## (Supporting Information)

# A Metathesis Based Approach to the Synthesis of 2-Pyridones and Pyridines 

Timothy J. Donohoe, ${ }^{*}{ }^{\dagger}$ Lisa P. Fishlock, ${ }^{\dagger}$ and Panayiotis A. Procopiou ${ }^{\dagger}$<br>${ }^{\dagger}$ Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK.<br>* GlaxoSmithKline Research \& Development Limited, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK.

timothy.donohoe@chem.ox.ac.uk

## Table of Contents

S-1 Table of Contents and General Details
S-1 General Procedures
S-2 Experimental Procedures
S-31 $\quad{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of 2-Pyridones and Pyridines

## Experimental Section

## General Details

Proton nuclear magnetic resonance spectra (NMR) were recorded at 400 MHz . ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 100 MHz . Infrared spectra (IR) were recorded as evaporated films or KBr discs. Electrospray ionisation (ESI) was performed using tetraoctylammonium bromide as the lock mass. Chemical ionisation (CI) was performed at an ionisation voltage of 60 eV and a source temperature of $150^{\circ} \mathrm{C}$ using amyl acetate as the lock mass and $\mathrm{NH}_{3}$ as CI gas. All solvents and reagents requiring purification were purified using standard laboratory techniques according to methods published by Perrin, Armarego, and Perrin (Pergamon Press, 1966) apart from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, toluene, THF and $\mathrm{Et}_{2} \mathrm{O}$ which were dried by filtration through an activated alumina purification column. Petrol refers to petroleum ether in the boiling range $40-60^{\circ} \mathrm{C}$.

## General Procedures

## Procedure A: Formation of $\boldsymbol{O}$-benzyl oxime ethers

Pyridine ( 1.1 eq.) was added drop-wise to a stirred solution of $O$-benzylhydroxylamine hydrochloride ( 1.3 eq.) and aldehyde ( 1.0 eq.) in methanol or ethanol ( $4 \mathrm{~mL} / \mathrm{mmol}$ ) and the mixture was heated at reflux for 4 h . The solvent was removed under reduced pressure, and the remaining solid residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL} / \mathrm{mmol})$ and washed with water ( $20 \mathrm{~mL} / \mathrm{mmol}$ ). The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL} / \mathrm{mmol} \times 3)$ and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and the crude product was purified by flash column chromatography.

## Procedure B: Zinc mediated formation of amines

Zinc dust ( 1.8 eq.) was added portion-wise to a biphasic solution of oxime ( 1.0 eq.) and allyl bromide ( 1.4 eq.) in THF ( $0.8 \mathrm{~mL} / \mathrm{mmol}$ ) and sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ solution ( $4.3 \mathrm{~mL} / \mathrm{mmol}$ ). The reaction mixture was stirred at room temperature until TLC analysis indicated that the starting material was consumed, and the aqueous layer was extracted with EtOAc ( $15 \mathrm{~mL} / \mathrm{mmol} \times 3$ ). The organic layers
were dried over $\mathrm{MgSO}_{4}$, and the solvent was removed under reduced pressure. The crude product was purified by flash column chromatography.

## Procedure C: Formation of $\alpha, \beta$-unsaturated amides

Acryloyl chloride ( 1.5 eq.) was added drop-wise to a stirred solution of amine ( 1.0 eq.) and triethylamine ( 2.0 eq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} / \mathrm{mmol})$ at room temperature, and stirring was continued until TLC analysis indicated that the starting material was consumed. The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} / \mathrm{mmol})$, washed with 1.0 M aq. HCl solution $(5 \mathrm{~mL} / \mathrm{mmol})$ and sat. aq. $\mathrm{NaHCO}_{3}$ solution ( $5 \mathrm{~mL} / \mathrm{mmol}$ ), then dried over $\mathrm{MgSO}_{4}$. The solvent was removed under reduced pressure and the crude product was purified by flash column chromatography.

## Procedure D: Ring closing metathesis

Hoveyda-Grubbs second generation catalyst ( $5-10 \mathrm{~mol} \%$ ) was added to a stirred solution of $\alpha, \beta-$ unsaturated amide ( 1.0 eq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ toluene ( $25 \mathrm{~mL} / \mathrm{mmol}$ ), and the mixture was heated at $40^{\circ} \mathrm{C} / 95{ }^{\circ} \mathrm{C}$ until TLC analysis indicated that the starting material was consumed. The solvent was removed under reduced pressure, and the remaining black residue was purified by flash column chromatography.

## Procedure E: Aromatisation of dihydropyridones

1,8-Diazabicyclo[5.4.0]undec-7-ene (5.0 eq.) was added to a stirred solution of dihydropyridone ( 1.0 eq.) in THF ( $2 \mathrm{~mL} / \mathrm{mmol}$ ), and stirring was continued at room temperature until TLC analysis indicated that the starting material was consumed. The solvent was removed under reduced pressure and the crude product was purified by flash column chromatography.

## Procedure F: Formation of pyridines

Potassium bis(trimethylsilyl)amide solution ( 0.5 M in toluene, 2.0 eq.) was added drop-wise to a stirred solution of pyridone ( 1.0 eq.) and $N$-(5-chloro-2-pyridyl)triflimide ( 2.0 eq.) in THF ( 10 $\mathrm{mL} / \mathrm{mmol}$ ) at $-78^{\circ} \mathrm{C}$. The brown mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h , before allowing it to warm to room temperature over 3 h . The resulting solution was diluted with hexane ( $20 \mathrm{~mL} / \mathrm{mmol}$ ) and washed with sat. aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution ( $10 \mathrm{~mL} / \mathrm{mmol}$ ). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed under reduced pressure. The crude product was purified by flash column chromatography.

## Experimental Procedures

Methyl 2-oxoacetate $37^{1}$


Ozone was bubbled through a solution of dimethyl maleate ( $5.22 \mathrm{~mL}, 41.7 \mathrm{mmol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(75$ mL ) at $-78^{\circ} \mathrm{C}$ for 2 h , then the remaining blue solution was purged with oxygen for 5 min . Dimethyl sulfide ( $3.39 \mathrm{~mL}, 45.9 \mathrm{mmol}$ ) was added drop-wise at $-78^{\circ} \mathrm{C}$, and the reaction mixture was allowed to warm to room temperature. The solvent was removed under reduced pressure, and the remaining oil was purified by distillation under vacuum (b.p. $50^{\circ} \mathrm{C}$ at 30 mmHg ) to give the title compound $\mathbf{3 7}$ as a colourless oil ( $5.12 \mathrm{~g}, 70 \%$ ) which was used immediately in the next step.
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 3.94(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 9.41(1 \mathrm{H}, \mathrm{s}, \mathrm{C}(2) \mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 53.2(\mathrm{OMe})$, $159.8(\mathrm{C}(1))$, $183.4(\mathrm{C}(2))$. All data agreed with those previously published. ${ }^{2}$

## (E)-Methyl 2-(benzyloxyimino)acetate $\mathbf{6}^{3}$



Aldehyde $\mathbf{3 7}(5.00 \mathrm{~g}, 56.8 \mathrm{mmol})$ was subjected to general procedure $\mathbf{A}$ using methanol and purified by flash column chromatography (petrol) to give the title compound $\mathbf{6}$ as a colourless oil $(8.24 \mathrm{~g}$, 75\%).
$v_{\text {max }}($ thin film$) / \mathrm{cm}^{-1} 3033 \mathrm{~m}, 2954 \mathrm{~s}, 1725 \mathrm{~s}, 1600 \mathrm{~s}, 1497 \mathrm{~m}, 1439 \mathrm{~s}, 1369 \mathrm{~s}, 1328 \mathrm{~s}, 1274 \mathrm{~s}, 1208 \mathrm{~s}$, $1082 \mathrm{~s}, 1045 \mathrm{~s}, 1002 \mathrm{~s}, 923 \mathrm{~s}$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 3.86(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 5.30\left(2 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(1^{\prime}\right) \mathrm{H}_{2}\right), 7.34-$ $7.40(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.57(1 \mathrm{H}, \mathrm{s}, \mathrm{C}(2) \mathrm{H})$; $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 52.5(\mathrm{OMe}), 78.1\left(\mathrm{C}\left(1^{\prime}\right)\right), 128.5(\mathrm{Ph})$, $128.6(\mathrm{Ph}), 128.6(\mathrm{Ph}), 135.9(i-\mathrm{Ph}), 140.9(\mathrm{C}(2)), 162.4(\mathrm{C}(1))$. All data agreed with those previously published. ${ }^{3}$

## Methyl 2-(benzyloxyamino)pent-4-enoate $7^{3}$



Oxime $6(300 \mathrm{mg}, 1.55 \mathrm{mmol})$ was subjected to general procedure $\mathbf{B}$ and purified by flash column chromatography ( $10: 1$ petrol:EtOAc) to give the title compound 7 as a colourless oil ( 346 mg , 100\%).
$v_{\text {max }}$ (thin film) $/ \mathrm{cm}^{-1} 3264 \mathrm{br} \mathrm{m}, 3032 \mathrm{w}, 2953 \mathrm{~m}, 1743 \mathrm{~s}, 1642 \mathrm{w}, 1496 \mathrm{~m}, 1436 \mathrm{~m}, 1365 \mathrm{~m}, 1202 \mathrm{~s}, 993 \mathrm{~s}$, $913 \mathrm{~s}, 743 \mathrm{~s} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.32-2.37\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}(3) \mathrm{H}_{2}\right), 3.70(1 \mathrm{H}, \mathrm{t}, J 7.0, \mathrm{C}(2) \mathrm{H}), 3.75(3 \mathrm{H}$, $\mathrm{s}, \mathrm{OMe}), 4.72\left(2 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(1^{\prime}\right) \mathrm{H}_{2}\right), 5.06-5.13\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}(5) \mathrm{H}_{2}\right), 5.73(1 \mathrm{H}, \mathrm{ddt}, J 17.0,10.5,7.0, \mathrm{C}(4) \mathrm{H})$, $5.96(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 7.27-7.36(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$; $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 33.9(\mathrm{C}(3)), 52.0(\mathrm{OMe}), 63.3$ ( $\mathrm{C}(2)$ ), $76.2\left(\mathrm{C}\left(1^{\prime}\right)\right), 118.2(\mathrm{C}(5))$, $127.8(\mathrm{Ph}), 128.3(\mathrm{Ph}), 128.5(\mathrm{Ph}), 133.0(\mathrm{C}(4)), 137.6$ ( $\left.i-\mathrm{Ph}\right)$, $173.6(\mathrm{C}(1))$. All data agreed with those previously published. ${ }^{3}$

## Methyl 2-( $N$-(benzyloxy)acrylamido)pent-4-enoate 8



Amine 7 ( $280 \mathrm{mg}, 1.26 \mathrm{mmol}$ ) was subjected to general procedure $\mathbf{C}$ and purified by flash column chromatography ( $8: 1$ petrol:EtOAc) to give the title compound $\mathbf{8}$ as a colourless oil ( $313 \mathrm{mg}, 86 \%$ ). $v_{\text {max }}$ (thin film) $/ \mathrm{cm}^{-1} 2952 \mathrm{~s}, 1746 \mathrm{~s}, 1665 \mathrm{~s}, 1620 \mathrm{~s}, 1410 \mathrm{~s}, 1229 \mathrm{~s}, 986 \mathrm{~s}, 920 \mathrm{~s}, 787 \mathrm{~s}, 744 \mathrm{~s}, 699 \mathrm{~s} ; \delta_{\mathrm{H}}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.75-2.89\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}(3) \mathrm{H}_{2}\right), 3.77(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.93\left(1 \mathrm{H}, \mathrm{d}, J 10.5, \mathrm{C}\left(1^{\prime}\right) \mathrm{H}\right), 5.02$ $\left(1 \mathrm{H}, \mathrm{d}, J 10.5, \mathrm{C}\left(1^{\prime}\right) \mathrm{H}\right), 5.04-5.07(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(2) \mathrm{H}), 5.11(1 \mathrm{H}, \mathrm{dd}, J 10.5,1.0, \mathrm{C}(5) \mathrm{H}), 5.18(1 \mathrm{H}, \mathrm{dd}, J$ $17.0,1.0, \mathrm{C}(5) \mathrm{H}), 5.78\left(1 \mathrm{H}, \mathrm{dd}, J 10.5,2.0, \mathrm{C}\left(3^{\prime \prime}\right) \mathrm{H}\right), 5.82(1 \mathrm{H}, \mathrm{ddt}, J 17.0,10.5,7.0, \mathrm{C}(4) \mathrm{H}), 6.45$ $\left(1 \mathrm{H}, \mathrm{dd}, J 17.0,2.0, \mathrm{C}\left(3^{\prime \prime}\right) \mathrm{H}\right), 6.73\left(1 \mathrm{H}, \mathrm{dd}, 17.0,10.5, \mathrm{C}\left(2^{\prime \prime}\right) \mathrm{H}\right), 7.38-7.41(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}(100$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 32.6 (C(3)), $52.5(\mathrm{OMe}), 60.7$ (C(2)), $79.0\left(\mathrm{C}\left(1^{\prime}\right)\right), 118.4$ (C(5)), 126.0 (C(2")), 128.7 (Ph), $129.0(\mathrm{Ph}), 129.0(\mathrm{Ph}), 130.2\left(\mathrm{C}\left(3^{\prime \prime}\right)\right), 133.6(\mathrm{C}(4)), 134.3$ ( $\left.i-\mathrm{Ph}\right), 168.3\left(\mathrm{C}\left(1^{\prime \prime}\right)\right), 170.3(\mathrm{C}(1))$;
$m / z 312$ ( $100 \%, \mathrm{MNa}^{+}$), 290 ( $30 \%, \mathrm{MH}^{+}$), 236 (10\%), 218 (10\%); HRMS (ESI) $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NNaO}_{4}$ $\left(\mathrm{MNa}^{+}\right)$requires 312.1206 , found 312.1207 ( -0.18 ppm ).

## Methyl 1-(benzyloxy)-6-oxo-1,2,3,6-tetrahydropyridine-2-carboxylate 10



Amide 8 ( $300 \mathrm{mg}, 1.04 \mathrm{mmol}$ ) was subjected to general procedure $\mathbf{D}$ using $5 \mathrm{~mol} \%$ Hoveyda-Grubbs second generation catalyst in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $40{ }^{\circ} \mathrm{C}$ and purified by flash column chromatography ( $2: 1$ petrol:EtOAc) to give the title compound $\mathbf{1 0}$ as a colourless oil ( $271 \mathrm{mg}, 98 \%$ ).
$v_{\max }\left(\right.$ thin film) $/ \mathrm{cm}^{-1} 2954 \mathrm{~m}, 1750 \mathrm{~s}, 1692 \mathrm{~s}, 1389 \mathrm{~m}, 1210 \mathrm{~s}, 1080 \mathrm{~m}, 998 \mathrm{~m}, 809 \mathrm{~m}, 757 \mathrm{~m}, 699 \mathrm{~m} ; \delta_{\mathrm{H}}$ ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 2.62-2.66 ( $2 \mathrm{H}, \mathrm{m}, \mathrm{C}(3) \mathrm{H}_{2}$ ), $3.73(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.94-3.98(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(2) \mathrm{H}), 4.96$ $\left(1 \mathrm{H}, \mathrm{d}, J 11.0, \mathrm{C}\left(1^{\prime}\right) \mathrm{H}\right), 5.04\left(1 \mathrm{H}, \mathrm{d}, J 11.0, \mathrm{C}\left(1^{\prime}\right) \mathrm{H}\right), 5.94(1 \mathrm{H}, \mathrm{ddd}, J 10.0,2.0,1.0, \mathrm{C}(5) \mathrm{H}), 6.34-$ $6.46(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(4) \mathrm{H}), 7.35-7.46(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 29.4(\mathrm{C}(3)), 52.8(\mathrm{OMe}), 62.3$ ( $\mathrm{C}(2)$ ), $77.4\left(\mathrm{C}\left(1^{\prime}\right)\right), 125.3(\mathrm{C}(5))$, $128.5(\mathrm{Ph}), 128.8(\mathrm{Ph}), 129.8(\mathrm{Ph}), 135.6(i-\mathrm{Ph}), 137.1(\mathrm{C}(4))$, $165.1(\mathrm{C}(6)), 170.8\left(\mathrm{C}\left(1{ }^{\prime \prime}\right)\right) ; m / z 284\left(100 \%, \mathrm{MNa}^{+}\right), 262\left(100 \%, \mathrm{MH}^{+}\right)$; HRMS (ESI) $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NNaO}_{4}$ $\left(\mathrm{MNa}^{+}\right)$requires 284.0893, found 284.0894 ( -0.14 ppm ).

## Methyl 6-oxo-1,6-dihydropyridine-2-carboxylate 11



Dihydropyridone $\mathbf{1 0}(85 \mathrm{mg}, 0.33 \mathrm{mmol})$ was subjected to general procedure $\mathbf{E}$ and purified by flash column chromatography (gradient of $0-10 \% \mathrm{MeOH}$ in EtOAc) to give the title compound $\mathbf{1 1}$ as a white solid ( $47 \mathrm{mg}, 94 \%$ ).
m.p. $100-103{ }^{\circ} \mathrm{C}$ (lit. $\left.108-110{ }^{\circ} \mathrm{C}\right)^{4} ; v_{\max }(\mathrm{KBr}$ disk $) / \mathrm{cm}^{-1} 3305 \mathrm{br} \mathrm{s}, 1725 \mathrm{~s}, 1661 \mathrm{~s}, 1613 \mathrm{~s}, 1543 \mathrm{~s}$, $1440 \mathrm{~s}, 1352 \mathrm{~s}, 1308 \mathrm{~s}, 1194 \mathrm{~s}, 1132 \mathrm{~s}, 1062 \mathrm{~s}, 1005 \mathrm{~s}, 891 \mathrm{~s} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 3.94$ ( $3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$ ), $6.83(1 \mathrm{H}, \mathrm{dd}, J 9.5,1.0, \mathrm{C}(5) \mathrm{H}), 6.97(1 \mathrm{H}, \mathrm{dd}, J 7.0,1.0, \mathrm{C}(3) \mathrm{H}), 7.45(1 \mathrm{H}, \mathrm{dd}, J 9.5,7.0, \mathrm{C}(4) \mathrm{H})$, $11.28(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 51.3(\mathrm{OMe}), 109.6(\mathrm{C}(3)), 126.9(\mathrm{C}(5)), 133.9(\mathrm{C}(2))$, 139.7 (C(4)), $161.4(\mathrm{C}(6))$, $163.1\left(\mathrm{C}\left(1^{\prime}\right)\right) ; m / z 176\left(100 \%, \mathrm{MNa}^{+}\right) ;$HRMS (ESI) $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{NNaO}_{3}\left(\mathrm{MNa}^{+}\right)$ requires 176.0318 , found $176.0318(-0.73 \mathrm{ppm})$. All data agreed with those previously published. ${ }^{4}$
$N$-(5-Chloropyridin-2-yl)-1,1,1-trifluoro- $N$-(trifluoromethylsulfonyl)methanesulfonamide $\mathbf{1 2}^{5}$


A solution of trifluoromethanesulfonic anhydride ( 9.15 mL , 54.4 mmol ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added dropwise via a cannula to a stirred solution of 2-amino-5-chloropyridine ( $3.33 \mathrm{~g}, 25.9 \mathrm{mmol}$ ) and pyridine ( $2.09 \mathrm{~mL}, 25.9 \mathrm{mmol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$. The mixture was stirred for 2 h at this temperature, before warming to room temperature and stirring for a further 19 h . The reaction
mixture was quenched with cold water ( 20 mL ) and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(20 \mathrm{~mL} \times 4)$. The combined organic layers were washed with cold $10 \%$ aq. NaOH solution ( 20 mL ), cold water ( 20 mL ) and sat. aq. NaCl solution $\left(20 \mathrm{~mL}\right.$ ) and dried over $\mathrm{MgSO}_{4}$. The solvent was removed under reduced pressure and the crude product was purified by Kugelrohr distillation (100 ${ }^{\circ} \mathrm{C}$ at 0.15 mmHg$)$ to give the title compound 12 as a yellow solid $(6.56 \mathrm{~g}, 64 \%)$.
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.43(1 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{C}(3) \mathrm{H}), 7.91(1 \mathrm{H}, \mathrm{dd}, J 8.5,2.5, \mathrm{C}(4) \mathrm{H}), 8.59(1 \mathrm{H}, \mathrm{d}, J 2.5$, $\mathrm{C}(6) \mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 116.0\left(\mathrm{q}, J_{\mathrm{CF}} 326.0, \mathrm{CF}_{3}\right), 126.2$ (C(3)), 135.8 (C(5)), 139.3 (C(4)), $143.8(\mathrm{C}(2))$, $149.4(\mathrm{C}(6))$. All data agreed with those previously published. ${ }^{5}$

## Methyl 6-(trifluoromethylsulfonyloxy)picolinate 13



Pyridone 11 ( $47 \mathrm{mg}, 0.31 \mathrm{mmol}$ ) was subjected to general procedure $\mathbf{F}$ and purified by flash column chromatography ( $10: 1$ petrol: EtOAc ) to give the title compound $\mathbf{1 3}$ as a colourless oil ( $61 \mathrm{mg}, 70 \%$ ). $v_{\text {max }}($ thin film $) / \mathrm{cm}^{-1} 2963 \mathrm{~s}, 1736 \mathrm{~s}, 1417 \mathrm{~s}, 1261 \mathrm{~s}, 1021 \mathrm{~s}, 799 \mathrm{~s} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.01(3 \mathrm{H}, \mathrm{s}$, OMe), 7.42 ( 1 H , dd, $J 8.5,1.0, \mathrm{C}(5) \mathrm{H}$ ), 8.07 ( 1 H , app t, $J 8.5, \mathrm{C}(4) \mathrm{H}), 8.21$ ( $1 \mathrm{H}, \mathrm{dd}, J 8.5,1.0$, $\mathrm{C}(3) \mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 53.2(\mathrm{OMe}), 118.6\left(\mathrm{q}, J_{\mathrm{CF}} 321.0, \mathrm{CF}_{3}\right), 119.0(\mathrm{C}(5)), 125.4(\mathrm{C}(3))$, 142.0 (C(4)), 147.3, 155.1 (C(2), C(6)), 163.8 (C(1')); $m / z 308$ ( $10 \%, \mathrm{MNa}^{+}$), 286 ( $100 \%, \mathrm{MH}^{+}$), 272 (20\%); HRMS (ESI) $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~F}_{3} \mathrm{NO}_{5} \mathrm{~S}$ (MNa ${ }^{+}$) requires 285.9992, found 285.9999 ( -2.74 ppm ).

