ethanone (exo-15): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.44-1.57(2 \mathrm{H}, \mathrm{m}), 1.66(1 \mathrm{H}, \mathrm{dd}, J=9.0$ and 12.1 Hz$), 1.69-$ $1.83(2 \mathrm{H}, \mathrm{m}), 2.18(3 \mathrm{H}, \mathrm{s}), 2.65(1 \mathrm{H}, \mathrm{dd}, J=5.0$ and 9.0 Hz$), 4.65(1 \mathrm{H}, \mathrm{t}, J=5.0 \mathrm{~Hz}), 4.74(1 \mathrm{H}, \mathrm{d}, J=$ 4.9 Hz).

(1S,2S,4S)-1-(7-Oxabicyclo[2.2.1]hept-5-en-2-yl)hexan-1-one (endo- and exo-7x). endo-7x: R_{f} $0.50\left(\mathrm{SiO}_{2}, 30 \%\right.$ ethyl acetate in hexane); mp $45-46.5^{\circ} \mathrm{C}$ (recrystallized from pentane); $[\alpha]_{\mathrm{D}}{ }^{25}-78.4(c$ $\left.0.75, \mathrm{CHCl}_{3}\right)(98 \%$ ee $) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.88(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}), 1.21-1.33(4 \mathrm{H}, \mathrm{m})$, $1.52-1.61(3 H, m), 2.00(1 \mathrm{H}, \mathrm{ddd}, J=4.8$ and 9.0 and 11.2 Hz$), 2.33-2.47(2 \mathrm{H}, \mathrm{m}), 3.20(1 \mathrm{H}, \mathrm{td}, J=4.3$ and 9.0 Hz$), 5.01(1 \mathrm{H}, \mathrm{dd}, J=1.5$ and 4.7 Hz$), 5.18(1 \mathrm{H}, \mathrm{dd}, J=1.6$ and 5.9 Hz$), 6.16(1 \mathrm{H}, \mathrm{dd}, J=1.4$

[^12]and 5.8 Hz$), 6.40(1 \mathrm{H}, \mathrm{dd}, J=1.6$ and 5.8 Hz$) ;{ }^{13} \mathrm{C}$ NMR $\left(125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.9,22.4,23.2,27.4$, $31.3,42.7,51.1,79.0,79.2,131.8,136.8$, 208.6. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{2}: \mathrm{C}, 74.13 ; \mathrm{H}, 9.34$. Found: C, 73.71; H, 9.20. exo-7x: $\mathrm{R}_{\mathrm{f}} 0.65\left(\mathrm{SiO}_{2}, 30 \%\right.$ ethyl acetate in hexane); ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $0.88(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 1.23-1.34(5 \mathrm{H}, \mathrm{m}), 1.50(1 \mathrm{H}, \mathrm{dd}, J=8.5$ and 11.4 Hz$), 1.57-1.63(2 \mathrm{H}, \mathrm{m}), 2.03$ $(1 \mathrm{H}, \mathrm{dt}, J=4.4$ and 11.4 Hz$), 2.46-2.56(2 \mathrm{H}, \mathrm{m}), 5.07(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=4.4 \mathrm{~Hz}), 5.09(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 6.35(1 \mathrm{H}$, dd, $J=1.5$ and 5.8 Hz$), 6.38(1 \mathrm{H}, \mathrm{dd}, J=1.4$ and 5.8 Hz$) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.9,22.5$, 23.5, 28.3, 31.4, 41.4, 50.1, 78.0, 79.8, 134.9, 136.8, 210.5.

Endo-exo ratio was determined by $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR analysis. The absolute stereochemistry was assumed by analogy. A 86:14 mixture of the endo and exo adduct was hydrogenated in the presence of $\mathrm{Pd} / \mathrm{C}(10 \%)$ in hexane to give a mixture of endo- $\mathbf{1 6}$ and exo-16. Enantioselectivity was determined by GC analysis using a BETA DEX ${ }^{\mathrm{TM}} 225(\mathrm{~m})$ column $\left(30 \mathrm{~m}, 1.8 \mathrm{~kg} / \mathrm{cm}^{2}\right.$, initial temperature $90{ }^{\circ} \mathrm{C}, 1$ ${ }^{\circ} \mathrm{C} / \mathrm{min}$ ramp to $170{ }^{\circ} \mathrm{C}$); retention times: 55.8 min (major endo enantiomer), 56.6 min (minor endo enantiomer), 64.6 min (major exo enantiomer), 65.6 min (exo minor). ($1 \mathrm{~S}, 2 \mathrm{~S}, 4 \mathrm{~S}$)-1-(7-Oxabicyclo[2.2.1]hept-2-yl)hexan-1-one (endo-16): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.88$ ($3 \mathrm{H}, \mathrm{t}, J=7.2$ $\mathrm{Hz}), 1,22-1.34(4 \mathrm{H}, \mathrm{m}), 1.39(1 \mathrm{H}, \mathrm{m}), 1.50(1 \mathrm{H}, \mathrm{m}) 1.54-1.63(3 \mathrm{H}, \mathrm{m}), 1.64-1.76(2 \mathrm{H}, \mathrm{m}), 1.96(1 \mathrm{H}, \mathrm{dd}$, $J=4.6$ and 11.7 Hz$), 2.31-2.46(2 \mathrm{H}, \mathrm{m}), 3.18(1 \mathrm{H}, \mathrm{m}), 4.58(1 \mathrm{H}, \mathrm{t}, J=5.3 \mathrm{~Hz}), 4.76(1 \mathrm{H}, \mathrm{t}, J=5.3 \mathrm{~Hz})$; ${ }^{13} \mathrm{C}$ NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.9$, 22.4, 23.2, 26.1, 29.9, 31.4, 31.6, 43.4, 56.0, 77.4, 78.2, 208.9. ($1 R, 2 S, 4 R$)-1-(7-Oxabicyclo[2.2.1]hept-2-yl)propan-1-one: (exo-16): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $0.88(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 1,21-1.35(4 \mathrm{H}, \mathrm{m}), 1.43-1.66(5 \mathrm{H}, \mathrm{m}), 1.67-1.81(2 \mathrm{H}, \mathrm{m}), 2.06(1 \mathrm{H}, \mathrm{m}), 2.37-$ $2.51(2 \mathrm{H}, \mathrm{m}), 2.65(1 \mathrm{H}, \mathrm{dd}, J=5.1$ and 9.0 Hz$), 4.64(1 \mathrm{H}, \mathrm{t}, J=5.0 \mathrm{~Hz}), 4.72(1 \mathrm{H}, \mathrm{d}, J=4.9 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.9,22.4,23.5,29.5,30.0,31.4,33.4,40.7,55.5,76.3,77.8$, 209.7.

