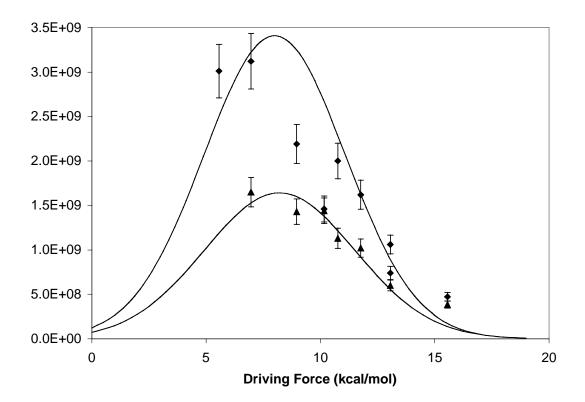
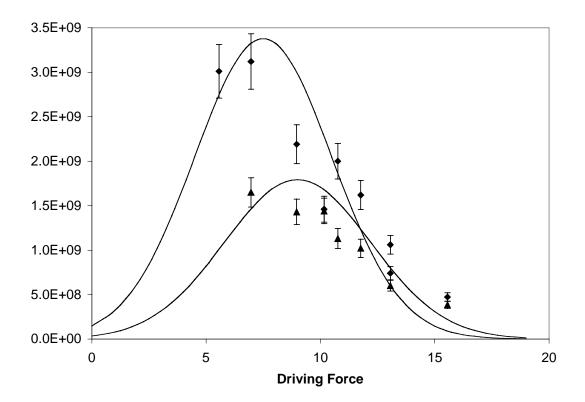
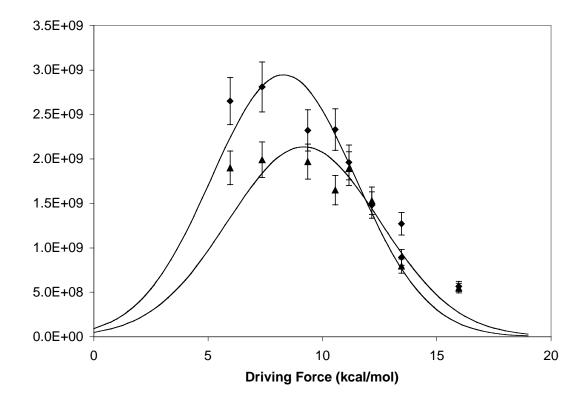
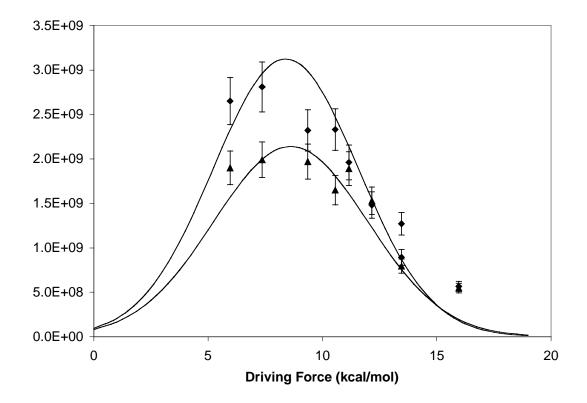
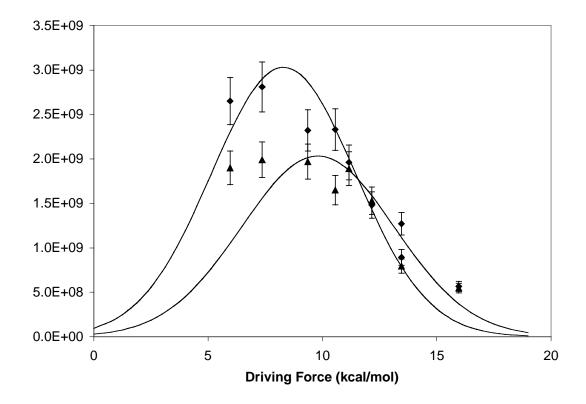
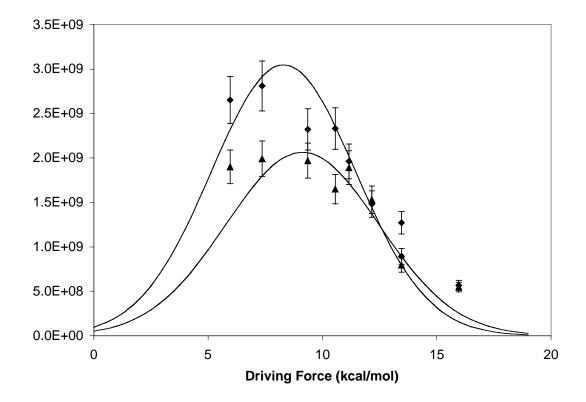
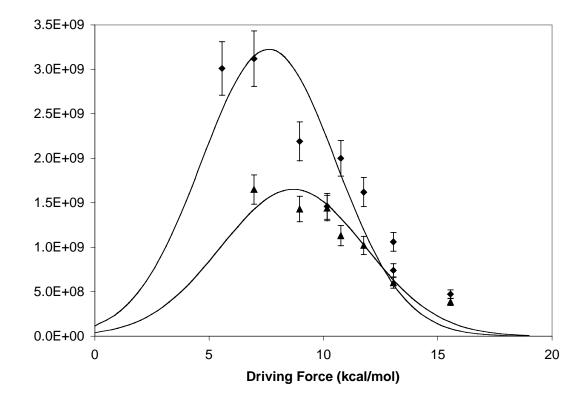
Figure 1S. Correlation of the experimental rate constants for proton transfer (solid diamonds) and deuteron transfer (solid triangles) with driving force in acetonitrile. Driving force is defined as $-\Delta G$. Solid line – fit of the Lee-Hynes model with V[‡]= 21.5 kcal/mole, E_s=7.0 kcal/mole, ω_Q =199.5 cm⁻¹, reactant stretch = 2645 cm⁻¹, and product bend 768 cm⁻¹.