Methyl 2-( $N$-(benzyloxy)methacrylamido)pent-4-enoate 14a


Amine $7(300 \mathrm{mg}, 1.28 \mathrm{mmol})$ was subjected to general procedure $\mathbf{C}$ using methacryloyl chloride ( $188 \mu \mathrm{~L}, 1.92 \mathrm{mmol}$ ) and purified by flash column chromatography ( $10: 1$ petrol:EtOAc) to give the title compound 14a as a colourless oil ( $320 \mathrm{mg}, 83 \%$ ).
$v_{\text {max }}\left(\right.$ thin film) $/ \mathrm{cm}^{-1} 2953 \mathrm{~s}, 1746 \mathrm{~s}, 1673 \mathrm{~s}, 1498 \mathrm{~s}, 1436 \mathrm{~s}, 1372 \mathrm{~s}, 1207 \mathrm{~s}, 996 \mathrm{~s}, 920 \mathrm{~s}, 752 \mathrm{~s}, 698 \mathrm{~s} ; \delta_{\mathrm{H}}$ ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $2.00(3 \mathrm{H}$, app t, $J 1.5, \mathrm{Me}), 2.76-2.82\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}(3) \mathrm{H}_{2}\right), 3.76(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.91$ $\left(1 \mathrm{H}, \mathrm{d}, J 10.0, \mathrm{C}\left(1^{\prime}\right) \mathrm{H}\right), 4.92-4.97(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(2) \mathrm{H}), 4.97\left(1 \mathrm{H}, \mathrm{d}, J 10.0, \mathrm{C}\left(1^{\prime}\right) \mathrm{H}\right), 5.16(1 \mathrm{H}$, ddd, $J$ $10.5,3.0,1.0, \mathrm{C}(5) \mathrm{H}), 5.19(1 \mathrm{H}, \mathrm{ddd}, J 17.0,3.0,1.0, \mathrm{C}(5) \mathrm{H}), 5.32-5.34\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}\left(3^{\prime \prime}\right) \mathrm{H}\right), 5.41-5.43$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}\left(3^{\prime \prime}\right) \mathrm{H}\right), 5.80(1 \mathrm{H}, \mathrm{ddt}, J 17.0,10.5,6.5, \mathrm{C}(4) \mathrm{H}), 7.32-7.40(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 19.9(\mathrm{Me}), 32.5(\mathrm{C}(3)), 52.6(\mathrm{OMe}), 61.5(\mathrm{C}(2)), 78.2\left(\mathrm{C}\left(1^{\prime}\right)\right), 118.2,118.6\left(\mathrm{C}\left(3{ }^{\prime \prime}\right), \mathrm{C}(5)\right)$, 128.5 (Ph), 128.7 (Ph), 129.1 ( Ph ), 133.6 (C(4)), 134.7 ( $i-\mathrm{Ph}), 140.3$ (C(2")), 170.1 (C(1")), 173.2 (C(1)); $m / z 326\left(100 \%, \mathrm{MNa}^{+}\right), 304\left(70 \%, \mathrm{MH}^{+}\right), 218(20 \%)$; HRMS (ESI) $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NNaO}_{4}\left(\mathrm{MNa}^{+}\right)$ requires 326.1363 , found 326.1364 ( -0.47 ppm ).

## Methyl 2-(N-(benzyloxy)-2-(trifluoromethyl)acrylamido)pent-4-enoate 14b



A solution of amine $7(526 \mathrm{mg}, 2.40 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added drop-wise to a stirred solution of trifluoromethyl acrylic acid ( $336 \mathrm{mg}, 2.40 \mathrm{mmol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at $-40{ }^{\circ} \mathrm{C}$. N -(3-Dimethylaminopropyl- $N$ '-ethylcarbodiimide hydrochloride ( $495 \mathrm{mg}, 2.40 \mathrm{mmol}$ ) was added portionwise to the mixture at $-40^{\circ} \mathrm{C}$, and stirring was continued at $0{ }^{\circ} \mathrm{C}$ for 16 h . The solution was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, and the organic layer was washed with $1.0 \mathrm{M} \mathrm{aq} . \mathrm{HCl}$ solution ( 10 mL ), and sat. aq. $\mathrm{NaHCO}_{3}$ solution ( 10 mL ). The organic layer was dried over $\mathrm{MgSO}_{4}$, and the solvent was removed under reduced pressure. The crude product was purified by flash column chromatography ( $15: 1$ petrol: EtOAc ) to give the title compound $\mathbf{1 4 b}$ as a colourless oil ( $495 \mathrm{mg}, 58 \%$ ).
$v_{\text {max }}($ thin film $) / \mathrm{cm}^{-1} 2935 \mathrm{~s}, 1747 \mathrm{~s}, 1674 \mathrm{~s}, 1499 \mathrm{~s}, 1436 \mathrm{~s}, 1140 \mathrm{~s}, 995 \mathrm{~s}, 923 \mathrm{~s}, 742 \mathrm{~s}, 698 \mathrm{~s} ; \delta_{\mathrm{H}}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.77-2.90\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}(3) \mathrm{H}_{2}\right), 3.78(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.88-4.92(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(2) \mathrm{H}), 4.88(1 \mathrm{H}$, d, $\left.J 10.0, \mathrm{C}\left(1^{\prime}\right) \mathrm{H}\right), 4.95\left(1 \mathrm{H}\right.$, dd, $\left.J 10.0, \mathrm{C}\left(1^{\prime}\right) \mathrm{H}\right), 5.15(1 \mathrm{H}, \mathrm{dd}, J 10.5,1.5, \mathrm{C}(5) \mathrm{H}), 5.20(1 \mathrm{H}, \mathrm{dd}, J$ $17.5,1.5, \mathrm{C}(5) \mathrm{H}), 5.82(1 \mathrm{H}$, ddt, $J 17.5,10.5,6.5, \mathrm{C}(4) \mathrm{H}), 6.08\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(3^{\prime \prime}\right) \mathrm{H}\right), 6.23(1 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{C}\left(3^{\prime \prime}\right) \mathrm{H}\right), 7.26-7.40(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 32.4$ (C(3)), 52.6 (OMe), 60.4 (C(2)), 78.5 ( $\left.\mathrm{C}\left(1^{\prime}\right)\right), 118.7$ (C(5)), 121.3 (q, $J_{\mathrm{CF}} 273.5, \mathrm{CF}_{3}$ ), 126.3 ( $\left.\mathrm{q}, J_{\mathrm{CF}} 5.5, \mathrm{C}\left(3^{\prime \prime}\right)\right), 126.6(\mathrm{Ph}), 129.0(\mathrm{Ph})$, 129.1 ( Ph ), 133.1 (C(4)), 133.9 ( $i-\mathrm{Ph}), 136.2$ (q, $J_{\mathrm{CF}} 43.5, \mathrm{C}\left(2^{\prime \prime}\right)$ ), 165.0, 169.5 (C(1), C(1")); m/z 358 $\left(100 \%, \mathrm{MH}^{+}\right)$; HRMS (ESI) $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{NO}_{4}\left(\mathrm{MH}^{+}\right)$requires 358.1261 , found $358.1262(-0.50 \mathrm{ppm})$.

## Methyl 1-(benzyloxy)-5-methyl-6-oxo-1,2,3,6-tetrahydropyridine-2-carboxylate 15a



Amide 14a ( $124 \mathrm{mg}, 0.44 \mathrm{mmol}$ ) was subjected to general procedure D using $10 \mathrm{~mol} \%$ HoveydaGrubbs second generation catalyst in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $40{ }^{\circ} \mathrm{C}$ and purified by flash column chromatography (5:2 petrol:EtOAc) to give the title compound $\mathbf{1 5 a}$ as a colourless oil ( $107 \mathrm{mg}, 88 \%$ ).
$v_{\text {max }}\left(\right.$ thin film) $/ \mathrm{cm}^{-1} 2954 \mathrm{~s}, 1752 \mathrm{~s}, 1687 \mathrm{~s}, 1649 \mathrm{~s}, 1497 \mathrm{~s}, 1435 \mathrm{~s}, 1377 \mathrm{~s}, 1214 \mathrm{~s}, 1077 \mathrm{~s}, 1029 \mathrm{~s}, 905 \mathrm{~s}$, 854s, $823 \mathrm{~s} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.89-1.91(3 \mathrm{H}, \mathrm{m}, \mathrm{Me}), 2.49-2.67\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}(3) \mathrm{H}_{2}\right), 3.72(3 \mathrm{H}, \mathrm{s}$, OMe), $3.97(1 \mathrm{H}, \mathrm{dd}, J 7.0,3.0, \mathrm{C}(2) \mathrm{H}), 4.96\left(1 \mathrm{H}, \mathrm{d}, J 11.0, \mathrm{C}\left(1^{\prime}\right) \mathrm{H}\right), 5.04\left(1 \mathrm{H}, \mathrm{d}, J 11.0, \mathrm{C}\left(1^{\prime}\right) \mathrm{H}\right)$, 6.08-6.12 ( $1 \mathrm{H}, \mathrm{m}, \mathrm{C}(4) \mathrm{H}), 7.34-7.46(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 16.6(\mathrm{Me}), 28.5(\mathrm{C}(3))$, $52.7(\mathrm{OMe}), 62.7(\mathrm{C}(2)), 77.5\left(\mathrm{C}\left(1^{\prime}\right)\right), 128.4(\mathrm{Ph}), 128.7(\mathrm{Ph}), 129.7(\mathrm{Ph}), 131.1(\mathrm{C}(4)), 131.9(i-\mathrm{Ph})$, 135.7 (C(5)), $166.8\left(\mathrm{C}\left(1^{\prime \prime}\right)\right), 171.1(\mathrm{C}(6)) ; \mathrm{m} / \mathrm{z} 298\left(30 \%, \mathrm{MNa}^{+}\right), 276\left(100 \%, \mathrm{MH}^{+}\right)$; HRMS (ESI) $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NNaO}_{4}\left(\mathrm{MNa}^{+}\right)$requires 298.1050, found $298.1050(-0.10 \mathrm{ppm})$.

## Methyl 1-(benzyloxy)-6-oxo-5-(trifluoromethyl)-1,2,3,6-tetrahydropyridine-2-carboxylate 15b



Amide 14b ( $150 \mathrm{mg}, 0.42 \mathrm{mmol}$ ) was subjected to general procedure D using $10 \mathrm{~mol} \%$ HoveydaGrubbs second generation catalyst in toluene ( 200 mL ) at $95^{\circ} \mathrm{C}$ and purified by flash column chromatography ( $3: 1$ petrol:EtOAc) to give the title compound $\mathbf{1 5 b}$ as a colourless oil ( 103 mg , $75 \%)$.
$v_{\text {max }}\left(\right.$ thin film) $/ \mathrm{cm}^{-1} 2958 \mathrm{~m}, 1749 \mathrm{~s}, 1699 \mathrm{~s}, 1399 \mathrm{~s}, 1305 \mathrm{~s}, 1138 \mathrm{~s}, 1056 \mathrm{~m}, 975 \mathrm{~m}, 917 \mathrm{~m}, 884 \mathrm{~m}, 825 \mathrm{~m}$, $753 \mathrm{~m}, 700 \mathrm{~m} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.76-2.81\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}(3) \mathrm{H}_{2}\right), 3.75(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.05(1 \mathrm{H}, \mathrm{t}, J$ $5.0, \mathrm{C}(2) \mathrm{H}), 4.98\left(1 \mathrm{H}, \mathrm{d}, J 11.0, \mathrm{C}\left(1^{\prime}\right) \mathrm{H}\right), 5.06\left(1 \mathrm{H}, \mathrm{d}, J 11.0, \mathrm{C}\left(1^{\prime}\right) \mathrm{H}\right), 6.97(1 \mathrm{H}$, app s, C(4)H$)$, $7.35-7.47(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 28.0(\mathrm{C}(3)), 53.1$ (OMe), 61.4 (C(2)), 77.8 (C(1')), $120.8\left(\mathrm{q}, J_{\mathrm{CF}} 272.5, \mathrm{CF}_{3}\right), 122.1(\mathrm{C}(5)), 128.6(\mathrm{Ph}), 129.0(\mathrm{Ph}), 129.8(\mathrm{Ph}), 135.1(i-\mathrm{Ph}), 139.2(\mathrm{q}$, $\left.J_{\text {CF }} 4.5, \mathrm{C}(4)\right), 160.6,169.9$ (C(1"), C(6)); $m / z 352$ ( $100 \%, \mathrm{MNa}^{+}$), 323 (20\%), 307 ( $10 \%$ ); HRMS (ESI) $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{NO}_{4}\left(\mathrm{MH}^{+}\right)$requires 330.0948 , found $330.0950(-0.73 \mathrm{ppm})$.

## Methyl 5-methyl-6-oxo-1,6-dihydropyridine-2-carboxylate 16a



Dihydropyridone $\mathbf{1 5 a}$ ( $100 \mathrm{mg}, 0.36 \mathrm{mmol}$ ) was subjected to general procedure $\mathbf{E}$ and purified by flash column chromatography (gradient of $0-10 \% \mathrm{MeOH}$ in EtOAc) to give the title compound 16a as a white solid ( $53 \mathrm{mg}, 89 \%$ ).
m.p. $115-118{ }^{\circ} \mathrm{C}$; $\mathrm{v}_{\text {max }}\left(\mathrm{KBr}\right.$ disk) $/ \mathrm{cm}^{-1} 2947 \mathrm{br} \mathrm{s}, 1726 \mathrm{~s}, 1646 \mathrm{~s}, 1617 \mathrm{~s}, 1434 \mathrm{~s}, 1293 \mathrm{~s}, 1199 \mathrm{~s}, 1122 \mathrm{~s}$, $1017 \mathrm{~s}, 806 \mathrm{~s}, 753 \mathrm{~s} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.20(3 \mathrm{H}, \mathrm{d}, J 1.0, \mathrm{Me}), 3.93(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.91(1 \mathrm{H}, \mathrm{d}, J$ $7.0, \mathrm{C}(3) \mathrm{H}), 7.30(1 \mathrm{H}, \mathrm{dq}, J 7.0,1.0, \mathrm{C}(4) \mathrm{H}), 10.32(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 17.2(\mathrm{Me})$, 53.1 ( OMe ), 109.8 (C(3)), 131.2 (C(2)), 136.7 (C(5)), 137.2 (C(4)), 161.6 (C(6)), 162.7 (C(1')); m/z $190\left(100 \%, \mathrm{MNa}^{+}\right) ;$HRMS (ESI) $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NNaO}_{3}\left(\mathrm{MNa}^{+}\right)$requires 190.0475, found $190.0475(-0.31$ ppm).

## Methyl 6-oxo-5-(trifluoromethyl)-1,6-dihydropyridine-2-carboxylate 16b



Dihydropyridone $\mathbf{1 5 b}$ ( $77 \mathrm{mg}, 0.23 \mathrm{mmol}$ ) was subjected to general procedure $\mathbf{E}$ and purified by flash column chromatography (gradient of $0-10 \% \mathrm{MeOH}$ in EtOAc) to give the title compound 16b as a white solid ( $34 \mathrm{mg}, 65 \%$ ).
m.p. 144-148 ${ }^{\circ} \mathrm{C}$; $v_{\max }\left(\mathrm{KBr}\right.$ disk)/ $\mathrm{cm}^{-1} 2963 \mathrm{~m}, 1738 \mathrm{~s}, 1666 \mathrm{~s}, 1620 \mathrm{~s}, 1577 \mathrm{w}, 1485 \mathrm{w}, 1439 \mathrm{~m}, 1354 \mathrm{w}$, $1319 \mathrm{~s}, 1297 \mathrm{~s}, 1218 \mathrm{~m}, 1131 \mathrm{~s}, 1096 \mathrm{~m}, 1034 \mathrm{~m}$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.02(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 7.03(1 \mathrm{H}, \mathrm{d}$, $J 7.0, \mathrm{C}(3) \mathrm{H}), 7.88(1 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{C}(4) \mathrm{H}), 10.74(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 53.8(\mathrm{OMe})$, 107.2 (C(3)), 122.0 ( $\mathrm{q}, J_{\mathrm{CF}} 267.0, \mathrm{CF}_{3}$ ), 126.2, 137.1 (C(2), C(5)), 139.4 (q, $J_{\mathrm{CF}} 5.0, \mathrm{C}(4)$ ), 158.3,
$160.3\left(\mathrm{C}\left(1^{\prime}\right), \mathrm{C}(6)\right) ; \delta_{\mathrm{F}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-66.4\left(\mathrm{CF}_{3}\right) ; m / z 222$ ( $100 \%, \mathrm{MH}^{+}$); HRMS (ESI) $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{~F}_{3} \mathrm{NO}_{3}\left(\mathrm{MH}^{+}\right)$requires 222.0373, found $222.0377(-2.22 \mathrm{ppm})$.

Methyl 5-methyl-6-(trifluoromethylsulfonyloxy)picolinate 17a


Pyridone 16a ( $10 \mathrm{mg}, 0.06 \mathrm{mmol}$ ) was subjected to general procedure $\mathbf{F}$ and purified by flash column chromatography ( $20: 1$ petrol:EtOAc) to give the title compound $\mathbf{1 7 a}$ as a colourless oil ( 17 $\mathrm{mg}, 94 \%$ ).
$v_{\text {max }}($ thin film $) / \mathrm{cm}^{-1} 2960 \mathrm{~s}, 1731 \mathrm{~s}, 1571 \mathrm{~s}, 1420 \mathrm{~s}, 1212 \mathrm{~s}, 911 \mathrm{~s}, 844 \mathrm{~s} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.47$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 3.98(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 7.86(1 \mathrm{H}, \mathrm{d}, J 8.0, \mathrm{C}(4) \mathrm{H}), 8.10(1 \mathrm{H}, \mathrm{d}, J 8.0, \mathrm{C}(3) \mathrm{H}) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 16.1(\mathrm{Me}), 53.0(\mathrm{OMe}), 118.6\left(\mathrm{q}, J_{\mathrm{CF}} 264.0, \mathrm{CF}_{3}\right), 125.4(\mathrm{C}(3)), 129.6(\mathrm{C}(5)), 142.7(\mathrm{C}(4))$, 144.6, 154.1 (C(2), C(6)), 164.0 (C(1')); $m / z 322$ ( $30 \%, \mathrm{MNa}^{+}$), 300 ( $100 \%, \mathrm{MH}^{+}$), 286 ( $50 \%$ ), 268 (20\%), $242(10 \%)$; HRMS (ESI) $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{NO}_{5} \mathrm{~S}\left(\mathrm{MH}^{+}\right)$requires 300.0148, found 300.0149 ( -0.19 ppm).

## Methyl 5-(trifluoromethyl)-6-(trifluoromethylsulfonyloxy)picolinate 17b



Pyridone 16b ( $17 \mathrm{mg}, 0.08 \mathrm{mmol}$ ) was subjected to general procedure $\mathbf{F}$ and purified by flash column chromatography ( $10: 1$ petrol:EtOAc) to give the title compound $\mathbf{1 7 b}$ as a white solid ( 18 mg , 67\%).
m.p. $57-60{ }^{\circ} \mathrm{C}$; $v_{\text {max }}\left(\mathrm{KBr}\right.$ disk) $/ \mathrm{cm}^{-1} 2936 \mathrm{~s}, 2360 \mathrm{~s}, 1736 \mathrm{~s}, 1432 \mathrm{~s}, 1148 \mathrm{~s}, 1039 \mathrm{~s}, 832 \mathrm{~s} ; \delta_{\mathrm{H}}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 4.04(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 8.28(1 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{C}(3) \mathrm{H}), 8.32(1 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{C}(4) \mathrm{H}) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 53.5(\mathrm{OMe}), 118.4\left(\mathrm{q}, J_{\text {CF }} 320.5, \mathrm{CF}_{3}\right), 120.4\left(\mathrm{q}, J_{\mathrm{CF}} 35.5, \mathrm{C}(5)\right), 120.9\left(\mathrm{q}, J_{\mathrm{CF}} 273.5, \mathrm{CF}_{3}\right)$, $124.5(\mathrm{C}(3)), 139.6\left(\mathrm{q}, J_{\mathrm{CF}} 5.0, \mathrm{C}(4)\right)$, 149.7, 151.7 (C(2), C(6)), $162.8\left(\mathrm{C}\left(1^{\prime}\right)\right) ; m / z 376(20 \%$, $\mathrm{MNa}^{+}$), 242 (100\%); HRMS (ESI) $\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{~F}_{6} \mathrm{NO}_{5} \mathrm{~S}\left(\mathrm{MH}^{+}\right)$requires 353.9865 , found 353.9866 ( -0.04 ppm).

## Methyl 2-(benzyloxyamino)-3-methylpent-4-enoate 18a



Oxime 6 ( $600 \mathrm{mg}, 3.17 \mathrm{mmol}$ ) was subjected to general procedure $\mathbf{B}$ using crotyl bromide ( $457 \mu \mathrm{~L}$, 4.44 mmol ) and purified by flash column chromatography ( $10: 1$ petrol:EtOAc) to give the title
compound 18a as a colourless oil ( $740 \mathrm{mg}, 94 \%$ ) and a mixture of diastereoisomers which were not separated (ca. 4:1 from ${ }^{1} \mathrm{H}$ NMR). The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data provided is for the major diastereoisomer.
$v_{\text {max }}($ thin film $) / \mathrm{cm}^{-1} 3266 \mathrm{w}, 3031 \mathrm{w}, 2952 \mathrm{~m}, 1741 \mathrm{~s}, 1641 \mathrm{w}, 1469 \mathrm{w}, 1454 \mathrm{~m}, 1364 \mathrm{~m}, 1253 \mathrm{~m}, 1205 \mathrm{~s}$, $1271 \mathrm{~m}, 996 \mathrm{~m}, 918 \mathrm{~m} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.04(3 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{Me}), 2.38(1 \mathrm{H}$, app sextet, $J 7.0$, $\mathrm{C}(3) \mathrm{H}), 3.47-3.55(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(2) \mathrm{H}), 3.73(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.69\left(2 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(1^{\prime}\right) \mathrm{H}_{2}\right), 4.98-5.06(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{C}(5) \mathrm{H}_{2}\right), 5.66(1 \mathrm{H}$, ddd, $J 17.0,10.5,7.0, \mathrm{C}(4) \mathrm{H}), 5.97(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 7.28-7.37(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}$ ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $17.0(\mathrm{Me}), 38.9$ (C(3)), 51.6 (OMe), 68.1 (C(2)), $76.0\left(\mathrm{C}\left(1^{\prime}\right)\right), 115.8$ (C(5)), $127.8(\mathrm{Ph}), 128.2(\mathrm{Ph}), 128.6(\mathrm{Ph}), 137.7(i-\mathrm{Ph}), 139.0(\mathrm{C}(4)), 173.6(\mathrm{C}(1)) ; m / z 272\left(100 \%, \mathrm{MNa}^{+}\right)$; HRMS (ESI) $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NNaO}_{3}\left(\mathrm{MNa}^{+}\right)$requires 272.1257 , found 272.1257 ( +0.18 ppm ).