[^0]: ${ }^{1}$ X. Wang, S. Adachi, H. Iwai, H. Takatsuki, K. Fujita, M. Kubo, A. Oku, T. Harada, J. Org. Chem. 2003, 68, 10046.

[^1]: ${ }^{2}$ Ryu, D. H.; Lee, T. W.; Corey, E. J. J. Am. Chem. Soc. 2002, 124, 9992.
 ${ }^{3}$ Asao, N.; Asano, T.; Yamamoto, Y. Angew. Chem., Int. Ed. Engl. 2001, 40, 3206.
 ${ }^{4}$ Table 2, entry 3.

[^2]: ${ }^{5}$ Nakazaki, M; Naemura, K.; Kondo, Y. J. Org. Chem. 1976, 41, 1229.
 ${ }^{6}$ Hawkins, J. M.; Nambu, M.; Loren, S. Org. Lett. 2003, 5, 4293.
 Northrup, A. B.; MacMillan, D. W. C. J. Am. Chem. Soc. 2002, 124, 2458.

[^3]: ${ }^{8}$ Specific rotation was measured for the product of the reaction with OXB 3d $(10 \mathrm{~mol} \%)$ at $-60{ }^{\circ} \mathrm{C}$ for 72 h in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (76% yield, endo:exo $>98: 2,89 \%$ ee).

[^4]: ${ }^{9}$ Specific rotation was measured for the product of the reaction with OXB 3d (10 $\mathrm{mol} \%$) at $-60{ }^{\circ} \mathrm{C}$ for 72 h in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (97% yield, endo:exo $>98: 2,90 \%$ ee).

[^5]: ${ }^{10}$ Specific rotation was measured for the product of the reaction with OXB 3d ($10 \mathrm{~mol} \%$) at $-60{ }^{\circ} \mathrm{C}$ for 72 h in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (98% yield, endo:exo $>98: 2,88 \%$ ee).

[^6]: ${ }^{11}$ Specific rotation was measured for the product of the reaction with OXB 3d ($10 \mathrm{~mol} \%$) at $-60{ }^{\circ} \mathrm{C}$ for 72 h in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (62% yield, endo:exo $>98: 2,88 \%$ ee).

[^7]: ${ }^{12}$ Specific rotation was measured for the product of the reaction with OXB 3d ($10 \mathrm{~mol} \%$) at $-60{ }^{\circ} \mathrm{C}$ for 72 h in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (8% yield, endo:exo $>98: 2,88 \%$ ee).
 ${ }^{13}$ Specific rotation was measured for the product of the reaction with OXB $\mathbf{3 a}(20 \mathrm{~mol} \%)$ at $-60{ }^{\circ} \mathrm{C}$ for 72 h in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (59% yield, endo:exo $>98: 2,90 \%$ ee).

[^8]: ${ }^{14}$ Ishihara, K.; Kurihara, H.; Matsumoto, M.; Yamamoto, H. J. Am. Chem. Soc. 1998, 120, 6920.

[^9]: ${ }^{15}$ Hollis, T. K.; Robinson, N. P.; Bosnich, B. J. Am. Chem. Soc. 1992, 114, 5464.

[^10]: ${ }^{16}$ Rickerby, J.; Vallet, M.; Bernardinelli, G.; Viton, F.; Kündig, E. P. Chem. Eur. J. 2007, 13, 3354.
 ${ }^{17}$ Ryu, D. H.; Corey, E. J. J. Am. Chem. Soc. 2003, 125, 6388.

[^11]: ${ }^{18}$ Specific rotation was measured for the product of the reaction with OXB $3 \mathbf{c}(5 \mathrm{~mol} \%)$ at $-78{ }^{\circ} \mathrm{C}$ for 0.3 h in toluene (34% yield, endo:exo $=86: 14$, endo; 96% ee, exo; 23% ee).
 ${ }^{19}$ Bloch, R.; Gilbert, L. Tetrahedron 1988, 44, 2523.

[^12]: ${ }^{20}$ Adams, J. M.; Dyer, S.; Martin, K.; Matear, W. A.; McCabe, R. W. J. Chem. Soc., Perkin Trans. 1 1994, 761.
 ${ }^{21}$ Lambert, J. B.; Larson, E. G. J. Am. Chem. Soc. 1985, 107, 7546.