Figure 2S. Correlation of the experimental rate constants for proton transfer (solid diamonds) and deuteron transfer (solid triangles) with driving force in acetonitrile. Driving force is defined as $-\Delta G$. Solid line – fit of the Lee-Hynes model with V^{\ddagger} = 22.6 kcal/mole, E_s =6.5 kcal/mole, ω_Q =193.0 cm⁻¹, reactant bend = 1183 cm⁻¹, and product stretch 2386 cm⁻¹.


Figure 3S. Correlation of the experimental rate constants for proton transfer (solid diamonds) and deuteron transfer (solid triangles) with driving force in DMF. Driving force is defined as - Δ G. Solid line – fit of the Lee-Hynes model with V[‡]= 26.7 kcal/mole, E_s=7.3 kcal/mole, ω_Q =174.0 cm⁻¹, reactant stretch = 2645 cm⁻¹, and product stretch 2386 cm⁻¹.


Figure 4S. Correlation of the experimental rate constants for proton transfer (solid diamonds) and deuteron transfer (solid triangles) with driving force in DMF. Driving force is defined as - Δ G. Solid line – fit of the Lee-Hynes model with V[‡]= 22.3 kcal/mole, E_s=7.4 kcal/mole, ω_Q =191.3 cm⁻¹, reactant stretch = 2645 cm⁻¹, and product bend 768 cm⁻¹.


Figure 5S. Correlation of the experimental rate constants for proton transfer (solid diamonds) and deuteron transfer (solid triangles) with driving force in DMF. Driving force is defined as - Δ G. Solid line – fit of the Lee-Hynes model with V[‡]= 23.5 kcal/mole, E_s=7.3 kcal/mole, ω_Q =185.5 cm⁻¹, reactant bend = 1183 cm⁻¹, and product stretch 2386 cm⁻¹.

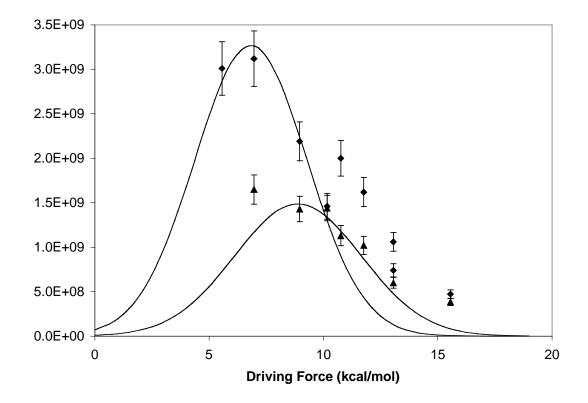

Figure 6S. Correlation of the experimental rate constants for proton transfer (solid diamonds) and deuteron transfer (solid triangles) with driving force in DMF. Driving force is defined as - Δ G. Solid line – fit of the Lee-Hynes model with V[‡]= 19.0 kcal/mole, E_s=7.3 kcal/mole, ω_Q =207.8 cm⁻¹, reactant bend = 1183 cm⁻¹, and product bend 768 cm⁻¹.

Figure 7S. Correlation of the experimental rate constants for proton transfer (solid diamonds) and deuteron transfer (solid triangles) with driving force in acetonitrile. Driving force is defined as - Δ G. Solid line – fit of the Lee-Hynes model with V[‡]= 18.5 kcal/mole, E_s= 6.1 kcal/mole, ω_Q =215.1 cm⁻¹, reactant bend = 1183 cm⁻¹, and product bend 768 cm⁻¹. Δ Q = 0.01Å

Figure 8S. Correlation of the experimental rate constants for proton transfer (solid diamonds) and deuteron transfer (solid triangles) with driving force in acetonitrile. Driving force is defined as - Δ G. Solid line – fit of the Lee-Hynes model with V[‡]= 18.7 kcal/mole, E_s=3.0 kcal/mole, ω_Q =215.0 cm⁻¹, reactant bend = 1183 cm⁻¹, and product bend 768 cm⁻¹. Δ Q = 0.05Å