Methyl 2-(benzyloxyamino)-3-phenylpent-4-enoate 18b


Oxime $\mathbf{6}(174 \mathrm{mg}, 1.04 \mathrm{mmol})$ was subjected to general procedure $\mathbf{B}$ using cinnamyl bromide ( 288 $\mathrm{mg}, 1.46 \mathrm{mmol}$ ) and purified by flash column chromatography ( $8: 1$ petrol:EtOAc) to give the title compound 18b as a colourless oil ( $227 \mathrm{mg}, 70 \%$ ) and as a single diastereoisomer (which was unassigned).
$v_{\text {max }}$ (thin film) $/ \mathrm{cm}^{-1} 3063 \mathrm{~m}, 3030 \mathrm{~m}, 2951 \mathrm{~m}, 1741 \mathrm{~s}, 1638 \mathrm{~m}, 1601 \mathrm{~m}, 1495 \mathrm{~s}, 1453 \mathrm{~s}, 1338 \mathrm{~m}, 1242 \mathrm{~s}$, $1203 \mathrm{~s}, 993 \mathrm{~s}, 923 \mathrm{~m}, 748 \mathrm{~s} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 3.46-3.54(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(3) \mathrm{H}), 3.72(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.97$ $(1 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{C}(2) \mathrm{H}), 4.58\left(1 \mathrm{H}, \mathrm{d}, J 11.5, \mathrm{C}\left(1^{\prime}\right) \mathrm{H}\right), 4.62\left(1 \mathrm{H}, \mathrm{d}, J 11.5, \mathrm{C}\left(1^{\prime}\right) \mathrm{H}\right), 5.06-5.13(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{C}(5) \mathrm{H}_{2}\right), 5.77(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 5.98(1 \mathrm{H}$, ddd, $J 17.0,10.0,9.0, \mathrm{C}(4) \mathrm{H}), 7.11-7.35(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}$ ( $\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 50.6(\mathrm{C}(3)), 51.8(\mathrm{OMe}), 68.0(\mathrm{C}(2)), 76.2\left(\mathrm{C}\left(1^{\prime}\right)\right), 117.1(\mathrm{C}(5)), 127.1(\mathrm{Ph})$, 127.7 ( Ph ), 127.8 ( Ph ), 128.2 (Ph), 128.7 ( Ph$), 128.7(\mathrm{Ph}), 136.9(\mathrm{C}(4)), 137.4(i-\mathrm{Ph}), 139.4$ (i-Ph), $173.1(\mathrm{C}(1)) ; \mathrm{m} / \mathrm{z} 334\left(100 \%, \mathrm{MNa}^{+}\right), 312\left(10 \%, \mathrm{MH}^{+}\right)$; HRMS (ESI) $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NNaO}_{3}\left(\mathrm{MNa}^{+}\right)$ requires 334.1414 , found 334.1414 ( +0.02 ppm ).

## Methyl 2-( $N$-(benzyloxy)acrylamido)-3-methylpent-4-enoate 19a



Amine 18a ( $300 \mathrm{mg}, 1.20 \mathrm{mmol}$ ) was subjected to general procedure $\mathbf{C}$ and purified by flash column chromatography ( $10: 1$ petrol:EtOAc) to give the title compound 19a as a colourless oil ( 365 mg , $90 \%$ ) and a mixture of diastereoisomers which were not separated (ca. 4:1 from ${ }^{1} \mathrm{H}$ NMR). The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data provided is for the major diastereoisomer.
$v_{\text {max }}\left(\right.$ thin film) $/ \mathrm{cm}^{-1} 2952 \mathrm{w}, 1745 \mathrm{~s}, 1667 \mathrm{~s}, 1621 \mathrm{w}, 1407 \mathrm{~s}, 1313 \mathrm{w}, 1240 \mathrm{~m}, 1202 \mathrm{~m}, 985 \mathrm{~m}, 919 \mathrm{w}$, 786 w ; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.06(3 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{Me}), 3.05-3.21(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(3) \mathrm{H}), 3.74$ ( $3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$ ), 4.85-5.20 (5H, m, C(1') H2, C(2)H, C(5)H2), 5.74-5.84 (2H, m, C(3")H, C(4)H), 6.48 ( $1 \mathrm{H}, \mathrm{dd}, J$ $\left.17.0,2.0, \mathrm{C}\left(3^{\prime \prime}\right) \mathrm{H}\right), 6.78\left(1 \mathrm{H}, \mathrm{dd}, J 17.0,10.5, \mathrm{C}\left(2^{\prime \prime}\right) \mathrm{H}\right), 7.35-7.45(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 17.2(\mathrm{Me}), 37.6(\mathrm{C}(3)), 52.0(\mathrm{OMe}), 64.2(\mathrm{C}(2)), 79.0\left(\mathrm{C}\left(1^{\prime}\right)\right), 116.3(\mathrm{C}(5)), 125.8\left(\mathrm{C}\left(2^{\prime \prime}\right)\right)$,
$128.7(\mathrm{Ph}), 128.9(\mathrm{Ph}), 129.2(\mathrm{Ph}), 130.5\left(\mathrm{C}\left(3^{\prime \prime}\right)\right), 134.2(i-\mathrm{Ph}), 139.1(\mathrm{C}(4)), 168.0,170.3(\mathrm{C}(1)$, $\mathrm{C}\left(1^{\prime \prime}\right)$ ); $m / z 326\left(100 \%, \mathrm{MNa}^{+}\right), 235(30 \%), 180(20 \%)$; HRMS (ESI) $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{NO}_{4}\left(\mathrm{MH}^{+}\right)$requires 304.1543 , found $304.1545(-0.44 \mathrm{ppm})$.

Methyl 2-( $N$-(benzyloxy)acrylamido)-3-phenylpent-4-enoate 19b


Amine 18b ( $100 \mathrm{mg}, 0.32 \mathrm{mmol}$ ) was subjected to general procedure $\mathbf{C}$ and purified by flash column chromatography ( $8: 1$ petrol:EtOAc) to give the title compound 19b as a colourless oil ( 114 mg , $97 \%$ ) and as a single diastereoisomer (which was unassigned).
$v_{\text {max }}$ (thin film) $/ \mathrm{cm}^{-1} 3032 \mathrm{w}, 2951 \mathrm{w}, 1746 \mathrm{~s}, 1669 \mathrm{~s}, 1621 \mathrm{~m}, 1495 \mathrm{w}, 1454 \mathrm{~m}, 1406 \mathrm{~s}, 1309 \mathrm{~m}, 1237 \mathrm{~s}$, $1198 \mathrm{~m}, 1173 \mathrm{~m}, 986 \mathrm{~m}, 921 \mathrm{w} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 3.79(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.30(1 \mathrm{H}, \mathrm{dd}, J 8.5,11.0$, $\mathrm{C}(3) \mathrm{H}), 4.69\left(1 \mathrm{H}, \mathrm{d}, J 10.0, \mathrm{C}\left(1^{\prime}\right) \mathrm{H}\right), 4.96\left(1 \mathrm{H}, \mathrm{d}, J 10.0, \mathrm{C}\left(1^{\prime}\right) \mathrm{H}\right), 5.11-5.22\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}(5) \mathrm{H}_{2}\right), 5.52-$ 5.58 (2H, m, C(2)H, C(3")H), 5.98-6.08 (1H, m, C(4)H), 6.19-6.35 (2H, m, C(2")H, C(3")H), 7.15$7.42(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 49.3(\mathrm{C}(3)), 52.2(\mathrm{OMe}), 62.9(\mathrm{C}(2)), 78.7\left(\mathrm{C}\left(1^{\prime}\right)\right), 117.3$ (C(5)), $125.6\left(\mathrm{C}\left(2^{\prime \prime}\right)\right), 127.0(\mathrm{Ph}), 128.4(\mathrm{Ph}), 128.6(\mathrm{Ph}), 128.7(\mathrm{Ph}), 128.8(\mathrm{Ph}), 129.0(\mathrm{Ph}), 129.9$ (C(3")), 134.4 ( $i$-Ph), 137.4 (C(4)), 139.0 ( $i-\mathrm{Ph}), 168.4,170.1$ (C(1), C(1")); $m / z 388\left(100 \%, \mathrm{MNa}^{+}\right)$, $366\left(20 \%, \mathrm{MH}^{+}\right)$; HRMS (ESI) $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{NO}_{4}\left(\mathrm{MH}^{+}\right)$requires 366.1700 , found 366.1702 ( -0.51 ppm ).

## Methyl 2-( $N$-(benzyloxy)methacrylamido)-3-phenylpent-4-enoate 19c



Amine 18b ( $150 \mathrm{mg}, 0.51 \mathrm{mmol}$ ) was subjected to general procedure $\mathbf{C}$ using methacryloyl chloride ( $74 \mu \mathrm{~L}, 0.76 \mathrm{mmol}$ ) and purified by flash column chromatography ( $10: 1$ petrol:EtOAc) to give the title compound 19 c as a colourless oil ( $135 \mathrm{mg}, 74 \%$ ) and as a single diastereoisomer (which was unassigned).
$v_{\text {max }}\left(\right.$ thin film) $/ \mathrm{cm}^{-1} 2952 \mathrm{w}, 1746 \mathrm{~s}, 1666 \mathrm{~s}, 1495 \mathrm{w}, 1454 \mathrm{~m}, 1376 \mathrm{~m}, 1256 \mathrm{~m}, 1197 \mathrm{~m}, 991 \mathrm{w}, 919 \mathrm{~m}$, 746 w ; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.97$ ( $3 \mathrm{H}, \mathrm{dd}, J 1.5,1.0, \mathrm{Me}$ ), $3.81(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.28(1 \mathrm{H}, \mathrm{dd}, J 11.0$, $8.0, \mathrm{C}(3) \mathrm{H}), 4.70\left(1 \mathrm{H}, \mathrm{d}, J 9.5, \mathrm{C}\left(1^{\prime}\right) \mathrm{H}\right), 4.93\left(1 \mathrm{H}, \mathrm{d}, J 9.5, \mathrm{C}\left(1^{\prime}\right) \mathrm{H}\right), 5.12(1 \mathrm{H}$, app dt$, J 10.5,1.0$, $\mathrm{C}(5) \mathrm{H}), 5.17(1 \mathrm{H}$, app dt, $J 17.0,1.0, \mathrm{C}(5) \mathrm{H}), 5.46(1 \mathrm{H}, \mathrm{d}, J 11.0, \mathrm{C}(2) \mathrm{H}), 5.68-5.70(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{C}\left(3^{\prime \prime}\right) \mathrm{H}\right), 5.99(1 \mathrm{H}$, ddd, $J 17.0,10.5,8.0, \mathrm{C}(4) \mathrm{H}), 6.24-6.25\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}\left(3^{\prime \prime}\right) \mathrm{H}\right), 7.16-7.40(10 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 18.9(\mathrm{Me}), 49.4$ (C(3)), 49.4 (C(2)), 52.2 ( OMe ), 78.0 ( $\mathrm{C}\left(1^{\prime}\right)$ ), 117.3 (C(5)), $127.1(\mathrm{Ph}), 127.6\left(\mathrm{C}\left(3^{\prime \prime}\right)\right), 128.5(\mathrm{Ph}), 128.5(\mathrm{Ph}), 128.6(\mathrm{Ph}), 128.6(\mathrm{Ph}), 129.1(\mathrm{Ph}), 138.9$ (C(4)), 134.7, 137.3, 140.0 (C(2"), $i-\mathrm{Ph} \times 2$ ), 170.1, 172.1 (C(1), C(1")); $m / z 402\left(100 \%, \mathrm{MNa}^{+}\right), 380$ $\left(10 \%, \mathrm{MH}^{+}\right)$; HRMS (ESI) $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{NO}_{4}\left(\mathrm{MH}^{+}\right)$requires 380.1856 , found 380.1857 ( -0.26 ppm ).

## Methyl 1-(benzyloxy)-3-methyl-6-oxo-1,2,3,6-tetrahydropyridine-2-carboxylate 20a



Amide 19a ( $300 \mathrm{mg}, 0.99 \mathrm{mmol}$ ) was subjected to general procedure $\mathbf{D}$ using $10 \mathrm{~mol} \%$ HoveydaGrubbs second generation catalyst in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $40{ }^{\circ} \mathrm{C}$ and purified by flash column chromatography (2:1 petrol:EtOAc) to give the title compound 20a as a brown oil ( $265 \mathrm{mg}, 97 \%$ ) and a mixture of diastereoisomers which were not separated (ca. $4: 1$ from ${ }^{1} \mathrm{H}$ NMR). The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data provided is for the major diastereoisomer.
$v_{\text {max }}\left(\right.$ thin film) $/ \mathrm{cm}^{-1} 3033 \mathrm{w}, 2953 \mathrm{w}, 1748 \mathrm{~s}, 1694 \mathrm{~s}, 1624 \mathrm{w}, 1497 \mathrm{~m}, 1454 \mathrm{~m}, 1384 \mathrm{w}, 1207 \mathrm{~s}, 1133 \mathrm{w}$, $1052 \mathrm{w}, 989 \mathrm{~m} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.07(3 \mathrm{H}, \mathrm{d}, J 7.5, \mathrm{Me}), 2.98-3.06(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(3) \mathrm{H}), 3.70(3 \mathrm{H}, \mathrm{s}$, OMe), $3.96(1 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{C}(2) \mathrm{H}), 4.92\left(1 \mathrm{H}, \mathrm{d}, J 11.0, \mathrm{C}\left(1^{\prime}\right) \mathrm{H}\right), 5.02\left(1 \mathrm{H}, \mathrm{d}, J 11.0, \mathrm{C}\left(1^{\prime}\right) \mathrm{H}\right), 5.98$ $(1 \mathrm{H}, \mathrm{dd}, J 10.0,3.0, \mathrm{C}(5) \mathrm{H}), 6.11-6.15(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(4) \mathrm{H}), 7.30-7.45(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 15.8(\mathrm{Me}), 33.8(\mathrm{C}(3)), 52.3(\mathrm{OMe}), 67.5(\mathrm{C}(2)), 77.3\left(\mathrm{C}\left(1^{\prime}\right)\right)$, $123.7(\mathrm{C}(5)), 129.5(\mathrm{Ph})$, 129.6 (Ph), 129.7 (Ph), 135.6 ( $i-\mathrm{Ph}$ ), 142.8 (C(4)), 165.9, 169.2 (C(1"), C(6)); m/z 298 ( $100 \%$, $\left.\mathrm{MNa}^{+}\right), 207(60 \%)$; HRMS (ESI) $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NO}_{4}\left(\mathrm{MH}^{+}\right)$requires 276.1230, found $276.1229(+0.34$ ppm).

## Methyl-1-(benzyloxy)-6-oxo-3-phenyl-1,2,3,6-tetrahydropyridine-2-carboxylate 20b



Amide 19b ( $95 \mathrm{mg}, 0.26 \mathrm{mmol}$ ) was subjected to general procedure D using $10 \mathrm{~mol} \%$ HoveydaGrubbs second generation catalyst in toluene at $95^{\circ} \mathrm{C}$ and purified by flash column chromatography (3:1 petrol:EtOAc) to give the title compound 20b as a brown oil ( $51 \mathrm{mg}, 59 \%$ ) and as a single diastereoisomer (which was unassigned).
$v_{\text {max }}$ (thin film) $/ \mathrm{cm}^{-1} 3032 \mathrm{~m}, 2951 \mathrm{~m}, 1746 \mathrm{~s}, 1696 \mathrm{~s}, 1629 \mathrm{~m}, 1494 \mathrm{~m}, 1454 \mathrm{~m}, 1384 \mathrm{~m}, 1206 \mathrm{~s}, 1057 \mathrm{~m}$, $1002 \mathrm{~m}, 913 \mathrm{~m}, 839 \mathrm{~m}$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 3.32(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.13(1 \mathrm{H}, \mathrm{d}, J 7.5, \mathrm{C}(2) \mathrm{H}), 4.20$ $(1 \mathrm{H}, \mathrm{dt}, J 7.5,2.5, \mathrm{C}(3) \mathrm{H}), 5.00\left(1 \mathrm{H}, \mathrm{d}, J 11.0, \mathrm{C}\left(1^{\prime}\right) \mathrm{H}\right), 5.07\left(1 \mathrm{H}, \mathrm{d}, J 11.0, \mathrm{C}\left(1^{\prime}\right) \mathrm{H}\right), 6.16(1 \mathrm{H}, \mathrm{dd}, J$ $10.0,2.5, \mathrm{C}(5) \mathrm{H}), 6.49(1 \mathrm{H}, \mathrm{dd}, J 10.0,2.5, \mathrm{C}(4) \mathrm{H}), 7.01-7.05(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.29-7.36$ (3H, m, Ph), 7.40-7.50 (5H, m, Ph); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 45.4$ (C(3)), 52.0 ( OMe ), 68.7 (C(2)), 77.5 (C(1')), 125.3 (C(5)), $128.2(\mathrm{Ph}), 128.5(\mathrm{Ph}), 128.7(\mathrm{Ph}), 128.8(\mathrm{Ph}), 128.8(\mathrm{Ph}), 129.8(\mathrm{Ph}), 135.6(i-\mathrm{Ph})$, 136.5 ( $i-\mathrm{Ph}$ ), 139.9 (C(4)), 165.8, 168.6 (C(1"), C(6)); m/z 360 ( $100 \%$, MNa ${ }^{+}$), 338 ( $80 \%, \mathrm{MH}^{+}$); HRMS (ESI) $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NNaO}_{4}\left(\mathrm{MNa}^{+}\right)$requires 360.1206 , found 360.1207 ( -0.33 ppm ).

## Methyl-1-(benzyloxy)-5-methyl-6-oxo-3-phenyl-1,2,3,6-tetrahydropyridine-2-carboxylate 20c



Amide 19c ( $125 \mathrm{mg}, 0.33 \mathrm{mmol}$ ) was subjected to general procedure D $10 \mathrm{~mol} \%$ Hoveyda-Grubbs second generation catalyst in toluene at $95{ }^{\circ} \mathrm{C}$ and purified by flash column chromatography ( $2: 1$ petrol:EtOAc) to give the title compound 20c as a white solid ( $82 \mathrm{mg}, 71 \%$ ) and as a single diastereoisomer (which was unassigned).
m.p. $123-125{ }^{\circ} \mathrm{C} ; \mathrm{v}_{\max }\left(\mathrm{KBr}\right.$ disk) $/ \mathrm{cm}^{-1} 2952 \mathrm{w}, 1736 \mathrm{~s}, 1683 \mathrm{~s}, 1651 \mathrm{~m}, 1454 \mathrm{~m}, 1392 \mathrm{~m}, 1213 \mathrm{~m}$, $1035 \mathrm{~m}, 812 \mathrm{~m}, 737 \mathrm{~m}, 696 \mathrm{~m} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.04(3 \mathrm{H}, \mathrm{app} \mathrm{t}, J 1.5, \mathrm{Me}), 3.31(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, 4.12-4.19 (2H, m, C(2)H, C(3)H), $5.00\left(1 \mathrm{H}, \mathrm{d}, J 11.0, \mathrm{C}\left(1^{\prime}\right) \mathrm{H}\right), 5.07\left(1 \mathrm{H}, \mathrm{d}, J 11.0, \mathrm{C}\left(1^{\prime}\right) \mathrm{H}\right), 6.22-$ $6.25(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(4) \mathrm{H}), 7.03-7.07(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.28-7.49(8 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 16.8$ (Me), 44.7 (C(3)), $51.9(\mathrm{OMe}), 69.0(\mathrm{C}(2))$, $77.4\left(\mathrm{C}\left(1^{\prime}\right)\right), 128.0(\mathrm{Ph}), 128.2(\mathrm{Ph}), 128.5(\mathrm{Ph}), 128.6$ (Ph), 128.7 (Ph), 129.7 (Ph), 132.0 (C(5)), 134.2 (C(4)), 135.8 ( $i-\mathrm{Ph}), 137.2(i-\mathrm{Ph}), 167.5(\mathrm{C}(6))$, 168.9 (C(1")); m/z 374 ( $90 \%$, MNa ${ }^{+}$), $352\left(\mathrm{MH}^{+}, 100 \%\right), 283$ (10\%); HRMS (ESI) $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{NO}_{4}$ $\left(\mathrm{MH}^{+}\right)$requires 352.1543 , found $352.1544(-0.06 \mathrm{ppm})$.

Methyl 3-methyl-6-oxo-1,6-dihydropyridine-2-carboxylate 21a


Dihydropyridone 20a ( $250 \mathrm{mg}, 0.91 \mathrm{mmol}$ ) was subjected to general procedure $\mathbf{E}$ and purified by flash column chromatography (gradient of $0-10 \% \mathrm{MeOH}$ in EtOAc) to give the title compound 21a as a white solid ( $142 \mathrm{mg}, 93 \%$ ).
m.p. $120-123{ }^{\circ} \mathrm{C}$; $v_{\text {max }}\left(\mathrm{KBr}\right.$ disk) $/ \mathrm{cm}^{-1} 2953 \mathrm{~s}, 1724 \mathrm{~s}, 1655 \mathrm{~s}, 1598 \mathrm{~s}, 1445 \mathrm{~s}, 1315 \mathrm{~s}, 1254 \mathrm{~s}, 1193 \mathrm{~s}$, $1097 \mathrm{~s}, 912 \mathrm{~s}, 857 \mathrm{~s}, 784 \mathrm{~s}$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.41(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 3.96(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.73(1 \mathrm{H}, \mathrm{d}, J$ $9.0, \mathrm{C}(3) \mathrm{H}), 7.30(1 \mathrm{H}, \mathrm{d}, J 9.0, \mathrm{C}(4) \mathrm{H}), 9.97(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 18.3(\mathrm{Me}), 53.1$ (OMe), 121.5 (C(5)), 126.5 (C(3)), 129.4 (C(6)), 145.5 (C(4)), 161.5, 161.9 (C(1'), C(2)); m/z 190 $\left(100 \%, \mathrm{MNa}^{+}\right) ; \mathrm{HRMS}(\mathrm{ESI}) \mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NNaO}_{3}\left(\mathrm{MNa}^{+}\right)$requires 190.0475 , found 190.0474 ( +0.53 ppm ).

