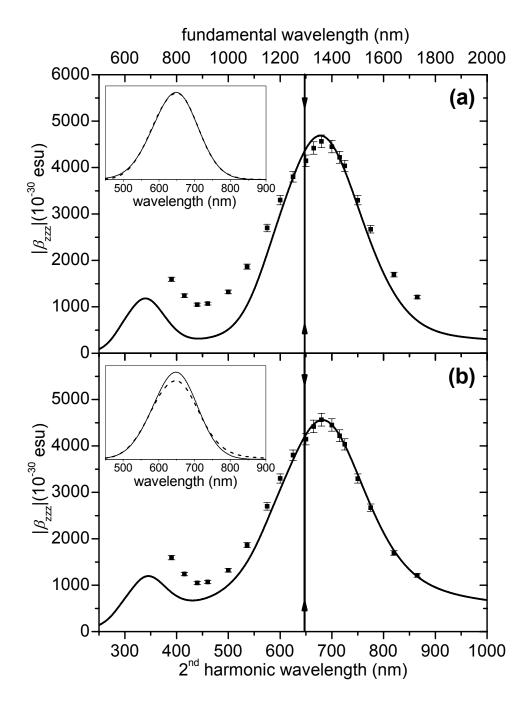
Supporting Information for


Accurate Determination and Modeling of the Dispersion of the First Hyperpolarizability of an Efficient Zwitterionic Nonlinear Optical Chromophore by Tunable Wavelength Hyper-Rayleigh Scattering

Jochen Campo,^[a] Wim Wenseleers, *^[a] Etienne Goovaerts,^[a] Marek Szablewski,^[b] Graham H. Cross^[b]

^[a]Department of Physics, University of Antwerp (campus Drie Eiken), Universiteitsplein 1, B-2610 Antwerpen, Belgium

^[b]Department of Physics, Durham University, Durham, United Kingdom DH1 3LE

Wim.Wenseleers@ua.ac.be

Figure S1. The single-mode vibronic model (curve) fitted to the experimental HRS data in DMF (squares; in DMF- d_7 at the SH wavelengths of 820 and 865 nm), corrected for the β dispersion of the pure solvent. Only the two-photon resonant β values (at SH wavelengths ≥ 600 nm) are taken into account in the fitting procedure. The vertical arrows indicate λ_{max} . In (a) only the amplitude is optimized to fit the data but in (b) also the homogeneous width is used as a fit parameter (yielding $\gamma = 190$ cm⁻¹ and $\beta_0 = 323 \times 10^{-30}$ esu). The insets in both figures show the absorption band calculated using identical parameters as for β (dashed line), compared to the experimental spectrum (solid line), nearly coinciding in (a), while showing an unacceptable deviation in (b).