## Methyl 6-oxo-3-phenyl-1,6-dihydropyridine-2-carboxylate 21b



Dihydropyridone 20b ( $35 \mathrm{mg}, 0.10 \mathrm{mmol}$ ) was subjected to general procedure $\mathbf{E}$ and purified by flash column chromatography (gradient of $0-10 \% \mathrm{MeOH}$ in EtOAc) to give the title compound 21b as a white solid ( $22 \mathrm{mg}, 92 \%$ ).
m.p. $130-132{ }^{\circ} \mathrm{C}$; $v_{\text {max }}\left(\mathrm{KBr}\right.$ disk) $/ \mathrm{cm}^{-1} 3054 \mathrm{~s}, 1723 \mathrm{~s}, 1664 \mathrm{~s}, 1612 \mathrm{~s}, 1591 \mathrm{~s}, 1490 \mathrm{~s}, 1446 \mathrm{~s}, 1430 \mathrm{~s}$, $1312 \mathrm{~s}, 1241 \mathrm{~s}, 1086 \mathrm{~s}, 1037 \mathrm{~s}, 1011 \mathrm{~s}, 980 \mathrm{~s}$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 3.69(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.83(1 \mathrm{H}, \mathrm{d}, J$ 9.0, C(3)H), 7.22-7.27 ( $2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$ ), 7.37-7.42 ( $4 \mathrm{H}, \mathrm{m}, \mathrm{C}(4) \mathrm{H}, \mathrm{Ph} \times 3), 10.45(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH})$; $\delta_{\mathrm{C}}$ ( $\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 53.0(\mathrm{OMe}), 125.1$ (C(5)), 126.6 (C(3)), $128.0(\mathrm{Ph}), 128.2(\mathrm{Ph}), 128.7(\mathrm{Ph})$, 130.2 (C(6)), 137.2 ( $i-\mathrm{Ph}), 144.3$ (C(4)), 161.8 (C(2)), $162.0\left(\mathrm{C}\left(1^{\prime}\right)\right) ; m / z 252\left(100 \%, \mathrm{MNa}^{+}\right), 230$ $\left(80 \%, \mathrm{MH}^{+}\right), 202(30 \%), 170(20 \%)$; HRMS (ESI) $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{NNaO}_{3}\left(\mathrm{MNa}^{+}\right)$requires 252.0631, found $252.0630(+0.41 \mathrm{ppm})$.

Methyl 5-methyl-6-oxo-3-phenyl-1,6-dihydropyridine-2-carboxylate 21c


Dihydropyridone 20c ( $20 \mathrm{mg}, 0.06 \mathrm{mmol}$ ) was subjected to general procedure $\mathbf{E}$ and purified by flash column chromatography (gradient of $0-10 \% \mathrm{MeOH}$ in EtOAc) to give the title compound 21c as a white solid ( $13 \mathrm{mg}, 93 \%$ ).
m.p. $164-168{ }^{\circ} \mathrm{C}$; $v_{\text {max }}\left(\mathrm{KBr}\right.$ disk) $/ \mathrm{cm}^{-1} 3012 \mathrm{~s}, 1732 \mathrm{~s}, 1668 \mathrm{~s}, 1431 \mathrm{~s}, 1319 \mathrm{~s}, 1278 \mathrm{~s}, 1241 \mathrm{~s}, 1188 \mathrm{~s}$, $1071 \mathrm{~s}, 761 \mathrm{~s} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.24(3 \mathrm{H}, \mathrm{d}, J 1.0, \mathrm{Me}), 3.69(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 7.22-7.28(3 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph}), 7.36-7.42(3 \mathrm{H}, \mathrm{m}, \mathrm{C}(4) \mathrm{H}, \mathrm{Ph}), 9.99(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 16.9(\mathrm{Me}), 52.8$ (OMe), 125.7 (C(5)), 127.3 (C(3)), 127.8 (Ph), 128.1 (Ph), $128.7(\mathrm{Ph}), 136.0$ (C(6)), 137.5 ( $i-\mathrm{Ph})$, 141.4 (C(4)), 161.8, 161.9 (C(1'), C(2)); $m / z 266$ ( $90 \%, \mathrm{MNa}^{+}$), 244 ( $100 \%, \mathrm{MH}^{+}$), 212 (30\%), 184 (20\%); HRMS (ESI) $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{NO}_{3}\left(\mathrm{MH}^{+}\right)$requires 244.0968 , found 244.0972 ( -1.60 ppm ).
(3-Bromoprop-1-en-2-yl)benzene $22^{6}$

$N$-Bromosuccinimide ( $8.90 \mathrm{~g}, 50.0 \mathrm{mmol}$ ) was added to a solution of $\alpha$-methylstyrene ( 10.5 mL , $80.0 \mathrm{mmol})$ in $\mathrm{CCl}_{4}(5 \mathrm{~mL})$, and the mixture was heated to $170{ }^{\circ} \mathrm{C}$ until the solids had dissolved and the exothermic reaction had subsided. The reaction mixture was allowed to cool for 3 h and the precipitate was removed by filtration. The solvent was removed under reduced pressure, and the
resulting orange oil was purified by flash column chromatography (petrol) to give the title compound 22 as a colourless oil ( $5.10 \mathrm{~g}, 52 \%$ ).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.41\left(2 \mathrm{H}, \mathrm{s}, \mathrm{C}(3) \mathrm{H}_{2}\right), 5.51(1 \mathrm{H}, \mathrm{s}, \mathrm{C}(1) \mathrm{H}), 5.58(1 \mathrm{H}, \mathrm{s}, \mathrm{C}(1) \mathrm{H}), 7.23-7.55$ $(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 34.2(\mathrm{C}(3))$, 117.2 (C(1)), 126.1 (Ph), $128.3(\mathrm{Ph}), 128.5(\mathrm{Ph})$, $137.6(i-\mathrm{Ph}), 144.2(\mathrm{C}(2))$. All data agreed with those previously published. ${ }^{6}$

## Methyl 2-(benzyloxyamino)-4-phenylpent-4-enoate 23



Oxime 6 ( $300 \mathrm{mg}, 1.55 \mathrm{mmol}$ ) was subjected to general procedure $\mathbf{B}$ using allyl bromide 22 and purified by flash column chromatography ( $10: 1$ petrol:EtOAc) to give the title compound $\mathbf{2 3}$ as a colourless oil ( $228 \mathrm{mg}, 47 \%$ ).
$v_{\text {max }}\left(\right.$ thin film) $/ \mathrm{cm}^{-1} 3060 \mathrm{~s}, 3030 \mathrm{~s}, 2951 \mathrm{~s}, 1741 \mathrm{~s}, 1453 \mathrm{~s}, 1212 \mathrm{~s}, 780 \mathrm{~s}, 699 \mathrm{~s} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $2.80\left(2 \mathrm{H}\right.$, app dt, $\left.J 7.5,1.5, \mathrm{C}(3) \mathrm{H}_{2}\right), 3.66(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.71-3.79(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(2) \mathrm{H}), 4.66(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{C}\left(1^{\prime}\right) \mathrm{H}_{2}\right), 5.12-5.13(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(5) \mathrm{H}), 5.35-5.36(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(5) \mathrm{H}), 5.92(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 7.27-7.39$ $(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 35.4(\mathrm{C}(3)), 51.9(\mathrm{OMe}), 62.5(\mathrm{C}(2)), 76.2\left(\mathrm{C}\left(1^{\prime}\right)\right), 115.7(\mathrm{C}(5))$, $126.2(\mathrm{Ph}), 127.8(\mathrm{Ph}), 127.8(\mathrm{Ph}), 128.3(\mathrm{Ph}), 128.4(\mathrm{Ph}), 128.5(\mathrm{Ph}), 137.6,139.8,143.7(\mathrm{C}(4), i-$ $\mathrm{Ph} \times 2$ ), 173.8 (C(1)); $m / z 334$ ( $100 \%, \mathrm{MNa}^{+}$), 279 ( $60 \%$ ), 201 ( $30 \%$ ), 195 (20\%); HRMS (ESI) $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NNaO}_{3}\left(\mathrm{MNa}^{+}\right)$requires 334.1414 , found 334.1415 ( -0.49 ppm ).

## Methyl 2-( $N$-(benzyloxy)acrylamido)-4-phenylpent-4-enoate 24



Amine 23 ( $40 \mathrm{mg}, 0.13 \mathrm{mmol}$ ) was subjected to general procedure $\mathbf{C}$ and purified by flash column chromatography ( $8: 1$ petrol:EtOAc) to give the title compound 24 as a colourless oil ( $41 \mathrm{mg}, 91 \%$ ). $v_{\text {max }}($ thin film $) / \mathrm{cm}^{-1} 3032 \mathrm{w}, 2952 \mathrm{~m}, 1744 \mathrm{~s}, 1663 \mathrm{~s}, 1621 \mathrm{~m}, 1495 \mathrm{w}, 1410 \mathrm{~m}, 1314 \mathrm{~s}, 1263 \mathrm{~s}, 985 \mathrm{~s}$, $908 \mathrm{~m}, 845 \mathrm{w} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 3.26(1 \mathrm{H}, \mathrm{dd}, J 15.0,10.5, \mathrm{C}(3) \mathrm{H}), 3.40(1 \mathrm{H}, \mathrm{dd}, J 15.0,4.5$, $\mathrm{C}(3) \mathrm{H}), 3.76(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.79\left(1 \mathrm{H}, \mathrm{d}, J 10.5, \mathrm{C}\left(1^{\prime}\right) \mathrm{H}\right), 4.85\left(1 \mathrm{H}, \mathrm{d}, J 10.5, \mathrm{C}\left(1^{\prime}\right) \mathrm{H}\right), 4.89(1 \mathrm{H}, \mathrm{dd}, J$ $10.5,4.5, \mathrm{C}(2) \mathrm{H}), 5.20(1 \mathrm{H}, \mathrm{s}, \mathrm{C}(5) \mathrm{H}), 5.39(1 \mathrm{H}, \mathrm{s}, \mathrm{C}(5) \mathrm{H}), 5.74\left(1 \mathrm{H}, \mathrm{dd}, J 10.5,2.0, \mathrm{C}\left(3^{\prime \prime}\right) \mathrm{H}\right), 6.43$ $\left(1 \mathrm{H}, \mathrm{dd}, J 17.0,2.0, \mathrm{C}\left(3^{\prime \prime}\right) \mathrm{H}\right), 6.66(1 \mathrm{H}, \mathrm{dd}, J 17.0,10.5, \mathrm{C}(2 ") \mathrm{H}), 7.21-7.44(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 33.9(\mathrm{C}(3)), 52.6(\mathrm{OMe}), 60.6(\mathrm{C}(2)), 78.6\left(\mathrm{C}\left(1^{\prime}\right)\right), 115.9(\mathrm{C}(5)), 126.1$ (C(2')), 126.3 (Ph), 127.8 (Ph), 128.5 (Ph), $128.6(\mathrm{Ph}), 128.9(\mathrm{Ph}), 129.0(\mathrm{Ph}), 129.9\left(\mathrm{C}\left(3^{\prime \prime}\right)\right), 134.2,140.0,143.9$ (C(4), $i-\mathrm{Ph} \times 2$ ), $167.8,170.2\left(\mathrm{C}(1), \mathrm{C}\left(1^{\prime \prime}\right)\right) ; m / z 388\left(80 \%, \mathrm{MNa}^{+}\right), 387(100 \%), 366\left(20 \%, \mathrm{MH}^{+}\right)$; HRMS (ESI) $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{NO}_{4}\left(\mathrm{MH}^{+}\right)$requires 366.1700 , found 366.1700 ( -0.13 ppm ).

## ( $\boldsymbol{E}$ )-Benzaldehyde $\boldsymbol{O}$-benzyl oxime $\mathbf{3 8}^{3}$



Benzaldehyde ( $305 \mu \mathrm{~L}, 3.00 \mathrm{mmol}$ ) was subjected to general procedure A using ethanol and purified by flash column chromatography (petrol) to give the title compound $\mathbf{3 8}$ as a colourless oil ( 589 mg , 93\%).
$v_{\text {max }}\left(\right.$ thin film) $/ \mathrm{cm}^{-1} 3063 \mathrm{~s}, 3030 \mathrm{~s}, 2927 \mathrm{~s}, 1495 \mathrm{~s}, 1447 \mathrm{~s}, 1367 \mathrm{~s}, 1341 \mathrm{~s}, 1211 \mathrm{~s}, 1081 \mathrm{~s}, 1020 \mathrm{~s}, 946 \mathrm{~s}$, $915 \mathrm{~s} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.23\left(2 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(1^{\prime}\right) \mathrm{H}_{2}\right), 7.30-7.62(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 8.15(1 \mathrm{H}, \mathrm{s}, \mathrm{C}(1) \mathrm{H}) ; \delta_{\mathrm{C}}$ $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 76.4\left(\mathrm{C}\left(1^{\prime}\right)\right), 127.1(\mathrm{Ph}), 128.0(\mathrm{Ph}), 128.4(\mathrm{Ph}), 128.4(\mathrm{Ph}), 128.7(\mathrm{Ph}), 129.0$ $(\mathrm{Ph}), 129.8(i-\mathrm{Ph}), 132.2(i-\mathrm{Ph}), 149.0(\mathrm{C}(1))$. All data agreed with those previously published. ${ }^{3}$

## O-Benzyl-N-(1-phenylbut-3-enyl)hydroxylamine 39



Boron trifluoride diethyl etherate ( $721 \mu \mathrm{~L}, 5.69 \mathrm{mmol}$ ) was added to a stirred solution of oxime 38 ( $400 \mathrm{mg}, 1.80 \mathrm{mmol}$ ) in toluene ( 5 mL ) at $-78{ }^{\circ} \mathrm{C}$, and the mixture was stirred for 15 min . Allyl magnesium bromide ( $5.70 \mathrm{~mL}, 1.0 \mathrm{M}$ in $\mathrm{Et}_{2} \mathrm{O}, 5.69 \mathrm{mmol}$ ) was added drop-wise to the reaction mixture over 15 min , and stirring was continued for 14 h . The reaction was quenched at $-78{ }^{\circ} \mathrm{C}$ with water ( 10 mL ), and the mixture was allowed to warm to room temperature. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL} \times 3)$, and the combined organic layers were dried over $\mathrm{K}_{2} \mathrm{CO}_{3}$ and concentrated under reduced pressure. The resulting yellow oil was purified by flash column chromatography ( $25: 1$ petrol $: \mathrm{Et}_{2} \mathrm{O}$ ) to give the title compound 39 as a colourless oil ( $431 \mathrm{mg}, 90 \%$ ). $v_{\text {max }}($ thin film $) / \mathrm{cm}^{-1} 3031 \mathrm{~s}, 2914 \mathrm{~s}, 1641 \mathrm{~s}, 1495 \mathrm{~s}, 1454 \mathrm{~s}, 1361 \mathrm{~s}, 994 \mathrm{~s}, 916 \mathrm{~s}, 751 \mathrm{~s} ; \delta_{\mathrm{H}}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 2.40-2.60\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}(2) \mathrm{H}_{2}\right), 4.08(1 \mathrm{H}, \mathrm{t}, J 7.0, \mathrm{C}(1) \mathrm{H}), 4.55\left(1 \mathrm{H}, \mathrm{d}, J 11.0, \mathrm{C}\left(1^{\prime}\right) \mathrm{H}\right), 4.62$ $\left(1 \mathrm{H}, \mathrm{d}, J 11.0, \mathrm{C}\left(1^{\prime}\right) \mathrm{H}\right), 5.02-5.11\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}(4) \mathrm{H}_{2}\right), 5.66-5.77(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(3) \mathrm{H}), 5.81(1 \mathrm{H}, \mathrm{br}$ s, NH), 7.21-7.40 (10H, m, Ph); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 38.5(\mathrm{C}(2)), 65.0(\mathrm{C}(1)), 76.8\left(\mathrm{C}\left(1^{\prime}\right)\right), 117.7(\mathrm{C}(4))$, $127.5(\mathrm{Ph}), 127.7(\mathrm{Ph}), 127.8(\mathrm{Ph}), 127.8(\mathrm{Ph}), 128.3(\mathrm{Ph}), 128.5(\mathrm{Ph}), 134.8(\mathrm{C}(3)), 137.7(i-\mathrm{Ph})$, $141.5(i-\mathrm{Ph}) ; m / z 276\left(100 \%, \mathrm{MNa}^{+}\right)$; HRMS (ESI) $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NNaO}\left(\mathrm{MNa}^{+}\right)$requires 276.1359, found 276.1358 ( +0.38 ppm ).

## $N$-(Benzyloxy)-N-(1-phenylbut-3-enyl)acrylamide 26a



Amine 39 ( $280 \mathrm{mg}, 1.11 \mathrm{mmol}$ ) was subjected to general procedure $\mathbf{C}$ and purified by flash column chromatography ( $4: 1$ petrol: $\mathrm{Et}_{2} \mathrm{O}$ ) to give the title compound $\mathbf{2 6 a}$ as a white solid ( $337 \mathrm{mg}, 99 \%$ ).
m.p. $45-48{ }^{\circ} \mathrm{C} ; v_{\max }\left(\mathrm{KBr}\right.$ disk) $/ \mathrm{cm}^{-1} 3030 \mathrm{~s}, 2885 \mathrm{~s}, 1651 \mathrm{~s}, 1499 \mathrm{~s}, 1453 \mathrm{~s}, 1408 \mathrm{~s}, 1376 \mathrm{~s}, 1311 \mathrm{~s}$, $1232 \mathrm{~s}, 1133 \mathrm{~s}, 971 \mathrm{~s}, 910 \mathrm{~s}, 854 \mathrm{~s}, 785 \mathrm{~s}$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.80-3.07\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}(2) \mathrm{H}_{2}\right), 4.22(1 \mathrm{H}$, d, $\left.J 9.5, \mathrm{C}\left(1^{\prime}\right) \mathrm{H}\right), 4.60\left(1 \mathrm{H}, \mathrm{d}, J 9.5, \mathrm{C}\left(1^{\prime}\right) \mathrm{H}\right), 5.07(1 \mathrm{H}, \mathrm{dd}, J 10.5,1.0, \mathrm{C}(4) \mathrm{H}), 5.17(1 \mathrm{H}, \mathrm{dd}, J 17.0$, $1.0, \mathrm{C}(4) \mathrm{H}), 5.74-5.86\left(3 \mathrm{H}, \mathrm{m}, \mathrm{C}(1) \mathrm{H}, \mathrm{C}(3) \mathrm{H}, \mathrm{C}\left(3^{\prime \prime}\right) \mathrm{H}\right), 6.49\left(1 \mathrm{H}, \mathrm{dd}, J 17.0,2.0, \mathrm{C}\left(3^{\prime \prime}\right) \mathrm{H}\right), 6.71(1 \mathrm{H}$, dd, $\left.J 17.0,10.5, \mathrm{C}\left(2^{\prime \prime}\right) \mathrm{H}\right), 7.19-7.23(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.32-7.43(6 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.53-7.57(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}$ ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 34.6 ( $\left.\mathrm{C}(2)\right)$, 59.8 (C(1)), 79.4 ( $\mathrm{C}\left(1^{\prime}\right)$ ), 118.1 ( $\mathrm{C}(4)$ ), 126.8 ( $\mathrm{C}\left(2^{\prime \prime}\right)$ ), 128.1 ( Ph ), 128.6 ( Ph ), $128.6(\mathrm{Ph}), 128.7(\mathrm{Ph}), 128.8(\mathrm{Ph}), 128.9(\mathrm{Ph}), 129.7\left(\mathrm{C}\left(3^{\prime \prime}\right)\right), 134.3(i-\mathrm{Ph}), 134.4(\mathrm{C}(3))$, $138.8(i-\mathrm{Ph}), 167.8\left(\mathrm{C}\left(1^{\prime \prime}\right)\right) ; \mathrm{m} / \mathrm{z} 330\left(100 \%, \mathrm{MNa}^{+}\right), 266$ (90\%), 238 (20\%); HRMS (ESI) $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NNaO}_{2}\left(\mathrm{MNa}^{+}\right)$requires 330.1465 , found 330.1464 ( +0.01 ppm ).

1-(Benzyloxy)-6-phenyl-5,6-dihydropyridin-2(1H)-one 27a


Amide 26a ( $133 \mathrm{mg}, 0.43 \mathrm{mmol}$ ) was subjected to general procedure D using $10 \mathrm{~mol} \%$ HoveydaGrubbs second generation catalyst in toluene at $95^{\circ} \mathrm{C}$ and purified by flash column chromatography (2:1 petrol:EtOAc) to give the title compound 27 a as a white solid ( $105 \mathrm{mg}, 87 \%$ ).
m.p. $84-86^{\circ} \mathrm{C} ; v_{\max }\left(\mathrm{KBr}\right.$ disk) $/ \mathrm{cm}^{-1} 3030 \mathrm{~s}, 2946 \mathrm{~s}, 2885 \mathrm{~s}, 1683 \mathrm{~s}, 1623 \mathrm{~s}, 1455 \mathrm{~s}, 1384 \mathrm{~s}, 1364 \mathrm{~s}$, $1289 \mathrm{~s}, 1124 \mathrm{~s}, 1065 \mathrm{~s}, 1008 \mathrm{~s}, 984 \mathrm{~s}$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.68(1 \mathrm{H}$, dddd, $J 18.0,7.0,4.0,2.0$, $\mathrm{C}(5) \mathrm{H}), 2.82(1 \mathrm{H}$, dddd, $J 18.0,7.0,4.0,2.0, \mathrm{C}(5) \mathrm{H}), 4.64(1 \mathrm{H}$, app t, $J 7.0, \mathrm{C}(6) \mathrm{H}), 4.78(1 \mathrm{H}, \mathrm{d}, J$ $\left.10.5, \mathrm{C}\left(1^{\prime}\right) \mathrm{H}\right), 5.03\left(1 \mathrm{H}, \mathrm{d}, J 10.5, \mathrm{C}\left(1^{\prime}\right) \mathrm{H}\right), 6.00(1 \mathrm{H}, \mathrm{dt}, J 9.5,2.0, \mathrm{C}(3) \mathrm{H}), 6.42(1 \mathrm{H}, \mathrm{dt}, J 9.5,4.0$, $\mathrm{C}(4) \mathrm{H}), 7.17-7.39(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 34.1(\mathrm{C}(5)), 63.8(\mathrm{C}(6)), 77.3\left(\mathrm{C}\left(1^{\prime}\right)\right), 124.8$ $(\mathrm{C}(3)), 127.0(\mathrm{Ph}), 128.0(\mathrm{Ph}), 128.3(\mathrm{Ph}), 128.5(\mathrm{Ph}), 128.6(\mathrm{Ph}), 129.6(\mathrm{Ph}), 135.4(i-\mathrm{Ph}), 138.3$ (C(4)), 139.2 ( $i-\mathrm{Ph}$ ), 165.8 (C(2)); $m / z 302$ ( $100 \%$, $\mathrm{MNa}^{+}$), 211 ( $40 \%$ ); HRMS (ESI) $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NNaO}_{2}$ $\left(\mathrm{MNa}^{+}\right)$requires 302.1151 , found 302.1151 ( +0.02 ppm ).
( $E$ )-Picolinaldehyde $O$-benzyl oxime 40


Pyridine-2-cardoxaldehyde ( $1.00 \mathrm{~g}, 9.34 \mathrm{mmol}$ ) was subjected to general procedure $\mathbf{A}$ using ethanol and purified by flash column chromatography (petrol) to give the title compound $\mathbf{4 0}$ as a colourless oil ( $1.98 \mathrm{~g}, 100 \%$ ).
$v_{\text {max }}$ (thin film) $/ \mathrm{cm}^{-1} 3032 \mathrm{w}, 1584 \mathrm{~m}, 1566 \mathrm{w}, 1496 \mathrm{w}, 1468 \mathrm{~m}, 1454 \mathrm{~m}, 1434 \mathrm{~m}, 1366 \mathrm{~m}, 1331 \mathrm{w}$, $1201 \mathrm{w}, 1017 \mathrm{~s}, 990 \mathrm{~s}, 941 \mathrm{~s}$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.28\left(2 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(1^{\prime}\right) \mathrm{H}_{2}\right), 7.23-7.46(6 \mathrm{H}, \mathrm{m}, \mathrm{Ph} \times 5$, Ar), $7.69(1 \mathrm{H}, \mathrm{td}, J 8.0,1.5, \mathrm{Ar}), 7.80(1 \mathrm{H}, \mathrm{d}, J 8.0, \mathrm{Ar}), 8.25(1 \mathrm{H}, \mathrm{s}, \mathrm{C}(1) \mathrm{H}), 8.61(1 \mathrm{H}, \mathrm{d}, J 5.0, \mathrm{Ar})$; $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 76.8\left(\mathrm{C}\left(1^{\prime}\right)\right), 121.0(\mathrm{Ar}), 123.9(\mathrm{Ar}), 128.0(\mathrm{Ph}), 128.3(\mathrm{Ph}), 128.4(\mathrm{Ph}), 136.4$ (Ar), 137.2 ( $i$-Ph), 149.6 (Ar), 149.6 (C(1)), 151.6 ( $i-\mathrm{Ar);} \mathrm{m/z} 213$ ( $100 \%$, MH ${ }^{+}$), 132 (20\%); HRMS (ESI) $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}\left(\mathrm{MH}^{+}\right)$requires 213.1022 , found $213.1021(-0.74 \mathrm{ppm})$.

## O-Benzyl-N-(1-(pyridin-2-yl)but-3-enyl)hydroxylamine 41



Oxime $40(1.00 \mathrm{~g}, 4.71 \mathrm{mmol})$ was subjected to general procedure $\mathbf{B}$ and purified by flash column chromatography (gradient of $0-50 \%$ EtOAc in cyclohexane) to give the title compound 41 as a colourless oil ( $1.20 \mathrm{~g}, 81 \%$ ).
$v_{\text {max }}($ thin film $) / \mathrm{cm}^{-1} 2913 \mathrm{w}, 1640 \mathrm{w}, 1591 \mathrm{~m}, 1571 \mathrm{~m}, 1473 \mathrm{~m}, 1453 \mathrm{~m}, 1434 \mathrm{~s}, 1363 \mathrm{~m}, 1292 \mathrm{w}, 1207 \mathrm{w}$, $994 \mathrm{~s}, 914 \mathrm{~s} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.46-2.52\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}(2) \mathrm{H}_{2}\right), 4.17(1 \mathrm{H}, \mathrm{t}, J 7.0, \mathrm{C}(1) \mathrm{H}), 4.63(1 \mathrm{H}$, d, $\left.J 11.5, \mathrm{C}\left(1^{\prime}\right) \mathrm{H}\right), 4.68\left(1 \mathrm{H}, \mathrm{d}, J 11.5, \mathrm{C}\left(1^{\prime}\right) \mathrm{H}\right), 4.99-5.07\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}(4) \mathrm{H}_{2}\right), 5.72(1 \mathrm{H}, \operatorname{ddt}, J 17.0$, 10.0, 7.0, C(3)H), $6.22(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 7.15-7.19(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.24-7.34(6 \mathrm{H}, \mathrm{m}, \mathrm{Ph} \times 5, \mathrm{Ar}), 7.64$ $(1 \mathrm{H}, \mathrm{td}, J 7.5,1.5, \mathrm{Ar}), 8.59(1 \mathrm{H}, \mathrm{d}, J 5.0, \mathrm{Ar}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 37.3(\mathrm{C}(2)), 65.7(\mathrm{C}(1)), 76.2$ ( $\mathrm{C}\left(1^{\prime}\right)$ ), $117.5(\mathrm{C}(4)), 122.2(\mathrm{Ar}), 122.5(\mathrm{Ar}), 127.7(\mathrm{Ph}), 128.2(\mathrm{Ph}), 128.4(\mathrm{Ar}), 134.5(\mathrm{C}(3)), 136.1$ (Ar), 137.9 ( $i-\mathrm{Ph}$ ), 149.4 (Ar), 161.1 ( $i$-Ar); $m / z 255$ ( $100 \%, \mathrm{MH}^{+}$), 164 ( $10 \%$ ), 132 (20\%); HRMS (ESI) $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}\left(\mathrm{MH}^{+}\right)$requires 255.1492 , found 255.1491 ( -0.49 ppm ).
$N$-(Benzyloxy)-N-(1-(pyridin-2-yl)but-3-enyl)acrylamide 26b


Amine 41 ( $949 \mathrm{mg}, 3.74 \mathrm{mmol}$ ) was subjected to general procedure $\mathbf{C}$ and purified by flash column chromatography (gradient of $0-50 \%$ EtOAc in cyclohexane) to give the title compound $\mathbf{2 6 b}$ as a colourless oil ( $880 \mathrm{mg}, 77 \%$ ).
$v_{\text {max }}$ (thin film) $/ \mathrm{cm}^{-1} 3066 \mathrm{w}, 1658 \mathrm{~s}, 1589 \mathrm{~s}, 1571 \mathrm{~m}, 1472 \mathrm{w}, 1454 \mathrm{w}, 1433 \mathrm{~m}, 1410 \mathrm{~s}, 1371 \mathrm{~m}, 1228 \mathrm{~m}$, $1134 \mathrm{w}, 985 \mathrm{~s}, 917 \mathrm{~m} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 3.00-3.17\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}(2) \mathrm{H}_{2}\right), 4.58\left(1 \mathrm{H}, \mathrm{d}, J 10.0, \mathrm{C}\left(1^{\prime}\right) \mathrm{H}\right)$, $4.70\left(1 \mathrm{H}, \mathrm{d}, J 10.0, \mathrm{C}\left(1^{\prime}\right) \mathrm{H}\right), 5.04-5.09(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(4) \mathrm{H}), 5.14-5.21(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(4) \mathrm{H}), 5.75(1 \mathrm{H}, \mathrm{dd}, J$ $\left.10.5,2.0, \mathrm{C}\left(3^{\prime \prime}\right) \mathrm{H}\right), 5.77-5.91(2 \mathrm{H}, \mathrm{m}, \mathrm{C}(1) \mathrm{H}, \mathrm{C}(3) \mathrm{H}), 6.46\left(1 \mathrm{H}, \mathrm{dd}, J 17.0,2.0, \mathrm{C}\left(3^{\prime \prime}\right) \mathrm{H}\right), 6.76(1 \mathrm{H}$, dd, $\left.J 17.0,10.5, \mathrm{C}\left(2^{\prime \prime}\right) \mathrm{H}\right), 7.21-7.37(6 \mathrm{H}, \mathrm{m}, \mathrm{Ph} \times 5, \mathrm{Ar}), 7.51(1 \mathrm{H}, \mathrm{d}, J 8.0, \mathrm{Ar}), 7.69(1 \mathrm{H}, \mathrm{td}, J 8.0$, $1.5, \mathrm{Ar}), 8.64(1 \mathrm{H}, \mathrm{d}, J 5.0, \mathrm{Ar}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 33.8(\mathrm{C}(2)), 62.3(\mathrm{C}(1)), 79.2\left(\mathrm{C}\left(1^{\prime}\right)\right), 117.8$ (C(4)), $122.8(\mathrm{Ar}), 123.7(\mathrm{Ar}), 126.6\left(\mathrm{C}\left(2^{\prime \prime}\right)\right), 128.5(\mathrm{Ph}), 128.8(\mathrm{Ph}), 129.0(\mathrm{Ph}), 129.6\left(\mathrm{C}\left(3^{\prime \prime}\right)\right)$, 134.4 (i-Ph), 134.5 (C(3)), 136.7 (Ar), 148.9 (Ar), 158.4 (i-Ar), 167.6 (C(1")); m/z 309 ( $100 \%$, $\left.\mathrm{MH}^{+}\right), 201(70 \%), 132(20 \%)$; HRMS (ESI) $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2}\left(\mathrm{MH}^{+}\right)$requires 309.1598, found 309.1595 ( -0.85 ppm ).

1-(Benzyloxy)-6-(pyridin-2-yl)-5,6-dihydropyridin-2(1H)-one 27b


Amide 26b ( $150 \mathrm{mg}, 0.49 \mathrm{mmol}$ ) was subjected to general procedure D using $10 \mathrm{~mol} \%$ HoveydaGrubbs second generation catalyst in toluene at $95^{\circ} \mathrm{C}$ and purified by flash column chromatography (gradient of $0-100 \%$ EtOAc in cyclohexane) to give the title compound $\mathbf{2 7 b}$ as a brown oil ( 100 mg , $74 \%$ ).
$v_{\text {max }}($ thin film $) / \mathrm{cm}^{-1} 2927 \mathrm{w}, 1682 \mathrm{~s}, 1620 \mathrm{~m}, 1589 \mathrm{~m}, 1471 \mathrm{w}, 1454 \mathrm{w}, 1436 \mathrm{~m}, 1392 \mathrm{~m}, 1325 \mathrm{w}, 1291 \mathrm{w}$, $1248 \mathrm{w}, 1134 \mathrm{w}, 994 \mathrm{~m} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.80(1 \mathrm{H}, \mathrm{ddt}, J 18.0,7.0,3.0, \mathrm{C}(5) \mathrm{H}), 2.98(1 \mathrm{H}, \mathrm{dt}, J$ $18.0,4.0, \mathrm{C}(5) \mathrm{H}), 4.66(1 \mathrm{H}, \mathrm{dd}, J 7.0,4.0, \mathrm{C}(6) \mathrm{H}), 4.95\left(1 \mathrm{H}, \mathrm{d}, J 11.0, \mathrm{C}\left(1^{\prime}\right) \mathrm{H}\right), 5.04(1 \mathrm{H}, \mathrm{d}, J 11.0$, $\left.\mathrm{C}\left(1^{\prime}\right) \mathrm{H}\right), 5.93(1 \mathrm{H}, \mathrm{dd}, J 10.0,3.0, \mathrm{C}(3) \mathrm{H}), 6.32(1 \mathrm{H}$, ddd, $J 10.0,4.0,3.0, \mathrm{C}(4) \mathrm{H}), 7.19(1 \mathrm{H}, \mathrm{dd}, J$ $7.5,4.0, \mathrm{Ar}), 7.26(1 \mathrm{H}, \mathrm{d}, J 7.5, \mathrm{Ar}), 7.31-7.35(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.64(1 \mathrm{H}, \mathrm{td}, J 7.5,1.5, \mathrm{Ar}), 8.55(1 \mathrm{H}$, app d, $J 4.0, \mathrm{Ar}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 31.7$ (C(5)), 64.1 (C(6)), 76.9 (C(1')), 121.2 (Ar), 122.2 (Ar), 124.3 ( $\mathrm{C}(3)$ ), $128.0(\mathrm{Ph}), 128.3(\mathrm{Ph}), 129.3(\mathrm{Ph}), 135.1(i-\mathrm{Ph}), 136.3$ (Ar), 137.9 (C(4)), 149.0 (Ar), 158.0 (i-Ar), 164.7 (C(2)); $m / z 281\left(100 \%, \mathrm{MH}^{+}\right)$; HRMS (ESI) $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2}\left(\mathrm{MH}^{+}\right)$requires 281.1285 , found 281.1283 ( -0.67 ppm ).

## 6-(Pyridin-2-yl)pyridin-2(1H)-one 28b



Dihydropyridone 27b ( $98 \mathrm{mg}, 0.35 \mathrm{mmol}$ ) was subjected to general procedure $\mathbf{E}$ with heating to $50^{\circ} \mathrm{C}$ and purified by flash column chromatography (gradient of $0-10 \% \mathrm{MeOH}$ in EtOAc ) to give the title compound 28b as a white solid ( $48 \mathrm{mg}, 80 \%$ ).
m.p. $117-119{ }^{\circ} \mathrm{C}$ (lit. $\left.115-116{ }^{\circ} \mathrm{C}\right)^{7}$; $v_{\text {max }}\left(\mathrm{KBr}\right.$ disk) $/ \mathrm{cm}^{-1} 3055 \mathrm{w}, 1648 \mathrm{~s}, 1599 \mathrm{~s}, 1465 \mathrm{~s}, 1455 \mathrm{~s}$, $1291 \mathrm{w}, 1245 \mathrm{w}, 1155 \mathrm{~m}, 994 \mathrm{~m}, 778 \mathrm{~s} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 6.64(1 \mathrm{H}, \mathrm{dd}, J 9.0,1.0, \mathrm{C}(3) \mathrm{H}), 6.81$ (1H, dd, $J 7.0,1.0, \mathrm{C}(5) \mathrm{H}), 7.33-7.39$ ( $1 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$ ), 7.49 ( $1 \mathrm{H}, \mathrm{dd}, J 9.0,7.0, \mathrm{C}(4) \mathrm{H}), 7.80-7.85$ (2H, $\mathrm{m}, \mathrm{Ar}), 8.66(1 \mathrm{H}, \mathrm{dt}, J 5.0,1.0, \mathrm{Ar}), 10.72\left(1 \mathrm{H}, \mathrm{br}\right.$ s, NH); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 102.7$ (C(5)), 119.6 (Ar), 122.0 (C(3)), 124.5 (Ar), 137.3 (Ar), 140.5 (C(4)), 141.7 (C(6)), 147.8 (i-Ar), 149.2 (Ar), 162.8 (C(2)); m/z $173\left(100 \%, \mathrm{MH}^{+}\right)$; HRMS (ESI) $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~N}_{2} \mathrm{O}\left(\mathrm{MH}^{+}\right)$requires 173.0709, found 173.0710 $(-0.44 \mathrm{ppm})$. All data agreed with those previously published. ${ }^{7}$

## 2,2'-Bipyridin-6-yl trifluoromethanesulfonate 29b



Pyridone 28b ( $20 \mathrm{mg}, 0.12 \mathrm{mmol}$ ) was subjected to general procedure $\mathbf{F}$ and purified by flash column chromatography ( $10: 1$ petrol:EtOAc) to give the title compound $\mathbf{2 9 b}$ as a colourless oil (30 $\mathrm{mg}, 86 \%$ ).
$\nu_{\max }($ thin film$) / \mathrm{cm}^{-1} 3067 \mathrm{w}, ~ 1603 \mathrm{~s}, ~ 1586 \mathrm{~s}, 1556 \mathrm{~s}, 1422 \mathrm{~s}, 1313 \mathrm{~s}, 1212 \mathrm{~s}, 1135 \mathrm{~s}, 1086 \mathrm{~m}, 1046 \mathrm{~m}$, $994 \mathrm{~m}, ~ 913 \mathrm{~s}, 828 \mathrm{~s} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.18(1 \mathrm{H}, \mathrm{d}, J 8.0, \mathrm{C}(5) \mathrm{H}), 7.36(1 \mathrm{H}$, ddd$, J 8.0,5.0,1.5$, Ar), $7.85(1 \mathrm{H}, \mathrm{td}, J 8.0,1.5, \mathrm{Ar}), 8.01(1 \mathrm{H}, \mathrm{t}, J 8.0, \mathrm{C}(4) \mathrm{H}), 8.35(1 \mathrm{H}, \mathrm{dd}, J 8.0,1.5, \mathrm{Ar}), 8.54(1 \mathrm{H}, \mathrm{d}$, $J 8.0, \mathrm{C}(3) \mathrm{H}), 8.68(1 \mathrm{H}, \mathrm{dd}, J 5.0,1.5, \mathrm{Ar}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 114.6(\mathrm{C}(5)), 118.7\left(\mathrm{q}, J_{\mathrm{CF}} 320.5\right.$, $\mathrm{CF}_{3}$ ), $121.0(\mathrm{Ar}), 121.5(\mathrm{C}(3)), 124.6(\mathrm{Ar}), 137.2(\mathrm{Ar}), 141.8(\mathrm{C}(4)), 149.3$ (Ar), 153.7, 155.4, 155.9 (C(2), C(6), $i-\mathrm{Ar}) ; m / z 327$ ( $40 \%, \mathrm{MNa}^{+}$), 305 ( $100 \%, \mathrm{MH}^{+}$), 182 (30\%); HRMS (ESI) $\mathrm{C}_{11} \mathrm{H}_{7} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{NaO}_{3} \mathrm{~S}\left(\mathrm{MNa}^{+}\right)$requires 327.0022 , found 327.0026 ( -1.31 ppm ).

## (E)-6-Methylpicolinaldehyde $\boldsymbol{O}$-benzyl oxime 42



6-Methyl-2-pyridine carboxaldehyde $(1.00 \mathrm{~g}, 8.25 \mathrm{mmol})$ was subjected to general procedure $\mathbf{A}$ using ethanol and purified by flash column chromatography (gradient of $0-50 \%$ EtOAc in cyclohexane) to give the title compound 42 as a colourless oil ( $1.87 \mathrm{~g}, 100 \%$ ).
$v_{\max }($ thin film $) / \mathrm{cm}^{-1} 2925 \mathrm{w}, 1586 \mathrm{~m}, 1572 \mathrm{~m}, 1496 \mathrm{w}, 1456 \mathrm{~s}, 1366 \mathrm{~m}, 1329 \mathrm{w}, 1248 \mathrm{w}, 1209 \mathrm{w}, 1155 \mathrm{w}$, $1025 \mathrm{~s}, 945 \mathrm{~s} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.57(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 5.27\left(2 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(1^{\prime}\right) \mathrm{H}_{2}\right), 7.10-7.14(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar})$, $7.30-7.45(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.54-7.64(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 8.23(1 \mathrm{H}, \mathrm{s}, \mathrm{C}(1) \mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 24.7$ (Me), $77.0\left(\mathrm{C}\left(1^{\prime}\right)\right), 118.4(\mathrm{Ar}), 123.9(\mathrm{Ar}), 128.3(\mathrm{Ph}), 128.6(\mathrm{Ph}), 128.7(\mathrm{Ph}), 136.9(\mathrm{Ar}), 137.7(i-$ Ph), 150.4 (C(1)), 151.4 (i-Ar), 158.7 ( $i-\mathrm{Ar}$ ); $m / z 227$ ( $100 \%, \mathrm{MH}^{+}$); HRMS (ESI) $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}\left(\mathrm{MH}^{+}\right)$ requires 227.1179 , found $227.1177(+0.85 \mathrm{ppm})$.

## O-Benzyl-N-(1-(6-methylpyridin-2-yl)but-3-enyl)hydroxylamine 43



Oxime 42 ( $500 \mathrm{mg}, 2.21 \mathrm{mmol}$ ) was subjected to general procedure $\mathbf{B}$ and purified by flash column chromatography (gradient of $0-25 \%$ EtOAc in cyclohexane) to give the title compound 43 as a colourless oil ( $500 \mathrm{mg}, 84 \%$ ).
$v_{\max }\left(\right.$ thin film) $/ \mathrm{cm}^{-1} 2919 \mathrm{~m}, 1640 \mathrm{w}, 1592 \mathrm{~s}, 1576 \mathrm{~m}, 1495 \mathrm{w}, 1455 \mathrm{~s}, 1363 \mathrm{~m}, 1207 \mathrm{w}, 1155 \mathrm{w}, 994 \mathrm{~s}$, $913 \mathrm{~s} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.44-2.50\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}(2) \mathrm{H}_{2}\right), 2.54(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 4.13(1 \mathrm{H}, \mathrm{t}, J 7.0, \mathrm{C}(1) \mathrm{H})$,
$4.64\left(1 \mathrm{H}, \mathrm{d}, J 11.0, \mathrm{C}\left(1^{\prime}\right) \mathrm{H}\right), 4.68\left(1 \mathrm{H}, \mathrm{d}, J 11.0, \mathrm{C}\left(1^{\prime}\right) \mathrm{H}\right), 4.98-5.08\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}(4) \mathrm{H}_{2}\right), 5.73(1 \mathrm{H}$, ddt, $J 17.5,10.5,7.0, \mathrm{C}(3) \mathrm{H}), 6.24(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 7.02(1 \mathrm{H}, \mathrm{d}, J 7.5, \mathrm{Ar}), 7.09(1 \mathrm{H}, \mathrm{d}, J 7.5, \mathrm{Ar}), 7.24-$ $7.34(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.51(1 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{Ar}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 24.5(\mathrm{Me}), 37.4(\mathrm{C}(2)), 65.8(\mathrm{C}(1))$, $76.2\left(\mathrm{C}\left(1^{\prime}\right)\right), 117.4(\mathrm{C}(4)), 119.2(\mathrm{Ar}), 121.8(\mathrm{Ar}), 127.7(\mathrm{Ph}), 128.2(\mathrm{Ph}), 128.4(\mathrm{Ph}), 134.9(\mathrm{C}(3))$, 136.3 (Ar), 135.0 ( $i-\mathrm{Ph}$ ), 158.0 ( $i-\mathrm{Ar}$ ), 160.5 ( $i-\mathrm{Ar);} \mathrm{m/z} 269$ ( $100 \%$, MH ${ }^{+}$); HRMS (ESI) $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}$ $\left(\mathrm{MH}^{+}\right)$requires 269.1648, found $269.1645(+1.33 \mathrm{ppm})$.

## N -(Benzyloxy)-N-(1-(6-methylpyridin-2-yl)but-3-enyl)acrylamide 26c



Amine 43 ( $480 \mathrm{mg}, 1.79 \mathrm{mmol}$ ) was subjected to general procedure $\mathbf{C}$ and purified by flash column chromatography (gradient of $0-50 \%$ EtOAc in cyclohexane) to give the title compound $\mathbf{2 6 c}$ as a colourless oil ( $544 \mathrm{mg}, 94 \%$ ).
$v_{\text {max }}$ (thin film)/ $\mathrm{cm}^{-1} 3066 \mathrm{w}, 2924 \mathrm{w}, 1658 \mathrm{~s}, 1619 \mathrm{~m}, 1591 \mathrm{~m}, 1576 \mathrm{~m}, 1455 \mathrm{~s}, 1410 \mathrm{~s}, 1372 \mathrm{~m}, 1313 \mathrm{~m}$, $1259 \mathrm{~m}, 1156 \mathrm{w}, 986 \mathrm{~s} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.57(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.96-3.16\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}(2) \mathrm{H}_{2}\right), 4.68(1 \mathrm{H}$, d, $\left.J 10.0, \mathrm{C}\left(1^{\prime}\right) \mathrm{H}\right), 4.73\left(1 \mathrm{H}, \mathrm{d}, J 10.0, \mathrm{C}\left(1^{\prime}\right) \mathrm{H}\right), 5.03-5.07(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(4) \mathrm{H}), 5.16(1 \mathrm{H}, \mathrm{ddd}, J 17.0$, $3.0,1.5, \mathrm{C}(4) \mathrm{H}), 5.69-5.76(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(1) \mathrm{H}), 5.74\left(1 \mathrm{H}, \mathrm{dd}, J 11.0,2.0, \mathrm{C}\left(3^{\prime \prime}\right) \mathrm{H}\right), 5.84(1 \mathrm{H}, \mathrm{ddt}, J 17.0$, $10.5,7.0, \mathrm{C}(3) \mathrm{H}), 6.45\left(1 \mathrm{H}, \mathrm{dd}, J 17.0,2.0, \mathrm{C}\left(3^{\prime \prime}\right) \mathrm{H}\right), 6.77\left(1 \mathrm{H}, \mathrm{dd}, J 17.0,11.0, \mathrm{C}\left(2^{\prime \prime}\right) \mathrm{H}\right), 7.07(1 \mathrm{H}$, d, $J 7.5$, Ar), $7.28(1 \mathrm{H}, \mathrm{d}, J 7.5, \mathrm{Ar}), 7.30-7.39(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.56(1 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{Ar}) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 24.5(\mathrm{Me}), 34.2(\mathrm{C}(2)), 62.8(\mathrm{C}(1))$, $79.1\left(\mathrm{C}\left(1^{\prime}\right)\right), 117.7(\mathrm{C}(4)), 120.5(\mathrm{Ar}), 122.1(\mathrm{Ar}), 126.8$ $\left(\mathrm{C}\left(2^{\prime \prime}\right)\right), 128.5(\mathrm{Ph}), 128.7(\mathrm{Ph}), 129.0(\mathrm{Ph}), 129.3\left(\mathrm{C}\left(3^{\prime \prime}\right)\right), 134.7(i-\mathrm{Ph}), 134.9(\mathrm{C}(3)), 136.7(\mathrm{Ar})$, 157.6 (i-Ar), 157.8 (i-Ar), 167.5 (C(1")); m/z 323 ( $100 \%, \mathrm{MH}^{+}$), 215 (20\%); HRMS (ESI) $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2}\left(\mathrm{MH}^{+}\right)$requires 323.1754 , found $323.1749(+1.44 \mathrm{ppm})$.

1-(Benzyloxy)-6-(6-methylpyridin-2-yl)-5,6-dihydropyridin-2(1H)-one 27c


Amide 26c ( $200 \mathrm{mg}, 0.62 \mathrm{mmol}$ ) was subjected to general procedure D using $10 \mathrm{~mol} \%$ HoveydaGrubbs second generation catalyst in toluene at $95^{\circ} \mathrm{C}$ and purified by flash column chromatography (gradient of 0-100\% EtOAc in cyclohexane) to give the title compound $\mathbf{2 7 c}$ as a brown oil ( 168 mg , 92\%).
$v_{\text {max }}$ (thin film) $/ \mathrm{cm}^{-1} 2943 \mathrm{w}, 1680 \mathrm{~s}, 1620 \mathrm{~m}, 1593 \mathrm{~m}, 1575 \mathrm{~m}, 1458 \mathrm{~m}, 1419 \mathrm{w}, 1388 \mathrm{~m}, 1317 \mathrm{w}, 1205 \mathrm{w}$, $1079 \mathrm{w}, 992 \mathrm{w}$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.51(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.78(1 \mathrm{H}$, app ddt, $J 18.5,7.5,3.0, \mathrm{C}(5) \mathrm{H})$, 2.99-3.02 (1H, m, C(5)H), $4.62(1 \mathrm{H}, \mathrm{dd}, J 7.5,3.5, \mathrm{C}(6) \mathrm{H}), 4.96\left(1 \mathrm{H}, \mathrm{d}, J 11.0, \mathrm{C}\left(1^{\prime}\right) \mathrm{H}\right), 5.05(1 \mathrm{H}, \mathrm{d}$, $\left.J 11.0, \mathrm{C}\left(1^{\prime}\right) \mathrm{H}\right), 5.92(1 \mathrm{H}$, ddd, $J 10.0,3.0,1.0, \mathrm{C}(3) \mathrm{H}), 6.30(1 \mathrm{H}$, ddd, $J 10.0,5.0,3.0, \mathrm{C}(4) \mathrm{H}), 7.04$ $(1 \mathrm{H}, \mathrm{d}, J 7.5, \mathrm{Ar}), 7.06(1 \mathrm{H}, \mathrm{d}, J 7.5, \mathrm{Ar}), 7.31-7.35(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.52(1 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{Ar}) ; \delta_{\mathrm{C}}(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 24.4(\mathrm{Me}), 32.2(\mathrm{C}(5)), 64.5(\mathrm{C}(6)), 77.3\left(\mathrm{C}\left(1^{\prime}\right)\right), 118.4(\mathrm{Ar}), 122.1$ (Ar), 124.7 (C(3)), $128.4(\mathrm{Ph}), 128.6(\mathrm{Ph}), 129.7(\mathrm{Ph}), 135.5(i-\mathrm{Ph}), 136.8(\mathrm{Ar}), 138.3(\mathrm{C}(4)), 157.6(i-\mathrm{Ar}), 158.2(i-\mathrm{Ar})$, $165.0(\mathrm{C}(2)) ; \mathrm{m} / \mathrm{z} 295$ ( $100 \%, \mathrm{MH}^{+}$), 187 (20\%); HRMS (ESI) $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2}\left(\mathrm{MH}^{+}\right)$requires 295.1441, found 295.1438 ( +1.01 ppm ).

## 6-(6-Methylpyridin-2-yl)pyridin-2(1H)-one 28c



Dihydropyridone $\mathbf{2 7 c}$ ( $150 \mathrm{mg}, 0.51 \mathrm{mmol}$ ) was subjected to general procedure $\mathbf{E}$ with heating to $50^{\circ} \mathrm{C}$ and purified by flash column chromatography (gradient of $0-10 \% \mathrm{MeOH}$ in EtOAc ) to give the title compound 28c as a white solid ( $60 \mathrm{mg}, 63 \%$ ).
m.p. $84-86^{\circ} \mathrm{C}$; $v_{\text {max }}(\mathrm{KBr}$ disk $) / \mathrm{cm}^{-1} 3315 \mathrm{w}, 2925 \mathrm{w}, 1651 \mathrm{~s}, 1602 \mathrm{~s}, 1572 \mathrm{~m}, 1375 \mathrm{w}, 1301 \mathrm{w}, 1235 \mathrm{w}$, $1158 \mathrm{w}, 1100 \mathrm{w}, 994 \mathrm{w}$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.76(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 6.61(1 \mathrm{H}, \mathrm{dd}, J 9.0,1.0, \mathrm{C}(3) \mathrm{H}), 6.78$ $(1 \mathrm{H}, \mathrm{dd}, J 7.0,1.0, \mathrm{C}(5) \mathrm{H}), 7.19(1 \mathrm{H}, \mathrm{d}, J 7.5, \mathrm{Ar}), 7.47(1 \mathrm{H}, \mathrm{dd}, J 9.0,7.0, \mathrm{C}(4) \mathrm{H}), 7.61(1 \mathrm{H}, \mathrm{d}, J$ $7.5, \mathrm{Ar}), 7.69(1 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{Ar}), 10.81(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 24.3(\mathrm{Me}), 102.6(\mathrm{C}(5))$, 116.7 ( Ar ), $121.8(\mathrm{C}(3)), 124.2(\mathrm{C}(4)), 137.5(\mathrm{Ar}), 140.6(\mathrm{Ar}), 141.9,146.9,158.4(\mathrm{C}(6), i-\mathrm{Ar} \times 2)$, $162.9(\mathrm{C}(2)) ; m / z 187\left(100 \%, \mathrm{MH}^{+}\right)$; HRMS (ESI) $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}\left(\mathrm{MH}^{+}\right)$requires 187.0871, found $187.0872(+0.50 \mathrm{ppm})$.

## 6'-Methyl-2,2'-bipyridin-6-yl trifluoromethanesulfonate 29c



Pyridone 28c ( $30 \mathrm{mg}, 0.16 \mathrm{mmol}$ ) was subjected to general procedure $\mathbf{F}$ and purified by flash column chromatography ( $12: 1$ cyclohexane:EtOAc) to give the title compound $\mathbf{2 9}$ c as a colourless oil ( $45 \mathrm{mg}, 88 \%$ ).
$v_{\text {max }}\left(\right.$ thin film) $/ \mathrm{cm}^{-1} 2927 \mathrm{w}, 1591 \mathrm{~s}, 1559 \mathrm{~s}, 1427 \mathrm{~s}, 1318 \mathrm{w}, 1214 \mathrm{~s}, 1136 \mathrm{~s}, 1087 \mathrm{~m}, 1074 \mathrm{~m}, 996 \mathrm{~m}$, $933 \mathrm{~s}, 863 \mathrm{~s} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.63(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 7.15(1 \mathrm{H}, \mathrm{dd}, J 8.0,1.0, \mathrm{C}(5) \mathrm{H}), 7.21(1 \mathrm{H}, \mathrm{d}, J$ $8.0, \mathrm{Ar}), 7.72(1 \mathrm{H}, \mathrm{t}, J 8.0, \mathrm{Ar}), 7.98(1 \mathrm{H}, \mathrm{t}, J 8.0, \mathrm{C}(4) \mathrm{H}), 8.14(1 \mathrm{H}, \mathrm{d}, J 8.0, \mathrm{Ar}), 8.56(1 \mathrm{H}, \mathrm{dd}, J$ $8.0,1.0, \mathrm{C}(3) \mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 24.5(\mathrm{Me}), 114.3(\mathrm{C}(5)), 118.5(\mathrm{Ar}), 118.7\left(\mathrm{q}, J_{\mathrm{CF}} 318.5\right.$, $\mathrm{CF}_{3}$ ), $121.0(\mathrm{C}(3)), 124.2(\mathrm{Ar}), 137.3(\mathrm{Ar}), 141.6(\mathrm{C}(4)), 153.1,155.3,156.2,158.2$ (C(2), C(6), $i-\mathrm{Ar}$ $\times 2) ; m / z 319\left(100 \%, \mathrm{MH}^{+}\right)$; HRMS (ESI) $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{NaO}_{3} \mathrm{~S}\left(\mathrm{MNa}^{+}\right)$requires 341.0178, found 341.0178 ( +1.62 ppm ).

## (E)-Quinoline-2-carbaldehyde $O$-benzyl oxime 44



2-Quinoline carboxaldehyde ( $800 \mathrm{mg}, 5.10 \mathrm{mmol}$ ) was subjected to general procedure A using ethanol and purified by flash column chromatography (gradient of $0-25 \%$ EtOAc in cyclohexane) to give the title compound 44 as a white solid ( $1.05 \mathrm{~g}, 78 \%$ ).
m.p. $50-53{ }^{\circ} \mathrm{C}$; $v_{\text {max }}\left(\mathrm{KBr}\right.$ disk) $/ \mathrm{cm}^{-1} 2929 \mathrm{~m}, 1599 \mathrm{~s}, 1503 \mathrm{~s}, 1454 \mathrm{~m}, 1427 \mathrm{~m}, 1367 \mathrm{~m}, 1208 \mathrm{w}, 1200 \mathrm{~s}$, $942 \mathrm{~s} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.33\left(2 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(1^{\prime}\right) \mathrm{H}_{2}\right), 7.32-7.50(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.56(1 \mathrm{H}, \mathrm{t}, J 8.0, \mathrm{Ar})$, $7.73(1 \mathrm{H}, \mathrm{t}, J 8.0, \mathrm{Ar}), 7.81(1 \mathrm{H}, \mathrm{d}, J 8.0, \mathrm{Ar}), 7.99(1 \mathrm{H}, \mathrm{d}, J 8.0, \mathrm{Ar}), 8.09(1 \mathrm{H}, \mathrm{d}, J 8.0, \mathrm{Ar}), 8.13$ $(1 \mathrm{H}, \mathrm{d}, J 8.0, \mathrm{Ar}), 8.41(1 \mathrm{H}, \mathrm{s}, \mathrm{C}(1) \mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 77.4\left(\mathrm{C}\left(1^{\prime}\right)\right), 118.6$ (Ar), 127.6 (Ar), 128.1 (Ar), 128.5 (Ph), 128.6 (i-Ar), 128.8 (Ph), 128.9 (Ph), 129.9 (Ar), 130.2 (Ar), 136.7 (Ar), 137.7 ( $i-\mathrm{Ph}$ ), 148.4 ( $i-\mathrm{Ar}$ ), 150.8 (C(1)), 152.6 ( $i-\mathrm{Ar}$ ); m/z 263 ( $100 \%, \mathrm{MH}^{+}$); HRMS (ESI) $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}\left(\mathrm{MH}^{+}\right)$requires 263.1179, found $263.1177(+0.69 \mathrm{ppm})$.

## O-Benzyl-N-(1-(quinolin-2-yl)but-3-enyl)hydroxylamine 45



Oxime 44 ( $588 \mathrm{mg}, 2.24 \mathrm{mmol}$ ) was subjected to general procedure $\mathbf{B}$ and purified by flash column chromatography (gradient of $0-25 \%$ EtOAc in cyclohexane) to give the title compound $\mathbf{4 5}$ as a colourless oil ( $307 \mathrm{mg}, 45 \%$ ).
$v_{\text {max }}($ thin film $) / \mathrm{cm}^{-1} 2913 \mathrm{w}, 1599 \mathrm{~m}, 1503 \mathrm{~s}, 1454 \mathrm{~m}, 1427 \mathrm{~m}, 1362 \mathrm{~m}, 1305 \mathrm{w}, 1208 \mathrm{w}, 987 \mathrm{~s}, 915 \mathrm{~s} ; \delta_{\mathrm{H}}$ ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $2.51-2.65\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}(2) \mathrm{H}_{2}\right), 4.38-4.45(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(1) \mathrm{H}), 4.67(1 \mathrm{H}, \mathrm{d}, J 12.0$, $\left.\mathrm{C}\left(1^{\prime}\right) \mathrm{H}\right), 4.71\left(1 \mathrm{H}, \mathrm{d}, J 12.0, \mathrm{C}\left(1^{\prime}\right) \mathrm{H}\right), 5.02-5.14\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}(4) \mathrm{H}_{2}\right), 5.81(1 \mathrm{H}, \mathrm{ddt}, J 17.0,10.5,7.0$, $\mathrm{C}(3) \mathrm{H}), 6.39(1 \mathrm{H}, \mathrm{br}$ s, NH), $7.23-7.32(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.49(1 \mathrm{H}, \mathrm{d}, J 8.0, \mathrm{Ar}), 7.50-7.56(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar})$, $7.69-7.74(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.82(1 \mathrm{H}, \mathrm{dd}, J 8.0,1.0, \mathrm{Ar}), 8.10-8.14(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar})$; $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $37.5(\mathrm{C}(2)), 66.3(\mathrm{C}(1)), 76.2\left(\mathrm{C}\left(1^{\prime}\right)\right), 117.8(\mathrm{C}(4)), 120.3(\mathrm{Ar}), 126.1(\mathrm{Ar}), 124.5(\mathrm{Ar}), 127.6(i-\mathrm{Ar})$, 127.6 ( Ph ), 128.2 ( Ph ), 128.3 ( Ph ), 129.3 ( Ar ), 129.3 ( Ar ), 134.5 (C(3)), 136.2 (Ar), 137.9 ( $i-\mathrm{Ph})$, 147.8 (i-Ar), 161.9 (i-Ar); m/z 305 ( $100 \%, \mathrm{MH}^{+}$); HRMS (ESI) $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}\left(\mathrm{MH}^{+}\right)$requires 305.1648 , found $305.1646(+0.83 \mathrm{ppm})$.

## $N$-(Benzyloxy)- $N$-(1-(quinolin-2-yl)but-3-enyl)acrylamide 26d



Amine 45 ( $238 \mathrm{mg}, 0.78 \mathrm{mmol}$ ) was subjected to general procedure $\mathbf{C}$ and purified by flash column chromatography (gradient of $0-25 \%$ EtOAc in cyclohexane) to give the title compound $\mathbf{2 6 d}$ as a colourless oil ( $249 \mathrm{mg}, 89 \%$ ).
$v_{\text {max }}($ thin film $) / \mathrm{cm}^{-1} 3064 \mathrm{w}, 1657 \mathrm{~s}, 1618 \mathrm{~m}, 1600 \mathrm{~m}, 1566 \mathrm{w}, 1502 \mathrm{~m}, 1410 \mathrm{~s}, 1356 \mathrm{~m}, 1223 \mathrm{~m}, 984 \mathrm{~m}$, $916 \mathrm{~m} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 3.16-3.30\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}(2) \mathrm{H}_{2}\right), 4.58\left(1 \mathrm{H}, \mathrm{d}, J 9.5, \mathrm{C}\left(1^{\prime}\right) \mathrm{H}\right), 4.67(1 \mathrm{H}, \mathrm{d}, J$ $\left.9.5, \mathrm{C}\left(1^{\prime}\right) \mathrm{H}\right), 5.05-5.10(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(4) \mathrm{H}), 5.18-5.25(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(4) \mathrm{H}), 5.77(1 \mathrm{H}, \mathrm{dd}, J 10.5,2.0$, $\left.\mathrm{C}\left(3^{\prime \prime}\right) \mathrm{H}\right), 5.91(1 \mathrm{H}, \mathrm{ddt}, J 17.0,10.0,7.0, \mathrm{C}(3) \mathrm{H}), 5.99(1 \mathrm{H}, \mathrm{t}, J 7.0, \mathrm{C}(1) \mathrm{H}), 6.49(1 \mathrm{H}, \mathrm{dd}, J 17.0$, 2.0, C( $\left.\left.3^{\prime \prime}\right) \mathrm{H}\right), 6.80\left(1 \mathrm{H}, \mathrm{dd}, 17.0,10.5, \mathrm{C}\left(2^{\prime \prime}\right) \mathrm{H}\right), 7.24-7.32(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.51-7.56(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.62$ $(1 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{Ar}), 7.69-7.74(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.81(1 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{Ar}), 8.12(1 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{Ar}), 8.14(1 \mathrm{H}, \mathrm{d}$, $J 8.5, \mathrm{Ar}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 34.2$ (C(2)), $63.2(\mathrm{C}(1)), 79.7$ (C(1')), 118.3 (C(4)), 122.1 (Ar), 127.0 (C(2")), 127.9 (Ar), 127.9 (Ar), 128.0 (Ar), 129.0 (Ar), 129.9 (Ar), 129.2 (Ar), $129.5(\mathrm{Ar})$, 129.9 (C(3")), 130.1 (i-Ar), 134.8 (i-Ph), 135.3 (C(3)), 137.0 (Ar), 148.0 (i-Ar), 159.1 (i-Ar), 168.2
$\left(\mathrm{C}\left(1^{\prime \prime}\right)\right) ; \mathrm{m} / \mathrm{z} 359\left(100 \%, \mathrm{MH}^{+}\right) ;$HRMS (ESI) $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2}\left(\mathrm{MH}^{+}\right)$requires 359.1754, found 359.1753 ( +0.42 ppm ).

1-(Benzyloxy)-6-(quinolin-2-yl)-5,6-dihydropyridin-2(1H)-one 27d


Amide 26d ( $185 \mathrm{mg}, 0.52 \mathrm{mmol}$ ) was subjected to general procedure D using $10 \mathrm{~mol} \%$ HoveydaGrubbs second generation catalyst in toluene at $95^{\circ} \mathrm{C}$ and purified by flash column chromatography (gradient of $0-100 \%$ EtOAc in cyclohexane) to give the title compound $\mathbf{2 7 d}$ as a brown oil ( 167 mg , 98\%).
$v_{\text {max }}$ (thin film) $/ \mathrm{cm}^{-1} 3060 \mathrm{w}, 1680 \mathrm{~s}, 1618 \mathrm{~m}, 1597 \mathrm{~m}, 1503 \mathrm{~m}, 1428 \mathrm{~m}, 1391 \mathrm{~m}, 1306 \mathrm{~m}, 1135 \mathrm{~m}, 1079 \mathrm{~m}$, 986 m ; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.86(1 \mathrm{H}, \mathrm{ddt}, J 18.5,7.0,3.0, \mathrm{C}(5) \mathrm{H}), 3.06-3.14(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(5) \mathrm{H}), 4.82$ $(1 \mathrm{H}, \mathrm{dd}, J 7.0,3.0, \mathrm{C}(6) \mathrm{H}), 4.96\left(1 \mathrm{H}, \mathrm{d}, J 11.0, \mathrm{C}\left(1^{\prime}\right) \mathrm{H}\right), 5.05\left(1 \mathrm{H}, \mathrm{d}, J 11.0, \mathrm{C}\left(1^{\prime}\right) \mathrm{H}\right), 5.93(1 \mathrm{H}, \mathrm{dd}, J$ $10.0,3.0, \mathrm{C}(3) \mathrm{H}), 6.31(1 \mathrm{H}, \mathrm{ddd}, J 10.0,5.5,3.0, \mathrm{C}(4) \mathrm{H}), 7.24-7.31(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.39(1 \mathrm{H}, \mathrm{d}, J 8.5$, Ar), $7.45-7.50(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.63-7.68(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.76(1 \mathrm{H}, \mathrm{d}, J 7.5, \mathrm{Ar}), 7.98(1 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{Ar})$, $8.08(1 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{Ar}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 26.8(\mathrm{C}(5)), 65.0(\mathrm{C}(6)), 77.2\left(\mathrm{C}\left(1^{\prime}\right)\right), 119.2(\mathrm{Ar})$, 124.7 (C(3)), 126.4 (Ar), 127.3 ( $i-\mathrm{Ar}), 127.5$ (Ar), 128.3 ( Ar ), 128.6 (Ar), 128.9 (Ar), 129.6 ( Ar ), 129.7 (Ar), 135.4 (i-Ar), 136.7 (Ar), 138.4 (C(4)), 147.6 (i-Ar), 159.1 (i-Ar), 165.1 (C(2)); m/z 331 ( $100 \%$, MH ${ }^{+}$); HRMS (ESI) $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2}\left(\mathrm{MH}^{+}\right)$requires 331.1441 , found 331.1439 ( +0.57 ppm ).

## 6-(Quinolin-2-yl)pyridin-2(1H)-one 28d



Dihydropyridone 27d ( $125 \mathrm{mg}, 0.38 \mathrm{mmol}$ ) was subjected to general procedure $\mathbf{E}$ with heating to $50^{\circ} \mathrm{C}$ and purified by flash column chromatography (gradient of $0-10 \% \mathrm{MeOH}$ in EtOAc ) to give the title compound $\mathbf{2 8 d}$ as a white solid ( $60 \mathrm{mg}, 71 \%$ ).
m.p. $143-146{ }^{\circ} \mathrm{C}$; $v_{\text {max }}\left(\mathrm{KBr}\right.$ disk) $/ \mathrm{cm}^{-1} 3314 \mathrm{w}, 1650 \mathrm{~s}, 1604 \mathrm{~s}, 1590 \mathrm{~s}, 1506 \mathrm{~m}, 1448 \mathrm{~m}, 1291 \mathrm{w}, 1238 \mathrm{w}$, $1146 \mathrm{w}, 997 \mathrm{~m}, 805 \mathrm{~s}$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 6.68(1 \mathrm{H}, \mathrm{d}, J 9.0, \mathrm{C}(3) \mathrm{H}), 6.93(1 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{C}(5) \mathrm{H})$, $7.51(1 \mathrm{H}, \mathrm{dd}, J 9.0,7.0, \mathrm{C}(4) \mathrm{H}), 7.58(1 \mathrm{H}, \mathrm{t}, J 8.5, \mathrm{Ar}), 7.73-7.78(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.82(1 \mathrm{H}, \mathrm{d}, J 8.5$, $\mathrm{Ar}), 7.84(1 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{Ar}), 8.05(1 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{Ar}), 8.24(1 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{Ar}), 11.02(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}}$ ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $104.6(\mathrm{C}(5)), 117.0(\mathrm{Ar}), 123.2(\mathrm{C}(3)), 128.0(\mathrm{Ar}), 128.2$ (Ar), 128.6 (i-Ar), 129.9 (Ar), 131.1 (Ar), $138.0(\mathrm{Ar}), 141.0(\mathrm{C}(4)), 142.1,147.4,147.5(\mathrm{C}(6), i-\mathrm{Ar} \times 2), 163.3$ (C(2)); $m / z 223\left(100 \%, \mathrm{MH}^{+}\right) ;$HRMS (ESI) $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}\left(\mathrm{MH}^{+}\right)$requires 223.0866, found $223.0866(+0.04$ ppm).

## 6-(Quinolin-2-yl)pyridin-2-yl trifluoromethanesulfonate 29d



Pyridone 28d ( $8 \mathrm{mg}, 0.04 \mathrm{mmol}$ ) was subjected to general procedure $\mathbf{F}$ and purified by flash column chromatography ( $10: 1$ petrol:EtOAc) to give the title compound 29d as a white solid ( $8 \mathrm{mg}, 62 \%$ ). m.p. $102-105^{\circ} \mathrm{C}$; $v_{\text {max }}\left(\mathrm{KBr}\right.$ disk) $/ \mathrm{cm}^{-1} 2926 \mathrm{w}, 1603 \mathrm{~s}, 1553 \mathrm{~m}, 1503 \mathrm{~s}, 1425 \mathrm{~s}, 1217 \mathrm{~s}, 1173 \mathrm{~m}, 1132 \mathrm{~s}$, $1072 \mathrm{~m}, 956 \mathrm{~s}, 911 \mathrm{~s}, 861 \mathrm{~s} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.24(1 \mathrm{H}, \mathrm{dd}, J 8.0,1.0, \mathrm{C}(3) \mathrm{H}), 7.60(1 \mathrm{H}$, ddd, $J$ $8.0,7.0,1.0, \mathrm{Ar}), 7.77(1 \mathrm{H}, J 8.0,7.0,1.0, \mathrm{Ar}), 7.88(1 \mathrm{H}, \mathrm{dd}, J 8.0,1.0, \mathrm{Ar}), 8.07(1 \mathrm{H}, \mathrm{t}, J 8.0$, $\mathrm{C}(4) \mathrm{H}), 8.15-8.19(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 8.31(1 \mathrm{H}, \mathrm{d}, J 8.0, \mathrm{Ar}), 8.48(1 \mathrm{H}, \mathrm{d}, J 8.0, \mathrm{Ar}), 8.80(1 \mathrm{H}, \mathrm{dd}, J 8.0$, $1.0, \mathrm{C}(5) \mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 115.0(\mathrm{C}(3)), 118.7\left(\mathrm{q}, J_{\mathrm{CF}} 320.5, \mathrm{CF}_{3}\right), 118.8(\mathrm{Ar}), 121.7(\mathrm{C}(5))$, 127.3 (Ar), 127.7 ( Ar ), 128.5 ( $i-\mathrm{Ar}$ ), 129.8 ( Ar ), 129.9 ( Ar ), 137.2 ( Ar ), 141.7 (C(4)), 148.7 ( $i-\mathrm{Ar})$, 153.7, 155.4, 156.1 (C(2), C(6), $i-\mathrm{Ar}) ; m / z 377$ ( $40 \%, \mathrm{MNa}^{+}$), 355 ( $100 \%$, MH ${ }^{+}$); HRMS (ESI) $\mathrm{C}_{15} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{NaO}_{3} \mathrm{~S}\left(\mathrm{MNa}^{+}\right)$requires 377.0178 , found 377.0179 ( -0.33 ppm ).
( ()-Quinoxaline-2-carbaldehyde $\boldsymbol{O}$-benzyl oxime 46


2-Quinoxalinecarboxaldehyde ( $1.00 \mathrm{~g}, 6.32 \mathrm{mmol}$ ) was subjected to general procedure $\mathbf{A}$ using ethanol and purified by flash column chromatography (gradient of 0-25\% EtOAc in cyclohexane) to give the title compound 46 as a white solid ( $1.60 \mathrm{~g}, 97 \%$ ).
m.p. $100-103{ }^{\circ} \mathrm{C}$; $v_{\text {max }}\left(\mathrm{KBr}\right.$ disk) $/ \mathrm{cm}^{-1} 2928 \mathrm{w}, 1613 \mathrm{w}, 1592 \mathrm{w}, 1552 \mathrm{w}, 1492 \mathrm{~m}, 1454 \mathrm{w}, 1369 \mathrm{w}$, $1321 \mathrm{w}, 1208 \mathrm{w}, 1126 \mathrm{w}, 1080 \mathrm{w}, 1020 \mathrm{~s}$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.36\left(2 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(1^{\prime}\right) \mathrm{H}_{2}\right), 7.33-7.50(5 \mathrm{H}$, $\mathrm{m}, \mathrm{Ph}), 7.75-7.80(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 8.05-8.14(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 8.38(1 \mathrm{H}, \mathrm{s}, \mathrm{C}(1) \mathrm{H}), 9.39(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar}) ; \delta_{\mathrm{C}}(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 77.5\left(\mathrm{C}\left(1^{\prime}\right)\right), 128.3(\mathrm{Ph}), 128.6(\mathrm{Ph}), 128.6(\mathrm{Ph}), 129.4(\mathrm{Ar}), 129.4(\mathrm{Ar}), 130.3(\mathrm{Ar})$, 130.4 (Ar), 136.8 ( $i$-Ph), 142.0 ( $i$-Ar), 142.3 (i-Ar), 143.2 (Ar), 146.8 ( $i-\mathrm{Ar}), 148.4$ (C(1)); m/z 264 $\left(100 \%, \mathrm{MH}^{+}\right)$; HRMS (ESI) $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}\left(\mathrm{MH}^{+}\right)$requires 264.1131 , found $264.1128(+1.32 \mathrm{ppm})$.
$O$-Benzyl- $N$-(1-(quinoxalin-2-yl)but-3-enyl)hydroxylamine 47 and N -(Benzyloxy)- N -(1-(quinoxalin-2-yl)but-3-enyl)acrylamide 26e


Indium powder ( $864 \mathrm{mg}, 1.14 \mathrm{mmol}$ ) was added to a stirred solution of allyl bromide $(1.63 \mathrm{~mL}, 18.8$ $\mathrm{mmol})$ in water $(10 \mathrm{~mL})$ at room temperature. After 30 minutes, oxime $46(300 \mathrm{mg}, 1.14 \mathrm{mmol})$ was
added to the grey slurry and the mixture was stirred for a further 4 h . The reaction was quenched with a sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$ solution and stirred for 1 h . The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL} \times 4)$ and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and the crude product 47 was used immediately without further purification.
$v_{\text {max }}($ thin film $) / \mathrm{cm}^{-1} 2915 \mathrm{w}, 1640 \mathrm{w}, 1561 \mathrm{w}, 1493 \mathrm{~m}, 1454 \mathrm{w}, 1435 \mathrm{w}, 1365 \mathrm{~m}, 1295 \mathrm{w}, 1207 \mathrm{w}, 1126 \mathrm{w}$, $990 \mathrm{~m}, 918 \mathrm{~m} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.63\left(2 \mathrm{H}\right.$, app t, $\left.J 7.0, \mathrm{C}(2) \mathrm{H}_{2}\right), 4.45(1 \mathrm{H}$, app q, $J 7.0, \mathrm{C}(1) \mathrm{H})$, $4.65\left(1 \mathrm{H}, \mathrm{d}, J 12.0, \mathrm{C}\left(1^{\prime}\right) \mathrm{H}\right), 4.70\left(1 \mathrm{H}, \mathrm{d}, J 12.0, \mathrm{C}\left(1^{\prime}\right) \mathrm{H}\right), 5.06-5.15\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}(4) \mathrm{H}_{2}\right), 5.80(1 \mathrm{H}$, ddt, $J 17.0,10.0,7.0, \mathrm{C}(3) \mathrm{H}), 6.27(1 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{NH}), 7.22-7.31(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.74-7.82(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar})$, 8.08-8.15 (2H, m, Ar), $8.91(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 36.9(\mathrm{C}(2)), 64.4(\mathrm{C}(1))$, $76.4\left(\mathrm{C}\left(1^{\prime}\right)\right)$, $118.5(\mathrm{C}(4)), 127.8(\mathrm{Ph}), 128.3(\mathrm{Ph}), 128.4(\mathrm{Ph}), 129.2(\mathrm{Ar}), 129.2(\mathrm{Ar}), 129.5(\mathrm{Ar}), 129.9(\mathrm{Ar})$, 133.7 (C(3)), 137.5 ( $i-\mathrm{Ph}$ ), 142.1 ( $i-\mathrm{Ar}$ ), 142.1 ( $i-\mathrm{Ar}$ ), 145.1 ( Ar ), 156.6 ( $i-\mathrm{Ar}$ ); m/z 306 ( $100 \%$, $\mathrm{MH}^{+}$); HRMS (ESI) $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}\left(\mathrm{MH}^{+}\right)$requires 306.1601, found 306.1597 ( +1.33 ppm ).


Amine 47 was immediately subjected to general procedure $\mathbf{C}$ and purified by flash column chromatography (gradient of $0-50 \%$ EtOAc in cyclohexane) to give the title compound 26e as a colourless oil ( $362 \mathrm{mg}, 88 \%$ over two steps).
$v_{\text {max }}($ thin film $) / \mathrm{cm}^{-1} 3066 \mathrm{w}, 1661 \mathrm{~s}, 1619 \mathrm{~m}, 1615 \mathrm{w}, 1493 \mathrm{~m}, 1454 \mathrm{w}, 1410 \mathrm{~s}, 1365 \mathrm{~m}, 1241 \mathrm{~m}, 1218 \mathrm{~m}$, $1126 \mathrm{w}, 985 \mathrm{~s} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 3.13-3.25\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}(2) \mathrm{H}_{2}\right), 4.58\left(1 \mathrm{H}, \mathrm{d}, J 10.0, \mathrm{C}\left(1^{\prime}\right) \mathrm{H}\right), 4.73$ $\left(1 \mathrm{H}, \mathrm{d}, J 10.0, \mathrm{C}\left(1^{\prime}\right) \mathrm{H}\right), 5.06-5.10(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(4) \mathrm{H}), 5.20(1 \mathrm{H}, \mathrm{ddd}, J 17.0,3.0,1.0, \mathrm{C}(4) \mathrm{H}), 5.78(1 \mathrm{H}$, dd, $\left.J 10.5,2.0, \mathrm{C}\left(3^{\prime \prime}\right) \mathrm{H}\right), 5.87(1 \mathrm{H}, \mathrm{ddt}, J 17.0,10.0,6.5, \mathrm{C}(3) \mathrm{H}), 6.03(1 \mathrm{H}, \mathrm{dd}, J 8.0,7.0, \mathrm{C}(1) \mathrm{H})$, 6.47 ( $\left.1 \mathrm{H}, \mathrm{dd}, J 17.0,2.0, \mathrm{C}\left(3^{\prime \prime}\right) \mathrm{H}\right), 6.76\left(1 \mathrm{H}, \mathrm{dd}, J 17.0,10.5, \mathrm{C}\left(2^{\prime \prime}\right) \mathrm{H}\right), 7.20-7.29(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.72-$ $7.79(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 8.06-8.12(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 8.98(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 33.4(\mathrm{C}(2)), 60.9$ ( $\mathrm{C}(1)$ ), 79.7 ( $\mathrm{C}\left(1^{\prime}\right)$ ), $118.5(\mathrm{C}(4)), 126.3\left(\mathrm{C}\left(2^{\prime \prime}\right)\right), 128.6(\mathrm{Ph}), 128.9(\mathrm{Ph}), 128.9(\mathrm{Ph}), 129.3(\mathrm{Ar})$, 129.4 (Ar), 129.9 ( Ar ), 130.1 (Ar), 130.2 (C(3")), 134.1 (C(3)), 134.1 (i-Ph), 141.7 (i-Ar), 141.9 ( $i-$ Ar), 145.0 (Ar), 153.6 (i-Ar), 168.1 (C(1")); $m / z 360\left(100 \%\right.$, MH $\left.^{+}\right) ;$HRMS (ESI) $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{2}\left(\mathrm{MH}^{+}\right)$ requires 360.1707 , found $360.1702(+1.33 \mathrm{ppm})$.

1-(Benzyloxy)-6-(quinoxalin-2-yl)-5,6-dihydropyridin-2(1H)-one 27e


Amide 26e ( $80 \mathrm{mg}, 0.22 \mathrm{mmol}$ ) was subjected to general procedure D using $10 \mathrm{~mol} \%$ HoveydaGrubbs second generation catalyst in toluene at $95^{\circ} \mathrm{C}$ and purified by flash column chromatography (gradient of $0-100 \%$ EtOAc in cyclohexane) to give the title compound 27 e as a brown oil ( 70 mg , 95\%).
$v_{\text {max }}($ thin film $) / \mathrm{cm}^{-1} 3062 \mathrm{w}, 1689 \mathrm{~s}, 1621 \mathrm{w}, 1493 \mathrm{~m}, 1454 \mathrm{w}, 1369 \mathrm{w}, 1254 \mathrm{w}, 1211 \mathrm{w}, 1129 \mathrm{w}, 1079 \mathrm{w}$, $992 \mathrm{w} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.88(1 \mathrm{H}, \mathrm{ddt}, J 18.5,7.0,3.0, \mathrm{C}(5) \mathrm{H}), 3.07(1 \mathrm{H}, \mathrm{dtd}, J 18.5,5.0,1.0$, $\mathrm{C}(5) \mathrm{H}), 4.86(1 \mathrm{H}, \mathrm{dd}, J 7.0,5.0, \mathrm{C}(6) \mathrm{H}), 4.93\left(1 \mathrm{H}, \mathrm{d}, J 11.0, \mathrm{C}\left(1^{\prime}\right) \mathrm{H}\right), 5.06\left(1 \mathrm{H}, \mathrm{d}, J 11.0, \mathrm{C}\left(1^{\prime}\right) \mathrm{H}\right)$, $6.00(1 \mathrm{H}$, ddd, $J 10.0,3.0,1.0, \mathrm{C}(3) \mathrm{H}), 6.39(1 \mathrm{H}$, ddd, $J 10.0,5.0,3.0, \mathrm{C}(4) \mathrm{H}), 7.26-7.29(5 \mathrm{H}, \mathrm{m}$,
$\mathrm{Ph}), 7.72-7.79(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.99-8.04(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 8.07-8.12(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 8.83(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar}) ; \delta_{\mathrm{C}}(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 31.9(\mathrm{C}(5)), 63.5(\mathrm{C}(6)), 77.6\left(\mathrm{C}\left(1^{\prime}\right)\right), 125.1(\mathrm{C}(3)), 128.4(\mathrm{Ph}), 128.7(\mathrm{Ph}), 129.2(\mathrm{Ph})$, 129.3 (Ar), 129.6 ( Ar ), $130.0(\mathrm{Ar}), 130.3$ ( Ar ), 135.3 ( $i-\mathrm{Ph}), 138.1$ ( $\mathrm{C}(4)$ ), 141.7 (i-Ar), 142.2 ( $i$-Ar), 144.0 (Ar), 153.4 (i-Ar), 165.4 (C(2)); m/z 332 ( $100 \%, \mathrm{MH}^{+}$); HRMS (ESI) $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{2}\left(\mathrm{MH}^{+}\right)$ requires 332.1394 , found 332.1391 ( +0.66 ppm ).

## 6-(Quinoxalin-2-yl)pyridin-2(1H)-one 28e



Dihydropyridone $27 \mathrm{e}(49 \mathrm{mg}, 0.17 \mathrm{mmol})$ was subjected to general procedure $\mathbf{E}$ with heating to $50{ }^{\circ} \mathrm{C}$ and purified by flash column chromatography (gradient of $0-10 \% \mathrm{MeOH}$ in EtOAc ) to give the title compound $\mathbf{2 8 e}$ as a white solid ( $35 \mathrm{mg}, 95 \%$ ).
m.p. $193-196{ }^{\circ} \mathrm{C}$; $v_{\max }\left(\mathrm{KBr}\right.$ disk) $/ \mathrm{cm}^{-1} 3005 \mathrm{w}, 2680 \mathrm{w}, 1664 \mathrm{~m}, 1605 \mathrm{~m}, 1575 \mathrm{~m}, 1551 \mathrm{~m}, 1448 \mathrm{~s}$, $1413 \mathrm{~m}, 1370 \mathrm{~m}, 1349 \mathrm{~m}, 1271 \mathrm{~m}, 1145 \mathrm{w} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 6.77(1 \mathrm{H}, \mathrm{dd}, J 9.5,1.0, \mathrm{C}(3) \mathrm{H}), 7.12$ $(1 \mathrm{H}, \mathrm{dd}, J 7.0,1.0, \mathrm{C}(5) \mathrm{H}), 7.58(1 \mathrm{H}, \mathrm{dd}, J 9.5,7.0, \mathrm{C}(4) \mathrm{H}), 7.81-7.89(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 8.08-8.18(2 \mathrm{H}$, $\mathrm{m}, \mathrm{Ar}), 9.35(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar}), 10.63(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 105.1(\mathrm{C}(5)), 124.1(\mathrm{C}(3))$, 129.3 (Ar), 129.4 (Ar), 131.1 (Ar), 131.4 (Ar), 139.7, 140.3 (C(4)), 140.9, 141.4 (Ar), 142.3, 142.5 $(\mathrm{C}(6), i-\mathrm{Ar} \times 3), 162.6(\mathrm{C}(2)) ; m / z 224\left(100 \%, \mathrm{MH}^{+}\right) ; H R M S(E S I) \mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{O}\left(\mathrm{MH}^{+}\right)$requires 224.0824 , found $224.0827(+1.30 \mathrm{ppm})$.

## 6-(Quinoxalin-2-yl)pyridin-2-yl trifluoromethanesulfonate 29e



Pyridone 28e ( $25 \mathrm{mg}, 0.11 \mathrm{mmol}$ ) was subjected to general procedure $\mathbf{F}$ and purified by flash column chromatography ( $10: 1$ petrol:EtOAc) to give the title compound 29 e as a white solid ( 28 mg , $70 \%$ ).
m.p. $105-108{ }^{\circ} \mathrm{C}$; $v_{\max }\left(\mathrm{KBr}\right.$ disk)$/ \mathrm{cm}^{-1} 2990 \mathrm{w}, 2938 \mathrm{w}, 1642 \mathrm{~m}, 1423 \mathrm{~s}, 1381 \mathrm{~m}, 1320 \mathrm{~m}, 1226 \mathrm{~s}$, $1132 \mathrm{~s}, 977 \mathrm{~s}, 924 \mathrm{~s}, 870 \mathrm{~s} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.31(1 \mathrm{H}, \mathrm{dd}, J 8.0,1.0, \mathrm{C}(3) \mathrm{H}), 7.81-7.85(2 \mathrm{H}, \mathrm{m}$, Ar), $8.11(1 \mathrm{H}, \mathrm{t}, J 8.0, \mathrm{C}(4) \mathrm{H}), 8.14-8.20(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 8.72(1 \mathrm{H}, \mathrm{dd}, J 8.0,1.0, \mathrm{C}(5) \mathrm{H}), 9.84(1 \mathrm{H}, \mathrm{s}$, $\mathrm{Ar}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 115.9(\mathrm{C}(3)), 118.7\left(\mathrm{q}, J_{\mathrm{CF}} 321.0, \mathrm{CF}_{3}\right), 122.0(\mathrm{C}(5)), 129.4(\mathrm{Ar}), 129.7$ (Ar), 130.5 (Ar), 130.8 (Ar), 141.6, $142.0(\mathrm{C}(4)), 142.9,143.7(\mathrm{Ar}), 147.8,154.2,155.4$ (C(2), C(6), $i-\mathrm{Ar} \times 3) ; m / z 356\left(100 \%, \mathrm{MH}^{+}\right) ;$HRMS (ESI) $\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{NaO}_{3} \mathrm{~S}\left(\mathrm{MNa}^{+}\right)$requires 378.0131 , found 378.0129 ( +0.51 ppm ).

## ( $1 E, 1 E)$-6-(( $E)$-(Methoxyimino)methyl)picolinaldehyde $\boldsymbol{O}$-methyl oxime 30



Pyridine ( $1.32 \mathrm{~mL}, 16.3 \mathrm{mmol}$ ) was added drop-wise to a stirred solution of $O$-methylhydroxylamine hydrochloride ( $1.61 \mathrm{~g}, 19.3 \mathrm{mmol}$ ) and 2,6-pyridine cardoxaldehyde ( $1.00 \mathrm{~g}, 7.41 \mathrm{mmol}$ ) in ethanol $(30 \mathrm{~mL})$ and the mixture was heated at reflux for 4 h . The solvent was removed under reduced pressure, and the remaining solid residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ and washed with water $(50 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL} \times 3)$ and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and the crude product was purified by flash column chromatography ( $20: 1$ petrol: EtOAc ) to give the title compound $\mathbf{3 0}$ as a white solid ( $1.35 \mathrm{~g}, 94 \%$ ).
m.p. $53-56^{\circ} \mathrm{C}$; $v_{\text {max }}\left(\mathrm{KBr}\right.$ disk) $/ \mathrm{cm}^{-1} 2937 \mathrm{~m}, 1599 \mathrm{w}, 1569 \mathrm{~m}, 1458 \mathrm{~m}, 1323 \mathrm{w}, 1184 \mathrm{w}, 1153 \mathrm{w}, 1058 \mathrm{~s}$, $954 \mathrm{w}, 918 \mathrm{~s}, 808 \mathrm{w} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 3.99(6 \mathrm{H}, \mathrm{s}, \mathrm{OMe} \times 2), 7.63-7.76(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 8.13(2 \mathrm{H}$, $\mathrm{s}, \mathrm{C}(1) \mathrm{H} \times 2) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 62.4(\mathrm{OMe}), 120.9(\mathrm{Ar}), 136.7(\mathrm{Ar}), 148.9(\mathrm{C}(1)), 151.6(i-\mathrm{Ar}) ;$ $m / z 216\left(100 \%, \mathrm{MNa}^{+}\right), 194\left(90 \%, \mathrm{MH}^{+}\right), 163(20 \%), 137(20 \%)$; HRMS (ESI) $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{NaO}_{2}$ $\left(\mathrm{MNa}^{+}\right)$requires 216.0743, found $216.0743(+0.31 \mathrm{ppm})$.

## $N, N$-(1,1'-(Pyridine-2,6-diyl)bis(but-3-ene-1,1-diyl))bis( $O$-methylhydroxylamine) 31



Oxime 30 ( $300 \mathrm{mg}, 1.55 \mathrm{mmol}$ ) was subjected to general procedure $\mathbf{B}$ and purified by flash column chromatography ( $4: 1$ petrol:EtOAc) to give the title compound 31 as a colourless oil ( $431 \mathrm{mg}, 52 \%$ ) and as a single diastereoisomer (which was unassigned).
$v_{\text {max }}($ thin film $) / \mathrm{cm}^{-1} 3075 \mathrm{~m}, 2978 \mathrm{~m}, 2937 \mathrm{~m}, 2808 \mathrm{~m}, 1640 \mathrm{~m}, 1592 \mathrm{~m}, 1575 \mathrm{~m}, 1440 \mathrm{~m}, 1155 \mathrm{~m}, 994 \mathrm{~m}$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.50\left(4 \mathrm{H}, \mathrm{tt}, J 7.0,1.0, \mathrm{C}(2) \mathrm{H}_{2} \times 2\right), 3.48(6 \mathrm{H}, \mathrm{s}, \mathrm{OMe} \times 2), 4.17(2 \mathrm{H}, \mathrm{t}, J 7.0$, $\mathrm{C}(1) \mathrm{H} \times 2), 4.99-5.08\left(4 \mathrm{H}, \mathrm{m}, \mathrm{C}(4) \mathrm{H}_{2} \times 2\right), 5.74(2 \mathrm{H}, \mathrm{ddt}, J 17.0,10.0,7.0, \mathrm{C}(3) \mathrm{H} \times 2), 6.13(2 \mathrm{H}, \mathrm{br}$ $\mathrm{s}, \mathrm{NH} \times 2), 7.19(2 \mathrm{H}, \mathrm{d}, J 7.5, \mathrm{Ar} \times 2), 7.61(1 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{Ar}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 37.3(\mathrm{C}(2))$, $61.8(\mathrm{OMe}), 65.1(\mathrm{C}(1)), 117.5$ (C(4)), 121.0 (Ar), 134.6 (C(3)), 136.5 (Ar), 160.5 ( $i-\mathrm{Ar}) ; \mathrm{m} / \mathrm{z} 278$ $\left(100 \%, \mathrm{MH}^{+}\right), 248(50 \%), 231(30 \%)$; HRMS (ESI) $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{2}\left(\mathrm{MH}^{+}\right)$requires 278.1863, found 278.1863 ( -0.09 ppm ).

## $N, N$-(1,1'-(Pyridine-2,6-diyl)bis(but-3-ene-1,1-diyl))bis( $N$-methoxyacrylamide) 32



Amine 31 ( $276 \mathrm{mg}, 1.00 \mathrm{mmol}$ ) was subjected to general procedure $\mathbf{C}$ and purified by flash column chromatography ( $4: 1$ petrol:EtOAc) to give the title compound $\mathbf{3 2}$ as a colourless oil ( $288 \mathrm{mg}, 84 \%$ ) and as a single diastereoisomer (which was unassigned).
$v_{\text {max }}\left(\right.$ thin film) $/ \mathrm{cm}^{-1} 2938 \mathrm{w}, 1726 \mathrm{w}, 1660 \mathrm{~s}, 1616 \mathrm{w}, 1410 \mathrm{~s}, 1362 \mathrm{w}, 1246 \mathrm{w}, 987 \mathrm{~m}, 918 \mathrm{w}, 786 \mathrm{w} ; \delta_{\mathrm{H}}$ ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $2.97-3.03\left(4 \mathrm{H}, \mathrm{m}, \mathrm{C}(2) \mathrm{H}_{2} \times 2\right), 3.54(6 \mathrm{H}, \mathrm{s}, \mathrm{OMe} \times 2), 5.03-5.08(2 \mathrm{H}, \mathrm{m}, \mathrm{C}(4) \mathrm{H}$ $\times 2), 5.16(2 \mathrm{H}$, ddd, $J 17.0,3.0,1.5, \mathrm{C}(4) \mathrm{H} \times 2), 5.71(2 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{C}(1) \mathrm{H} \times 2), 5.79(2 \mathrm{H}, \mathrm{dd}, J 10.0$, $\left.2.0, \mathrm{C}\left(3^{\prime}\right) \mathrm{H} \times 2\right), 5.82(2 \mathrm{H}, \mathrm{ddt}, J 17.0,10.0,7.0, \mathrm{C}(3) \mathrm{H} \times 2), 6.45\left(2 \mathrm{H}, \mathrm{dd}, J 17.0,2.0, \mathrm{C}\left(3^{\prime}\right) \mathrm{H} \times 2\right)$, $6.72\left(2 \mathrm{H}, \mathrm{dd}, J 17.0,10.0, \mathrm{C}\left(2^{\prime}\right) \mathrm{H} \times 2\right), 7.32(2 \mathrm{H}, \mathrm{d}, J 8.0, \mathrm{Ar}), 7.63(1 \mathrm{H}, \mathrm{t}, J 8.0, \mathrm{Ar}) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 33.7(\mathrm{C}(2)), 61.7(\mathrm{C}(1)), 65.0(\mathrm{OMe}), 117.7(\mathrm{C}(4)), 122.3(\mathrm{Ar}), 126.4\left(\mathrm{C}\left(2^{\prime}\right)\right), 129.7\left(\mathrm{C}\left(3^{\prime}\right)\right)$, 134.7 (C(3)), 137.2 (Ar), 157.3 ( $i$-Ar), 167.3 (C(1')); $m / z 408$ ( $100 \%, \mathrm{MNa}^{+}$), 386 ( $70 \%, \mathrm{MH}^{+}$), 355 (40\%); HRMS (ESI) $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{NaO}_{4}\left(\mathrm{MNa}^{+}\right)$requires 408.1894, found 408.1893 ( +0.29 ppm ).

## 6,6-(Pyridine-2,6-diyl)bis(1-methoxy-5,6-dihydropyridin-2(1H)-one) 48



Amide 32 ( $117 \mathrm{mg}, 0.30 \mathrm{mmol}$ ) was subjected to general procedure D using $10 \mathrm{~mol} \%$ HoveydaGrubbs second generation catalyst in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $40{ }^{\circ} \mathrm{C}$ and purified by flash column chromatography (1:1 EtOAc:acetone) to give the title compound 48 as a colourless oil ( $100 \mathrm{mg}, 100 \%$ ) and as a single diastereoisomer (which was unassigned).
$v_{\text {max }}$ (thin film) $/ \mathrm{cm}^{-1} 2936 \mathrm{~m}, 1682 \mathrm{~s}, 1620 \mathrm{~m}, 1457 \mathrm{~m}, 1315 \mathrm{~m}, 1136 \mathrm{~m}, 1086 \mathrm{~m}, 995 \mathrm{~m}, 913 \mathrm{~m}, 859 \mathrm{~m}$, $809 \mathrm{~m} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.93-3.08\left(4 \mathrm{H}, \mathrm{m}, \mathrm{C}(5) \mathrm{H}_{2} \times 2\right), 3.75(6 \mathrm{H}, \mathrm{s}, \mathrm{OMe} \times 2), 5.01(2 \mathrm{H}, \mathrm{dd}, J$ $7.0,3.5, \mathrm{C}(6) \mathrm{H} \times 2), 5.86(2 \mathrm{H}, \mathrm{dd}, J 9.5,1.5, \mathrm{C}(3) \mathrm{H} \times 2), 6.28(2 \mathrm{H}, \mathrm{ddd}, J 9.5,5.0,3.0, \mathrm{C}(4) \mathrm{H} \times 2)$, $7.11(2 \mathrm{H}, \mathrm{d}, J 8.0, \mathrm{Ar}), 7.58(1 \mathrm{H}, \mathrm{t}, J 8.0, \mathrm{Ar}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 32.5(\mathrm{C}(5), 62.6(\mathrm{C}(6)), 62.8$ (OMe), 120.3 (Ar), 124.6 (C(3)), 137.4 (Ar), 138.1 (C(4)), 157.8 (i-Ar), 165.1 (C(2)); m/z 352 (90\%, $\mathrm{MNa}^{+}$), $330\left(100 \%\right.$, $\left.\mathrm{MH}^{+}\right), 300(40 \%)$; HRMS (ESI) $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{NaO}_{4}\left(\mathrm{MNa}^{+}\right)$requires 352.1268, found 352.1268 ( -0.24 ppm ).

## 6,6-(Pyridine-2,6-diyl)dipyridin-2(1H)-one 33



Dihydropyridone $\mathbf{4 8}(96 \mathrm{mg}, 0.29 \mathrm{mmol})$ was subjected to general procedure $\mathbf{E}$ with heating to $50{ }^{\circ} \mathrm{C}$ and purified by flash column chromatography ( $50: 45: 5$ i- $\mathrm{PrOH}: \mathrm{EtOAc}: 20 \%$ aq. $\mathrm{NH}_{3}$ solution) to give the title compound $\mathbf{3 3}$ as a white solid ( $43 \mathrm{mg}, 56 \%$ ).
m.p. $>350{ }^{\circ} \mathrm{C} ; v_{\max }(\mathrm{KBr}$ disk $) / \mathrm{cm}^{-1} 3444 \mathrm{w}, 1652 \mathrm{~s}, 1588 \mathrm{~s}, 1469 \mathrm{~m}, 1246 \mathrm{w}, 1164 \mathrm{w}, 988 \mathrm{~m}, 930 \mathrm{w}$, $790 \mathrm{~s}, 618 \mathrm{w} ; \delta_{\mathrm{H}}(400 \mathrm{MHz}, \mathrm{DMSO}) 6.52(2 \mathrm{H}, \mathrm{d}, J 9.0, \mathrm{C}(3) \mathrm{H} \times 2), 7.10(2 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{C}(5) \mathrm{H} \times 2)$, $7.61(2 \mathrm{H}, \mathrm{dd}, J 9.0,7.0, \mathrm{C}(4) \mathrm{H} \times 2), 8.06-8.22(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar}) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}, \mathrm{DMSO}) 104.5(\mathrm{C}(5))$, 121.6 (C(3)), 121.6 (Ar), 139.3 (Ar), 140.8 (C(4)), 142.7, 148.9 (C(6), i-Ar), 163.0 (C(2)); m/z 288 ( $40 \%, \mathrm{MNa}^{+}$), 266 ( $40 \%, \mathrm{MH}^{+}$), 191 ( $100 \%$ ), 170 ( $100 \%$ ), 149 ( $80 \%$ ), 127 (50\%); HRMS (ESI) $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{NaO}_{2}\left(\mathrm{MNa}^{+}\right)$requires 288.0743, found $288.0744(-0.32 \mathrm{ppm})$.

## Methyl 5-(benzyloxy)-6-oxo-1,6-dihydropyridine-2-carboxylate 35



Bromine ( $188 \mu \mathrm{~L}, 1.35 \mathrm{mmol}$ ) was added drop-wise to a stirred solution of cyclic amide $\mathbf{1 0}(70 \mathrm{mg}$, 0.27 mmol ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. Stirring was continued at room temperature for 1 h before removing the solvent under reduced pressure. The resulting residue was dissolved in THF ( 5 mL ) and DBU ( $404 \mu \mathrm{~L}, 2.77 \mathrm{mmol}$ ) was added drop-wise. The solution was stirred at room temperature for 16 h , before filtering through a plug of silica eluting with EtOAc to give the title compound $\mathbf{3 5}$ as a colourless oil ( $51 \mathrm{mg}, 74 \%$ ).
$v_{\text {max }}$ (thin film) $/ \mathrm{cm}^{-1} 3034 \mathrm{w}, 2955 \mathrm{w}, 1740 \mathrm{~s}, 1674 \mathrm{~s}, 1590 \mathrm{~m}, 1546 \mathrm{w}, 1496 \mathrm{w}, 1436 \mathrm{~m}, 1398 \mathrm{w}, 1279 \mathrm{~s}$, $1206 \mathrm{~m}, 1132 \mathrm{~m}, 1014 \mathrm{w}, ~ 961 \mathrm{w}, 912 \mathrm{w}$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 3.86(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 5.41(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{C}\left(1^{\prime}\right) \mathrm{H}_{2}\right), 6.49(1 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{C}(3) \mathrm{H}), 6.83(1 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{C}(4) \mathrm{H}), 7.25-7.58(5 \mathrm{H}, \mathrm{m} \mathrm{Ph}) ; \delta_{\mathrm{C}}(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 53.2(\mathrm{OMe}), 78.6\left(\mathrm{C}\left(1^{\prime}\right)\right), 107.9(\mathrm{C}(3)), 126.0(\mathrm{C}(4)), 128.5(\mathrm{Ph}), 129.2(\mathrm{Ph}), 130.1$ (Ph), 133.7, 137.2, 138.8 (C(2), C(5), $i-\mathrm{Ph}), 158.8,160.4$ (C(1"), C(6)); m/z 318 (100\%, $\mathrm{MNH}_{4}{ }^{+} \mathrm{MeCN}$ ), $282\left(70 \%, \mathrm{MNa}^{+}\right), 175(50 \%)$; HRMS (ESI) $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{NO}_{4}\left(\mathrm{MH}^{+}\right)$requires 260.0917, found 260.0916 ( +0.48 ppm ).

## Methyl 5-bromo-3-methyl-6-oxo-1,6-dihydropyridine-2-carboxylate 36


$N$-Bromosuccinimide ( $83 \mathrm{mg}, 0.39 \mathrm{mmol}$ ) was added to a solution of pyridone 20a ( $60 \mathrm{mg}, 0.36$ $\mathrm{mmol})$ in $\mathrm{MeCN}(10 \mathrm{~mL})$ and the mixture was heated at reflux for 3 h . The reaction mixture was cooled to room temperature, and the precipitate was filtered and washed with cold $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give the title compound 36 as a white solid ( $62 \mathrm{mg}, 70 \%$ ).
m.p. $186-188{ }^{\circ} \mathrm{C} ; \mathrm{v}_{\text {max }}\left(\mathrm{KBr}\right.$ disk) $/ \mathrm{cm}^{-1} 2945 \mathrm{~m}, 1727 \mathrm{~s}, 1657 \mathrm{~s}, 1434 \mathrm{~m}, 1312 \mathrm{~m}, 1277 \mathrm{~m}, 1238 \mathrm{w}$, $1116 \mathrm{~m}, 951 \mathrm{w}, 896 \mathrm{w}, 800 \mathrm{w}$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.43(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 3.98(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 7.75(1 \mathrm{H}, \mathrm{s}$, $\mathrm{C}(4) \mathrm{H}), 10.50(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 18.1(\mathrm{Me}), 53.2(\mathrm{OMe}), 121.9,123.1(\mathrm{C}(3)$, $\mathrm{C}(5)), 129.1$ (C(2)), 146.9 (C(4)), 157.9, 161.5 (C(1'), C(6)); $m / z 246$ (100\%, MH ${ }^{+}$), 220 (70\%), 218 ( $60 \%$ ), 216 (50\%); HRMS (ESI) $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{BrNO}_{3}\left(\mathrm{MH}^{+}\right)$requires 245.9760, found $245.9762(-0.75$ ppm).

## References

1. Jung, M. E.; Shishido, K.; Davis, L. H. J. Org. Chem., 1982, 47, 892.
2. Schuda, P. F.; Ebner, C. B.; Potlock, S. J. Synthesis, 1987, 12, 1055.
3. Ritson, D. J.; Cox, R. J.; Berge, J. Org. Biomol. Chem., 2004, 2, 1921.
4. Zhou, H.; Liu, G.; Yao, Z. Org. Lett., 2007, 9, 2003.
5. Comins, D. L.; Dehghani, A.; Foti, C. J.; Joseph, S. P. Org. Synth. 1997, 74, 77.
6. Yu, S.; Rabalakos, C.; Mitchell, W. D.; Wulff, W. D. Org. Lett., 2005, 7, 367.
7. Zhang, J.; Wang, Y.; Huang, X.; Lin, Y.; Chen, X. Chem. Eur. J., 2005, 11, 552.

Methyl 6-oxo-1,6-dihydropyridine-2-carboxylate 11




## Methyl 6-(trifluoromethylsulfonyloxy)picolinate 13





Methyl 5-methyl-6-oxo-1,6-dihydropyridine-2-carboxylate 16a




## Methyl 5-methyl-6-(trifluoromethylsulfonyloxy)picolinate 17a





Methyl 6-oxo-5-(trifluoromethyl)-1,6-dihydropyridine-2-carboxylate 16b




## Methyl 5-(trifluoromethyl)-6-(trifluoromethylsulfonyloxy)picolinate 17b





Methyl 3-methyl-6-oxo-1,6-dihydropyridine-2-carboxylate 21a




Methyl 6-oxo-3-phenyl-1,6-dihydropyridine-2-carboxylate 21b




Methyl 5-methyl-6-oxo-3-phenyl-1,6-dihydropyridine-2-carboxylate 21c



6-(Pyridin-2-yl)pyridin-2(1H)-one 28b




## 2,2'-Bipyridin-6-yl trifluoromethanesulfonate 29b





6-(6-Methylpyridin-2-yl)pyridin-2(1H)-one 28c




## 6'-Methyl-2,2'-bipyridin-6-yl trifluoromethanesulfonate 29c





6-(Quinolin-2-yl)pyridin-2(1H)-one 28d




6-(Quinolin-2-yl)pyridin-2-yl trifluoromethanesulfonate 29d




6-(Quinoxalin-2-yl)pyridin-2(1H)-one 28e




## 6-(Quinoxalin-2-yl)pyridin-2-yl trifluoromethanesulfonate 29e





## 6,6-(Pyridine-2,6-diyl)dipyridin-2(1H)-one 33





Methyl 5-(benzyloxy)-6-oxo-1,6-dihydropyridine-2-carboxylate 35




Methyl 5-bromo-3-methyl-6-oxo-1,6-dihydropyridine-2-carboxylate 36




